1
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
2
|
Singh K, Das S, Sutradhar S, Howard J, Ray K. Insulin signaling accelerates the anterograde movement of Rab4 vesicles in axons through Klp98A/KIF16B recruitment via Vps34-PI3Kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590898. [PMID: 38895253 PMCID: PMC11185528 DOI: 10.1101/2024.04.24.590898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.
Collapse
Affiliation(s)
- Kamaldeep Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Semanti Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- National Brain Research Centre, Manesar, Haryana – 122051, India
| |
Collapse
|
3
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
4
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
5
|
Błaszczyk M, Gajewska M, Dymowska M, Majewska A, Domoradzki T, Prostek A, Pingwara R, Hulanicka M, Grzelkowska-Kowalczyk K. Interleukin-6 mimics insulin-dependent cellular distribution of some cytoskeletal proteins and Glut4 transporter without effect on glucose uptake in 3T3-L1 adipocytes. Histochem Cell Biol 2022; 157:525-546. [PMID: 35230485 DOI: 10.1007/s00418-022-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/04/2022]
Abstract
Interleukin (IL)-6, a known proinflammatory cytokine, is released in both visceral adipose tissue and contracting skeletal muscle. In this study, we used microRNA profiling as a screening method to identify miRNA species modified by IL-6 treatment in mouse 3T3-L1 adipocytes. miRNA microarray analysis and qRT-PCR revealed increased expression of miR-146b-3p in adipocytes exposed to IL-6 (1 ng/ml) during 8-day differentiation. On the basis of ontological analysis of potential targets, selected proteins associated with cytoskeleton and transport were examined in the context of adipocyte response to insulin, using immunofluorescence and confocal microscopy. We concluded that IL-6: (i) does not affect insulin action on actin cellular distribution; (ii) modulates the effect of insulin on myosin light chain kinase (Mylk) distribution by preventing its shift toward cytoplasm; (iii) mimics the effect of insulin on dynein distribution by increasing its near-nuclear accumulation; (iv) mimics the effect of insulin on glucose transporter Glut4 distribution, especially by increasing its near-nuclear accumulation; (v) supports insulin action on early endosome marker Rab4A near-nuclear accumulation. Moreover, as IL-6 did not disturb insulin-dependent glucose uptake, our results do not confirm the IL-6-induced impairment of insulin action observed in some in vitro studies, suggesting that the effect of IL-6 is dose dependent.
Collapse
Affiliation(s)
- Maciej Błaszczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Marta Dymowska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Domoradzki
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Rafał Pingwara
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Magdalena Hulanicka
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
6
|
Roberts BS, Yang CQ, Neher SB. Characterization of lipoprotein lipase storage vesicles in 3T3-L1 adipocytes. J Cell Sci 2022; 135:jcs258734. [PMID: 34382637 PMCID: PMC8403984 DOI: 10.1242/jcs.258734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022] Open
Abstract
Lipoprotein lipase (LPL) is a secreted triglyceride lipase involved in the clearance of very-low-density lipoproteins and chylomicrons from circulation. LPL is expressed primarily in adipose and muscle tissues and transported to the capillary lumen. LPL secretion is regulated by insulin in adipose tissue; however, few studies have examined the regulatory and trafficking steps involved in secretion. Here, we describe the intracellular localization and insulin-dependent trafficking of LPL in 3T3-L1 adipocytes. We compared LPL trafficking to the better characterized trafficking pathways taken by leptin and GLUT4 (also known as SLC2A4). We show that the LPL trafficking pathway shares some characteristics of these other pathways, but that LPL subcellular localization and trafficking are distinct from those of GLUT4 and leptin. LPL secretion occurs slowly in response to insulin and rapidly in response to the Ca2+ ionophore ionomycin. This regulated trafficking is dependent on Golgi protein kinase D and the ADP-ribosylation factor GTPase ARF1. Together, these data give support to a new trafficking pathway for soluble cargo that is active in adipocytes.
Collapse
Affiliation(s)
| | | | - Saskia B. Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Fazakerley DJ, Koumanov F, Holman GD. GLUT4 On the move. Biochem J 2022; 479:445-462. [PMID: 35147164 PMCID: PMC8883492 DOI: 10.1042/bcj20210073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Insulin rapidly stimulates GLUT4 translocation and glucose transport in fat and muscle cells. Signals from the occupied insulin receptor are translated into downstream signalling changes in serine/threonine kinases within timescales of seconds, and this is followed by delivery and accumulation of the glucose transporter GLUT4 at the plasma membrane. Kinetic studies have led to realisation that there are distinct phases of this stimulation by insulin. There is a rapid initial burst of GLUT4 delivered to the cell surface from a subcellular reservoir compartment and this is followed by a steady-state level of continuing stimulation in which GLUT4 recycles through a large itinerary of subcellular locations. Here, we provide an overview of the phases of insulin stimulation of GLUT4 translocation and the molecules that are currently considered to activate these trafficking steps. Furthermore, we suggest how use of new experimental approaches together with phospho-proteomic data may help to further identify mechanisms for activation of these trafficking processes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Metabolic Research Laboratories, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, U.K
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise, and Metabolism, University of Bath, Bath, Somerset BA2 7AY, U.K
| | - Geoffrey D Holman
- Department of Biology and Biochemistry, University of Bath, Bath, Somerset BA2 7AY, U.K
| |
Collapse
|
8
|
Batty SR, Langlais PR. Microtubules in insulin action: what's on the tube? Trends Endocrinol Metab 2021; 32:776-789. [PMID: 34462181 PMCID: PMC8446328 DOI: 10.1016/j.tem.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
Microtubules (MT) have a role in the intracellular response to insulin stimulation and subsequent glucose transport by glucose transporter 4 (GLUT4), which resides in specialized storage vesicles that travel through the cell. Before GLUT4 is inserted into the plasma membrane for glucose transport, it undergoes complex trafficking through the cell via the integration of cytoskeletal networks. In this review, we highlight the importance of MT elements in insulin action in adipocytes through a summary of MT depolymerization studies, MT-based GLUT4 movement, molecular motor proteins involved in GLUT4 trafficking, as well as MT-related phenomena in response to insulin and links between insulin action and MT-associated proteins.
Collapse
Affiliation(s)
- Skylar R Batty
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Paul R Langlais
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
9
|
Mechanisms and Regulation of Cardiac Ca V1.2 Trafficking. Int J Mol Sci 2021; 22:ijms22115927. [PMID: 34072954 PMCID: PMC8197997 DOI: 10.3390/ijms22115927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/05/2023] Open
Abstract
During cardiac excitation contraction coupling, the arrival of an action potential at the ventricular myocardium triggers voltage-dependent L-type Ca2+ (CaV1.2) channels in individual myocytes to open briefly. The level of this Ca2+ influx tunes the amplitude of Ca2+-induced Ca2+ release from ryanodine receptors (RyR2) on the junctional sarcoplasmic reticulum and thus the magnitude of the elevation in intracellular Ca2+ concentration and ultimately the downstream contraction. The number and activity of functional CaV1.2 channels at the t-tubule dyads dictates the amplitude of the Ca2+ influx. Trafficking of these channels and their auxiliary subunits to the cell surface is thus tightly controlled and regulated to ensure adequate sarcolemmal expression to sustain this critical process. To that end, recent discoveries have revealed the existence of internal reservoirs of preformed CaV1.2 channels that can be rapidly mobilized to enhance sarcolemmal expression in times of acute stress when hemodynamic and metabolic demand increases. In this review, we provide an overview of the current thinking on CaV1.2 channel trafficking dynamics in the heart. We highlight the numerous points of control including the biosynthetic pathway, the endosomal recycling pathway, ubiquitination, and lysosomal and proteasomal degradation pathways, and discuss the effects of β-adrenergic and angiotensin receptor signaling cascades on this process.
