1
|
Partsch V, Crudo F, Piller D, Varga E, Del Favero G, Marko D. Resolving complexity: Identification of altersetin and toxin mixtures responsible for the immunomodulatory, antiestrogenic and genotoxic potential of a complex Alternaria mycotoxin extract. Food Chem Toxicol 2025; 198:115315. [PMID: 39933689 DOI: 10.1016/j.fct.2025.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
Alternaria mycotoxins may pose significant risks to human health due to their diverse spectrum of adverse effects and frequent occurrences in food. A previous study demonstrated the immunosuppressive, antiestrogenic, and genotoxic potential of a complex Alternaria mycotoxin extract (CE). The present study aimed to elucidate specific Alternaria mycotoxins or combinations thereof responsible for toxicity. Following toxicity-guided fractionation of the CE, a multiparametric panel of assays was applied to assess different endpoints. These included immunomodulatory effects (NF-κB reporter gene assay in THP1-Lucia™ monocytes), estrogenicity/antiestrogenicity (alkaline phosphatase assay in Ishikawa cells) and genotoxicity (γH2AX and alkaline comet assays in HepG2 cells). LC-MS/MS analysis revealed prominent mycotoxins in the active fractions, with altersetin (AST) identified as a novel key compound exhibiting immunoinhibitory (≥2 μM) and antiestrogenic (≥5 μM) properties in vitro. Additionally, while specific mycotoxin combinations explained the toxicity of active fractions, some effects remained unexplained, suggesting the presence of unidentified bioactive substances. This study underscores the significance of AST and specific toxin mixtures as major contributors to CE toxicity. Further, it highlights the importance of considering combinatory effects in risk assessment of Alternaria mycotoxins as well as further investigation of unknown Alternaria metabolites, which may pose additional health risks.
Collapse
Affiliation(s)
- Vanessa Partsch
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria; University of Vienna, Faculty of Chemistry, Doctoral School in Chemistry, 1090, Vienna, Austria
| | - Francesco Crudo
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria.
| | - Daniel Piller
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria
| | - Elisabeth Varga
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria; University of Veterinary Medicine Vienna, Clinical Department for Farm Animals and Food System Science, Centre for Food Science and Veterinary Public Health, Unit Food Hygiene and Technology, 1210, Vienna, Austria
| | - Giorgia Del Favero
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria; University of Vienna, Faculty of Chemistry, Core Facility Multimodal Imaging, 1090, Vienna, Austria
| | - Doris Marko
- University of Vienna, Faculty of Chemistry, Department of Food Chemistry and Toxicology, 1090, Vienna, Austria
| |
Collapse
|
2
|
He R, Yang J, Yuan S, Chen L, Ren H, Wu B. A genetically encoded fluorescent whole-cell biosensor for real-time detecting estrogenic activities in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136903. [PMID: 39694001 DOI: 10.1016/j.jhazmat.2024.136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Real-time monitoring of estrogenic activity in the aquatic environment is a challenging task. Current biosensors face difficulties due to their limited response speed and environmental tolerance, especially for detecting wastewater, the major source of estrogenic compounds in aquatic environments. To address these difficulties, this study developed a single fluorescent protein (FP) -based whole-cell bacterial biosensor named ER-Light, which was achieved by inserting the sensing domain of the estrogen receptor (ER) into the FP Citrine and expressing it in the periplasm of Escherichia coli. As designed, ER-Light enables the detection of net estrogenic activity in mixtures, represented by estradiol equivalent concentration (EEQ). ER-Light detects EEQ in 40 s with a detection limit of 4.55 × 10-7 μM and a maximum working range of 1.1 × 10-4 μM, demonstrating sufficient response speed, sensitivity, and working range. In addition, the ER-Light can survive and tolerate wastewater effluent. Satisfactory recoveries (91.0 % to 102.1 %) eliminated concerns about the matrix effect of wastewater. EEQs (Not detected-2.9 ×10-5 µM) measured by ER-Light from the effluent of 9 wastewater treatment plants validate its practicality in detecting wastewater. This is the first attempt to integrate ER into FP-based biosensors for environment monitoring. Our findings provide valuable design rules for real-time detection of bioactivity effects in the environment, contributing to the safeguarding of ecological and human health.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Junyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Wuputra K, Hsu WH, Ku CC, Yang YH, Kuo KK, Yu FJ, Yu HS, Nagata K, Wu DC, Kuo CH, Yokoyama KK. The AHR-NRF2-JDP2 gene battery: Ligand-induced AHR transcriptional activation. Biochem Pharmacol 2025; 233:116761. [PMID: 39855429 DOI: 10.1016/j.bcp.2025.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Aryl hydrocarbon receptor (AHR) and nuclear factor-erythroid 2-related factor 2 (NRF2) can regulate a series of genes encoding the detoxifying phase I and II enzymes, via a signaling crosstalk known as the "AHR-NRF2 gene battery". The chromatin transcriptional regulator Jun dimerization protein 2 (JDP2) plays a central role in thetranscription of AHR gene in response to the phase I enzyme ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin. It forms a transcriptional complex with AHR-AHR nuclear translocator (ARNT) and NRF2-small musculoaponeurotic fibrosarcoma proteins (sMAF), which are then recruited to the respective cis-elements, such as dioxin response elements and antioxidant response elements, respectively, in the AHR promoter. Here, we present a revised description of the AHR-NRF2 gene battery as the AHR-NRF2-JDP2 gene battery for transactivating the AHR promoter by phase I enzyme ligands. The chromatin regulator JDP2 was found to be involved in the movement of AHR-NRF2 complexes from the dioxin response element to the antioxidant response element in the AHR promoter, during its activation in a spatiotemporal manner. This new epigenetic and chromatin remodeling role of AHR-NRF2-JDP2 axis is useful for identifying new therapeutic targets for various diseases, including immunological response, detoxification, development, and cancer-related diseases.
Collapse
Affiliation(s)
- Kenly Wuputra
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chia-Chen Ku
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ya-Han Yang
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Kung-Kai Kuo
- Division of General Surgery, E-DA Dachang Hospital, Kaohsiung 80706, Taiwan.
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan.
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kyosuke Nagata
- Professor, Insitutte of Medicine, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Gangshan Hospital, Kaohsiung 820, Taiwan; Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Superintendant in Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan.
| | - Kazunari K Yokoyama
- Cell Therapy Research Center, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Wang XM, Qin CM, Li D, Xu XR, Pan XJ, Xue H. Comprehensive three-dimensional microCT and signaling analysis reveal the teratogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on craniofacial bone development in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117743. [PMID: 39823675 DOI: 10.1016/j.ecoenv.2025.117743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in osteogenic defect during palatogenesis, but the effects on other craniofacial bones and underlying mechanisms remain to be characterized. By treating pregnant mice with TCDD (40 μg/kg) at the vital craniofacial patterning stages (embryonic day 8.5, 10.5 and 12.5), and scanning and reconstructing the skulls at embryonic day 18.5 using microCT, we found that TCDD exposure at the earlier and later patterning stages induced variable craniofacial malformations, including premature fusion of metopic and coronal sutures, truncated palatal processes of maxillary and palatine bones, as well as opening oriented pterygoid processes. Further in vitro determination of the underlying mechanisms using human fetal palatal mesenchymal cells (hFPMCs) revealed that TCDD suppressed a wide variety of osteogenic genes responsible for osteoblast commitment and bone matrix synthesis and mineralization, through activating aryl hydrocarbon receptor (AhR) signaling and subsequently inhibiting estrogen signaling. The attenuation of AhR signaling significantly blocked the osteogenic toxicity, and partly restored the expressing level of estrogen receptor α (ERα). Additional treatment with ERα agonist (PPT) significantly relieved the activation of AhR and rescued the impairment of osteogenesis caused by TCDD. Together, our findings demonstrated that TCDD was teratogenic in numerous cranial neural crest cell-derived craniofacial bone development, and disrupted multiple genes for osteogenic differentiation via the TCDD-mediated AhR/ ERα signaling cross-talk.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Cai-Ming Qin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi 'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Dou Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Xin-Ran Xu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Xiao-Jing Pan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing (NO: 20JR10RA653 - ZDKF20210401), School of Stomatology, Lanzhou University, Lanzhou, Gansu Province 730000, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi 'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Hui Xue
- Department of Stomatology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, No. 242, Guangji Road, Suzhou, Jiangsu Province 215000, China.
| |
Collapse
|
5
|
Guan A, Dai Z, Jiang C, Sun J, Yang B, Xie B, Chen Q. PGRMC1 promotes NSCLC stemness phenotypes by disrupting TRIM56-mediated ubiquitination of AHR. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167440. [PMID: 39059592 DOI: 10.1016/j.bbadis.2024.167440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) are responsible for tumor chemoresistance, and the aryl hydrocarbon receptor (AHR) is indispensable for maintaining CSC characteristics. Here, we aimed to investigate how the interaction between progesterone receptor membrane component 1 (PGRMC1) and AHR contributes to the maintenance of CSC phenotypes in non-small cell lung cancer (NSCLC). Clinical data and tissue microarray analyses indicated that patients with elevated PGRMC1 expression had poorer prognoses. Moreover, PGRMC1 overexpression enhanced CSC phenotypes and chemotherapy resistance in vitro and in vivo by modulating AHR ubiquitination. We then determined the specific interaction sites between PGRMC1 and AHR. Mass spectrometry screening identified tripartite motif containing 56 (TRIM56) as the E3 ligase targeting AHR. Notably, PGRMC1 overexpression inhibited the interaction between TRIM56 and AHR. Overall, our study revealed a regulatory mechanism that involves PGRMC1, AHR, and TRIM56, providing insights for developing CSC-targeting strategies in NSCLC treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Membrane Proteins/metabolism
- Membrane Proteins/genetics
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phenotype
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Progesterone/metabolism
- Tripartite Motif Proteins/metabolism
- Tripartite Motif Proteins/genetics
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitination
Collapse
Affiliation(s)
- Anqi Guan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chen Jiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jingyi Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Baishuang Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Xie
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
6
|
Szaefer H, Licznerska B, Baer-Dubowska W. The Aryl Hydrocarbon Receptor and Its Crosstalk: A Chemopreventive Target of Naturally Occurring and Modified Phytochemicals. Molecules 2024; 29:4283. [PMID: 39339278 PMCID: PMC11433792 DOI: 10.3390/molecules29184283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an environmentally sensitive transcription factor (TF) historically associated with carcinogenesis initiation via the activation of numerous carcinogens. Nowadays, the AhR has been attributed to multiple endogenous functions to maintain cellular homeostasis. Moreover, crosstalk, often reciprocal, has been found between the AhR and several other TFs, particularly estrogen receptors (ERs) and nuclear factor erythroid 2-related factor-2 (Nrf2). Adequate modulation of these signaling pathways seems to be an attractive strategy for cancer chemoprevention. Several naturally occurring and synthetically modified AhR or ER ligands and Nrf2 modulators have been described. Sulfur-containing derivatives of glucosinolates, such as indole-3-carbinol (I3C), and stilbene derivatives are particularly interesting in this context. I3C and its condensation product, 3,3'-diindolylmethane (DIM), are classic examples of blocking agents that increase drug-metabolizing enzyme activity through activation of the AhR. Still, they also affect multiple essential signaling pathways in preventing hormone-dependent cancer. Resveratrol is a competitive antagonist of several classic AhR ligands. Its analogs, with ortho-methoxy substituents, exert stronger antiproliferative and proapoptotic activity. In addition, they modulate AhR activity and estrogen metabolism. Their activity seems related to a number of methoxy groups introduced into the stilbene structure. This review summarizes the data on the chemopreventive potential of these classes of phytochemicals, in the context of AhR and its crosstalk modulation.
