1
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
2
|
Jiao W, Li M, Lei T, Liu X, Zhang J, Hu J, Zhang X, Liu J, Shi S, Pan H, Zhang Y. The APSES Transcription Factor SsStuA Regulating Cell Wall Integrity Is Essential for Sclerotia Formation and Pathogenicity in Sclerotinia sclerotiorum. J Fungi (Basel) 2024; 10:238. [PMID: 38667909 PMCID: PMC11051248 DOI: 10.3390/jof10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
APSES (Asm1p, Phd1p, Sok2p, Efg1p, and StuAp) family transcription factors play crucial roles in various biological processes of fungi, however, their functional characterization in phytopathogenic fungi is limited. In this study, we explored the role of SsStuA, a typical APSES transcription factor, in the regulation of cell wall integrity (CWI), sclerotia formation and pathogenicity of Sclerotinia sclerotiorum, which is a globally important plant pathogenic fungus. A deficiency of SsStuA led to abnormal phosphorylation level of SsSmk3, the key gene SsAGM1 for UDP-GlcNAc synthesis was unable to respond to cell wall stress, and decreased tolerance to tebuconazole. In addition, ΔSsStuA was unable to form sclerotia but produced more compound appressoria. Nevertheless, the virulence of ΔSsStuA was significantly reduced due to the deficiency of the invasive hyphal growth and increased susceptibility to hydrogen peroxide. We also revealed that SsStuA could bind to the promoter of catalase family genes which regulate the expression of catalase genes. Furthermore, the level of reactive oxygen species (ROS) accumulation was found to be increased in ΔSsStuA. In summary, SsStuA, as a core transcription factor involved in the CWI pathway and ROS response, is required for vegetative growth, sclerotia formation, fungicide tolerance and the full virulence of S. sclerotiorum.
Collapse
Affiliation(s)
- Wenli Jiao
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Maoxiang Li
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Tianyi Lei
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xiaoli Liu
- Shandong Yellow River Delta National Nature Reserve Management Committee, Scientific Research Center, Dongying 257091, China
| | - Junting Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jun Hu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shusen Shi
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Minden S, Aniolek M, Noorman H, Takors R. Mimicked Mixing-Induced Heterogeneities of Industrial Bioreactors Stimulate Long-Lasting Adaption Programs in Ethanol-Producing Yeasts. Genes (Basel) 2023; 14:genes14050997. [PMID: 37239357 DOI: 10.3390/genes14050997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Commercial-scale bioreactors create an unnatural environment for microbes from an evolutionary point of view. Mixing insufficiencies expose individual cells to fluctuating nutrient concentrations on a second-to-minute scale while transcriptional and translational capacities limit the microbial adaptation time from minutes to hours. This mismatch carries the risk of inadequate adaptation effects, especially considering that nutrients are available at optimal concentrations on average. Consequently, industrial bioprocesses that strive to maintain microbes in a phenotypic sweet spot, during lab-scale development, might suffer performance losses when said adaptive misconfigurations arise during scale-up. Here, we investigated the influence of fluctuating glucose availability on the gene-expression profile in the industrial yeast Ethanol Red™. The stimulus-response experiment introduced 2 min glucose depletion phases to cells growing under glucose limitation in a chemostat. Even though Ethanol Red™ displayed robust growth and productivity, a single 2 min depletion of glucose transiently triggered the environmental stress response. Furthermore, a new growth phenotype with an increased ribosome portfolio emerged after complete adaptation to recurring glucose shortages. The results of this study serve a twofold purpose. First, it highlights the necessity to consider the large-scale environment already at the experimental development stage, even when process-related stressors are moderate. Second, it allowed the deduction of strain engineering guidelines to optimize the genetic background of large-scale production hosts.
Collapse
Affiliation(s)
- Steven Minden
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maria Aniolek
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Henk Noorman
- Royal DSM, 2613 AX Delft, The Netherlands
- Department of Biotechnology, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy. Nat Commun 2022; 13:5675. [PMID: 36167807 PMCID: PMC9515143 DOI: 10.1038/s41467-022-33423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here we show that glycolysis regulates histone modifications and gene expression by activating protein kinase A (PKA) via the Ras-cyclic AMP pathway. The catalytic subunit of PKA, Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at Ser321 and Ser340 in response to glucose availability. Tpk2-catalyzed Jhd2 phosphorylation impairs its nuclear localization, reduces its binding to chromatin, and promotes its polyubiquitination and degradation by the proteasome. Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14 acetylation by preventing the binding of histone deacetylase Rpd3 to chromatin. By phosphorylating Jhd2, Tpk2 regulates gene expression, maintains normal chronological life span and promotes autophagy. These results provide a direct connection between metabolism and histone modifications and shed lights on how cells rewire their biological responses to nutrient signals. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here the authors show that the nutrient sensor, protein kinase A modulates histone modifications and gene transcription by phosphorylating histone demethylase.
Collapse
|
5
|
Rico-Díaz A, Barreiro-Alonso A, Rey-Souto C, Becerra M, Lamas-Maceiras M, Cerdán ME, Vizoso-Vázquez Á. The HMGB Protein KlIxr1, a DNA Binding Regulator of Kluyveromyces lactis Gene Expression Involved in Oxidative Metabolism, Growth, and dNTP Synthesis. Biomolecules 2021; 11:biom11091392. [PMID: 34572607 PMCID: PMC8465852 DOI: 10.3390/biom11091392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
In the traditional fermentative model yeast Saccharomyces cerevisiae, ScIxr1 is an HMGB (High Mobility Group box B) protein that has been considered as an important regulator of gene transcription in response to external changes like oxygen, carbon source, or nutrient availability. Kluyveromyces lactis is also a useful eukaryotic model, more similar to many human cells due to its respiratory metabolism. We cloned and functionally characterized by different methodologies KlIXR1, which encodes a protein with only 34.4% amino acid sequence similarity to ScIxr1. Our data indicate that both proteins share common functions, including their involvement in the response to hypoxia or oxidative stress induced by hydrogen peroxide or metal treatments, as well as in the control of key regulators for maintenance of the dNTP (deoxyribonucleotide triphosphate) pool and ribosome synthesis. KlIxr1 is able to bind specific regulatory DNA sequences in the promoter of its target genes, which are well conserved between S. cerevisiae and K. lactis. Oppositely, we found important differences between ScIrx1 and KlIxr1 affecting cellular responses to cisplatin or cycloheximide in these yeasts, which could be dependent on specific and non-conserved domains present in these two proteins.
Collapse
|
6
|
Tam J, van Werven FJ. Regulated repression governs the cell fate promoter controlling yeast meiosis. Nat Commun 2020; 11:2271. [PMID: 32385261 PMCID: PMC7210989 DOI: 10.1038/s41467-020-16107-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Intrinsic signals and external cues from the environment drive cell fate decisions. In budding yeast, the decision to enter meiosis is controlled by nutrient and mating-type signals that regulate expression of the master transcription factor for meiotic entry, IME1. How nutrient signals control IME1 expression remains poorly understood. Here, we show that IME1 transcription is regulated by multiple sequence-specific transcription factors (TFs) that mediate association of Tup1-Cyc8 co-repressor to its promoter. We find that at least eight TFs bind the IME1 promoter when nutrients are ample. Remarkably, association of these TFs is highly regulated by different nutrient cues. Mutant cells lacking three TFs (Sok2/Phd1/Yap6) displayed reduced Tup1-Cyc8 association, increased IME1 expression, and earlier onset of meiosis. Our data demonstrate that the promoter of a master regulator is primed for rapid activation while repression by multiple TFs mediating Tup1-Cyc8 recruitment dictates the fate decision to enter meiosis.