Collapse
|
10
|
Hudson NJ, Porto-Neto L, Naval-Sanchez M, Lyons RE, Reverter A. A conserved haplotype in Wagyu cattle contains RAB4A whose encoded protein regulates glucose trafficking in muscle and fat cells. Anim Genet 2021; 52:275-283. [PMID: 33709423 DOI: 10.1111/age.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2021] [Indexed: 11/26/2022]
Abstract
The Wagyu breed of taurine cattle possess favourable genetics for intramuscular fat (IMF) but genomic loci associated with the trait remain under characterised. Here, we report the identification of a previously unidentified genomic region possessing a particular haplotype structure in Wagyu. Through deployment of a genome-wide haplotype detection analysis that captures regions conserved in a target population but not other populations we screened 100 individual Wagyu and contrasted them with 100 individuals from two independent comparison breeds, Charolais and Angus, using high-density SNPs. An extreme level of Wagyu conservation was assigned to a single genomic window (spanning genomic coordinates BTA28:41 088-300 265 bp). In fact, a five-SNP region spanning 27 096 bp is almost perfectly conserved among the 100 Wagyu individuals assayed and partially overlaps RAB4A. Focussing in, two consecutive SNPs (genomic coordinates 236 949 and 239 950) are apparently fixed within the Wagyu (BB and AA respectively), but at mixed frequencies in the other two breeds. These SNPs are located in the two introns straddling exon 7. In a separate analysis using the 1000 Bulls database, we found that, coincident with exon 7 of RAB4A first allele frequencies were highest in the high IMF Japanese Native (Wagyu) breeds (0.78) and lowest in the low IMF indicine breeds (Nelore and Brahman), with intermediate marbling breeds (Angus and Charolais) assigned intermediate rankings (0.42). RAB4A is known to encode a protein that regulates intracellular trafficking of the insulin-regulated glucose transporter GLUT4. RAB4A can be considered an attractive new positional candidate for IMF development.
Collapse
Affiliation(s)
- N J Hudson
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, 4343, Australia
| | - L Porto-Neto
- Agriculture and Food, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - M Naval-Sanchez
- Agriculture and Food, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| | - R E Lyons
- School of Veterinary Science, The University of Queensland Gatton Campus, Gatton, Queensland, 4343, Australia
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
| |
Collapse
|
11
|
Maeda K, Tasaki M, Ando Y, Ohtsubo K. Galectin-lattice sustains function of cationic amino acid transporter and insulin secretion of pancreatic β cells. J Biochem 2021; 167:587-596. [PMID: 31960919 DOI: 10.1093/jb/mvaa007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
Maintenance of cell surface residency and function of glycoproteins by lectins are essential for regulating cellular functions. Galectins are β-galactoside-binding lectins and form a galectin-lattice, which regulates stability, clustering, membrane sub-domain localization and endocytosis of plasmalemmal glycoproteins. We have previously reported that galectin-2 (Gal-2) forms a complex with cationic amino acid transporter 3 (CAT3) in pancreatic β cells, although the biological significance of the molecular interaction between Gal-2 and CAT3 has not been elucidated. In this study, we demonstrated that the structure of N-glycan of CAT3 was either tetra- or tri-antennary branch structure carrying β-galactosides, which works as galectin-ligands. Indeed, CAT3 bound to Gal-2 using β-galactoside epitope. Moreover, the disruption of the glycan-mediated bindings between galectins and CAT3 significantly reduced cell surface expression levels of CAT3. The reduced cell surface residency of CAT3 attenuated the cellular arginine uptake activities and subsequently reduced nitric oxide production, and thus impaired the arginine-stimulated insulin secretion of pancreatic β cells. These results indicate that galectin-lattice stabilizes CAT3 by preventing endocytosis to sustain the arginine-stimulated insulin secretion of pancreatic β cells. This provides a novel cell biological insight into the endocrinological mechanism of nutrition metabolism and homeostasis.
Collapse
Affiliation(s)
- Kento Maeda
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| | - Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yukio Ando
- Depatment of Amyloidosis Research, Nagasaki International University, Nagasaki 859-3243, Japan
| | - Kazuaki Ohtsubo
- Department of Analytical Biochemistry;, Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan.,Department of Analytical Biochemistry, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-Ku, Kumamoto 862-0976, Japan
| |
Collapse
|
12
|
Brumfield A, Chaudhary N, Molle D, Wen J, Graumann J, McGraw TE. Insulin-promoted mobilization of GLUT4 from a perinuclear storage site requires RAB10. Mol Biol Cell 2021; 32:57-73. [PMID: 33175605 PMCID: PMC8098823 DOI: 10.1091/mbc.e20-06-0356] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/05/2022] Open
Abstract
Insulin controls glucose uptake into muscle and fat cells by inducing a net redistribution of glucose transporter 4 (GLUT4) from intracellular storage to the plasma membrane (PM). The TBC1D4-RAB10 signaling module is required for insulin-stimulated GLUT4 translocation to the PM, although where it intersects GLUT4 traffic was unknown. Here we demonstrate that TBC1D4-RAB10 functions to control GLUT4 mobilization from a trans-Golgi network (TGN) storage compartment, establishing that insulin, in addition to regulating the PM proximal effects of GLUT4-containing vesicles docking to and fusion with the PM, also directly regulates the behavior of GLUT4 deeper within the cell. We also show that GLUT4 is retained in an element/domain of the TGN from which newly synthesized lysosomal proteins are targeted to the late endosomes and the ATP7A copper transporter is translocated to the PM by elevated copper. Insulin does not mobilize ATP7A nor does copper mobilize GLUT4, and RAB10 is not required for copper-elicited ATP7A mobilization. Consequently, GLUT4 intracellular sequestration and mobilization by insulin is achieved, in part, through utilizing a region of the TGN devoted to specialized cargo transport in general rather than being specific for GLUT4. Our results define the GLUT4-containing region of the TGN as a sorting and storage site from which different cargo are mobilized by distinct signals through unique molecular machinery.
Collapse
Affiliation(s)
| | - Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Dorothee Molle
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
| | - Johannes Graumann
- Weill Cornell Medical College in Qatar, Education City, 24144 Doha, State of Qatar
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
13
|
Platenkamp A, Detmar E, Sepulveda L, Ritz A, Rogers SL, Applewhite DA. The Drosophila melanogaster Rab GAP RN-tre cross-talks with the Rho1 signaling pathway to regulate nonmuscle myosin II localization and function. Mol Biol Cell 2020; 31:2379-2397. [PMID: 32816624 PMCID: PMC7851959 DOI: 10.1091/mbc.e20-03-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
To identify novel regulators of nonmuscle myosin II (NMII) we performed an image-based RNA interference screen using stable Drosophila melanogaster S2 cells expressing the enhanced green fluorescent protein (EGFP)-tagged regulatory light chain (RLC) of NMII and mCherry-Actin. We identified the Rab-specific GTPase-activating protein (GAP) RN-tre as necessary for the assembly of NMII RLC into contractile actin networks. Depletion of RN-tre led to a punctate NMII phenotype, similar to what is observed following depletion of proteins in the Rho1 pathway. Depletion of RN-tre also led to a decrease in active Rho1 and a decrease in phosphomyosin-positive cells by immunostaining, while expression of constitutively active Rho or Rho-kinase (Rok) rescues the punctate phenotype. Functionally, RN-tre depletion led to an increase in actin retrograde flow rate and cellular contractility in S2 and S2R+ cells, respectively. Regulation of NMII by RN-tre is only partially dependent on its GAP activity as overexpression of constitutively active Rabs inactivated by RN-tre failed to alter NMII RLC localization, while a GAP-dead version of RN-tre partially restored phosphomyosin staining. Collectively, our results suggest that RN-tre plays an important regulatory role in NMII RLC distribution, phosphorylation, and function, likely through Rho1 signaling and putatively serving as a link between the secretion machinery and actomyosin contractility.