Collapse
Affiliation(s)
- Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznań, Poland; (B.L.); (W.B.-D.)
| | | | | |
Collapse
|
7
|
Debler RA, Gallegos PL, Ojeda AC, Perttula AM, Lucio A, Chapkin RS, Safe S, Eitan S. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces depression-like phenotype. Neurotoxicology 2024; 103:71-77. [PMID: 38838945 PMCID: PMC11288769 DOI: 10.1016/j.neuro.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The etiology of major depressive disorder (MDD) remains poorly understood. Our previous studies suggest a role for the aryl hydrocarbon receptor (AhR) in depression. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant, with a high AhR binding affinity, and an established benchmark for assessing AhR activity. Therefore, this study examined the effect of TCDD on depression-like behaviors. Female mice were fed standard chow or a high-fat diet (HFD) for 11 weeks, and their weight was recorded. Subsequently, they were tested for baseline sucrose preference and splash test grooming. Then, TCDD (0.1 µg/kg/day) or vehicle was administered orally for 28 days, and mice were examined for their sucrose preference and performances in the splash test, forced swim test (FST), and Morris water maze (MWM) task. TCDD significantly decreased sucrose preference, increased FST immobility time, and decreased groom time in chow-fed mice. HFD itself significantly reduced sucrose preference. However, TCDD significantly increased FST immobility time and decreased groom time in HFD-fed mice. A small decrease in bodyweight was observed only at the fourth week of daily TCDD administration in chow-fed mice, and no significant effects of TCDD on bodyweights were observed in HFD-fed mice. TCDD did not have a significant effect on spatial learning in the MWM. Thus, this study demonstrated that TCDD induces a depression-like state, and the effects were not due to gross lethal toxicity. This study further suggests that more studies should examine a possible role for AhR and AhR-active environmental pollutants in precipitating or worsening MDD.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Paula L Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Alexandra C Ojeda
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Andrea M Perttula
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Ashley Lucio
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
8
|
Kim K. The Role of Endocrine Disruption Chemical-Regulated Aryl Hydrocarbon Receptor Activity in the Pathogenesis of Pancreatic Diseases and Cancer. Int J Mol Sci 2024; 25:3818. [PMID: 38612627 PMCID: PMC11012155 DOI: 10.3390/ijms25073818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) serves as a ligand-activated transcription factor crucial for regulating fundamental cellular and molecular processes, such as xenobiotic metabolism, immune responses, and cancer development. Notably, a spectrum of endocrine-disrupting chemicals (EDCs) act as agonists or antagonists of AHR, leading to the dysregulation of pivotal cellular and molecular processes and endocrine system disruption. Accumulating evidence suggests a correlation between EDC exposure and the onset of diverse pancreatic diseases, including diabetes, pancreatitis, and pancreatic cancer. Despite this association, the mechanistic role of AHR as a linchpin molecule in EDC exposure-related pathogenesis of pancreatic diseases and cancer remains unexplored. This review comprehensively examines the involvement of AHR in EDC exposure-mediated regulation of pancreatic pathogenesis, emphasizing AHR as a potential therapeutic target for the pathogenesis of pancreatic diseases and cancer.
Collapse
Affiliation(s)
- Kyounghyun Kim
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas Medical Sciences, Little Rock, AR 72225, USA
| |
Collapse
|
9
|
Sanchez Y, Vasquez Callejas MA, Miret NV, Rolandelli G, Costas C, Randi AS, Español A. Hexachlorobenzene as a differential modulator of the conventional and metronomic chemotherapy response in triple negative breast cancer cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:278-295. [PMID: 38745771 PMCID: PMC11090688 DOI: 10.37349/etat.2024.00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/27/2023] [Indexed: 05/16/2024] Open
Abstract
Aim Triple negative breast cancer (TNBC) is usually treated with high doses of paclitaxel, whose effectiveness may be modulated by the action of environmental contaminants such as hexachlorobenzene. High doses of paclitaxel cause adverse effects such as low cellular selectivity and the generation of resistance to treatment due to an increase in the expression of multidrug resistance proteins (MRPs). These effects can be reduced using a metronomic administration scheme with low doses. This study aimed to investigate whether hexachlorobenzene modulates the response of cells to conventional chemotherapy with paclitaxel or metronomic chemotherapy with paclitaxel plus carbachol, as well as to study the participation of the MRP ATP-binding cassette transporter G2 (ABCG2) in human TNBC MDA-MB231 cells. Methods Cells were treated with hexachlorobenzene alone or in combination with conventional or metronomic chemotherapies. The effects of treatments on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the nuclear factor kappa B pathway participation was evaluated using a selective inhibitor. ABCG2 expression and its modulation were determined by western blot. Results Results confirmed that paclitaxel reduces MDA-MB231 cell viability in a concentration-dependent manner. Results also showed that both conventional and metronomic chemotherapies reduced cell viability with similar efficacy. Although hexachlorobenzene did not modify cell viability per se, it did reverse the effect induced by the conventional chemotherapy, without affecting the efficacy of the metronomic chemotherapy. Additionally, a differential modulation of ABCG2 expression was determined, mediated by the nuclear factor kappa B pathway, which was directly related to the modulation of cell sensitivity to another cycle of paclitaxel treatment. Conclusions The findings indicate that, in human TNBC MDA-MB231 cells, in the presence of hexachlorobenzene, the metronomic combination of paclitaxel plus carbachol is more effective in affecting the tumor biology than the conventional therapeutic administration scheme of paclitaxel.
Collapse
Affiliation(s)
- Yamila Sanchez
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Mariana Abigail Vasquez Callejas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Noelia Victoria Miret
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Gabino Rolandelli
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Catalina Costas
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Andrea Silvana Randi
- Laboratory of Biological Effects of Environmental Pollutants, Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Alejandro Español
- Center of Pharmacological and Botanical Studies (CEFYBO)-National Council for Science and Technology (CONICET)-University of Buenos Aires, Buenos Aires C1121ABG, Argentina
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
10
|
Stanic B, Sukur N, Milošević N, Markovic Filipovic J, Pogrmic-Majkic K, Andric N. Differential eigengene network analysis reveals benzo[a]pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin consensus regulatory network in human liver cell line HepG2. Toxicology 2024; 502:153737. [PMID: 38311099 DOI: 10.1016/j.tox.2024.153737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024]
Abstract
Aryl hydrocarbon receptor (AHR) is one of the main mediators of the toxic effects of benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, a vast number of BaP- and TCDD-affected genes may suggest a more complex transcriptional regulatory network driving common adverse effects of these two chemicals. Unlike TCDD, BaP is rapidly metabolized in the liver, yielding products with a questionable ability to bind and activate AHR. In this study, we used transcriptomics data from the BaP- and TCCD-exposed human liver cell line HepG2, and performed differential eigengene network analysis to understand the correlation among genes and to untangle the common regulatory mechanism in the action of BaP and TCDD. The genes were grouped into 11 meta-modules with an overall preservation of 0.72 and were also segregated into three consensus time clusters: 12, 24, and 48 h. The analysis showed that the consensus genes in each time cluster were either directly regulated by the AHR or the AHR-TF interactions. Some TFs form a direct physical interaction with AHR such as ESR1, FOXA1, and E2F1, whereas others, including CTCF, RXRA, FOXO1, CEBPA, CEBPB, and TP53 show an indirect interaction with AHR. The analysis of biological processes (BPs) identified unique and common BPs in BaP and TCDD samples, with DNA damage response detected in all three time points. In summary, we identified a consensus transcriptional regulatory network common for BaP and TCDD consisting of direct AHR targets and AHR-TF targets. This analysis sheds new light on the common mechanism of action of a genotoxic (BaP) and non-genotoxic (TCDD) chemical in liver cells.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Nataša Sukur
- Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Nemanja Milošević
- Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21000 Novi Sad, Serbia
| | - Jelena Markovic Filipovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Kristina Pogrmic-Majkic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia.
| |
Collapse
|
11
|
Piwarski SA, Salisbury TB. The effects of environmental aryl hydrocarbon receptor ligands on signaling and cell metabolism in cancer. Biochem Pharmacol 2023; 216:115771. [PMID: 37652105 DOI: 10.1016/j.bcp.2023.115771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Dioxin and dioxin-like compounds are chlorinated organic pollutants formed during the manufacturing of other chemicals. Dioxins are ligands of the aryl hydrocarbon receptor (AHR), that induce AHR-mediated biochemical and toxic responses and are persistent in the environment. 2,3,7,8- tetrachlorodibenzo para dioxin (TCDD) is the prototypical AHR ligand and its effects represent dioxins. TCDD induces toxicity, immunosuppression and is a suspected tumor promoter. The role of TCDD in cancer however is debated and context-dependent. Environmental particulate matter, polycyclic aromatic hydrocarbons, perfluorooctane sulfonamide, endogenous AHR ligands, and cAMP signaling activate AHR through TCDD-independent pathways. The effect of activated AHR in cancer is context-dependent. The ability of FDA-approved drugs to modulate AHR activity has sparked interest in their repurposing for cancer therapy. TCDD by interfering with endogenous pathways, and overstimulating other endogenous pathways influences all stages of cancer. Herein we review signaling mechanisms that activate AHR and mechanisms by which activated AHR modulates signaling in cancer including affected metabolic pathways.