Collapse
Affiliation(s)
- Janis Tam
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Folkert J van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
7
|
Plank M, Perepelkina M, Müller M, Vaga S, Zou X, Bourgoint C, Berti M, Saarbach J, Haesendonckx S, Winssinger N, Aebersold R, Loewith R. Chemical Genetics of AGC-kinases Reveals Shared Targets of Ypk1, Protein Kinase A and Sch9. Mol Cell Proteomics 2020; 19:655-671. [PMID: 32102971 PMCID: PMC7124472 DOI: 10.1074/mcp.ra120.001955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein phosphorylation cascades play a central role in the regulation of cell growth and protein kinases PKA, Sch9 and Ypk1 take center stage in regulating this process in S. cerevisiae To understand how these kinases co-ordinately regulate cellular functions we compared the phospho-proteome of exponentially growing cells without and with acute chemical inhibition of PKA, Sch9 and Ypk1. Sites hypo-phosphorylated upon PKA and Sch9 inhibition were preferentially located in RRxS/T-motifs suggesting that many are directly phosphorylated by these enzymes. Interestingly, when inhibiting Ypk1 we not only detected several hypo-phosphorylated sites in the previously reported RxRxxS/T-, but also in an RRxS/T-motif. Validation experiments revealed that neutral trehalase Nth1, a known PKA target, is additionally phosphorylated and activated downstream of Ypk1. Signaling through Ypk1 is therefore more closely related to PKA- and Sch9-signaling than previously appreciated and may perform functions previously only attributed to the latter kinases.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland; National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland.
| | - Mariya Perepelkina
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Markus Müller
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Xiaoming Zou
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Clélia Bourgoint
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Marina Berti
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Jacques Saarbach
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Steven Haesendonckx
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland; Department of Organic Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, CH-8093 Zürich, Switzerland; Faculty of Science, University of Zurich, CH-8006, Zurich, Switzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, CH-1211, Geneva, Switzerland; National Centre of Competence in Research - Chemical Biology, University of Geneva, CH-1211, Geneva, Switzerland.
| |
Collapse
|
8
|
Vizoso-Vázquez Á, Lamas-Maceiras M, González-Siso MI, Cerdán ME. Ixr1 Regulates Ribosomal Gene Transcription and Yeast Response to Cisplatin. Sci Rep 2018; 8:3090. [PMID: 29449612 PMCID: PMC5814428 DOI: 10.1038/s41598-018-21439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Ixr1 is a Saccharomyces cerevisiae HMGB protein that regulates the hypoxic regulon and also controls the expression of other genes involved in the oxidative stress response or re-adaptation of catabolic and anabolic fluxes when oxygen is limiting. Ixr1 also binds with high affinity to cisplatin-DNA adducts and modulates DNA repair. The influence of Ixr1 on transcription in the absence or presence of cisplatin has been analyzed in this work. Ixr1 regulates other transcriptional factors that respond to nutrient availability or extracellular and intracellular stress stimuli, some controlled by the TOR pathway and PKA signaling. Ixr1 controls transcription of ribosomal RNAs and genes encoding ribosomal proteins or involved in ribosome assembly. qPCR, ChIP, and 18S and 25S rRNAs measurement have confirmed this function. Ixr1 binds directly to several promoters of genes related to rRNA transcription and ribosome biogenesis. Cisplatin treatment mimics the effect of IXR1 deletion on rRNA and ribosomal gene transcription, and prevents Ixr1 binding to specific promoters related to these processes.
Collapse
Affiliation(s)
- Ángel Vizoso-Vázquez
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - Mónica Lamas-Maceiras
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Isabel González-Siso
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain
| | - M Esperanza Cerdán
- Universidade da Coruña, Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, 15071 A, Coruña, Spain.
| |
Collapse
|
9
|
Hanson SJ, Byrne KP, Wolfe KH. Flip/flop mating-type switching in the methylotrophic yeast Ogataea polymorpha is regulated by an Efg1-Rme1-Ste12 pathway. PLoS Genet 2017; 13:e1007092. [PMID: 29176810 PMCID: PMC5720833 DOI: 10.1371/journal.pgen.1007092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
In haploid cells of Ogataea (Hansenula) polymorpha an environmental signal, nitrogen starvation, induces a reversible change in the structure of a chromosome. This process, mating-type switching, inverts a 19-kb DNA region to place either MATa or MATα genes under centromeric repression of transcription, depending on the orientation of the region. Here, we investigated the genetic pathway that controls switching. We characterized the transcriptomes of haploid and diploid O. polymorpha by RNAseq in rich and nitrogen-deficient media, and found that there are no constitutively a-specific or α-specific genes other than the MAT genes themselves. We mapped a switching defect in a sibling species (O. parapolymorpha strain DL-1) by interspecies bulk segregant analysis to a frameshift in the transcription factor EFG1, which in Candida albicans regulates filamentous growth and white-opaque switching. Gene knockout, overexpression and ChIPseq experiments show that EFG1 regulates RME1, which in turn regulates STE12, to achieve mating-type switching. All three genes are necessary both for switching and for mating. Overexpression of RME1 or STE12 is sufficient to induce switching without a nitrogen depletion signal. The homologous recombination genes RAD51 and RAD17 are also necessary for switching. The pathway controlling switching in O. polymorpha shares no components with the regulation of HO in S. cerevisiae, which does not involve any environmental signal, but it shares some components with mating-type switching in Kluyveromyces lactis and with white-opaque phenotypic switching in C. albicans. The molecular mechanisms of self-fertility (homothallism) vary enormously among fungal species. We previously found that in the yeast Ogataea polymorpha, homothallism is achieved by a novel mating-type switching mechanism that exchanges the locations of MATa and MATα genes between expression and repression contexts. Switching in this species is induced by nitrogen depletion, unlike the analogous process in Saccharomyces cerevisiae. Here, we show that the upstream parts of the genetic pathway controlling the environmental induction of switching in O. polymorpha are the same as the environmental pathway that induces competence for mating in this species.
Collapse
Affiliation(s)
- Sara J. Hanson
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
- * E-mail:
| | - Kevin P. Byrne
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
10
|
Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol 2017; 106:949-960. [PMID: 28985003 DOI: 10.1111/mmi.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription.
Collapse
Affiliation(s)
- Lisa Wasserstrom
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Alexander Dünkler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark.,Vrije Universiteit Brussel, Department of Bioengineering Sciences Research Group of Microbiology, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| |
Collapse
|
11
|
Honigberg SM. Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. MICROBIAL CELL 2016; 3:302-328. [PMID: 27917388 PMCID: PMC5134742 DOI: 10.15698/mic2016.08.516] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diploid budding yeast (Saccharomyces cerevisiae) can adopt one
of several alternative differentiation fates in response to nutrient limitation,
and each of these fates provides distinct biological functions. When different
strain backgrounds are taken into account, these various fates occur in response
to similar environmental cues, are regulated by the same signal transduction
pathways, and share many of the same master regulators. I propose that the
relationships between fate choice, environmental cues and signaling pathways are
not Boolean, but involve graded levels of signals, pathway activation and
master-regulator activity. In the absence of large differences between
environmental cues, small differences in the concentration of cues may be
reinforced by cell-to-cell signals. These signals are particularly essential for
fate determination within communities, such as colonies and biofilms, where fate
choice varies dramatically from one region of the community to another. The lack
of Boolean relationships between cues, signaling pathways, master regulators and
cell fates may allow yeast communities to respond appropriately to the wide
range of environments they encounter in nature.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City MO 64110, USA
| |
Collapse
|
12
|
Weidberg H, Moretto F, Spedale G, Amon A, van Werven FJ. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability. PLoS Genet 2016; 12:e1006075. [PMID: 27272508 PMCID: PMC4894626 DOI: 10.1371/journal.pgen.1006075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
Abstract
Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.