Collapse
Affiliation(s)
| | - Elizabeth Detmar
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Liz Sepulveda
- Department of Biology, Reed College, Portland, OR 97202
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202
| | - Stephen L Rogers
- Department of Biology & Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | |
Collapse
|
14
|
Machado A, Pouzolles M, Gailhac S, Fritz V, Craveiro M, López-Sánchez U, Kondo T, Pala F, Bosticardo M, Notarangelo LD, Petit V, Taylor N, Zimmermann VS. Phosphate Transporter Profiles in Murine and Human Thymi Identify Thymocytes at Distinct Stages of Differentiation. Front Immunol 2020; 11:1562. [PMID: 32793218 PMCID: PMC7387685 DOI: 10.3389/fimmu.2020.01562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Thymocyte differentiation is dependent on the availability and transport of metabolites in the thymus niche. As expression of metabolite transporters is a rate-limiting step in nutrient utilization, cell surface transporter levels generally reflect the cell's metabolic state. The GLUT1 glucose transporter is upregulated on actively dividing thymocytes, identifying thymocytes with an increased metabolism. However, it is not clear whether transporters of essential elements such as phosphate are modulated during thymocyte differentiation. While PiT1 and PiT2 are both phosphate transporters in the SLC20 family, we show here that they exhibit distinct expression profiles on both murine and human thymocytes. PiT2 expression distinguishes thymocytes with high metabolic activity, identifying immature murine double negative (CD4−CD8−) DN3b and DN4 thymocyte blasts as well as immature single positive (ISP) CD8 thymocytes. Notably, the absence of PiT2 expression on RAG2-deficient thymocytes, blocked at the DN3a stage, strongly suggests that high PiT2 expression is restricted to thymocytes having undergone a productive TCRβ rearrangement at the DN3a/DN3b transition. Similarly, in the human thymus, PiT2 was upregulated on early post-β selection CD4+ISP and TCRαβ−CD4hiDP thymocytes co-expressing the CD71 transferrin receptor, a marker of metabolic activity. In marked contrast, expression of the PiT1 phosphate importer was detected on mature CD3+ murine and human thymocytes. Notably, PiT1 expression on CD3+DN thymocytes was identified as a biomarker of an aging thymus, increasing from 8.4 ± 1.5% to 42.4 ± 9.4% by 1 year of age (p < 0.0001). We identified these cells as TCRγδ and, most significantly, NKT, representing 77 ± 9% of PiT1+DN thymocytes by 1 year of age (p < 0.001). Thus, metabolic activity and thymic aging are associated with distinct expression profiles of the PiT1 and PiT2 phosphate transporters.
Collapse
Affiliation(s)
- Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sarah Gailhac
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Vanessa Fritz
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marco Craveiro
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Uriel López-Sánchez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, United States
| | | | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Valérie S Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States.,Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
15
|
Griffith CM, Macklin LN, Cai Y, Sharp AA, Yan XX, Reagan LP, Strader AD, Rose GM, Patrylo PR. Impaired Glucose Tolerance and Reduced Plasma Insulin Precede Decreased AKT Phosphorylation and GLUT3 Translocation in the Hippocampus of Old 3xTg-AD Mice. J Alzheimers Dis 2020; 68:809-837. [PMID: 30775979 DOI: 10.3233/jad-180707] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated that mouse models of Alzheimer's disease (AD) can exhibit impaired peripheral glucose tolerance. Further, in the APP/PS1 mouse model, this is observed prior to the appearance of AD-related neuropathology (e.g., amyloid-β plaques; Aβ) or cognitive impairment. In the current study, we examined whether impaired glucose tolerance also preceded AD-like changes in the triple transgenic model of AD (3xTg-AD). Glucose tolerance testing (GTT), insulin ELISAs, and insulin tolerance testing (ITT) were performed at ages prior to (1-3 months and 6-8 months old) and post-pathology (16-18 months old). Additionally, we examined for altered insulin signaling in the hippocampus. Western blots were used to evaluate the two-primary insulin signaling pathways: PI3K/AKT and MAPK/ERK. Since the PI3K/AKT pathway affects several downstream targets associated with metabolism (e.g., GSK3, glucose transporters), western blots were used to examine possible alterations in the expression, translocation, or activation of these targets. We found that 3xTg-AD mice display impaired glucose tolerance as early as 1 month of age, concomitant with a decrease in plasma insulin levels well prior to the detection of plaques (∼14 months old), aggregates of hyperphosphorylated tau (∼18 months old), and cognitive decline (≥18 months old). These alterations in peripheral metabolism were seen at all time points examined. In comparison, PI3K/AKT, but not MAPK/ERK, signaling was altered in the hippocampus only in 18-20-month-old 3xTg-AD mice, a time point at which there was a reduction in GLUT3 translocation to the plasma membrane. Taken together, our results provide further evidence that disruptions in energy metabolism may represent a foundational step in the development of AD.
Collapse
Affiliation(s)
- Chelsea M Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Lauren N Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Yan Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Andrew A Sharp
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Changsha, Hunan, China
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| | - April D Strader
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Gregory M Rose
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| | - Peter R Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL, USA.,Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL, USA
| |
Collapse
|
16
|
White JA, Krzystek TJ, Hoffmar-Glennon H, Thant C, Zimmerman K, Iacobucci G, Vail J, Thurston L, Rahman S, Gunawardena S. Excess Rab4 rescues synaptic and behavioral dysfunction caused by defective HTT-Rab4 axonal transport in Huntington's disease. Acta Neuropathol Commun 2020; 8:97. [PMID: 32611447 PMCID: PMC7331280 DOI: 10.1186/s40478-020-00964-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington's disease (HD) is characterized by protein inclusions and loss of striatal neurons which result from expanded CAG repeats in the poly-glutamine (polyQ) region of the huntingtin (HTT) gene. Both polyQ expansion and loss of HTT have been shown to cause axonal transport defects. While studies show that HTT is important for vesicular transport within axons, the cargo that HTT transports to/from synapses remain elusive. Here, we show that HTT is present with a class of Rab4-containing vesicles within axons in vivo. Reduction of HTT perturbs the bi-directional motility of Rab4, causing axonal and synaptic accumulations. In-vivo dual-color imaging reveal that HTT and Rab4 move together on a unique putative vesicle that may also contain synaptotagmin, synaptobrevin, and Rab11. The moving HTT-Rab4 vesicle uses kinesin-1 and dynein motors for its bi-directional movement within axons, as well as the accessory protein HIP1 (HTT-interacting protein 1). Pathogenic HTT disrupts the motility of HTT-Rab4 and results in larval locomotion defects, aberrant synaptic morphology, and decreased lifespan, which are rescued by excess Rab4. Consistent with these observations, Rab4 motility is perturbed in iNeurons derived from human Huntington's Disease (HD) patients, likely due to disrupted associations between the polyQ-HTT-Rab4 vesicle complex, accessory proteins, and molecular motors. Together, our observations suggest the existence of a putative moving HTT-Rab4 vesicle, and that the axonal motility of this vesicle is disrupted in HD causing synaptic and behavioral dysfunction. These data highlight Rab4 as a potential novel therapeutic target that could be explored for early intervention prior to neuronal loss and behavioral defects observed in HD.