Collapse
Affiliation(s)
- Sean A Piwarski
- Duke Cancer Institute, Department of GU Oncology, Duke University Medical Center, 905 South Lasalle Street, Durham, NC 27710, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
12
|
Opitz CA, Holfelder P, Prentzell MT, Trump S. The complex biology of aryl hydrocarbon receptor activation in cancer and beyond. Biochem Pharmacol 2023; 216:115798. [PMID: 37696456 PMCID: PMC10570930 DOI: 10.1016/j.bcp.2023.115798] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The aryl hydrocarbon receptor (AHR) signaling pathway is a complex regulatory network that plays a critical role in various biological processes, including cellular metabolism, development, and immune responses. The complexity of AHR signaling arises from multiple factors, including the diverse ligands that activate the receptor, the expression level of AHR itself, and its interaction with the AHR nuclear translocator (ARNT). Additionally, the AHR crosstalks with the AHR repressor (AHRR) or other transcription factors and signaling pathways and it can also mediate non-genomic effects. Finally, posttranslational modifications of the AHR and its interaction partners, epigenetic regulation of AHR and its target genes, as well as AHR-mediated induction of enzymes that degrade AHR-activating ligands may contribute to the context-specificity of AHR activation. Understanding the complexity of AHR signaling is crucial for deciphering its physiological and pathological roles and developing therapeutic strategies targeting this pathway. Ongoing research continues to unravel the intricacies of AHR signaling, shedding light on the regulatory mechanisms controlling its diverse functions.
Collapse
Affiliation(s)
- Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Neurology Clinic and National Center for Tumor Diseases, 69120 Heidelberg, Germany.
| | - Pauline Holfelder
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Mirja Tamara Prentzell
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, 69120 Heidelberg, Germany; Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Berlin Institute of Health at Charité and the German Cancer Consortium (DKTK), Partner Site Berlin, a partnership between DKFZ and Charité -Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
13
|
Hitzman R, Malca-Garcia GR, Howell C, Park HY, Friesen JB, Dong H, Dunlap T, McAlpine JB, Vollmer G, Bosland MC, Nikolić D, Lankin DC, Chen SN, Bolton JL, Pauli GF, Dietz BM. DESIGNER fraction concept unmasks minor bioactive constituents in red clover (Trifolium pratense L.). PHYTOCHEMISTRY 2023; 214:113789. [PMID: 37482264 PMCID: PMC10528883 DOI: 10.1016/j.phytochem.2023.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
In botanical extracts, highly abundant constituents can mask or dilute the effects of other, and often, more relevant biologically active compounds. To facilitate the rational chemical and biological assessment of these natural products with wide usage in human health, we introduced the DESIGNER approach of Depleting and Enriching Selective Ingredients to Generate Normalized Extract Resources. The present study applied this concept to clinical Red Clover Extract (RCE) and combined phytochemical and biological methodology to help rationalize the utility of RCE supplements for symptom management in postmenopausal women. Previous work has demonstrated that RCE reduces estrogen detoxification pathways in breast cancer cells (MCF-7) and, thus, may serve to negatively affect estrogen metabolism-induced chemical carcinogenesis. Clinical RCE contains ca. 30% of biochanin A and formononetin, which potentially mask activities of less abundant compounds. These two isoflavonoids are aryl hydrocarbon receptor (AhR) agonists that activate P450 1A1, responsible for estrogen detoxification, and P450 1B1, producing genotoxic estrogen metabolites in female breast cells. Clinical RCE also contains the potent phytoestrogen, genistein, that downregulates P450 1A1, thereby reducing estrogen detoxification. To identify less abundant bioactive constituents, countercurrent separation (CCS) of a clinical RCE yielded selective lipophilic to hydrophilic metabolites in six enriched DESIGNER fractions (DFs 01-06). Unlike solid-phase chromatography, CCS prevented any potential loss of minor constituents or residual complexity (RC) and enabled the polarity-based enrichment of certain constituents. Systematic analysis of estrogen detoxification pathways (ERα-degradation, AhR activation, CYP1A1/CYP1B1 induction and activity) of the DFs uncovered masked bioactivity of minor/less abundant constituents including irilone. These data will allow the optimization of RCE with respect to estrogen detoxification properties. The DFs revealed distinct biological activities between less abundant bioactives. The present results can inspire future carefully designed extracts with phytochemical profiles that are optimized to increase in estrogen detoxification pathways and, thereby, promote resilience in women with high-risk for breast cancer. The DESIGNER approach helps to establish links between complex chemical makeup, botanical safety and possible efficacy parameters, yields candidate DFs for (pre)clinical studies, and reveals the contribution of minor phytoconstituents to the overall safety and bioactivity of botanicals, such as resilience promoting activities relevant to women's health.
Collapse
Affiliation(s)
- Ryan Hitzman
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Gonzalo R Malca-Garcia
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Caitlin Howell
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Hyun-Young Park
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - J Brent Friesen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 Division Street, River Forest, IL, 60305, USA
| | - Huali Dong
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Tareisha Dunlap
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - James B McAlpine
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guenter Vollmer
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA; Technische Universität Dresden, Faculty of Biology, Chair for Molecular Cell Physiology & Endocrinology, D-01062, Dresden, Germany
| | - Maarten C Bosland
- Department of Pathology, College of Medicine, University of Illinois Chicago, 840 S. Wood Street, Chicago, IL, 60612, USA
| | - Dejan Nikolić
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - David C Lankin
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Shao-Nong Chen
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Judy L Bolton
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Guido F Pauli
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| | - Birgit M Dietz
- UIC Center for Botanical Dietary Supplements Research and Center for Natural Product Technologies, Pharmacognosy Institute, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Reyes-Hernández OD, Figueroa-González G, Quintas-Granados LI, Gutiérrez-Ruíz SC, Hernández-Parra H, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chavez SA, Cortés H, Peña-Corona SI, Kiyekbayeva L, Ateşşahin DA, Goloshvili T, Leyva-Gómez G, Sharifi-Rad J. 3,3'-Diindolylmethane and indole-3-carbinol: potential therapeutic molecules for cancer chemoprevention and treatment via regulating cellular signaling pathways. Cancer Cell Int 2023; 23:180. [PMID: 37633886 PMCID: PMC10464192 DOI: 10.1186/s12935-023-03031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023] Open
Abstract
Dietary compounds in cancer prevention have gained significant consideration as a viable method. Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) are heterocyclic and bioactive chemicals found in cruciferous vegetables like broccoli, cauliflower, cabbage, and brussels sprouts. They are synthesized after glycolysis from the glucosinolate structure. Clinical and preclinical trials have evaluated the pharmacokinetic/pharmacodynamic, effectiveness, antioxidant, cancer-preventing (cervical dysplasia, prostate cancer, breast cancer), and anti-tumor activities of I3C and DIM involved with polyphenolic derivatives created in the digestion showing promising results. However, the exact mechanism by which they exert anti-cancer and apoptosis-inducing properties has yet to be entirely understood. Via this study, we update the existing knowledge of the state of anti-cancer investigation concerning I3C and DIM chemicals. We have also summarized; (i) the recent advancements in the use of I3C/DIM as therapeutic molecules since they represent potentially appealing anti-cancer agents, (ii) the available literature on the I3C and DIM characterization, and the challenges related to pharmacologic properties such as low solubility, and poor bioavailability, (iii) the synthesis and semi-synthetic derivatives, (iv) the mechanism of anti-tumor action in vitro/in vivo, (v) the action in cellular signaling pathways related to the regulation of apoptosis and anoikis as well as the cell cycle progression and cell proliferation such as peroxisome proliferator-activated receptor and PPARγ agonists; SR13668, Akt inhibitor, cyclins regulation, ER-dependent-independent pathways, and their current medical applications, to recognize research opportunities to potentially use these compounds instead chemotherapeutic synthetic drugs.
Collapse
Affiliation(s)
- Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Facultad de Estudios Superiores Zaragoza, UMIEZ, Universidad Nacional Autónoma de México, Ciudad de México, 09230, Mexico
| | | | | | - Hector Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María Luisa Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Ciudad de México, C. Puente 222, Ciudad de México, 14380, Mexico
| | - Sergio Alberto Bernal-Chavez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Lashyn Kiyekbayeva
- Pharmaceutical School, Department of Pharmaceutical Technology, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Public Health and Nursing, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Dilek Arslan Ateşşahin
- Baskil Vocational School, Department of Plant and Animal Production, Fırat University, Elazıg, 23100, Turkey
| | - Tamar Goloshvili
- Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi, 0162, Georgia
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | | |
Collapse
|
15
|
Treeck O, Haerteis S, Ortmann O. Non-Coding RNAs Modulating Estrogen Signaling and Response to Endocrine Therapy in Breast Cancer. Cancers (Basel) 2023; 15:cancers15061632. [PMID: 36980520 PMCID: PMC10046587 DOI: 10.3390/cancers15061632] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The largest part of human DNA is transcribed into RNA that does not code for proteins. These non-coding RNAs (ncRNAs) are key regulators of protein-coding gene expression and have been shown to play important roles in health, disease and therapy response. Today, endocrine therapy of ERα-positive breast cancer (BC) is a successful treatment approach, but resistance to this therapy is a major clinical problem. Therefore, a deeper understanding of resistance mechanisms is important to overcome this resistance. An increasing amount of evidence demonstrate that ncRNAs affect the response to endocrine therapy. Thus, ncRNAs are considered versatile biomarkers to predict or monitor therapy response. In this review article, we intend to give a summary and update on the effects of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) on estrogen signaling in BC cells, this pathway being the target of endocrine therapy, and their role in therapy resistance. For this purpose, we reviewed articles on these topics listed in the PubMed database. Finally, we provide an assessment regarding the clinical use of these ncRNA types, particularly their circulating forms, as predictive BC biomarkers and their potential role as therapy targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
Sondermann NC, Faßbender S, Hartung F, Hätälä AM, Rolfes KM, Vogel CFA, Haarmann-Stemmann T. Functions of the aryl hydrocarbon receptor (AHR) beyond the canonical AHR/ARNT signaling pathway. Biochem Pharmacol 2023; 208:115371. [PMID: 36528068 PMCID: PMC9884176 DOI: 10.1016/j.bcp.2022.115371] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor regulating adaptive and maladaptive responses toward exogenous and endogenous signals. Research from various biomedical disciplines has provided compelling evidence that the AHR is critically involved in the pathogenesis of a variety of diseases and disorders, including autoimmunity, inflammatory diseases, endocrine disruption, premature aging and cancer. Accordingly, AHR is considered an attractive target for the development of novel preventive and therapeutic measures. However, the ligand-based targeting of AHR is considerably complicated by the fact that the receptor does not always follow the beaten track, i.e. the canonical AHR/ARNT signaling pathway. Instead, AHR might team up with other transcription factors and signaling molecules to shape gene expression patterns and associated physiological or pathophysiological functions in a ligand-, cell- and micromilieu-dependent manner. Herein, we provide an overview about some of the most important non-canonical functions of AHR, including crosstalk with major signaling pathways involved in controlling cell fate and function, immune responses, adaptation to low oxygen levels and oxidative stress, ubiquitination and proteasomal degradation. Further research on these diverse and exciting yet often ambivalent facets of AHR biology is urgently needed in order to exploit the full potential of AHR modulation for disease prevention and treatment.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sonja Faßbender
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Frederick Hartung
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Anna M Hätälä
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Madison CA, Debler RA, Vardeleon NI, Hillbrick L, Jayaraman A, Safe S, Chapkin RS, Eitan S. Sex-dependent differences in the stress mitigating and antidepressant effects of selective aryl hydrocarbon receptor modulators. J Affect Disord 2022; 319:213-220. [PMID: 36206882 PMCID: PMC10391660 DOI: 10.1016/j.jad.2022.09.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Our recent study demonstrated that selective aryl hydrocarbon receptor modulators (SAhRMs), such as 1,4-dihydroxy-2-napthoic acid (DHNA) act as antidepressants in female mice. Given that some effects of certain SAhRMs are known to also be mediated via estrogen receptor signaling, this study examined whether the effects of SAhRMs on mood, emotional state, and cognition are sex-dependent. METHODS C57BL/6N mice were fed with vehicle or 20 mg/kg DHNA for three weeks prior to four weeks of unpredictable chronic mild stress (UCMS). Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash test, tape groom test), emotional state (open-field test, light/dark test, marble burying, novelty-induced hypophagia, elevated-plus maze), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS In females, UCMS decreased sucrose preference and increased FST immobility time; both effects were prevented by DHNA. In males, UCMS increased FST immobility time, and increased the latency to groom in the splash test. These effects were not mitigated by DHNA. However, in males, UCMS induced an increase in novelty-induced locomotion, an increase in the time spent in the light compartment in the L/D test, and an increase in the time spent with an object in a novel location. These effects were prevented by DHNA. CONCLUSIONS Our findings indicate that DHNA has high potential to act as antidepressants in females. However, given classical interpretation, DHNA did not appear to act as an antidepressant in males. Nonetheless, our findings indicate that DHNA can mitigate stress effects and reactivity in males.