Collapse
Affiliation(s)
- Hilla Weidberg
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Fabien Moretto
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gianpiero Spedale
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Folkert J. van Werven
- Cell Fate and Gene Regulation Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol Syst Biol 2015; 11:829. [PMID: 26446933 PMCID: PMC4631200 DOI: 10.15252/msb.20156451] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amit Sadeh
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Ayelet Rahat
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Science, National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nir Friedman
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| |
Collapse
|
14
|
Zhao Y, Su H, Zhou J, Feng H, Zhang KQ, Yang J. The APSES family proteins in fungi: Characterizations, evolution and functions. Fungal Genet Biol 2014; 81:271-80. [PMID: 25534868 DOI: 10.1016/j.fgb.2014.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
The APSES protein family belongs to transcriptional factors of the basic helix-loop-helix (bHLH) class, the originally described members (APSES: Asm1p, Phd1p, Sok2p, Efg1p and StuAp) are used to designate this group of proteins, and they have been identified as key regulators of fungal development and other biological processes. APSES proteins share a highly conserved DNA-binding domain (APSES domain) of about 100 amino acids, whose central domain is predicted to form a typical bHLH structure. Besides APSES domain, several APSES proteins also contain additional domains, such as KilA-N and ankyrin repeats. In recent years, an increasing number of APSES proteins have been identified from diverse fungi, and they involve in numerous biological processes, such as sporulation, cellular differentiation, mycelial growth, secondary metabolism and virulence. Most fungi, including Aspergillus fumigatus, Aspergillus nidulans, Candida albicans, Fusarium graminearum, and Neurospora crassa, contain five APSES proteins. However, Cryptococcus neoformans only contains two APSES proteins, and Saccharomyces cerevisiae contains six APSES proteins. The phylogenetic analysis showed the APSES domains from different fungi were grouped into four clades (A, B, C and D), which is consistent with the result of homologous alignment of APSES domains using DNAman. The roles of APSES proteins in clade C have been studied in detail, while little is known about the roles of other APSES proteins in clades A, B and D. In this review, the biochemical properties and functional domains of APSES proteins are predicted and compared, and the phylogenetic relationship among APSES proteins from various fungi are analyzed based on the APSES domains. Moreover, the functions of APSES proteins in different fungi are summarized and discussed.
Collapse
Affiliation(s)
- Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
15
|
Pautasso C, Rossi S. Transcriptional regulation of the protein kinase A subunits in Saccharomyces cerevisiae: Autoregulatory role of the kinase A activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:275-87. [DOI: 10.1016/j.bbagrm.2014.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/27/2022]
|
16
|
Wannige CT, Kulasiri D, Samarasinghe S. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast. J Theor Biol 2014; 341:88-101. [PMID: 24099720 DOI: 10.1016/j.jtbi.2013.09.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
Nutrients from living environment are vital for the survival and growth of any organism. Budding yeast diploid cells decide to grow by mitosis type cell division or decide to create unique, stress resistant spores by meiosis type cell division depending on the available nutrient conditions. To gain a molecular systems level understanding of the nutrient dependant switching between meiosis and mitosis initiation in diploid cells of budding yeast, we develop a theoretical model based on ordinary differential equations (ODEs) including the mitosis initiator and its relations to budding yeast meiosis initiation network. Our model accurately and qualitatively predicts the experimentally revealed temporal variations of related proteins under different nutrient conditions as well as the diverse mutant studies related to meiosis and mitosis initiation. Using this model, we show how the meiosis and mitosis initiators form an all-or-none type bistable switch in response to available nutrient level (mainly nitrogen). The transitions to and from meiosis or mitosis initiation states occur via saddle node bifurcation. This bidirectional switch helps the optimal usage of available nutrients and explains the mutually exclusive existence of meiosis and mitosis pathways.
Collapse
Affiliation(s)
- C T Wannige
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | - D Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand.
| | - S Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Department of Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
17
|
Yeheskely-Hayon D, Kotler A, Stark M, Hashimshony T, Sagee S, Kassir Y. The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast. PLoS One 2013; 8:e85088. [PMID: 24358376 PMCID: PMC3866184 DOI: 10.1371/journal.pone.0085088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/22/2013] [Indexed: 02/02/2023] Open
Abstract
In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large) and Rpd3S (small) that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S.
Collapse
Affiliation(s)
| | - Anat Kotler
- Department of Biology, Technion, Haifa, Israel
| | | | | | - Shira Sagee
- Department of Biology, Technion, Haifa, Israel
| | - Yona Kassir
- Department of Biology, Technion, Haifa, Israel
- * E-mail:
| |
Collapse
|
18
|
Kahana-Edwin S, Stark M, Kassir Y. Multiple MAPK cascades regulate the transcription of IME1, the master transcriptional activator of meiosis in Saccharomyces cerevisiae. PLoS One 2013; 8:e78920. [PMID: 24236068 PMCID: PMC3827324 DOI: 10.1371/journal.pone.0078920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
The choice between alternative developmental pathways is primarily controlled at the level of transcription. Induction of meiosis in budding yeasts in response to nutrient levels provides a system to investigate the molecular basis of cellular decision-making. In Saccharomyces cerevisiae, entry into meiosis depends on multiple signals converging upon IME1, the master transcriptional activator of meiosis. Here we studied the regulation of the cis-acting regulatory element Upstream Activation Signal (UAS)ru, which resides within the IME1 promoter. Guided by our previous data acquired using a powerful high-throughput screening system, here we provide evidence that UASru is regulated by multiple stimuli that trigger distinct signal transduction pathways as follows: (i) The glucose signal inhibited UASru activity through the cyclic AMP (cAMP/protein kinase A (PKA) pathway, targeting the transcription factors (TFs), Com2 and Sko1; (ii) high osmolarity activated UASru through the Hog1/mitogen-activated protein kinase (MAPK) pathway and its corresponding TF Sko1; (iii) elevated temperature increased the activity of UASru through the cell wall integrity pathway and the TFs Swi4/Mpk1 and Swi4/Mlp1; (iv) the nitrogen source repressed UASru activity through Sum1; and (v) the absence of a nitrogen source was detected and transmitted to UASru by the Kss1 and Fus3 MAPK pathways through their respective downstream TFs, Ste12/Tec1 and Ste12/Ste12 as well as by their regulators Dig1/2. These signaling events were specific to UASru; they did not affect the mating and filamentation response elements that are regulated by MAPK pathways. The complex regulation of UASru through all the known vegetative MAPK pathways is unique to S. cerevisiae and is specific for IME1, likely because it is the master regulator of gametogenesis.
Collapse
Affiliation(s)
- Smadar Kahana-Edwin
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yona Kassir
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
19
|
Ray D, Su Y, Ye P. Dynamic modeling of yeast meiotic initiation. BMC SYSTEMS BIOLOGY 2013; 7:37. [PMID: 23631506 PMCID: PMC3772702 DOI: 10.1186/1752-0509-7-37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/17/2013] [Indexed: 11/19/2022]
Abstract
Background Meiosis is the sexual reproduction process common to eukaryotes. The diploid yeast Saccharomyces cerevisiae undergoes meiosis in sporulation medium to form four haploid spores. Initiation of the process is tightly controlled by intricate networks of positive and negative feedback loops. Intriguingly, expression of early meiotic proteins occurs within a narrow time window. Further, sporulation efficiency is strikingly different for yeast strains with distinct mutations or genetic backgrounds. To investigate signal transduction pathways that regulate transient protein expression and sporulation efficiency, we develop a mathematical model using ordinary differential equations. The model describes early meiotic events, particularly feedback mechanisms at the system level and phosphorylation of signaling molecules for regulating protein activities. Results The mathematical model is capable of simulating the orderly and transient dynamics of meiotic proteins including Ime1, the master regulator of meiotic initiation, and Ime2, a kinase encoded by an early gene. The model is validated by quantitative sporulation phenotypes of single-gene knockouts. Thus, we can use the model to make novel predictions on the cooperation between proteins in the signaling pathway. Virtual perturbations on feedback loops suggest that both positive and negative feedback loops are required to terminate expression of early meiotic proteins. Bifurcation analyses on feedback loops indicate that multiple feedback loops are coordinated to modulate sporulation efficiency. In particular, positive auto-regulation of Ime2 produces a bistable system with a normal meiotic state and a more efficient meiotic state. Conclusions By systematically scanning through feedback loops in the mathematical model, we demonstrate that, in yeast, the decisions to terminate protein expression and to sporulate at different efficiencies stem from feedback signals toward the master regulator Ime1 and the early meiotic protein Ime2. We argue that the architecture of meiotic initiation pathway generates a robust mechanism that assures a rapid and complete transition into meiosis. This type of systems-level regulation is a commonly used mechanism controlling developmental programs in yeast and other organisms. Our mathematical model uncovers key regulations that can be manipulated to enhance sporulation efficiency, an important first step in the development of new strategies for producing gametes with high quality and quantity.