Collapse
Affiliation(s)
- Joseph A. White
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Thomas J. Krzystek
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Hayley Hoffmar-Glennon
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Claire Thant
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Katherine Zimmerman
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Gary Iacobucci
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Julia Vail
- Department of Biological Engineering, Cornell University, Ithaca, NY USA
| | - Layne Thurston
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Saad Rahman
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, New York, 14260 USA
| |
Collapse
|
17
|
Wade M, Delawder V, Reneau P, Dos Santos JM. The effect of BPA exposure on insulin resistance and type 2 diabetes - The impact of muscle contraction. Med Hypotheses 2020; 140:109675. [PMID: 32200183 DOI: 10.1016/j.mehy.2020.109675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Type 2 diabetes (T2D) is considered one of the leading causes of death worldwide. In addition to physical inactivity and obesity, established risk factors for T2D, chemical contaminants consumed in industrialized food such as BPA might also be a contributor to the development of T2D. Epidemiological studies have shown that BPA concentrations are higher in human specimens of T2D when compared to healthy subjects, while experimental studies suggested that bisphenol A (BPA) impairs the pathway by which insulin stimulates glucose uptake. In skeletal muscle and adipocytes, insulin resistance is developed by the impairment of the insulin pathway to stimulate the translocation of glucose transporter, GLUT4, to the cell membrane. Recent results demonstrated that BPA impairs several components of insulin-induced glucose uptake pathway and affect the expression of GLUT4. Regular physical exercise delays or inhibits the development of T2D due to the physiologic processes taking place during muscle contraction, and the fact that skeletal muscle is the site for almost 80% of the glucose transported under insulin stimulation. In fact, the mechanism by which contraction induces glucose uptake in skeletal muscle is partially independent of the insulin pathway, therefore, the effect of BPA on this mechanism is unknown. We hypothesize that during the development of insulin resistance, BPA contributes to the impairment of the molecular pathway by which insulin induces glucose uptake while contraction-induced glucose uptake is not impaired. At the late stages of T2D, BPA may affect GLUT4 expression that will decrease the ability of muscle contraction to induce glucose uptake.
Collapse
Affiliation(s)
- Madison Wade
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Virginia Delawder
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Paul Reneau
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States
| | - Julia M Dos Santos
- School of Education, Health and Human Performance, Fairmont State University, Fairmont, WV, United States; Detroit R&D, Inc, Detroit, MI, United States.
| |
Collapse
|
18
|
Wang XL, Lu T, Sun X, Lee HC. Membrane trafficking of large conductance Ca 2+- and voltage-activated K + (BK) channels is regulated by Rab4 GTPase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118646. [PMID: 31926210 DOI: 10.1016/j.bbamcr.2020.118646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 12/28/2022]
Abstract
The large conductance voltage- and Ca2+-activated K+ (BK) channel is a major ionic determinant of vascular tone, vasodilation, and blood pressure. The activity of BK channels is regulated in part by membrane presentation. Rab GTPase (Rab) regulates important cellular processes, including ion channel membrane trafficking. We hypothesize that Rab4a participates in the regulation of BK channel α-subunit (BK-α) membrane trafficking. We found that vascular BK-α interacts physically with Rab4a. Co-expression of dominant-negative Rab4a reduced BK-α surface expression, whereas that of constitutively-active Rab4a augmented BK-α surface presentation. These novel findings suggest that vascular BK channel membrane expression is regulated by Rab4a through channel membrane trafficking.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Tong Lu
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Xiaojing Sun
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hon-Chi Lee
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Satoh T, Takenaka N. A critical role for the small GTPase Rac1 in insulin signaling that regulates glucose uptake in skeletal muscle. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03976-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Nag S, Rani S, Mahanty S, Bissig C, Arora P, Azevedo C, Saiardi A, van der Sluijs P, Delevoye C, van Niel G, Raposo G, Setty SRG. Rab4A organizes endosomal domains for sorting cargo to lysosome-related organelles. J Cell Sci 2018; 131:jcs.216226. [PMID: 30154210 PMCID: PMC6151265 DOI: 10.1242/jcs.216226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sudeshna Nag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Shikha Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Sarmistha Mahanty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Christin Bissig
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France
| | - Pooja Arora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| | - Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Peter van der Sluijs
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Cedric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Guillaume van Niel
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR 144, Structure and Membrane Compartments, F-75005, Paris, France.,Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), F-75005, Paris, France
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India 560 012
| |
Collapse
|
21
|
Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis. Int J Mol Sci 2018; 19:ijms19092575. [PMID: 30200238 PMCID: PMC6163544 DOI: 10.3390/ijms19092575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
RAB5 is a small GTPase that belongs to the wide family of Rab proteins and localizes on early endosomes. In its active GTP-bound form, RAB5 recruits downstream effectors that, in turn, are responsible for distinct aspects of early endosome function, including their movement along microtubules. We previously reported that, at the onset of mitosis, RAB5positive vesicles cluster around the spindle poles and, during metaphase, move along spindle microtubules. RNAi-mediated depletion of the three RAB5 isoforms delays nuclear envelope breakdown at prophase and severely affects chromosome alignment and segregation. Here we show that depletion of the Kinesin-2 motor complex impairs long-range movement of RAB5 endosomes in interphase cells and prevents localization of these vesicles at the spindle during metaphase. Similarly to the effect caused by RAB5 depletion, functional ablation of Kinesin-2 delays nuclear envelope breakdown resulting in prolonged prophase. Altogether these findings suggest that endosomal transport at the onset of mitosis is required to control timing of nuclear envelope breakdown.
Collapse
|
22
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
23
|
Dey S, Banker G, Ray K. Anterograde Transport of Rab4-Associated Vesicles Regulates Synapse Organization in Drosophila. Cell Rep 2017; 18:2452-2463. [PMID: 28273459 DOI: 10.1016/j.celrep.2017.02.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Local endosomal recycling at synapses is essential to maintain neurotransmission. Rab4GTPase, found on sorting endosomes, is proposed to balance the flow of vesicles among endocytic, recycling, and degradative pathways in the presynaptic compartment. Here, we report that Rab4-associated vesicles move bidirectionally in Drosophila axons but with an anterograde bias, resulting in their moderate enrichment at the synaptic region of the larval ventral ganglion. Results from FK506 binding protein (FKBP) and FKBP-Rapamycin binding domain (FRB) conjugation assays in rat embryonic fibroblasts together with genetic analyses in Drosophila indicate that an association with Kinesin-2 (mediated by the tail domain of Kinesin-2α/KIF3A/KLP64D subunit) moves Rab4-associated vesicles toward the synapse. Reduction in the anterograde traffic of Rab4 causes an expansion of the volume of the synapse-bearing region in the ventral ganglion and increases the motility of Drosophila larvae. These results suggest that Rab4-dependent vesicular traffic toward the synapse plays a vital role in maintaining synaptic balance in this neuronal network.
Collapse
Affiliation(s)
- Swagata Dey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR 97239, USA
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
24
|
Zhao YQ, Yang HY, Zhang DD, Han YL, Hou CC, Zhu JQ. Dynamic transcription and expression patterns of KIF3A and KIF3B genes during spermiogenesis in the shrimp, Palaemon carincauda. Anim Reprod Sci 2017; 184:59-77. [PMID: 28689636 DOI: 10.1016/j.anireprosci.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 01/20/2023]
Abstract
Spermiogenesis is a highly ordered and complex process in the male germ cell differentiation. The microtubule-based motor proteins KIF3A and KIF3B are required for the progression of the stages of spermiogenesis. In this study, the main goal was to determine whether KIF3A and KIF3B have a key role in spermiogenesis in Palaemon carincauda. The complete cDNA of KIF3A/3B from the testis of P. carincauda was cloned by using PCR and rapid amplification of cDNA ends (RACE). The predicted secondary and tertiary structures of KIF3A/3B contained three domains which were the: a) head region, b) stalk region, and c) tail region. Real-time quantitative PCR (qPCR) results revealed that KIF3A and KIF3B mRNAs were obtained for all the tissues examined, with the greatest gene expression in the testis. In situ hybridization indicated the KIF3A and KIF3B mRNAs were distributed in the periphery of the nuclear in the early spermatid of spermiogenesis. In the middle and late spermatid stages, KIF3A and KIF3B mRNAs were gradually upregulated and assembled to one side where acrosome biogenesis begins. In the mature sperm, KIF3A and KIF3B mRNAs were distributed in the acrosome cap and spike. Immunofluorescence studies indicated that KIF3A, tubulin, mitochondria, and Golgi were co-localized in different stages during spermiogenesis in P. carincauda. The temporal and spatial gene expression dynamics of KIF3A/3B indicate that KIF3A and KIF3B proteins may be involved in acrosome formation and nucleus shaping. Moreover, these proteins can transport the mitochondria and Golgi that facilitate acrosome formation in P. carincauda.