Collapse
Affiliation(s)
- Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Nathan I Vardeleon
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
18
|
The Role of the Aryl Hydrocarbon Receptor (AhR) and Its Ligands in Breast Cancer. Cancers (Basel) 2022; 14:cancers14225574. [PMID: 36428667 PMCID: PMC9688153 DOI: 10.3390/cancers14225574] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a complex disease which is defined by numerous cellular and molecular markers that can be used to develop more targeted and successful therapies. The aryl hydrocarbon receptor (AhR) is overexpressed in many breast tumor sub-types, including estrogen receptor -positive (ER+) tumors; however, the prognostic value of the AhR for breast cancer patient survival is not consistent between studies. Moreover, the functional role of the AhR in various breast cancer cell lines is also variable and exhibits both tumor promoter- and tumor suppressor- like activity and the AhR is expressed in both ER-positive and ER-negative cells/tumors. There is strong evidence demonstrating inhibitory AhR-Rα crosstalk where various AhR ligands induce ER degradation. It has also been reported that different structural classes of AhR ligands, including halogenated aromatics, polynuclear aromatics, synthetic drugs and other pharmaceuticals, health promoting phytochemical-derived natural products and endogenous AhR-active compounds inhibit one or more of breast cancer cell proliferation, survival, migration/invasion, and metastasis. AhR-dependent mechanisms for the inhibition of breast cancer by AhR agonists are variable and include the downregulation of multiple genes/gene products such as CXCR4, MMPs, CXCL12, SOX4 and the modulation of microRNA levels. Some AhR ligands, such as aminoflavone, have been investigated in clinical trials for their anticancer activity against breast cancer. In contrast, several publications have reported that AhR agonists and antagonists enhance and inhibit mammary carcinogenesis, respectively, and differences between the anticancer activities of AhR agonists in breast cancer may be due in part to cell context and ligand structure. However, there are reports showing that the same AhR ligand in the same breast cancer cell line gives opposite results. These differences need to be resolved in order to further develop and take advantage of promising agents that inhibit mammary carcinogenesis by targeting the AhR.
Collapse
|
19
|
Tran VTH, Pham DV, Choi DY, Park PH. Mitophagy Induction and Aryl Hydrocarbon Receptor-Mediated Redox Signaling Contribute to the Suppression of Breast Cancer Cell Growth by Taloxifene via Regulation of Inflammasomes Activation. Antioxid Redox Signal 2022; 37:1030-1050. [PMID: 35286219 DOI: 10.1089/ars.2021.0192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Raloxifene, a selective estrogen receptor (ER) modulator, has been reported to exert the tumor-suppressive effects in both ER-positive and ER-negative cancer cells; however, the mechanisms underlying its ER-independent anti-cancer effects are poorly understood. The NLRP3 inflammasome, a critical component of the innate immune system, has recently received growing attention owing to its multifaceted roles in various aspects of cancer development. The present study aimed at examining the involvement of NLRP3 inflammasomes in the anti-breast cancer effects of raloxifene and its underlying mechanisms. Results: Raloxifene significantly inhibited the activation of NLRP3 inflammasomes in various breast cancer cell lines. Importantly, forced expression of a gain-of-function variant of NLRP3 rescued breast cancer cells from growth arrest by raloxifene, suggesting that the suppression of NLRP3 inflammasomes activation mediates the raloxifene-induced inhibition of breast cancer growth. Mechanistically, raloxifene suppressed NLRP3 inflammasomes activation by lowering the cellular levels of reactive oxygen species (ROS) through the modulation of redox signaling mediated via aryl hydrocarbon receptor (AhR)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) axis or the impaired generation of mitochondrial ROS in a mitophagy-dependent manner. Further, the blockage of AhR signaling or inhibition of mitophagy abolished the tumor-suppressive effect of raloxifene in a human breast tumor xenograft model. Innovation: We elucidate a novel molecular mechanism underlying the breast tumor suppressing effect of raloxifene. Conclusion: The results observed in this study suggest that the modulation of NLRP3 inflammasomes activation is a critical event in the inhibition of breast tumor growth by raloxifene. Antioxid. Redox Signal. 37, 1030-1050.
Collapse
Affiliation(s)
- Van Thi-Hong Tran
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
20
|
Alhamad DW, Bensreti H, Dorn J, Hill WD, Hamrick MW, McGee-Lawrence ME. Aryl hydrocarbon receptor (AhR)-mediated signaling as a critical regulator of skeletal cell biology. J Mol Endocrinol 2022; 69:R109-R124. [PMID: 35900841 PMCID: PMC9448512 DOI: 10.1530/jme-22-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been implicated in regulating skeletal progenitor cells and the activity of bone-forming osteoblasts and bone-resorbing osteoclasts, thereby impacting bone mass and the risk of skeletal fractures. The AhR also plays an important role in the immune system within the skeletal niche and in the differentiation of mesenchymal stem cells into other cell lineages including chondrocytes and adipocytes. This transcription factor responds to environmental pollutants which can act as AhR ligands, initiating or interfering with various signaling cascades to mediate downstream effects, and also responds to endogenous ligands including tryptophan metabolites. This review comprehensively describes the reported roles of the AhR in skeletal cell biology, focusing on mesenchymal stem cells, osteoblasts, and osteoclasts, and discusses how AhR exhibits sexually dimorphic effects in bone. The molecular mechanisms mediating AhR's downstream effects are highlighted to emphasize the potential importance of targeting this signaling cascade in skeletal disorders.
Collapse
Affiliation(s)
- Dima W. Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology, Medical University of South Carolina, Thurmond/Gazes Bldg-Room 506A, 30 Courtenay Drive, Charleston, SC 29403 Charleston, SC, USA
- Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| |
Collapse
|
21
|
Chen Z, Xia X, Chen H, Huang H, An X, Sun M, Yao Q, Kim K, Zhang H, Chu M, Chen R, Bhutia YD, Ganapathy V, Kou L. Carbidopa suppresses estrogen receptor-positive breast cancer via AhR-mediated proteasomal degradation of ERα. Invest New Drugs 2022; 40:1216-1230. [PMID: 36070108 DOI: 10.1007/s10637-022-01289-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Estrogen receptor-α (ERα) promotes breast cancer, and ER-positive cancer accounts for ~ 80% of breast cancers. This subtype responds positively to hormone/endocrine therapies involving either inhibition of estrogen synthesis or blockade of estrogen action. Carbidopa, a drug used to potentiate the therapeutic efficacy of L-DOPA in Parkinson's disease, is an agonist for aryl hydrocarbon receptor (AhR). Pharmacotherapy in Parkinson's disease decreases the risk for cancers, including breast cancer. The effects of carbidopa on ER-positive breast cancer were evaluated in cell culture and in mouse xenografts. The assays included cell proliferation, apoptosis, cell migration/invasion, subcellular localization of AhR, proteasomal degradation, and tumor growth in xenografts. Carbidopa decreased proliferation and migration of ER-positive human breast cancer cells in vitro with no significant effect on ER-negative breast cancer cells. Treatment of ER-positive cells with carbidopa promoted nuclear localization of AhR and expression of AhR target genes; it also decreased cellular levels of ERα via proteasomal degradation in an AhR-dependent manner. In vivo, carbidopa suppressed the growth of ER-positive breast cancer cells in mouse xenografts; this was associated with increased apoptosis and decreased cell proliferation. Carbidopa has therapeutic potential for ER-positive breast cancer either as a single agent or in combination with other standard chemotherapies.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Heyan Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Xingsi An
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Meng Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| |
Collapse
|
22
|
Schoeller A, Karki K, Jayaraman A, Chapkin RS, Safe S. Short chain fatty acids exhibit selective estrogen receptor downregulator (SERD) activity in breast cancer. Am J Cancer Res 2022; 12:3422-3436. [PMID: 35968335 PMCID: PMC9360213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/23/2021] [Indexed: 06/15/2023] Open
Abstract
Early stage estrogen receptor α (ERα, ESR1)-positive breast cancer patients can develop more aggressive endocrine-resistant tumors that express constitutively active mutant forms of ERα including ERα-Y537S and ERα-D538G. These patients are treated with selective ER down regulators (SERDs) such as the ERα antagonist fulvestrant. Previous studies show that histone deacetylase (HDAC) inhibitors downregulate ERα and since some dietary derived short chain fatty acids (butyrate, propionate and acetate) exhibit HDAC inhibitory activity we investigated their effects as SERDs in MCF-7 and T47D cells expressing wild-type and mutant ERα-D538G and ERα-Y537S. The SCFAs exhibited SERD-like activity in both cell lines expressing wild-type and mutant ERα. The results for propionate and butyrate correlated with parallel induction of histone acetylation and this was also observed for the HDAC inhibitors Panobinostat, Vorinostat and Entinostat which also downregulated wild-type and mutant ERα and induced histone acetylation. Although acetate induced ERα degradation the mechanisms may be independent of the HDAC inhibitory activity of this compound. These results suggest that high fibre diets that induce formation of SCFAs may have some clinical efficacy for treating ER-positive endocrine resistant breast cancer patients and this is currently being investigated.