Collapse
Affiliation(s)
- Debjit Ray
- School of Molecular Biosciences, Washington State University, PO Box 647520, Pullman, WA 99164, USA
| | | | | |
Collapse
|
20
|
Navlakha S, Gitter A, Bar-Joseph Z. A network-based approach for predicting missing pathway interactions. PLoS Comput Biol 2012; 8:e1002640. [PMID: 22916002 PMCID: PMC3420932 DOI: 10.1371/journal.pcbi.1002640] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 06/26/2012] [Indexed: 02/03/2023] Open
Abstract
Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known, which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To help address this problem, we introduce a framework for predicting new interactions that aid connectivity between upstream proteins (sources) and downstream transcription factors (targets) of a particular pathway. Our algorithms attempt to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in osmotic stress response in yeast and identified several missing interactions, some of which are supported by published reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general and may be applicable to edge prediction problems in other domains.
Collapse
Affiliation(s)
- Saket Navlakha
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Gitter
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Ziv Bar-Joseph
- School of Computer Science and Lane Center for Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Integrating phosphorylation network with transcriptional network reveals novel functional relationships. PLoS One 2012; 7:e33160. [PMID: 22432002 PMCID: PMC3303811 DOI: 10.1371/journal.pone.0033160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/04/2012] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation and transcriptional regulation events are critical for cells to transmit and respond to signals. In spite of its importance, systems-level strategies that couple these two networks have yet to be presented. Here we introduce a novel approach that integrates the physical and functional aspects of phosphorylation network together with the transcription network in S.cerevisiae, and demonstrate that different network motifs are involved in these networks, which should be considered in interpreting and integrating large scale datasets. Based on this understanding, we introduce a HeRS score (hetero-regulatory similarity score) to systematically characterize the functional relevance of kinase/phosphatase involvement with transcription factor, and present an algorithm that predicts hetero-regulatory modules. When extended to signaling network, this approach confirmed the structure and cross talk of MAPK pathways, inferred a novel functional transcription factor Sok2 in high osmolarity glycerol pathway, and explained the mechanism of reduced mating efficiency upon Fus3 deletion. This strategy is applicable to other organisms as large-scale datasets become available, providing a means to identify the functional relationships between kinases/phosphatases and transcription factors.
Collapse
|
22
|
|
23
|
van Werven FJ, Amon A. Regulation of entry into gametogenesis. Philos Trans R Soc Lond B Biol Sci 2012; 366:3521-31. [PMID: 22084379 DOI: 10.1098/rstb.2011.0081] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gametogenesis is a fundamental aspect of sexual reproduction in eukaryotes. In the unicellular fungi Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast), where this developmental programme has been extensively studied, entry into gametogenesis requires the convergence of multiple signals on the promoter of a master regulator. Starvation signals and cellular mating-type information promote the transcription of cell fate inducers, which in turn initiate a transcriptional cascade that propels a unique type of cell division, meiosis, and gamete morphogenesis. Here, we will provide an overview of how entry into gametogenesis is initiated in budding and fission yeast and discuss potential conserved features in the germ cell development of higher eukaryotes.
Collapse
Affiliation(s)
- Folkert J van Werven
- David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
24
|
Yan X, Li Y, Yue X, Wang C, Que Y, Kong D, Ma Z, Talbot NJ, Wang Z. Two novel transcriptional regulators are essential for infection-related morphogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2011; 7:e1002385. [PMID: 22144889 PMCID: PMC3228794 DOI: 10.1371/journal.ppat.1002385] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 10/02/2011] [Indexed: 11/24/2022] Open
Abstract
The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus. Magnaporthe oryzae, the causal agent of rice blast disease, is an important model fungal pathogen for understanding the molecular basis of plant-fungus interactions. In M. oryzae, the conserved cAMP/PKA signaling pathway has been demonstrated to be crucial for regulating infection-related morphogenesis and pathogenicity, including the control of sporulation and appressorium formation. In this study, we report the identification of two novel pathogenicity-related genes, MoSOM1 and MoCDTF1, by T-DNA insertional mutagenesis. Our results show that MoSOM1 or MoCDTF1 are essential for sporulation, appressorium formatiom and pathogenicity, and also play a key role in hyphal growth, melanin pigmentation and cell surface hydrophobicity. Nuclear localization sequences and conserved domains of the MoSom1 and MoCdtf1 proteins are crucial for their biological function. MoSom1 interacts physically with the transcription factors MoCdtf1 and MoStu1. We also show evidence that MoSom1 has the capacity to interact with CpkA, suggesting that MoSom1 may act downstream of the cAMP/PKA signaling pathway to regulate infection-related morphogenesis and pathogenicity in M. oryzae. Our studies extend the current understanding of downstream components of the conserved cAMP/PKA pathway and its precise role in regulating infection-related development and cellular differentiation by M. oryzae.
Collapse
Affiliation(s)
- Xia Yan
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
26
|
Functional dissection of IME1 transcription using quantitative promoter-reporter screening. Genetics 2010; 186:829-41. [PMID: 20739709 DOI: 10.1534/genetics.110.122200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation is a key mechanism that controls the fate and response of cells to diverse signals. Therefore, the identification of the DNA-binding proteins, which mediate these signals, is a crucial step in elucidating how cell fate is regulated. In this report, we applied both bioinformatics and functional genomic approaches to scrutinize the unusually large promoter of the IME1 gene in budding yeast. Using a recently described fluorescent protein-based reporter screen, reporter-synthetic genetic array (R-SGA), we assessed the effect of viable deletion mutants on transcription of various IME1 promoter-reporter genes. We discovered potential transcription factors, many of which have no perfect consensus site within the IME1 promoter. Moreover, most of the cis-regulatory sequences with perfect homology to known transcription factor (TF) consensus were found to be nonfunctional in the R-SGA analysis. In addition, our results suggest that lack of conservation may not discriminate against a TF regulatory role at a specific promoter. We demonstrate that Sum1 and Sok2, which regulate IME1, bind to nonperfect consensuses within nonconserved regions in the sensu stricto Saccharomyces strains. Our analysis supports the view that although comparative analysis can provide a useful guide, functional assays are required for accurate identification of TF-binding site interactions in complex promoters.
Collapse
|
27
|
Gurevich V, Kassir Y. A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast. PLoS One 2010; 5:e11005. [PMID: 20543984 PMCID: PMC2882377 DOI: 10.1371/journal.pone.0011005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/18/2010] [Indexed: 01/26/2023] Open
Abstract
Tight regulation of developmental pathways is of critical importance to all organisms, and is achieved by a transcriptional cascade ensuring the coordinated expression of sets of genes. We aimed to explore whether a strong signal is required to enter and complete a developmental pathway, by using meiosis in budding yeast as a model. We demonstrate that meiosis in budding yeast is insensitive to drastic changes in the levels of its consecutive positive regulators (Ime1, Ime2, and Ndt80). Entry into DNA replication is not correlated with the time of transcription of the early genes that regulate this event. Entry into nuclear division is directly regulated by the time of transcription of the middle genes, as premature transcription of their activator NDT80, leads to a premature entry into the first meiotic division, and loss of coordination between DNA replication and nuclear division. We demonstrate that Cdk1/Cln3 functions as a negative regulator of Ime2, and that ectopic expression of Cln3 delays entry into nuclear division as well as NDT80 transcription. Because Ime2 functions as a positive regulator for premeiotic DNA replication and NDT80 transcription, as well as a negative regulator of Cdk/Cln, we suggest that a double negative feedback loop between Ime2 and Cdk1/Cln3 promotes a bistable switch from the cell cycle to meiosis. Moreover, our results suggest a regulatory mode switch that ensures robust meiosis as the transcription of the early meiosis-specific genes responds in a graded mode to Ime1 levels, whereas that of the middle and late genes as well as initiation of DNA replication, are regulated in a threshold mode.