Collapse
Affiliation(s)
- Yong-Qiang Zhao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Hai-Yan Yang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Ying-Li Han
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China.
| |
Collapse
|
25
|
Kruse R, Krantz J, Barker N, Coletta RL, Rafikov R, Luo M, Højlund K, Mandarino LJ, Langlais PR. Characterization of the CLASP2 Protein Interaction Network Identifies SOGA1 as a Microtubule-Associated Protein. Mol Cell Proteomics 2017; 16:1718-1735. [PMID: 28550165 DOI: 10.1074/mcp.ra117.000011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 12/26/2022] Open
Abstract
CLASP2 is a microtubule-associated protein that undergoes insulin-stimulated phosphorylation and co-localization with reorganized actin and GLUT4 at the plasma membrane. To gain insight to the role of CLASP2 in this system, we developed and successfully executed a streamlined interactome approach and built a CLASP2 protein network in 3T3-L1 adipocytes. Using two different commercially available antibodies for CLASP2 and an antibody for epitope-tagged, overexpressed CLASP2, we performed multiple affinity purification coupled with mass spectrometry (AP-MS) experiments in combination with label-free quantitative proteomics and analyzed the data with the bioinformatics tool Significance Analysis of Interactome (SAINT). We discovered that CLASP2 coimmunoprecipitates (co-IPs) the novel protein SOGA1, the microtubule-associated protein kinase MARK2, and the microtubule/actin-regulating protein G2L1. The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and revealed MARK2 can co-IP SOGA1, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and with tubulin, which identifies SOGA1 as a new microtubule-associated protein. These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology.
Collapse
Affiliation(s)
- Rikke Kruse
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - James Krantz
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Natalie Barker
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Richard L Coletta
- ‖School of Life Sciences, Arizona State University, Tempe, Arizona 85787
| | - Ruslan Rafikov
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Moulun Luo
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Kurt Højlund
- From the ‡The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.,§Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark
| | - Lawrence J Mandarino
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721
| | - Paul R Langlais
- ¶Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, Arizona 85721;
| |
Collapse
|
26
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
27
|
Kunze A, Murray CT, Godzich C, Lin J, Owsley K, Tay A, Di Carlo D. Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip. LAB ON A CHIP 2017; 17:842-854. [PMID: 28164203 PMCID: PMC5400667 DOI: 10.1039/c6lc01349j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6-126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.
Collapse
Affiliation(s)
- Anja Kunze
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, USA.
| | - Coleman Tylor Murray
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Chanya Godzich
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Keegan Owsley
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Andy Tay
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA and Jonsson Comprehensive Cancer Research Center, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Cui J, Pang J, Lin YJ, Gong H, Wang ZH, Li YX, Li J, Wang Z, Jiang P, Dai DP, Li J, Cai JP, Huang JD, Zhang TM. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity. FASEB J 2017; 31:2533-2547. [PMID: 28242773 DOI: 10.1096/fj.201601103r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
Abstract
Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on an HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.
Collapse
Affiliation(s)
- Ju Cui
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jing Pang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Ya-Jun Lin
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Huan Gong
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zhen-He Wang
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Yun-Xuan Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jin Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ping Jiang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Da-Peng Dai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian Li
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China; .,Shenzhen Institute of Research and Innovation, University of Hong Kong, Hong Kong, China.,The Centre for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Tie-Mei Zhang
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China;
| |
Collapse
|
29
|
Zhou X, Shentu P, Xu Y. Spatiotemporal Regulators for Insulin-Stimulated GLUT4 Vesicle Exocytosis. J Diabetes Res 2017; 2017:1683678. [PMID: 28529958 PMCID: PMC5424486 DOI: 10.1155/2017/1683678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022] Open
Abstract
Insulin increases glucose uptake and storage in muscle and adipose cells, which is accomplished through the mobilization of intracellular GLUT4 storage vesicles (GSVs) to the cell surface upon stimulation. Importantly, the dysfunction of insulin-regulated GLUT4 trafficking is strongly linked with peripheral insulin resistance and type 2 diabetes in human. The insulin signaling pathway, key signaling molecules involved, and precise trafficking itinerary of GSVs are largely identified. Understanding the interaction between insulin signaling molecules and key regulatory proteins that are involved in spatiotemporal regulation of GLUT4 vesicle exocytosis is of great importance to explain the pathogenesis of diabetes and may provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ping Shentu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- *Yingke Xu:
| |
Collapse
|
30
|
Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 2016; 28:173-181. [PMID: 28035048 PMCID: PMC5221621 DOI: 10.1091/mbc.e16-06-0413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Quantum dots (QDs) are a powerful tool for quantitative biology, but two challenges are associated with using them to track intracellular molecules in live cells. A simple and convenient method is presented for labeling intracellular molecules by using HaloTag technology and electroporation and is used to successfully track myosins within live cells. Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8579, Japan .,Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihito Nakahata
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Hirokazu Yarimizu
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan.,Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
31
|
Protein kinase Cζ exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation. Biochem J 2015; 473:509-23. [PMID: 26635352 DOI: 10.1042/bj20151013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
Atypical protein kinase C (aPKC) isoenzymes are key modulators of insulin signalling, and their dysfunction correlates with insulin-resistant states in both mice and humans. Despite the engaged interest in the importance of aPKCs to type 2 diabetes, much less is known about the molecular mechanisms that govern their cellular functions than for the conventional and novel PKC isoenzymes and the functionally-related protein kinase B (Akt) family of kinases. Here we show that aPKC is constitutively phosphorylated and, using a genetically-encoded reporter for PKC activity, basally active in cells. Specifically, we show that phosphorylation at two key regulatory sites, the activation loop and turn motif, of the aPKC PKCζ in multiple cultured cell types is constitutive and independently regulated by separate kinases: ribosome-associated mammalian target of rapamycin complex 2 (mTORC2) mediates co-translational phosphorylation of the turn motif, followed by phosphorylation at the activation loop by phosphoinositide-dependent kinase-1 (PDK1). Live cell imaging reveals that global aPKC activity is constitutive and insulin unresponsive, in marked contrast to the insulin-dependent activation of Akt monitored by an Akt-specific reporter. Nor does forced recruitment to phosphoinositides by fusing the pleckstrin homology (PH) domain of Akt to the kinase domain of PKCζ alter either the phosphorylation or activity of PKCζ. Thus, insulin stimulation does not activate PKCζ through the canonical phosphatidylinositol-3,4,5-triphosphate-mediated pathway that activates Akt, contrasting with previous literature on PKCζ activation. These studies support a model wherein an alternative mechanism regulates PKCζ-mediated insulin signalling that does not utilize conventional activation via agonist-evoked phosphorylation at the activation loop. Rather, we propose that scaffolding near substrates drives the function of PKCζ.
Collapse
|
32
|
Dos Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: An epigenetic perspective. Metabolism 2015; 64:1619-28. [PMID: 26481513 DOI: 10.1016/j.metabol.2015.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 02/08/2023]
Abstract
Changes in eating habits and sedentary lifestyle are main contributors to type 2 diabetes (T2D) development, and studies suggest that epigenetic modifications are involved with the growing incidence of this disease. Regular exercise modulates many intracellular pathways improving insulin resistance and glucose uptake in skeletal muscle, both early abnormalities of T2D. Mitochondria dysfunction and decreased expression of glucose transporter (GLUT4) were identified as main factors of insulin resistance. Moreover, it has been suggested that skeletal muscle of T2D subjects have a different pattern of epigenetic marks on the promoter of GLUT4 and PGC1, main regulator of mitochondrial function, compared with nondiabetic individuals. Recent studies have proposed that regular exercise could improve glucose uptake by the attenuation of such epigenetic modification induced at GLUT4, PGC1 and its downstream regulators; however, the exact mechanism is still to be understood. Herein we review the known epigenetic modifications on GLUT4 and mitochondrial proteins that lead to impairment of skeletal muscle glucose uptake and T2D development, and the effect of physical exercise at these modifications.