Collapse
Affiliation(s)
- Abigail Schoeller
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX 77843, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M UniversityCollege Station, TX 77843, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M UniversityCollege Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX 77843, USA
| |
Collapse
|
23
|
Haque N, Tischkau SA. Sexual Dimorphism in Adipose-Hypothalamic Crosstalk and the Contribution of Aryl Hydrocarbon Receptor to Regulate Energy Homeostasis. Int J Mol Sci 2022; 23:ijms23147679. [PMID: 35887027 PMCID: PMC9322714 DOI: 10.3390/ijms23147679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
There are fundamental sex differences in the regulation of energy homeostasis. Better understanding of the underlying mechanisms of energy balance that account for this asymmetry will assist in developing sex-specific therapies for sexually dimorphic diseases such as obesity. Multiple organs, including the hypothalamus and adipose tissue, play vital roles in the regulation of energy homeostasis, which are regulated differently in males and females. Various neuronal populations, particularly within the hypothalamus, such as arcuate nucleus (ARC), can sense nutrient content of the body by the help of peripheral hormones such leptin, derived from adipocytes, to regulate energy homeostasis. This review summarizes how adipose tissue crosstalk with homeostatic network control systems in the brain, which includes energy regulatory regions and the hypothalamic–pituitary axis, contribute to energy regulation in a sex-specific manner. Moreover, development of obesity is contingent upon diet and environmental factors. Substances from diet and environmental contaminants can exert insidious effects on energy metabolism, acting peripherally through the aryl hydrocarbon receptor (AhR). Developmental AhR activation can impart permanent alterations of neuronal development that can manifest a number of sex-specific physiological changes, which sometimes become evident only in adulthood. AhR is currently being investigated as a potential target for treating obesity. The consensus is that impaired function of the receptor protects from obesity in mice. AhR also modulates sex steroid receptors, and hence, one of the objectives of this review is to explain why investigating sex differences while examining this receptor is crucial. Overall, this review summarizes sex differences in the regulation of energy homeostasis imparted by the adipose–hypothalamic axis and examines how this axis can be affected by xenobiotics that signal through AhR.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Correspondence:
| |
Collapse
|
24
|
Szychowski KA, Skóra B, Wójtowicz AK. Involvement of sirtuins (Sirt1 and Sirt3) and aryl hydrocarbon receptor (AhR) in the effects of triclosan (TCS) on production of neurosteroids in primary mouse cortical neurons cultures. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105131. [PMID: 35715069 DOI: 10.1016/j.pestbp.2022.105131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have shown the presence of triclosan (TCS) in the brain due to its widespread use as an antibacterial ingredient. One of the confirmed mechanisms of its action is the interaction with the aryl hydrocarbon receptor (AhR). In nerve cells, sirtuins (Sirt1 and Sirt3) act as cellular sensors detecting energy availability and modulate metabolic processes. Moreover, it has been found that Sirt1 inhibits the activation of estrogen receptors, regulates the androgen receptor, and may interact with the AhR receptor. It is also known that Sirt3 stimulates the production of estradiol (E2) via the estradiol receptor β (Erβ). Therefore, the aim of the present study was to evaluate the effect of TCS alone or in combination with synthetic flavonoids on the production of neurosteroids such as progesterone (P4), testosterone (T), and E2 in primary neural cortical neurons in vitro. The contribution of Sirt1 and Sirt3 as well as AhR to these TCS-induced effects was investigated as well. The results of the experiments showed that both short and long exposure of neurons to TCS increased the expression of the Sirt1 and Sirt3 proteins in response to AhR stimulation. After an initial increase in the production of all tested neurosteroids, TCS acting for a longer time lowered their levels in the cells. This suggests that TCS activating AhR as well as Sirt1 and Sirt3 in short time intervals stimulates the levels of P4, T, and E2 in neurons, and then the amount of neurosteroids decreases despite the activation of AhR and the increase in the expression of the Sirt1 and Sirt3 proteins. The use of both the AhR agonist and antagonist prevented changes in the expression of Sirt1, Sirt3, and AhR and the production of P4, T, and E2, which confirmed that this receptor is a key in the mechanism of the TCS action.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Anna K Wójtowicz
- Department of Nutrition, Animal Biotechnology and Fisheries, Faculty of Animal Sciences, University of Agriculture, Adama Mickiewicza 24/28, 30-059 Kraków, Poland
| |
Collapse
|
25
|
Current Therapeutic Landscape and Safety Roadmap for Targeting the Aryl Hydrocarbon Receptor in Inflammatory Gastrointestinal Indications. Cells 2022; 11:cells11101708. [PMID: 35626744 PMCID: PMC9139855 DOI: 10.3390/cells11101708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Target modulation of the AhR for inflammatory gastrointestinal (GI) conditions holds great promise but also the potential for safety liabilities both within and beyond the GI tract. The ubiquitous expression of the AhR across mammalian tissues coupled with its role in diverse signaling pathways makes development of a “clean” AhR therapeutically challenging. Ligand promiscuity and diversity in context-specific AhR activation further complicates targeting the AhR for drug development due to limitations surrounding clinical translatability. Despite these concerns, several approaches to target the AhR have been explored such as small molecules, microbials, PROTACs, and oligonucleotide-based approaches. These various chemical modalities are not without safety liabilities and require unique de-risking strategies to parse out toxicities. Collectively, these programs can benefit from in silico and in vitro methodologies that investigate specific AhR pathway activation and have the potential to implement thresholding parameters to categorize AhR ligands as “high” or “low” risk for sustained AhR activation. Exploration into transcriptomic signatures for AhR safety assessment, incorporation of physiologically-relevant in vitro model systems, and investigation into chronic activation of the AhR by structurally diverse ligands will help address gaps in our understanding regarding AhR-dependent toxicities. Here, we review the role of the AhR within the GI tract, novel therapeutic modality approaches to target the AhR, key AhR-dependent safety liabilities, and relevant strategies that can be implemented to address drug safety concerns. Together, this review discusses the emerging therapeutic landscape of modalities targeting the AhR for inflammatory GI indications and offers a safety roadmap for AhR drug development.
Collapse
|
26
|
Vogeley C, Rolfes KM, Krutmann J, Haarmann-Stemmann T. The Aryl Hydrocarbon Receptor in the Pathogenesis of Environmentally-Induced Squamous Cell Carcinomas of the Skin. Front Oncol 2022; 12:841721. [PMID: 35311158 PMCID: PMC8927079 DOI: 10.3389/fonc.2022.841721] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cutaneous squamous cell carcinoma (SCC) is one of the most frequent malignancies in humans and academia as well as public authorities expect a further increase of its incidence in the next years. The major risk factor for the development of SCC of the general population is the repeated and unprotected exposure to ultraviolet (UV) radiation. Another important risk factor, in particular with regards to occupational settings, is the chronic exposure to polycyclic aromatic hydrocarbons (PAH) which are formed during incomplete combustion of organic material and thus can be found in coal tar, creosote, bitumen and related working materials. Importantly, both exposomal factors unleash their carcinogenic potential, at least to some extent, by activating the aryl hydrocarbon receptor (AHR). The AHR is a ligand-dependent transcription factor and key regulator in xenobiotic metabolism and immunity. The AHR is expressed in all cutaneous cell-types investigated so far and maintains skin integrity. We and others have reported that in response to a chronic exposure to environmental stressors, in particular UV radiation and PAHs, an activation of AHR and downstream signaling pathways critically contributes to the development of SCC. Here, we summarize the current knowledge about AHR's role in skin carcinogenesis and focus on its impact on defense mechanisms, such as DNA repair, apoptosis and anti-tumor immune responses. In addition, we discuss the possible consequences of a simultaneous exposure to different AHR-stimulating environmental factors for the development of cutaneous SCC.
Collapse
Affiliation(s)
- Christian Vogeley
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Katharina M Rolfes
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
27
|
Giuffrida G, D’Argenio V, Ferraù F, Lasorsa VA, Polito F, Aliquò F, Ragonese M, Cotta OR, Alessi Y, Oteri R, Di Maggio F, Asmundo A, Romeo PD, Spagnolo F, Pastore L, Angileri FF, Capasso M, Cannavò S, Aguennouz M. Methylome Analysis in Nonfunctioning and GH-Secreting Pituitary Adenomas. Front Endocrinol (Lausanne) 2022; 13:841118. [PMID: 35432200 PMCID: PMC9007725 DOI: 10.3389/fendo.2022.841118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/19/2023] Open
Abstract
Pituitary adenomas (PAs), usually benign lesions, can sometimes present with "aggressive" features (rapid growth, local invasiveness, scarce response to conventional treatments). Despite the fact that a few genetic alterations have been associated to this clinical behavior, the role of epigenetic modifications, mainly methylation and miRNAs activity, is now opening new frontiers in this field. We evaluated the methylation profile of 21 PA (11 GH-omas, 10 nonfunctioning tumors-NFPAs) samples from TNS surgery and 5 normal pituitaries, collected at our neurosurgery between 2015 and 2017. DNA was extracted and sequenced, selecting 184,841 target regions. Moreover, methylation profiles were correlated with demographic, radiological, and clinicopathological features. NFPAs showed higher methylation levels vs. GH-omas, with 178 differentially methylated regions (DMRs) mainly consisting of noncoding and intronic sequences, and mostly localized in the open sea regions. We also found three hypermethylated genes (C7orf50, GNG7, and BAHCC1) involved in tumorigenesis processes and potentially influencing pituitary tumor pathophysiology. Among the clinicopathological features, only the maximum diameter resulted significantly higher in NFPAs. Our data provide further evidence of the complex epigenetic background of pituitary tumors. In line with the current literature, we confirmed a significant prevalence of hypermethylation in NFPAs vs. GH-omas, whose pathophysiological consequence is yet to be defined.
Collapse
Affiliation(s)
- Giuseppe Giuffrida
- Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | - Valeria D’Argenio
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
- CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Francesco Ferraù
- Department of Human Pathology DETEV, University of Messina, Messina, Italy
- Endocrine Unit, “Gaetano Martino” University Hospital, Messina, Italy
- *Correspondence: Francesco Ferraù,
| | - Vito Alessandro Lasorsa
- CEINGE-Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Francesca Polito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Aliquò
- Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | - Marta Ragonese
- Department of Human Pathology DETEV, University of Messina, Messina, Italy
| | | | - Ylenia Alessi
- Endocrine Unit, “Gaetano Martino” University Hospital, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Di Maggio
- CEINGE-Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences, and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | | | - Federica Spagnolo
- Endocrine Unit, “Gaetano Martino” University Hospital, Messina, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Filippo Flavio Angileri
- Department of Biomedical and Dental Sciences, and Morpho-Functional Imaging, University of Messina, Messina, Italy
| | - Mario Capasso
- CEINGE-Biotecnologie Avanzate, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Salvatore Cannavò
- Department of Human Pathology DETEV, University of Messina, Messina, Italy
- Endocrine Unit, “Gaetano Martino” University Hospital, Messina, Italy
| | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
28
|
El-Dairi R, Rysä J, Storvik M, Pasanen M, Huuskonen P. Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Curr Res Toxicol 2022; 3:100082. [PMID: 35814288 PMCID: PMC9263407 DOI: 10.1016/j.crtox.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gene expression profiles were studied in human primary trophoblast cells. 170 genes were significantly dysregulated in aflatoxin B1-exposed trophoblasts. AhR-mediated estrogen receptor signalling was dysregulated in response to AFB1. Transcripts involved in endocrine signalling and energy homeostasis were disrupted. Cellular growth and development, cell cycle and DNA repair processes were affected.
Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus flavus and A. parasiticus. A high exposure (40 nM and 1 µM AFB1 for 72 h) was used to study mechanistic effects of AFB1 on gene expression patterns in human primary trophoblast cells, isolated from full term placentae after delivery. Gene expression profiling was conducted, and Ingenuity pathway analysis (IPA) software was used to identify AFB1-regulated gene networks and regulatory pathways. In response to 40 nM AFB1, only 7 genes were differentially expressed whereas 1 µM AFB1 significantly dysregulated 170 genes (124 down- and 46 upregulated, ±1.5-fold, p < 0.05) in AFB1-exposed trophoblasts when compared to controls. The top downregulated genes were involved in endocrine signalling and biosynthesis of hormones, and lipid and carbohydrate metabolism. The top upregulated genes were involved in protein synthesis and regulation of cell cycle. The main canonical pathways identified by IPA were associated with endocrine signalling including growth hormone signalling, and corticotropin releasing hormone signalling. Furthermore, genes involved in aryl hydrocarbon receptor (AhR)-mediated estrogen receptor signalling were dysregulated in response to AFB1. Our findings indicate that a high concentration 72 h AFB1 exposure caused relatively moderate number of changes on transcript level to human placental primary trophoblast cells. However, these preliminary results need to be confirmed with human-relevant concentrations of AFB1.
Collapse
|
29
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
30
|
Lim TX, Ahamed M, Reutens DC. The aryl hydrocarbon receptor: A diagnostic and therapeutic target in glioma. Drug Discov Today 2021; 27:422-435. [PMID: 34624509 DOI: 10.1016/j.drudis.2021.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly disease; 5-year survival rates have shown little improvement over the past 30 years. In vivo positron emission tomography (PET) imaging is an important method of identifying potential diagnostic and therapeutic molecular targets non-invasively. The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates multiple genes involved in immune response modulation and tumorigenesis. The AhR is an attractive potential drug target and studies have shown that its activation by small molecules can modulate innate and adaptive immunity beneficially and prevent AhR-mediated tumour promotion in several cancer types. In this review, we provide an overview of the role of the AhR in glioma tumorigenesis and highlight its potential as an emerging biomarker for glioma therapies targeting the tumour immune response and PET diagnostics.
Collapse
Affiliation(s)
- Ting Xiang Lim
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - David C Reutens
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
31
|
Larigot L, Benoit L, Koual M, Tomkiewicz C, Barouki R, Coumoul X. Aryl Hydrocarbon Receptor and Its Diverse Ligands and Functions: An Exposome Receptor. Annu Rev Pharmacol Toxicol 2021; 62:383-404. [PMID: 34499523 DOI: 10.1146/annurev-pharmtox-052220-115707] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcriptional factor that regulates multiple functions following its activation by a variety of ligands, including xenobiotics, natural products, microbiome metabolites, and endogenous molecules. Because of this diversity, the AhR constitutes an exposome receptor. One of its main functions is to regulate several lines of defense against chemical insults and bacterial infections. Indeed, in addition to its well-established detoxication function, it has several functions at physiological barriers, and it plays a critical role in immunomodulation. The AhR is also involved in the development of several organs and their homeostatic maintenance. Its activity depends on the type of ligand and on the time frame of the receptor activation, which can be either sustained or transient, leading in some cases to opposite modes of regulations as illustrated in the regulation of different cancer pathways. The development of selective modulators and their pharmacological characterization are important areas of research. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Louise Benoit
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Meriem Koual
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France; .,Service de Chirurgie Cancérologique Gynécologique et du Sein, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 75015 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, and Université de Paris, 75006 Paris, France;
| |
Collapse
|
32
|
Tryggvadottir H, Sandén E, Björner S, Bressan A, Ygland Rödström M, Khazaei S, Edwards DP, Nodin B, Jirström K, Isaksson K, Borgquist S, Jernström H. The Prognostic Impact of Intratumoral Aryl Hydrocarbon Receptor in Primary Breast Cancer Depends on the Type of Endocrine Therapy: A Population-Based Cohort Study. Front Oncol 2021; 11:642768. [PMID: 34094928 PMCID: PMC8174786 DOI: 10.3389/fonc.2021.642768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a master regulator of multiple pathways involved in breast cancer, and influences the estrogen receptor alpha (ER) and aromatase/CYP19A1. The purpose of this study was to elucidate the interplay between intratumoral levels of AhR and aromatase, patient characteristics (including AhR and CYP19A1 genotypes), clinicopathological features, and prognosis in breast cancer patients receiving adjuvant treatments. A prospective cohort of 1116 patients with primary breast cancer in Sweden, included 2002-2012, was followed until June 30th 2019 (median 8.7 years). Tumor-specific AhR (n=920) and aromatase levels (n=816) were evaluated on tissue microarrays using immunohistochemistry. Associations between cytoplasmatic (AhRcyt) and nuclear (AhRnuc) AhR levels, intratumoral aromatase, clinicopathological features, and prognosis in different treatment groups were analyzed. Low AhRcyt levels (n=183) and positive intratumoral aromatase (n=69) were associated with estrogen receptor (ER)- status and more aggressive tumors. Genotypes were not associated with their respective protein levels. The functional AhR Arg554Lys GG genotype was associated with recurrence-free survival in switch-therapy (sequential tamoxifen/aromatase inhibitors (AI) or AI/tamoxifen) treated patients (HRadj 0.42; 95% CI 0.22-0.83). High AhRcyt levels were associated with longer recurrence-free survival during the first 10 years of follow-up among tamoxifen-only treated patients (HRadj 0.40; 95% CI 0.23-0.71) compared to low AhRcyt levels, whereas an almost inverse association was seen in patients with switch-therapy (P interaction=0.023). Intratumoral aromatase had little prognostic impact. These findings warrant confirmation in an independent cohort, preferably in a randomized clinical trial comparing different endocrine regimens. They might also guide the selection of breast cancer patients for clinical trials with selective AhR modulators.
Collapse
Affiliation(s)
- Helga Tryggvadottir
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Emma Sandén
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Sofie Björner
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Alessandra Bressan
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Maria Ygland Rödström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Somayeh Khazaei
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Dean P. Edwards
- Department of Molecular & Cellular Biology and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Björn Nodin
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Division of Oncology and Therapeutic Pathology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
- Department of Surgery, Kristianstad Hospital, Kristianstad, Sweden
| | - Signe Borgquist
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
34
|
Hitzman RT, Dunlap TL, Howell CE, Chen SN, Vollmer G, Pauli GF, Bolton JL, Dietz BM. 6-Prenylnaringenin from Hops Disrupts ERα-Mediated Downregulation of CYP1A1 to Facilitate Estrogen Detoxification. Chem Res Toxicol 2020; 33:2793-2803. [PMID: 32986415 DOI: 10.1021/acs.chemrestox.0c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Botanical dietary supplements (BDS) containing hops are sold as women's health supplements due to the potent hop phytoestrogen, 8-prenylnaringenin (8-PN), and the cytoprotective chalcone, xanthohumol. Previous studies have shown a standardized hop extract to beneficially influence chemical estrogen carcinogenesis in vitro by fostering detoxified 2-hydroxylation over genotoxic 4-hydroxylation estrogen metabolism. In this study, hop extract and its bioactive compounds were investigated for its mechanism of action within the chemical estrogen carcinogenesis pathway, which is mainly mediated through the 4-hydroxylation pathway catalyzed by CYP1B1 that can form gentoxic quinones. Aryl hydrocarbon receptor (AhR) agonists induce CYP1A1 and CYP1B1, while estrogen receptor alpha (ERα) inhibits transcription of CYP1A1, the enzyme responsible for 2-hydroxylated estrogens and the estrogen detoxification pathway. An In-Cell Western MCF-7 cell assay revealed hop extract and 6-prenylnaringenin (6-PN) degraded ERα via an AhR-dependent mechanism. Reverse transcription PCR and xenobiotic response element luciferase assays showed hop extract and 6-PN-mediated activation of AhR and induction of CYP1A1. A reduction in estrogen-mediated DNA (cytosine-5)-methyltransferase 1 (DNMT1) downregulation of CYP1A1 accompanied this activity in a chromatin immunoprecipitation assay. Ultimately, hop extract and 6-PN induced preferential metabolism of estrogens to their detoxified form in vitro. These results suggest that the standardized hop extract and 6-PN activate AhR to attenuate epigenetic inhibition of CYP1A1 through degradation of ERα, ultimately increasing 2-hydroxylated estrogens. A new mechanism of action rationalizes the positive influence of hop BDS and 6-PN on oxidative estrogen metabolism in vitro and, thus, potentially on chemical estrogen carcinogenesis. The findings underscore the importance of elucidating various biological mechanisms of action and standardizing BDS to multiple phytoconstituents for optimal resilience promoting properties.
Collapse
Affiliation(s)
- Ryan T Hitzman
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Tareisha L Dunlap
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Caitlin E Howell
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Shao-Nong Chen
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Günter Vollmer
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States.,Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Guido F Pauli
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Judy L Bolton
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| | - Birgit M Dietz
- UIC/NIH Center for Botanical Dietary Supplements Research, Program for Collaborative Research in the Pharmaceutical Sciences (PCRPS), and Department of Pharmaceutical Sciences (M/C 781), College of Pharmacy, University of Illinois at Chicago, 833 S. Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
35
|
Licznerska B, Szaefer H, Krajka-Kuźniak V. R-sulforaphane modulates the expression profile of AhR, ERα, Nrf2, NQO1, and GSTP in human breast cell lines. Mol Cell Biochem 2020; 476:525-533. [PMID: 33064289 PMCID: PMC7873118 DOI: 10.1007/s11010-020-03913-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Our previous study showed remarkable differences in the effect of R-sulforaphane (R-SFN) on the expression of CYPs 19, 1A1, 1A2, and 1B1 in ER(+) MCF7, ER( −) MDA-MB-231, and non-tumorigenic immortalized MCF10A (8). This study aimed to evaluate the effect of R-SFN on phase II enzymes induction and expression of AhR, Nrf2, and ERα in the same breast cell lines. The results showed increased expression of GSTP as a result of treatment with R-SFN in breast cancer cells. An increased NQO1 transcript and protein levels were found in all breast cells, with the most significant increase in MCF7 cells. Similarly, the enhancement of Nrf2 expression was noticed in all tested cells. AhR gene transcript and protein were decreased in MCF7 cells. In MDA-MB-231, increased AhR mRNA was not confirmed at the protein level. No differences were found in the expression of ERα. Overall, the results of the present study extended our earlier suggestions on the possible interference of R-SFN with estrogens homeostasis in breast cancer cells differing in ERα status, as well as in non-tumorigenic immortalized breast epithelial cells. While some of R-SFN effects might be beneficial and useful in breast cancer prevention, the others, particularly GSTP induction, may lead to adverse effects.