Collapse
Affiliation(s)
- Vyacheslav Gurevich
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yona Kassir
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
28
|
García-Pedrajas MD, Baeza-Montañez L, Gold SE. Regulation of Ustilago maydis dimorphism, sporulation, and pathogenic development by a transcription factor with a highly conserved APSES domain. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:211-222. [PMID: 20064064 DOI: 10.1094/mpmi-23-2-0211] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In Ustilago maydis, the causal agent of corn smut, the morphological transition from yeast to filamentous growth is inextricably linked to pathogenicity; budding haploid cells are saprobic and, upon mating of compatible strains, the fungus converts to dikaryotic filamentous growth and obligate parasitism. The filamentous dikaryon proliferates in the host plant, inducing tumor formation and undergoing additional morphological changes that eventually result in the production of melanized diploid teliospores. In an attempt to identify new trans-acting factors that regulate morphogenesis in U. maydis, we searched for the presence of common binding sequences in the promoter region of a set of 37 genes downregulated in the filamentous form. Putative cis-acting regulatory sequences fitting the consensus binding site for the Aspergillus nidulans transcription factor StuA were identified in 13 of these genes. StuA is a member of the APSES transcription factors which contain a highly conserved DNA-binding domain with a basic helix-loop-helix (bHLH)-like structure. This class of proteins comprises critical regulators of developmental processes in ascomycete fungi such as dimorphic growth, mating, and sporulation but has not been studied in any fungus of the phylum Basidiomycota. A search for StuA orthologs in the U. maydis genome identified a single closely related protein that we designated Ust1. Deletion of ust1 in budding haploid wild-type and solopathogenic strains led to filamentous growth and abolished mating, gall induction, and, consequently, in planta teliosporogenesis. Furthermore, cultures of ust1 null mutants produced abundant thick-walled, highly pigmented cells resembling teliospores which are normally produced only in planta. We showed that ssp1, a gene highly induced in teliospores produced in the host, is also abundantly expressed in cultures of ust1 null mutants containing these pigmented cells. Our results are consistent with a major role for ust1 in regulating dimorphism, virulence, and the sporulation program in U. maydis.
Collapse
|
29
|
Effects of age on meiosis in budding yeast. Dev Cell 2009; 16:844-55. [PMID: 19531355 DOI: 10.1016/j.devcel.2009.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/02/2009] [Accepted: 05/05/2009] [Indexed: 11/23/2022]
Abstract
In humans, the frequency with which meiotic chromosome mis-segregation occurs increases with age. Whether age-dependent meiotic defects occur in other organisms is unknown. Here, we examine the effects of replicative aging on meiosis in budding yeast. We find that aged mother cells show a decreased ability to initiate the meiotic program and fail to express the meiotic inducer IME1. The few aged mother cells that do enter meiosis complete this developmental program but exhibit defects in meiotic chromosome segregation and spore formation. Furthermore, we find that mutations that extend replicative life span also extend the sexual reproductive life span. Our results indicate that in budding yeast, the ability to initiate and complete the meiotic program as well as the fidelity of meiotic chromosome segregation decrease with cellular age and are controlled by the same pathways that govern aging of asexually reproducing yeast cells.
Collapse
|
30
|
García R, Rodríguez-Peña JM, Bermejo C, Nombela C, Arroyo J. The high osmotic response and cell wall integrity pathways cooperate to regulate transcriptional responses to zymolyase-induced cell wall stress in Saccharomyces cerevisiae. J Biol Chem 2009; 284:10901-11. [PMID: 19234305 DOI: 10.1074/jbc.m808693200] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptation of Saccharomyces cerevisiae to situations in which cell wall integrity is seriously compromised mainly involves the cell wall integrity (CWI) pathway. However, in a recent work ( Bermejo, C., Rodriguez, E., García, R., Rodríguez-Peña, J. M., Rodríguez de la Concepción, M. L., Rivas, C., Arias, P., Nombela, C., Posas, F., and Arroyo, J. (2008) Mol. Biol. Cell 19, 1113-1124 ) we have demonstrated the co-participation of the high osmotic response (HOG) pathway to ensure yeast survival to cell wall stress mediated by zymolyase, which hydrolyzes the beta-1,3 glucan network. Here we have characterized the role of both pathways in the regulation of the overall yeast transcriptional responses to zymolyase treatment using whole genome expression profiling. A main group of yeast genes is dependent on both MAPKs, Slt2 and Hog1, for their induction. The transcriptional activation of these genes depends on the MAPKKK Bck1, the transcription factor Rlm1, and elements of the sho1 branch of the HOG pathway, but not on the sensors of the CWI pathway. A second group of genes is dependent on Slt2 but not Hog1 or Pbs2. However, the induction of these genes is dependent on upstream elements of the HOG pathway such as Sho1, Ste50, and Ste11, in accordance with a sequential activation of the HOG and CWI pathways. Zymolyase also promotes an osmotic-like transcriptional response with the activation of a group of genes dependent on elements of the Sho1 branch of HOG pathway but not on Slt2, with the induction of many of them dependent on Msn2/4. Additionally, in the absence of Hog1, zymolyase induces an alternative response related to mating and filamentation as a consequence of the cross-talk between these pathways and the HOG pathway. Finally, in the absence of Slt2, zymolyase increases the induction of genes associated with osmotic adaptation with respect to the wild type, suggesting an inhibitory effect of the CWI pathway over the HOG pathway. These studies clearly reveal the complexity of the signal transduction machinery responsible for regulating yeast adaptation responses to cell wall stress.
Collapse
Affiliation(s)
- Raúl García
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
32
|
Skotheim JM, Di Talia S, Siggia ED, Cross FR. Positive feedback of G1 cyclins ensures coherent cell cycle entry. Nature 2008; 454:291-6. [PMID: 18633409 DOI: 10.1038/nature07118] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/29/2008] [Indexed: 11/09/2022]
Abstract
In budding yeast, Saccharomyces cerevisiae, the Start checkpoint integrates multiple internal and external signals into an all-or-none decision to enter the cell cycle. Here we show that Start behaves like a switch due to systems-level feedback in the regulatory network. In contrast to current models proposing a linear cascade of Start activation, transcriptional positive feedback of the G1 cyclins Cln1 and Cln2 induces the near-simultaneous expression of the approximately 200-gene G1/S regulon. Nuclear Cln2 drives coherent regulon expression, whereas cytoplasmic Cln2 drives efficient budding. Cells with the CLN1 and CLN2 genes deleted frequently arrest as unbudded cells, incurring a large fluctuation-induced fitness penalty due to both the lack of cytoplasmic Cln2 and insufficient G1/S regulon expression. Thus, positive-feedback-amplified expression of Cln1 and Cln2 simultaneously drives robust budding and rapid, coherent regulon expression. A similar G1/S regulatory network in mammalian cells, comprised of non-orthologous genes, suggests either conservation of regulatory architecture or convergent evolution.