Collapse
Affiliation(s)
| | | | - Shikha Tewari
- Dr. Ram Manohar Lohia, Institute of Medical Science, Lucknow, India
| | | |
Collapse
|
33
|
Tolvanen TA, Dash SN, Polianskyte-Prause Z, Dumont V, Lehtonen S. Lack of CD2AP disrupts Glut4 trafficking and attenuates glucose uptake in podocytes. J Cell Sci 2015; 128:4588-600. [PMID: 26546360 DOI: 10.1242/jcs.175075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
The adapter protein CD2-associated protein (CD2AP) functions in various signaling and vesicle trafficking pathways, including endosomal sorting and/or trafficking and degradation pathways. Here, we investigated the role of CD2AP in insulin-dependent glucose transporter 4 (Glut4, also known as SLC2A4) trafficking and glucose uptake. Glucose uptake was attenuated in CD2AP(-/-) podocytes compared with wild-type podocytes in the basal state, and CD2AP(-/-) podocytes failed to increase glucose uptake in response to insulin. Live-cell imaging revealed dynamic trafficking of HA-Glut4-GFP in wild-type podocytes, whereas in CD2AP(-/-) podocytes, HA-Glut4-GFP clustered perinuclearly. In subcellular membrane fractionations, CD2AP co-fractionated with Glut4, IRAP (also known as LNPEP) and sortilin, constituents of Glut4 storage vesicles (GSVs). We further found that CD2AP forms a complex with GGA2, a clathrin adaptor, which sorts Glut4 to GSVs, suggesting a role for CD2AP in this process. We also found that CD2AP forms a complex with clathrin and connects clathrin to actin in the perinuclear region. Furthermore, clathrin recycling back to trans-Golgi membranes from the vesicular fraction containing GSVs was defective in the absence of CD2AP. This leads to reduced insulin-stimulated trafficking of GSVs and attenuated glucose uptake into CD2AP(-/-) podocytes.
Collapse
Affiliation(s)
- Tuomas A Tolvanen
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | | | | | - Vincent Dumont
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
34
|
Tsai LCL, Xie L, Dore K, Xie L, Del Rio JC, King CC, Martinez-Ariza G, Hulme C, Malinow R, Bourne PE, Newton AC. Zeta Inhibitory Peptide Disrupts Electrostatic Interactions That Maintain Atypical Protein Kinase C in Its Active Conformation on the Scaffold p62. J Biol Chem 2015; 290:21845-56. [PMID: 26187466 PMCID: PMC4571940 DOI: 10.1074/jbc.m115.676221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/17/2015] [Indexed: 11/06/2022] Open
Abstract
Atypical protein kinase C (aPKC) enzymes signal on protein scaffolds, yet how they are maintained in an active conformation on scaffolds is unclear. A myristoylated peptide based on the autoinhibitory pseudosubstrate fragment of the atypical PKCζ, zeta inhibitory peptide (ZIP), has been extensively used to inhibit aPKC activity; however, we have previously shown that ZIP does not inhibit the catalytic activity of aPKC isozymes in cells (Wu-Zhang, A. X., Schramm, C. L., Nabavi, S., Malinow, R., and Newton, A. C. (2012) J. Biol. Chem. 287, 12879-12885). Here we sought to identify a bona fide target of ZIP and, in so doing, unveiled a novel mechanism by which aPKCs are maintained in an active conformation on a protein scaffold. Specifically, we used protein-protein interaction network analysis, structural modeling, and protein-protein docking to predict that ZIP binds an acidic surface on the Phox and Bem1 (PB1) domain of p62, an interaction validated by peptide array analysis. Using a genetically encoded reporter for PKC activity fused to the p62 scaffold, we show that ZIP inhibits the activity of wild-type aPKC, but not a construct lacking the pseudosubstrate. These data support a model in which the pseudosubstrate of aPKCs is tethered to the acidic surface on p62, locking aPKC in an open, signaling-competent conformation. ZIP competes for binding to the acidic surface, resulting in displacement of the pseudosubstrate of aPKC and re-engagement in the substrate-binding cavity. This study not only identifies a cellular target for ZIP, but also unveils a novel mechanism by which scaffolded aPKC is maintained in an active conformation.
Collapse
Affiliation(s)
| | - Lei Xie
- the Department of Computer Science, Hunter College, the City University of New York, New York, New York 10065
| | | | - Li Xie
- Skaggs School of Pharmacy, and
| | | | - Charles C King
- Pediatric Diabetes Research Center, University of California San Diego, La Jolla, California 92093
| | - Guillermo Martinez-Ariza
- the Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, and
| | - Christopher Hulme
- the Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, and
| | | | - Philip E Bourne
- the Office of the Director, the National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
35
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
36
|
Santos JM, Benite-Ribeiro SA, Queiroz G, Duarte JA. The interrelation between aPKC and glucose uptake in the skeletal muscle during contraction and insulin stimulation. Cell Biochem Funct 2014; 32:621-4. [DOI: 10.1002/cbf.3081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/13/2023]
Affiliation(s)
- J. M. Santos
- CIAFEL, Faculty of Sport; University of Porto; Porto Portugal
- Federal University of Goiás; Jataí Brazil
- Detroit R&D Wayne State University; Detroit MI USA
| | - S. A. Benite-Ribeiro
- CIAFEL, Faculty of Sport; University of Porto; Porto Portugal
- Federal University of Goiás; Jataí Brazil
| | - G. Queiroz
- Laboratory of Pharmacology, Department of Drugs Sciences, REQUI M TE, Faculty of Pharmacy; University of Porto; Porto Portugal
| | - J. A. Duarte
- CIAFEL, Faculty of Sport; University of Porto; Porto Portugal
| |
Collapse
|
37
|
Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 2014; 15:18677-92. [PMID: 25325535 PMCID: PMC4227239 DOI: 10.3390/ijms151018677] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
38
|
Park SW, Schonhoff CM, Webster CRL, Anwer MS. Rab11, but not Rab4, facilitates cyclic AMP- and tauroursodeoxycholate-induced MRP2 translocation to the plasma membrane. Am J Physiol Gastrointest Liver Physiol 2014; 307:G863-70. [PMID: 25190474 PMCID: PMC4200318 DOI: 10.1152/ajpgi.00457.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rab proteins (Ras homologous for brain) play an important role in vesicle trafficking. Rab4 and Rab11 are involved in vesicular trafficking to the plasma membrane from early endosomes and recycling endosomes, respectively. Tauroursodeoxycholate (TUDC) and cAMP increase bile formation, in part, by increasing plasma membrane localization of multidrug resistance-associated protein 2 (MRP2). The goal of the present study was to determine the role of these Rab proteins in the trafficking of MRP2 by testing the hypothesis that Rab11 and/or Rab4 facilitate cAMP- and TUDC-induced MRP2 translocation to the plasma membrane. Studies were conducted in HuH-NTCP cells (HuH7 cells stably transfected with human NTCP), which constitutively express MRP2. HuH-NTCP cells were transfected with Rab11-WT and GDP-locked dominant inactive Rab11-GDP or with Rab4-GDP to study the role of Rab11 and Rab4. A biotinylation method and a GTP overlay assay were used to determine plasma membrane MRP2 and activation of Rab proteins (Rab11 and Rab4), respectively. Cyclic AMP and TUDC increased plasma membrane MRP2 and stimulated Rab11 activity. Plasma membrane translocation of MRP2 by cAMP and TUDC was increased and inhibited in cells transfected with Rab11-WT and Rab11-GDP, respectively. Cyclic AMP (previous study) and TUDC increased Rab4 activity. However, cAMP- and TUDC-induced increases in MRP2 were not inhibited by Rab4-GDP. Taken together, these results suggest that Rab11 is involved in cAMP- and TUDC-induced MRP2 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Se Won Park
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Christopher M Schonhoff
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| | - Cynthia R L Webster
- Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts
| | - M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts; and
| |
Collapse
|
39
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
40
|
Son MJ, Miura Y, Yagasaki K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology 2014; 67:641-52. [PMID: 24794903 DOI: 10.1007/s10616-014-9730-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022] Open
Abstract