Collapse
Affiliation(s)
- Barbara Licznerska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland.
| | - Hanna Szaefer
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| | - Violetta Krajka-Kuźniak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
36
|
Aryl Hydrocarbon Receptor Connects Inflammation to Breast Cancer. Int J Mol Sci 2020; 21:ijms21155264. [PMID: 32722276 PMCID: PMC7432832 DOI: 10.3390/ijms21155264] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Aryl hydrocarbon receptor (AhR), an evolutionary conserved transcription factor, is a pleiotropic signal transductor. Thanks to its promiscuous ligand binding domain, during the evolution of eukaryotic cells its developmental functions were integrated with biosensor functions. Its activation by a multitude of endogenous and exogenous molecules stimulates its participation in several pathways, some of which are linked to inflammation and breast cancer (BC). Over time, the study of this malignancy has led to the identification of several therapeutic targets in cancer cells. An intense area of study is dedicated to BC phenotypes lacking adequate targets. In this context, due to its high constitutive activation in BC, AhR is currently gaining more and more attention. In this review, I have considered its interactions with: 1. the immune system, whose dysregulation is a renowned cancer hallmark; 2. interleukin 6 (IL6) which is a pivotal inflammatory marker and is closely correlated to breast cancer risk; 3. NF-kB, another evolutionary conserved transcription factor, which plays a key role in immunoregulatory functions, inflammatory response and breast carcinogenesis; 4. kynurenine, a tryptophan-derived ligand that activates and bridges AhR to chronic inflammation and breast carcinogenesis. Overall, the data here presented form an interesting framework where AhR is an interesting connector between inflammation and BC.
Collapse
|
37
|
Alternaria alternata Toxins Synergistically Activate the Aryl Hydrocarbon Receptor Pathway In Vitro. Biomolecules 2020; 10:biom10071018. [PMID: 32659980 PMCID: PMC7407958 DOI: 10.3390/biom10071018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Alternaria molds simultaneously produce a large variety of mycotoxins, of which several were previously reported to induce enzymes of phase I metabolism through aryl hydrocarbon receptor activation. Thus, we investigated the potential of naturally occurring Alternaria toxin mixtures to induce Cytochrome P450 (CYP) 1A1/1A2/1B1 activity. Two variants of an extract from cultured Alternaria alternata, as well as the toxins alternariol (AOH), alternariol monomethyl ether (AME), altertoxin I (ATX-I), and altertoxin II (ATX-II), were tested singularly and in binary mixtures applying the 7-ethoxy-resorufin-O-deethylase (EROD) assay in MCF-7 breast cancer cells. Sub-cytotoxic concentrations of the two toxin mixtures, as well as ATX-I, ATX-II and AOH, exhibited dose-dependent enhancements of CYP 1 activity. ATX-I and ATX-II interacted synergistically in this respect, demonstrating the two perylene quinones as major contributors to the extract’s potential. Binary mixtures between AOH and the two altertoxins respectively exhibited concentration-dependent antagonistic as well as synergistic combinatory effects. Notably, AME showed no efficacy towards EROD enzyme activity or impact on other toxins’ efficacy. Hence, this study provides insights into synergistic and other combinatory effects of Alternaria toxins in natural co-occurrence scenarios in the context of AhR signalling pathway activation in breast cancer cells.
Collapse
|
38
|
The neuroprotective action of 3,3'-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis 2020; 24:435-452. [PMID: 30778709 PMCID: PMC6522467 DOI: 10.1007/s10495-019-01522-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are no studies examining the effects of 3,3′-diindolylmethane (DIM) in neuronal cells subjected to ischemia. Little is also known about the roles of apoptosis and autophagy as well as AhR and ERα signaling and HDACs in DIM action. We demonstrated for the first time the strong neuroprotective capacity of DIM in mouse primary hippocampal cell cultures exposed to ischemia at early and later stages of neuronal development. The protective effects of DIM were mediated via inhibition of ischemia-induced apoptosis and autophagy that was accompanied by a decrease in AhR/CYP1A1 signaling and an increase in HDAC activity. DIM decreased the levels of pro-apoptotic factors, i.e., Fas, Caspase-3, and p38 mitogen-activated protein kinase (MAPK). DIM also reduced the protein levels of autophagy-related Beclin-1 (BECN1) and microtubule-associated proteins 1A/1B light chain (LC3), partially reversed the ischemia-induced decrease in Nucleoporin 62 (NUP62) and inhibited autophagosome formation. In addition, DIM completely reversed the ischemia-induced decrease in histone deacetylase (HDAC) activity in hippocampal neurons. Although DIM inhibited AhR/CYP1A1 signaling, it did not influence the protein expression levels of ERα and ERα-regulated CYP19A1 which are known to be controlled by AhR. This study demonstrated for the first time, that the neuroprotective action of 3,3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy and depends on AhR/CYP1A1 signaling and HDAC activity, thus creating the possibility of developing new therapeutic strategies that target neuronal degeneration at specific molecular levels.
Collapse
|
39
|
Tarnow P, Zordick C, Bottke A, Fischer B, Kühne F, Tralau T, Luch A. Characterization of Quinoline Yellow Dyes As Transient Aryl Hydrocarbon Receptor Agonists. Chem Res Toxicol 2020; 33:742-750. [PMID: 31957441 DOI: 10.1021/acs.chemrestox.9b00351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor (AHR) and estrogen receptor alpha (ERα) are two ligand activated transcription factors that are targeted by a wide range of anthropogenic compounds. Crosstalk between both receptors is well established but little understood. We previously developed a dual color luciferase assay (i.e., XEER) which allows time dissolved monitoring of the activation of both receptors in situ. The system was now used in conjunction with HPLC-qTOF to identify several quinophthalone dyes as transient receptor agonists of the AHR. Altogether the approach identified three widely used dyes, that is the plastic colorant latyl yellow 3G (LY), the structurally related textile dye disperse yellow 64 (DY), and the cosmetic dye quinoline yellow (QY). The latter was the most potent agonist followed by LY and DY as confirmed by the XEER assay and CYP1A1 gene induction in MCF7 cells. In addition QY, LY, and DY also inhibited ER signaling in an AHR-dependent manner. This establishes some evidence for quinoline yellow dyes as potential disruptors of AHR/ER signaling, raising potential toxicological concern. Although none of the dyes featured any signs of genotoxicity in vitro, our data point to the need for a systematic approach when screening for substances of potential toxicological and endocrine relevance.
Collapse
Affiliation(s)
- Patrick Tarnow
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Catrin Zordick
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Alex Bottke
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Berit Fischer
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Friederike Kühne
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
40
|
Yoshida I, Ishida K, Yoshikawa H, Kitamura S, Hiromori Y, Nishioka Y, Ido A, Kimura T, Nishikawa JI, Hu J, Nagase H, Nakanishi T. In vivo profiling of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced estrogenic/anti-estrogenic effects in female estrogen-responsive reporter transgenic mice. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121526. [PMID: 31732351 DOI: 10.1016/j.jhazmat.2019.121526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), commonly referred to simply as "dioxin", is a persistent environmental pollutant. Because of its high environmental persistence and biological accumulation, humans and animals are often exposed to TCDD. Therefore, the harmful effects on humans and animals is a major concern. Although studies have elucidated the adverse estrogenic and anti-estrogenic effects of TCDD, it is unclear in which tissues TCDD exerts these effects in vivo. To investigate the estrogen-related effects of TCDD in various tissues, we generated an improved estrogen-responsive reporter transgenic mouse in which the luciferase gene luc2 is expressed in response to estrogenic signals. Using these mice, we clarified that TCDD inhibits estrogenic signaling in liver and kidney but enhances estrogenic signaling in the pituitary gland in the same individual. Expression of aryl hydrocarbon receptor, aryl hydrocarbon receptor nuclear translocator, and estrogen receptor alpha mRNA was detected in liver, kidney, and pituitary gland, suggesting that the effects of TCDD on estrogenic signaling in these organs is independent of the expression pattern of these receptors. Thus, our results indicate that TCDD exerts both estrogenic and anti-estrogenic tissue-specific effects within the same individual.
Collapse
Affiliation(s)
- Ichiro Yoshida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Keishi Ishida
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hiroshi Yoshikawa
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Sho Kitamura
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Youhei Hiromori
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan; Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Yasushi Nishioka
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Akiko Ido
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tomoki Kimura
- Faculty of Science and Engineering, Setsunan University, 17-8 Ikedanakamachi, Neyagawa, 572-8508, Japan
| | - Jun-Ichi Nishikawa
- Laboratory of Health Sciences, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Kyuban-cho, Koshien, Nishinomiya, Hyogo, 663-8179, Japan
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hisamitsu Nagase
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, Gifu, 501-1196, Japan.