Collapse
Affiliation(s)
- Jan M Skotheim
- Center for Studies in Physics and Biology, The Rockefeller University, New York 10065, USA.
| | | | | | | |
Collapse
|
33
|
Gray M, Piccirillo S, Purnapatre K, Schneider BL, Honigberg SM. Glucose induction pathway regulates meiosis in Saccharomyces cerevisiae in part by controlling turnover of Ime2p meiotic kinase. FEMS Yeast Res 2008; 8:676-84. [PMID: 18616605 DOI: 10.1111/j.1567-1364.2008.00406.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several components of the glucose induction pathway, namely the Snf3p glucose sensor and the Rgt1p and Mth1p transcription factors, were shown to be involved in inhibition of sporulation by glucose. The glucose sensors had only a minor role in regulating transcript levels of the two key regulators of meiotic initiation, the Ime1p transcription factor and the Ime2p kinase, but a major role in regulating Ime2p stability. Interestingly, Rgt1p was involved in glucose inhibition of spore formation but not inhibition of Ime2p stability. Thus, the glucose induction pathway may regulate meiosis through both RGT1-dependent and RGT1-independent pathways.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-1270, USA
| | | | | | | | | |
Collapse
|
34
|
Nachman I, Regev A, Ramanathan S. Dissecting Timing Variability in Yeast Meiosis. Cell 2007; 131:544-56. [DOI: 10.1016/j.cell.2007.09.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 07/18/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
|
35
|
Tong X, Zhang X, Plummer KM, Stowell KM, Sullivan PA, Farley PC. GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1102-11. [PMID: 17849713 DOI: 10.1094/mpmi-20-9-1102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glomerella cingulata, which infects a number of different hosts, gains entry to the plant tissue by means of an appressorium. Turgor pressure generated within the appressorium forces a penetration peg through the plant cuticle. A visible lesion forms as the fungus continues to grow within the host. A G. cingulata homolog (GcSTUA) of the genes encoding Asm1, Phd1, Sok2, Efg1, and StuA transcription factors in Magnaporthe grisea and other fungi was cloned and shown to be required for infection of intact apple fruit and penetration of onion epidermal cells. Mobilization of glycogen and triacylglycerol during formation of appressoria by the GcSTUA deletion mutant appeared normal and melanization of the maturing appressoria was also indistinguishable from that of the wild type. However, GcSTUA was essential for the generation of normal turgor pressure within the appressorium. As is the case for its homologs in other fungi, GcSTUA also was required for the formation of aerial hyphae, efficient conidiation, and the formation of perithecia (sexual reproductive structures).
Collapse
Affiliation(s)
- XingZhang Tong
- Institute of Molecular Biosciences, Massey University, Palmerston North, New Zealand
| | | | | | | | | | | |
Collapse
|
36
|
Rubinstein A, Gurevich V, Kasulin-Boneh Z, Pnueli L, Kassir Y, Pinter RY. Faithful modeling of transient expression and its application to elucidating negative feedback regulation. Proc Natl Acad Sci U S A 2007; 104:6241-6. [PMID: 17400752 PMCID: PMC1851052 DOI: 10.1073/pnas.0611168104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modeling and analysis of genetic regulatory networks is essential both for better understanding their dynamic behavior and for elucidating and refining open issues. We hereby present a discrete computational model that effectively describes the transient and sequential expression of a network of genes in a representative developmental pathway. Our model system is a transcriptional cascade that includes positive and negative feedback loops directing the initiation and progression through meiosis in budding yeast. The computational model allows qualitative analysis of the transcription of early meiosis-specific genes, specifically, Ime2 and their master activator, Ime1. The simulations demonstrate a robust transcriptional behavior with respect to the initial levels of Ime1 and Ime2. The computational results were verified experimentally by deleting various genes and by changing initial conditions. The model has a strong predictive aspect, and it provides insights into how to distinguish among and reason about alternative hypotheses concerning the mode by which negative regulation through Ime1 and Ime2 is accomplished. Some predictions were validated experimentally, for instance, showing that the decline in the transcription of IME1 depends on Rpd3, which is recruited by Ime1 to its promoter. Finally, this general model promotes the analysis of systems that are devoid of consistent quantitative data, as is often the case, and it can be easily adapted to other developmental pathways.
Collapse
Affiliation(s)
| | | | | | - Lilach Pnueli
- Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Yona Kassir
- Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
- To whom correspondence should be addressed. E-mail:
| | | |
Collapse
|
37
|
Abstract
Traditionally, living organisms have often been classified into two main categories: unicellular and multicellular. In recent years, however, the boundary between these two groups has become less strict and clear than was previously presumed. Studies on the communities formed by unicellular microorganisms have revealed that various properties and processes so far mainly associated with metazoa are also important for the proper development, survival and behaviour of muticellular microbial populations. In this review, we present various examples of this, using a yeast colony as representative of a structured organized microbial community. Among other things, we will show how the differentiation of yeast cells within a colony can be important for the long-term survival of a community under conditions of nutrient shortage, how colony development and physiology can be influenced by the environment, and how a group of colonies can synchronize their developmental changes. In the last section, we introduce examples of molecular mechanisms that can participate in some aspects of the behaviour of yeast populations.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
38
|
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol 2006; 7:R37. [PMID: 16677396 PMCID: PMC1779513 DOI: 10.1186/gb-2006-7-5-r37] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/21/2005] [Accepted: 04/10/2006] [Indexed: 12/29/2022] Open
Abstract
'ReMoDiscovery' is an intuitive algorithm to correlate regulatory programs with regulators and corresponding motifs to a set of co-expressed genes. It exploits in a concurrent way three independent data sources: ChIP-chip data, motif information and gene expression profiles. When compared to published module discovery algorithms, ReMoDiscovery is fast and easily tunable. We evaluated our method on yeast data, where it was shown to generate biologically meaningful findings and allowed the prediction of potential novel roles of transcriptional regulators.
Collapse
Affiliation(s)
- Karen Lemmens
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Thomas Dhollander
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Tijl De Bie
- Research Group on Quantitative Psychology, Department of Psychology, KU Leuven, Tiensestraat, B-3000 Leuven, Belgium
| | - Pieter Monsieurs
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kristof Engelen
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart Smets
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Joris Winderickx
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart De Moor
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kathleen Marchal
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
- CMPG, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| |
Collapse
|
39
|
Friedlander G, Joseph-Strauss D, Carmi M, Zenvirth D, Simchen G, Barkai N. Modulation of the transcription regulatory program in yeast cells committed to sporulation. Genome Biol 2006; 7:R20. [PMID: 16542486 PMCID: PMC1557749 DOI: 10.1186/gb-2006-7-3-r20] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 12/22/2005] [Accepted: 02/09/2006] [Indexed: 11/23/2022] Open
Abstract
Analysis of the gene expression program in yeast cells suggests that commitment to sporulation involves an active modulation of the gene expression program. Background Meiosis in budding yeast is coupled to the process of sporulation, where the four haploid nuclei are packaged into a gamete. This differentiation process is characterized by a point of transition, termed commitment, when it becomes independent of the environment. Not much is known about the mechanisms underlying commitment, but it is often assumed that positive feedback loops stabilize the underlying gene-expression cascade. Results We describe the gene-expression program of committed cells. Sporulating cells were transferred back to growth medium at different stages of the process, and their transcription response was characterized. Most sporulation-induced genes were immediately downregulated upon transfer, even in committed cells that continued to sporulate. Focusing on the metabolic-related transcription response, we observed that pre-committed cells, as well as mature spores, responded to the transfer to growth medium in essentially the same way that vegetative cells responded to glucose. In contrast, committed cells elicited a dramatically different response. Conclusion Our results suggest that cells ensure commitment to sporulation not by stabilizing the process, but by modulating their gene-expression program in an active manner. This unique transcriptional program may optimize sporulation in an environment-specific manner.