There have been studies on health beneficial effects of ginger and its components. However, there still remain certain aspects that are not well defined in their anti-hyperglycemic effects. Our aims were to find evidence of possible mechanisms for antidiabetic action of [6]-gingerol, a pungent component of ginger, employing a rat skeletal muscle-derived cell line, a rat-derived pancreatic β-cell line, and type 2 diabetic model animals. The antidiabetic effect of [6]-gingerol was investigated through studies on glucose uptake in L6 myocytes and on pancreatic β-cell protective ability from reactive oxygen species (ROS) in RIN-5F cells. Its in vivo effect was also examined using obese diabetic db/db mice. [6]-Gingerol increased glucose uptake under insulin absent condition and induced 5' adenosine monophosphate-activated protein kinase phosphorylation in L6 myotubes. Promotion by [6]-gingerol of glucose transporter 4 (GLUT4) translocation to plasma membrane was visually demonstrated by immunocytochemistry in L6 myoblasts transfected with glut4 cDNA-coding vector. [6]-Gingerol suppressed advanced glycation end product-induced rise of ROS levels in RIN-5F pancreatic β-cells. [6]-Gingerol feeding suppressed the increases in fasting blood glucose levels and improved glucose intolerance in db/db mice. [6]-Gingerol regulated hepatic gene expression of enzymes related to glucose metabolism toward decreases in gluconeogenesis and glycogenolysis as well as an increase in glycogenesis, thereby contributing to reductions in hepatic glucose production and hence blood glucose concentrations. These in vitro and in vivo results strongly suggest that [6]-gingerol has antidiabetic potential through multiple mechanisms.
Collapse
Affiliation(s)
- Myoung Jin Son
- Department of Applied Life Science, Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | | | | |
Collapse
|
41
|
Endosome-to-Plasma Membrane Recycling of VEGFR2 Receptor Tyrosine Kinase Regulates Endothelial Function and Blood Vessel Formation. Cells 2014; 3:363-85. [PMID: 24785348 PMCID: PMC4092869 DOI: 10.3390/cells3020363] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/04/2014] [Accepted: 03/17/2014] [Indexed: 12/13/2022] Open
Abstract
Rab GTPases are implicated in endosome-to-plasma membrane recycling, but how such membrane traffic regulators control vascular endothelial growth factor receptor 2 (VEGFR2/KDR) dynamics and function are not well understood. Here, we evaluated two different recycling Rab GTPases, Rab4a and Rab11a, in regulating endothelial VEGFR2 trafficking and signalling with implications for endothelial cell migration, proliferation and angiogenesis. In primary endothelial cells, VEGFR2 displays co-localisation with Rab4a, but not Rab11a GTPase, on early endosomes. Expression of a guanosine diphosphate (GDP)-bound Rab4a S22N mutant caused increased VEGFR2 accumulation in endosomes. TfR and VEGFR2 exhibited differences in endosome-to-plasma membrane recycling in the presence of chloroquine. Depletion of Rab4a, but not Rab11a, levels stimulated VEGF-A-dependent intracellular signalling. However, depletion of either Rab4a or Rab11a levels inhibited VEGF-A-stimulated endothelial cell migration. Interestingly, depletion of Rab4a levels stimulated VEGF-A-regulated endothelial cell proliferation. Rab4a and Rab11a were also both required for endothelial tubulogenesis. Evaluation of a transgenic zebrafish model showed that both Rab4 and Rab11a are functionally required for blood vessel formation and animal viability. Rab-dependent endosome-to-plasma membrane recycling of VEGFR2 is important for intracellular signalling, cell migration and proliferation during angiogenesis.
Collapse
|
42
|
Granger E, McNee G, Allan V, Woodman P. The role of the cytoskeleton and molecular motors in endosomal dynamics. Semin Cell Dev Biol 2014; 31:20-9. [PMID: 24727350 PMCID: PMC4071412 DOI: 10.1016/j.semcdb.2014.04.011] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/28/2022]
Abstract
The endocytic pathway is essential for processes that define how cells interact with their environment, including receptor signalling, cell adhesion and migration, pathogen entry, membrane protein turnover and nutrient uptake. The spatial organisation of endocytic trafficking requires motor proteins that tether membranes or transport them along the actin and microtubule cytoskeletons. Microtubules, actin filaments and motor proteins also provide force to deform and assist in the scission of membranes, thereby facilitating endosomal sorting and the generation of transport intermediates.
Collapse
Affiliation(s)
- Elizabeth Granger
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Gavin McNee
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Victoria Allan
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Philip Woodman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
43
|
Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, Yamashita A, Ohno S. aPKCλ maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem 2014; 156:115-28. [PMID: 24700503 PMCID: PMC4112437 DOI: 10.1093/jb/mvu022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The slit diaphragm (SD), the specialized intercellular junction between renal glomerular epithelial cells (podocytes), provides a selective-filtration barrier in renal glomeruli. Dysfunction of the SD results in glomerular diseases that are characterized by disappearance of SD components, such as nephrin, from the cell surface. Although the importance of endocytosis and degradation of SD components for the maintenance of SD integrity has been suggested, the dynamic nature of the turnover of intact cell-surface SD components remained unclear. Using isolated rat glomeruli we show that the turnover rates of cell-surface SD components are relatively high; they almost completely disappear from the cell surface within minutes. The exocytosis, but not endocytosis, of heterologously expressed nephrin requires the kinase activity of the cell polarity regulator atypical protein kinase C (aPKC). Consistently, we demonstrate that podocyte-specific deletion of aPKCλ resulted in a decrease of cell-surface localization of SD components, causing massive proteinuria. In conclusion, the regulation of SD turnover by aPKC is crucial for the maintenance of SD integrity and defects in aPKC signalling can lead to proteinuria. These findings not only reveal the pivotal importance of the dynamic turnover of cell-surface SD components but also suggest a novel pathophysiological basis in glomerular disease.
Collapse
Affiliation(s)
- Daisuke Satoh
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Hirose
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yutaka Harita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Chikara Daimon
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Tomonori Harada
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hidetake Kurihara
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Shigeo Ohno
- Department of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, JapanDepartment of Molecular Biology, Graduate School of Medical Science, Yokohama City University, Yokohama; Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo; Department of Pediatrics, Yokohama City University, Yokohama; Department of Anatomy, Juntendo University, School of Medicine, Bunkyo, Tokyo; and Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
44
|
Abstract
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology; Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| |
Collapse
|
45
|
Suppression of antifolate resistance by targeting the myosin Va trafficking pathway in melanoma. Neoplasia 2014; 15:826-39. [PMID: 23814494 DOI: 10.1593/neo.13320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/01/2023] Open
Abstract
Human melanoma is a significant clinical problem. As most melanoma patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is one of the highest priorities to improve melanoma therapy. Melanosomal sequestration and the cellular exportation of cytotoxic drugs have been proposed to be important melanoma-specific mechanisms that contribute to multidrug resistance in melanoma. Concretely, we found that treatment of melanoma with methotrexate (MTX) altered melanogenesis and accelerated the exportation of melanosomes; however, the cellular and molecular processes by which MTX is trapped into melanosomes and exported out of cells have not been elucidated. In this study, we identified myosin Va (MyoVa) as a possible mediator of these cellular processes. The results demonstrated that melanoma treatment with MTX leads to Akt2-dependent MyoVa phosphorylation, which enhances its ability to interact with melanosomes and accelerates their exportation. To understand the mechanism(s) by which MTX activates Akt2, we examined the effects of this drug on the activity of protein phosphatase 2A, an Akt inhibitor activated by the methylation of its catalytic subunit. Taken together, this study identified a novel trafficking pathway in melanoma that promotes tumor resistance through Akt2/MyoVa activation. Because of these findings, we explored several MTX combination therapies to increase the susceptibility of melanoma to this drug. By avoiding MTX exportation, we observed that the E2F1 apoptotic pathway is functional in melanoma, and its induction activates p73 and apoptosis protease-activating factor 1 following a p53-autonomous proapoptotic signaling event.