| |
Collapse
|
41
|
Piwarski SA, Thompson C, Chaudhry AR, Denvir J, Primerano DA, Fan J, Salisbury TB. The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells. Biochem Pharmacol 2020; 174:113845. [PMID: 32032581 DOI: 10.1016/j.bcp.2020.113845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. TNBC expresses AHR and AHR ligands have anti-cancer activity in TNBC. The aggressiveness of TNBC is due in part to JAG1-NOTCH1 signaling. ITE is a putative endogenous AHR ligand. We show that ITE reduces the expression of JAG1 the amount of Notch 1 intracellular domain (NICD1) and the phosphorylation of STAT3 (at tyrosine 705) in TNBC MDA-MB-231 cells. The STAT3 inhibitor STATTIC also reduced JAG1. STAT3, thus, mediates regulation of JAG1 in MDA-MB-231 cells. Reducing the expression of JAG1 with short interfering RNA decreases the growth, migration and invasiveness of MDA-MB-231 cells. JAG1, therefore, has cellular effects in MDA-MB-231 cells under basal conditions. We consequently evaluated if exposing cells to greater amounts of JAG1 would counteract ITE cellular effects in MDA-MB-231 cells. The results show that JAG1 does not counteract the cellular effects of ITE. JAG1, thus, has no effect on growth or invasiveness in MDA-MB-231 cells treated with ITE. JAG1, therefore, has context dependent roles in MDA-MB-231 cells (basal versus ITE treatment). The results also show that other pathways, not inhibition of the JAG1-NOTCH1 pathway, are important for mediating the growth and invasive inhibitory effect of ITE on MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sean A Piwarski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Chelsea Thompson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Ateeq R Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
42
|
Kajta M, Rzemieniec J, Wnuk A, Lasoń W. Triclocarban impairs autophagy in neuronal cells and disrupts estrogen receptor signaling via hypermethylation of specific genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134818. [PMID: 31706213 DOI: 10.1016/j.scitotenv.2019.134818] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Although an increasing body of evidence suggests that triclocarban, a phenyl ether classified as a contaminant of emerging concern, presents a risk to development, there is limited data available on the potential interplay of triclocarban with the developing mammalian nervous system. This study was aimed to investigate the impact of environmentally pervasive chemical triclocarban on autophagy and estrogen receptor-mediated signaling pathways in mouse neurons. The study showed that triclocarban impaired autophagy and disrupted estrogen receptor signaling in mouse embryonic neurons in primary culture. Triclocarban used at environmentally relevant concentrations inhibited the mRNA and protein expression of ESR1 and GPER1 but not ESR2. The triclocarban-induced decrease in the expression of estrogen receptors was supported by the colocalization of the receptors in mouse neurons and corresponded to hypermethylation of the Esr1 and Gper1 genes. Selective antagonists increased the effects of triclocarban, which suggests that the neurotoxic effects of triclocarban, in addition to decreasing estrogen receptor expression, are mediated via inhibition of the neuroprotective capacity of the receptors. Furthermore, Becn1 and Atg7 siRNAs potentiated the caspase-3-dependent effect of triclocarban, which points to triclocarban-induced impairment of autophagy. Indeed, triclocarban dysregulated the expression of autophagy-related genes, and caused a time-dependent inhibition of the mRNA expression of Becn1, Map1lc3a, Map1lc3b, Nup62, and Atg7, which was correlated with a decrease in the protein levels of MAP1LC3B, BECN1 and autophagosomes, but not NUP62 protein level which was increased. Intriguingly, the Esr1 and Gper1 siRNAs did not affect the level of autophagosomes, suggesting that the triclocarban-induced impairment of autophagy is independent of the triclocarban-induced disruption of estrogen receptor signaling in mammalian neurons. Because our data provided evidence that triclocarban has the capacity to impair autophagy and disrupt estrogen receptor signaling in brain neurons at an early developmental stage, we postulate to categorize the compound as a neurodevelopmental risk factor.
Collapse
Affiliation(s)
- M Kajta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland.
| | - J Rzemieniec
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - A Wnuk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Laboratory of Molecular Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| | - W Lasoń
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Experimental Neuroendocrinology, Smetna Street 12, 31-343 Krakow, Poland
| |
Collapse
|
43
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
44
|
Role of the Aryl Hydrocarbon Receptor in Environmentally Induced Skin Aging and Skin Carcinogenesis. Int J Mol Sci 2019; 20:ijms20236005. [PMID: 31795255 PMCID: PMC6928879 DOI: 10.3390/ijms20236005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022] Open
Abstract
The skin is constantly exposed to a variety of environmental threats, including solar electromagnetic radiation, microbes, airborne particulate matter, and chemicals. Acute exposure to these environmental factors results in the activation of different signaling pathways that orchestrate adaptive stress responses to maintain cell and tissue homeostasis. Chronic exposure of skin to these factors, however, may lead to the accumulation of damaged macromolecules and loss of cell and tissue integrity, which, over time, may facilitate aging processes and the development of aging-related malignancies. One transcription factor that is expressed in all cutaneous cells and activated by various environmental stressors, including dioxins, polycyclic aromatic hydrocarbons, and ultraviolet radiation, is the aryl hydrocarbon receptor (AHR). By regulating keratinocyte proliferation and differentiation, epidermal barrier function, melanogenesis, and immunity, a certain degree of AHR activity is critical to maintain skin integrity and to adapt to acute stress situations. In contrast, a chronic activation of cutaneous AHR signaling critically contributes to premature aging and the development of neoplasms by affecting metabolism, extracellular matrix remodeling, inflammation, pigmentation, DNA repair, and apoptosis. This article provides an overview of the detrimental effects associated with sustained AHR activity in chronically stressed skin and pinpoints AHR as a promising target for chemoprevention.
Collapse
|
45
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
46
|
Mai Y, Peng S, Li H, Lai Z. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108582. [PMID: 31374294 DOI: 10.1016/j.cbpc.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023]
Abstract
Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 μg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
47
|
Aichinger G, Krüger F, Puntscher H, Preindl K, Warth B, Marko D. Naturally occurring mixtures of Alternaria toxins: anti-estrogenic and genotoxic effects in vitro. Arch Toxicol 2019; 93:3021-3031. [PMID: 31559443 DOI: 10.1007/s00204-019-02545-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/14/2019] [Indexed: 10/25/2022]
Abstract
Alternaria molds can produce a variety of different mycotoxins, often resulting in food contamination with chemical mixtures, posing a challenge for risk assessment. Some of these metabolites possess estrogenic properties, an effect whose toxicological relevance is questioned in the light of the strong genotoxic and cytotoxic properties of co-occurring toxins. Thus, we tested a complex extract from A. alternata for estrogenic properties in Ishikawa cells. By assessing alkaline phosphatase activity, we did not observe estrogen receptor (ER) activation at non-cytotoxic concentrations (≤ 10 µg/ml). Furthermore, an extract stripped of highly genotoxic perylene quinones also did not mediate estrogenic effects, despite diminished genotoxic properties in the comet assay (≥ 10 µg/ml). Interestingly, both extracts impaired the estrogenicity of 17β-estradiol (E2) at non-cytotoxic concentrations (5-10 µg/ml), indicating anti-estrogenic effects which could not be explained by the presence of known mycoestrogens. A mechanism for this unexpected result might be the activation of the aryl hydrocarbon receptor (AhR) by Alternaria metabolites, as indicated by the induction of CYP1A1 transcription. While a direct influence on the metabolism of E2 could not be confirmed by LC-MS/MS, literature describing a direct interplay of the AhR with estrogenic pathways points to a corresponding mode of action. Taken together, the present study indicates AhR-mediated anti-estrogenic effects as a novel mechanism of naturally co-occurring Alternaria toxin mixtures. Furthermore, our results confirm their genotoxic activity and raise questions about the contribution of still undiscovered metabolites to toxicological properties.
Collapse
Affiliation(s)
- Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Franziska Krüger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Hannes Puntscher
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Karin Preindl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria.
| |
Collapse
|
48
|
Tarnow P, Tralau T, Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol 2019; 15:219-229. [PMID: 30644759 DOI: 10.1080/17425255.2019.1569627] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Estrogen receptors (ERs) and the arylhydrocarbon receptor (AHR) are ligand-activated transcription factors that regulate the expression of genes involved in many physiological processes. With both receptors binding a broad range of natural and anthropogenic ligands, they are molecular targets for many substances, raising concerns for possible health effects. Areas covered: This review shall give a brief overview on the physiological functions of both receptors including their underlying molecular mechanisms. It summarizes the interaction of the respective signaling pathways including impacts on metabolism of endogenous estrogens, transcriptional interference, inhibitory crosstalk, and proteasomal degradation. Also addressed are the AHR dependent formation of estrogenic metabolites from polycyclic aromatic hydrocarbons and the possible impact of the ER/AHR crosstalk in the context of drug metabolism. Expert opinion: Despite decade-long research, the physiological role of the AHR and ER as well as the implications of their complex mutual crosstalk remain to be determined as do resulting potential impacts on human health. With more and more endogenous AHR ligands being discovered, future research should hence systematically address the potential impact of such substances on estrogen signaling. The intimate link between these two pathways and the genes regulated therein bears the potential for impacts on drug metabolism and human health.
Collapse
Affiliation(s)
- Patrick Tarnow
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
49
|
Gilbertson M, Brophy J. Causality Advocacy: Workers' Compensation Cases as Resources for Identifying and Preventing Diseases of Modernity. New Solut 2018; 28:704-725. [PMID: 30463468 DOI: 10.1177/1048291118810900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An appeal process for an injured worker compensation case is a unique opportunity to debate and integrate evidence concerning a potential causal relationship between observations of occupational disease and exposures to various putative risk factors that may also be of significance in public health protection. Through application of Hill's indicia to the evidence presented in a recent appeal process concerning a breast cancer case for a female border guard, a novel epidemic, tentatively called "occupational BRCAness" has been identified and a causal relationship with exposures to traffic-related air pollution and shift work and possibly secondhand tobacco smoke is inferred. Application of the audit method by worker advocates to other compensation appeals processes for other diseases might similarly yield causal relations with exposures to occupational risk factors with relevance to public health.
Collapse
Affiliation(s)
- Michael Gilbertson
- 1 Occupational and Environmental Health Research Group, Centre for Public Health and Population Health Research, University of Stirling, Scotland, UK
| | - James Brophy
- 1 Occupational and Environmental Health Research Group, Centre for Public Health and Population Health Research, University of Stirling, Scotland, UK.,2 Department of Sociology, Anthropology, and Criminology, University of Windsor, Ontario, Canada
| |
Collapse
|
50
|
Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis 2018; 7:75. [PMID: 30250021 PMCID: PMC6155249 DOI: 10.1038/s41389-018-0086-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Estrogen receptor α (ERα) is expressed in ~67% of breast cancers and is critical to their proliferation and progression. The expression of ERα is regarded as a major prognostic marker, making it a meaningful target to treat breast cancer (BCa). However, hormone receptor-positive BCa was sometimes irresponsive or even resistant to classic anti-hormonal therapies (e.g., fulvestrant and tamoxifen). Hence, novel anti-endocrine therapies are urgent for ERα+ BCa. A phase II study suggested that bortezomib, an inhibitor blocking the activity of 20 S proteasomes, intervenes in cancer progression for anti-endocrine therapy in BCa. Here we report that proteasome-associated deubiquitinases (USP14 and UCHL5) inhibitors b-AP15 and platinum pyrithione (PtPT) induce growth inhibition in ERα+ BCa cells. Further studies show that these inhibitors induce cell cycle arrest and apoptosis associated with caspase activation, endoplasmic reticulum (ER) stress and the downregulation of ERα. Moreover, we suggest that b-AP15 and PtPT block ERα signaling via enhancing the ubiquitin-mediated degradation of ERα and inhibiting the transcription of ERα. Collectively, these findings demonstrate that proteasome-associated deubiquitinases inhibitors b-AP15 and PtPT may have the potential to treat BCa resistant to anti-hormonal therapy.
Collapse
|