Collapse
Affiliation(s)
- Gilgi Friedlander
- Departments of Molecular Genetics and Physics of Complex System, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Daphna Joseph-Strauss
- Departments of Molecular Genetics and Physics of Complex System, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Departments of Molecular Genetics and Physics of Complex System, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Drora Zenvirth
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Giora Simchen
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naama Barkai
- Departments of Molecular Genetics and Physics of Complex System, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
40
|
Ohara T, Tsuge T. FoSTUA, encoding a basic helix-loop-helix protein, differentially regulates development of three kinds of asexual spores, macroconidia, microconidia, and chlamydospores, in the fungal plant pathogen Fusarium oxysporum. EUKARYOTIC CELL 2005; 3:1412-22. [PMID: 15590816 PMCID: PMC539018 DOI: 10.1128/ec.3.6.1412-1422.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The soil-borne fungus Fusarium oxysporum causes vascular wilt of a wide variety of plant species. F. oxysporum produces three kinds of asexual spores, macroconidia, microconidia, and chlamydospores. Falcate macroconidia are formed generally from terminal phialides on conidiophores and rarely from intercalary phialides on hyphae. Ellipsoidal microconidia are formed from intercalary phialides on hyphae. Globose chlamydospores with thick walls are developed by the modification of hyphal and conidial cells. Here we describe FoSTUA of F. oxysporum, which differentially regulates the development of macroconidia, microconidia, and chlamydospores. FoSTUA encodes a basic helix-loop-helix protein with similarity to Aspergillus nidulans StuA, which has been identified as a transcriptional regulator controlling conidiation. Nuclear localization of FoStuA was verified by using strains expressing FoStuA-green fluorescent protein fusions. The FoSTUA-targeted mutants exhibited normal microconidium formation in cultures. However, the mutants lacked conidiophores and produced macroconidia at low frequencies only from intercalary phialides. Thus, FoSTUA appears to be necessary to induce conidiophore differentiation. In contrast, chlamydospore formation was dramatically promoted in the mutants. These data demonstrate that FoStuA is a positive regulator and a negative regulator for the development of macroconidia and chlamydospores, respectively, and is dispensable for microconidium formation in cultures. The disease-causing ability of F. oxysporum was not affected by mutations in FoSTUA. However, the mutants produced markedly fewer macroconidia and microconidia in infected plants than the wild type. These results suggest that FoSTUA also has an important role for microconidium formation specifically in infected plants.
Collapse
Affiliation(s)
- Toshiaki Ohara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | |
Collapse
|
41
|
Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 2005; 15:3167-80. [PMID: 15218092 PMCID: PMC452574 DOI: 10.1091/mbc.e03-11-0782] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fungal APSES proteins regulate morphogenetic processes, including filamentation and differentiation. The human fungal pathogen Candida albicans contains two APSES proteins: the regulator Efg1p and its homologue Efh1p, described here. Overexpression of EFG1 or EFH1 led to similar phenotypes, including pseudohypha formation and opaque-white switching. An efh1 deletion generated no phenotype under most conditions but caused hyperfilamentation in an efg1 background under embedded or hypoxic conditions. This suggests cooperation of these APSES proteins in the suppression of an alternative morphogenetic signaling pathway. Genome-wide transcriptional profiling revealed that EFG1 and EFH1 regulate partially overlapping sets of genes associated with filament formation. Unexpectedly, Efg1p not only regulates genes involved in morphogenesis but also strongly influences the expression of metabolic genes, inducing glycolytic genes and repressing genes essential for oxidative metabolism. Using one- and two-hybrid assays, we further demonstrate that Efg1p is a repressor, whereas Efh1p is an activator of gene expression. Overall, the results suggest that Efh1p supports the regulatory functions of the primary regulator, Efg1p, and indicate a dual role for these APSES proteins in the regulation of fungal morphogenesis and metabolism.
Collapse
Affiliation(s)
- Thomas Doedt
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | - Dirk P. Bockmühl
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernd Tebarth
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Biomedizinisches Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Christian Stempel
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claire L. Russell
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Joachim F. Ernst
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Biomedizinisches Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Corresponding author. E-mail address:
| |
Collapse
|
42
|
van Dyk D, Hansson G, Pretorius IS, Bauer FF. Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics 2004; 165:1045-58. [PMID: 14668363 PMCID: PMC1462853 DOI: 10.1093/genetics/165.3.1045] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the transition from a nutrient-rich to a nutrient-limited growth medium typically leads to the implementation of a cellular adaptation program that results in invasive growth and/or the formation of pseudohyphae. Complete depletion of essential nutrients, on the other hand, leads either to entry into a nonbudding, metabolically quiescent state referred to as G0 in haploid strains or to meiosis and sporulation in diploids. Entry into meiosis is repressed by the transcriptional regulator Rme1p, a zinc-finger-containing DNA-binding protein. In this article, we show that Rme1p positively regulates invasive growth and starch metabolism in both haploid and diploid strains by directly modifying the transcription of the FLO11 (also known as MUC1) and STA2 genes, which encode a cell wall-associated protein essential for invasive growth and a starch-degrading glucoamylase, respectively. Genetic evidence suggests that Rme1p functions independently of identified signaling modules that regulate invasive growth and of other transcription factors that regulate FLO11 and that the activation of FLO11 is dependent on the presence of a promoter sequence that shows significant homology to identified Rme1p response elements (RREs). The data suggest that Rme1p functions as a central switch between different cellular differentiation pathways.
Collapse
Affiliation(s)
- Dewald van Dyk
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, ZA-7600, South Africa
| | | | | | | |
Collapse
|
43
|
Rubin-Bejerano I, Sagee S, Friedman O, Pnueli L, Kassir Y. The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-beta homolog Rim11. Mol Cell Biol 2004; 24:6967-79. [PMID: 15282298 PMCID: PMC479714 DOI: 10.1128/mcb.24.16.6967-6979.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-beta. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11.
Collapse
Affiliation(s)
- Ifat Rubin-Bejerano
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | | | | | | | |
Collapse
|
44
|
Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF. APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 2004. [PMID: 15218092 PMCID: PMC452574 DOI: 10.1091/10.1091/mbc.e03-11-0782] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Fungal APSES proteins regulate morphogenetic processes, including filamentation and differentiation. The human fungal pathogen Candida albicans contains two APSES proteins: the regulator Efg1p and its homologue Efh1p, described here. Overexpression of EFG1 or EFH1 led to similar phenotypes, including pseudohypha formation and opaque-white switching. An efh1 deletion generated no phenotype under most conditions but caused hyperfilamentation in an efg1 background under embedded or hypoxic conditions. This suggests cooperation of these APSES proteins in the suppression of an alternative morphogenetic signaling pathway. Genome-wide transcriptional profiling revealed that EFG1 and EFH1 regulate partially overlapping sets of genes associated with filament formation. Unexpectedly, Efg1p not only regulates genes involved in morphogenesis but also strongly influences the expression of metabolic genes, inducing glycolytic genes and repressing genes essential for oxidative metabolism. Using one- and two-hybrid assays, we further demonstrate that Efg1p is a repressor, whereas Efh1p is an activator of gene expression. Overall, the results suggest that Efh1p supports the regulatory functions of the primary regulator, Efg1p, and indicate a dual role for these APSES proteins in the regulation of fungal morphogenesis and metabolism.
Collapse
Affiliation(s)
- Thomas Doedt
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | - Dirk P. Bockmühl
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Bernd Tebarth
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Biomedizinisches Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Christian Stempel
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claire L. Russell
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Alistair J.P. Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Joachim F. Ernst
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Biomedizinisches Forschungszentrum, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Corresponding author. E-mail address:
| |
Collapse
|
45
|
Váchová L, Devaux F, Kucerová H, Ricicová M, Jacq C, Palková Z. Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J Biol Chem 2004; 279:37973-81. [PMID: 15229222 DOI: 10.1074/jbc.m404594200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Volatile ammonia functions as a long range alarm signal important for the transition of yeast colonies to their adaptive alkali developmental phase and for their consequent long term survival. Cells of aged Saccharomyces cerevisiae sok2 colonies deleted in the gene for Sok2p transcription factor are not able to release a sufficient amount of ammonia out of the cells, they are more fragile than cells of wild type colonies, and they exhibit a survival defect. Genome-wide analysis on gene expression differences between sok2 and WT colonies revealed that sok2 colonies are not able to switch on the genes of adaptive metabolisms effectively and display unbalanced expression and activity of various enzymes involved in cell protection against oxidative damage. Impaired amino acid metabolism and insufficient activation of genes for putative ammonium exporters Ato and of those for some other membrane transporters may be responsible for observed defects in ammonia production. Thus, Sok2p appears to be an important regulator of S. cerevisiae colony development. Gene expression differences caused by its absence in colonies differ from those described previously in liquid cultures, which suggests a pleiotropic effect of Sok2p under different conditions.