Collapse
|
46
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
47
|
Beh JE, Khoo LT, Latip J, Abdullah MP, Alitheen NBM, Adam Z, Ismail A, Hamid M. SDF7, a group of Scoparia dulcis Linn. derived flavonoid compounds, stimulates glucose uptake and regulates adipocytokines in 3T3-F442a adipocytes. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:339-352. [PMID: 24029250 DOI: 10.1016/j.jep.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes. MATERIAL AND METHODS Morphology and lipid accumulation of differentiated 3T3-F442a adipocytes by 100 nM insulin treated with different concentrations of SDF7 and rosiglitazone were examined followed by the evaluation of glucose uptake activity expressions of insulin signalling downstream components (IRS-1, PI3-kinase, PKB, PKC, TC10 and GLUT4) from four cellular fractions (plasma membrane, cytosol, high density microsome and low density microsome). Next, the expression level of adipocytokines (TNF-α, adiponectin and leptin) and immunoblotting of treated 3T3-F442 adipocytes was determined at 30 min and 480 min. Glucose transporter 4 (GLUT4) translocation of 3T3-F442a adipocytes membrane was also determined. Lastly, mRNA expression of adiponectin and PPAR-γ of 3T3-F442a adipocytes were induced and compared with basal concentration. RESULTS It was found that SDF7 was able to induce adipocytes differentiation with great extends of morphological changes, lipid synthesis and lipid stimulation in vitro. SDF7 stimulation of glucose transport on 3T3-F442a adipocytes are found to be dose independent, time-dependent and plasma membrane GLUT4 expression-dependent. Moreover, SDF7 are observed to be able to suppress TNF-α and leptin expressions that were mediated by 3T3-F442a adipocytes, while stimulated adiponectin secretion on the cells. There was a significant expression (p<0.01) of protein kinase C and small G protein TC10 on 3T3-F442a adipocytes upon treatment with SDF7 as compared to the control. SDF7 was also found to be effective in stimulating adiponectin and PPAR-γ mRNA upregulation at 50 µg/ml. CONCLUSION SDF7 exhibited good lipogenesis, adiponectinesis and glucose uptake stimulatory properties on 3T3-F442a adipocytes.
Collapse
Affiliation(s)
- Joo Ee Beh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng J, Liu W, Duffney LJ, Yan Z. SNARE proteins are essential in the potentiation of NMDA receptors by group II metabotropic glutamate receptors. J Physiol 2013; 591:3935-47. [PMID: 23774277 DOI: 10.1113/jphysiol.2013.255075] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The group II metabotropic glutamate receptors (group II mGluRs) have emerged as the new drug targets for the treatment of mental disorders like schizophrenia. To understand the potential mechanisms underlying the antipsychotic effects of group II mGluRs, we examined their impact on NMDA receptors (NMDARs), since NMDAR hypofunction has been implicated in schizophrenia. The activation of group II mGluRs caused a significant enhancement of NMDAR currents in cortical pyramidal neurons, which was associated with increased NMDAR surface expression and synaptic localization. We further examined whether these effects of group II mGluRs are through the regulation of NMDAR exocytosis via SNARE proteins, a family of proteins involved in vesicle fusion. We found that the enhancing effect of APDC, a selective agonist of group II mGluRs, on NMDAR currents was abolished when botulinum toxin was delivered into the recorded neurons to disrupt the SNARE complex. Inhibiting the function of two key SNARE proteins, SNAP-25 and syntaxin 4, also eliminated the effect of APDC on NMDAR currents. Moreover, the application of APDC increased the activity of Rab4, a small Rab GTPase mediating fast recycling from early endosomes to the plasma membrane, and enhanced the interaction between syntaxin 4 and Rab4. Knockdown of Rab4 or expression of dominant-negative Rab4 attenuated the effect of APDC on NMDAR currents. Taken together, these results have identified key molecules involved in the group II mGluR-induced potentiation of NMDAR exocytosis and function.
Collapse
Affiliation(s)
- Jia Cheng
- Department of Physiology and Biophysics, State University of New York at Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
49
|
D'Amico E, Gayral S, Massart C, Van Sande J, Reiter JF, Dumont JE, Robaye B, Schurmans S. Thyroid-specific inactivation of KIF3A alters the TSH signaling pathway and leads to hypothyroidism. J Mol Endocrinol 2013; 50:375-87. [PMID: 23511952 PMCID: PMC4404413 DOI: 10.1530/jme-12-0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Kinesins, including the kinesin 2/KIF3 molecular motor, play an important role in intracellular traffic and can deliver vesicles to distal axon terminals, to cilia, to nonpolarized cell surfaces or to epithelial cell basolateral membranes, thus taking part in the establishment of cellular polarity. We report here the consequences of kinesin 2 motor inactivation in the thyroid of 3-week-old Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice. Our results indicate first that 3-week-old Pax8(Cre/)(+) mice used in these experiments present minor thyroid functional defects resulting in a slight increase in circulating bioactive TSH and intracellular cAMP levels, sufficient to maintain blood thyroxine levels in the normal range. Second, Kif3a inactivation in thyrocytes markedly amplified the phenotype observed in Pax8(Cre/)(+) mice, resulting in altered TSH signaling upstream of the second messenger cAMP and mild hypothyroidism. Finally, our results in mouse embryonic fibroblasts indicate that Kif3a inactivation in the absence of any Pax8 gene alteration leads to altered G protein-coupled receptor plasma membrane expression, as shown for the β2 adrenergic receptor, and we suggest that a similar mechanism may explain the altered TSH signaling and mild hypothyroidism detected in Kif3a(Δ)(/flox) Pax8(Cre/)(+) mutant mice.
Collapse
Affiliation(s)
- Eva D'Amico
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Stéphanie Gayral
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Claude Massart
- IRIBHM, ULB, Campus Erasme, route de Lennik 808, 1070-Brussels, Belgium
| | | | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Smith Cardiovascular Research Building, Mission Bay Blvd South 555, University of California, San Francisco, San Francisco, CA 94158-9001, USA
| | - Jacques E. Dumont
- IRIBHM, ULB, Campus Erasme, route de Lennik 808, 1070-Brussels, Belgium
| | - Bernard Robaye
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
| | - Stéphane Schurmans
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), rue des Professeurs Jeener et Brachet 12, 6041-Gosselies, Belgium
- Laboratoire de Génétique Fonctionnelle, GIGA-Research Centre, Université de Liège (ULg), rue de 1'Hôpital 1, 4000-Liège, Belgium
- Welbio, ULg
- Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles, ULg, Boulevard de Colonster 20, 4000-Liège, Belgium
| |
Collapse
|
50
|
Gan Z, Ram S, Ober RJ, Ward ES. Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 2013; 126:1176-88. [PMID: 23345403 DOI: 10.1242/jcs.116327] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel 'looping' process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway.
Collapse
Affiliation(s)
- Zhuo Gan
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|