Collapse
Affiliation(s)
- Libuse Váchová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
46
|
Enjalbert B, Parrou JL, Teste MA, François J. Combinatorial control by the protein kinases PKA, PHO85 and SNF1 of transcriptional induction of the Saccharomyces cerevisiae GSY2 gene at the diauxic shift. Mol Genet Genomics 2004; 271:697-708. [PMID: 15221454 DOI: 10.1007/s00438-004-1014-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
Genes involved in storage carbohydrate metabolism are coordinately induced when yeast cells are subjected to conditions of stress, or when they exit the exponential growth phase on glucose. We show that the STress Responsive Elements (STREs) present in the promoter of GSY2 are essential for gene activation under conditions of stress, but dispensable for gene induction and glycogen accumulation at the diauxic shift on glucose. Using serial promoter deletion, we found that the latter induction could not be attributed to a single cis -regulatory sequence, and present evidence that this mechanism depends on combinatorial transcriptional control by signalling pathways involving the protein kinases Pho85, Snf1 and PKA. Two contiguous regions upstream of the GSY2 coding region are necessary for negative control by the cyclin-dependent protein kinase Pho85, one of which is a 14-bp G/C-rich sequence. Positive control by Snf1 is mediated by Mig1p, which acts indirectly on the distal part of the GSY2 promoter. The PKA pathway has the most pronounced effect on GSY2, since transcription of this gene is almost completely abolished in an ira1ira2 mutant strain in which PKA is hyperactive. The potent negative effect of PKA is dependent upon a branched pathway involving the transcription factors Msn2/Msn4p and Sok2p. The SOK2 branch was found to be effective only under conditions of high PKA activity, as in a ira1ira2 mutant, and this effect was independent of Msn2/4p. The Msn2/4p branch, on the other hand, positively controls GSY2 expression directly through the STREs, and indirectly via a factor that still remains to be discovered. In summary, this study shows that the transcription of GSY2 is regulated by several different signalling pathways which reflect the numerous factors that influence glycogen synthesis in yeast, and suggests that the PKA pathway must be deactivated to allow gene induction at the diauxic shift.
Collapse
Affiliation(s)
- B Enjalbert
- Centre de Bioingenierie Gilbert Durand, UMR CNRS 5504 and INRA 792, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077, Toulouse, France
| | | | | | | |
Collapse
|
47
|
Colomina N, Liu Y, Aldea M, Garí E. TOR regulates the subcellular localization of Ime1, a transcriptional activator of meiotic development in budding yeast. Mol Cell Biol 2003; 23:7415-24. [PMID: 14517308 PMCID: PMC230322 DOI: 10.1128/mcb.23.20.7415-7424.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator Ime1 is a key regulator of meiosis and sporulation in budding yeast. Ime1 is controlled at different levels by nutrients and cell-type signals. Previously, we have proposed that G(1) cyclins would transmit nutritional signals to the Ime1 pathway by preventing the accumulation of Ime1 within the nucleus. We show here that nutritional signals regulate the subcellular localization of Ime1 through the TOR pathway. The inactivation of TOR with rapamycin promotes the nuclear accumulation and stabilization of Ime1, with consequent induction of early meiotic genes. On the contrary, the activation of TOR by glutamine induces the relocalization of Ime1 to the cytoplasm. Thus, TOR may sense optimal nitrogen- and carbon-limiting conditions to modulate Ime1 function. Besides TOR, ammonia induces an independent mechanism that prevents the accumulation of Ime1 in the nucleus. Both TOR and ammonia regulate Ime1 localization in the absence of Cdk1 activity and therefore use mechanisms different from those exerted by G(1) cyclins. Integration of independent mechanisms into a single early controlling step, such as the nuclear accumulation of Ime1, may help explain why yeast cells execute the meiotic program only when the appropriate internal and external conditions are met together.
Collapse
Affiliation(s)
- Neus Colomina
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Catalunya, Spain
| | | | | | | |
Collapse
|
48
|
Kassir Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G. Transcriptional regulation of meiosis in budding yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:111-71. [PMID: 12722950 DOI: 10.1016/s0074-7696(05)24004-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Initiation of meiosis in Saccharomyces cerevisiae is regulated by mating type and nutritional conditions that restrict meiosis to diploid cells grown under starvation conditions. Specifically, meiosis occurs in MATa/MATalpha cells shifted to nitrogen depletion media in the absence of glucose and the presence of a nonfermentable carbon source. These conditions lead to the expression and activation of Ime 1, the master regulator of meiosis. IME1 encodes a transcriptional activator recruited to promoters of early meiosis-specific genes by association with the DNA-binding protein, Ume6. Under vegetative growth conditions these genes are silent due to recruitment of the Sin3/Rpd3 histone deacetylase and Isw2 chromatin remodeling complexes by Ume6. Transcription of these meiotic genes occurs following histone acetylation by Gcn5. Expression of the early genes promote entry into the meiotic cycle, as they include genes required for premeiotic DNA synthesis, synapsis of homologous chromosomes, and meiotic recombination. Two of the early meiosis specific genes, a transcriptional activator, Ndt80, and a CDK2 homologue, Ime2, are required for the transcription of middle meiosis-specific genes that are involved with nuclear division and spore formation. Spore maturation depends on late genes whose expression is indirectly dependent on Ime1, Ime2, and Ndt80. Finally, phosphorylation of Imel by Ime2 leads to its degradation, and consequently to shutting down of the meiotic transcriptional cascade. This review is focusing on the regulation of gene expression governing initiation and progression through meiosis.
Collapse
Affiliation(s)
- Yona Kassir
- Department of Biology, Technion, Haifa 32000, Israel
| | | | | | | | | | | | | |
Collapse
|
49
|
Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Dominguez A, Ernst JF. Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene. J Mol Biol 2003; 329:949-62. [PMID: 12798685 DOI: 10.1016/s0022-2836(03)00505-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Efg1p regulator protein permits hyphal morphogenesis in the human fungal pathogen Candida albicans. We have identified the major promoter of the EFG1 gene as a direct target of Efg1p, resulting in negative autoregulation of EFG1. Enhanced activity of protein kinase A (PKA) isoforms Tpk1p and Tpk2p or exogenous overexpression of EFG1 led to Efg1p-dependent down-regulation of the endogenous EFG1 promoter. Serial deletion analyses of the promoter region revealed that the TATA box region was required for EFG1 autoregulation. By chromatin immunoprecipitation we detected binding of Efg1p to the EFG1 transcriptional initiation region. Furthermore, Sin3p, a component of a specific histone deacetylase complex, was shown to bind to the EFG1 promoter. sin3 mutants grew as budding pseudohyphae and were unable to form true hyphae, similar to strains constitutively expressing EFG1. We propose that the PKA signalling pathway, in addition to its importance in the initial steps of filament formation, is part of a feedback loop that controls EFG1 expression allowing continued hypha formation in inducing conditions. This autoregulation of EFG1 expression is probably mediated through the Sin3p-containing histone deacetylation complex.
Collapse
Affiliation(s)
- Bernd Tebarth
- Institut für Mikrobiologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Honigberg SM, Purnapatre K. Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 2003; 116:2137-47. [PMID: 12730290 DOI: 10.1242/jcs.00460] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Diploid yeast, like most eukaryotes, can undergo meiotic differentiation to form haploid gametes. Meiotic differentiation and cell growth (proliferation) are mutually exclusive programs, and in yeast the switch between growth and meiosis is controlled by nutritional signals. The signaling pathways that mediate nutritional controls on meiotic initiation fall into three broad classes: those that respond to nutrient starvation, those that respond to non-fermentable carbon sources, and those that respond to glucose. At the onset of meiosis, nutritional signaling pathways converge on transcriptional regulation of two genes: IME1, which encodes a transcription factor; and IME2, which encodes a protein kinase. Transcription of IME1 and IME2 trigger initiation of meiosis, and the expression of these two genes is linked with one other, with expression of later meiotic genes and with early meiotic events such as DNA replication. In addition, the signaling pathways that control IME1 and IME2 expression are themselves integrated through a variety of mechanisms. Thus the signal network that controls the switch from growth to meiotic differentiation provides a signaling code that translates different combinations of extracellular signals into appropriate cellular responses.
Collapse
Affiliation(s)
- Saul M Honigberg
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Rd, Kansas City, MO 64112, USA.
| | | |
Collapse
|