1
|
Ouarné M, Pena A, Ramalho D, Conchinha NV, Costa T, Enjalbert R, Figueiredo AM, Saraiva MP, Carvalho Y, Bernabeu MO, Henao Misikova L, Oh SP, Franco CA. A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations. Cardiovasc Res 2024; 120:1967-1984. [PMID: 39308243 PMCID: PMC11629978 DOI: 10.1093/cvr/cvae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood. METHODS AND RESULTS Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts. CONCLUSION Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.
Collapse
Affiliation(s)
- Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Nadine V Conchinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Tiago Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Romain Enjalbert
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Ana M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Marta Pimentel Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| |
Collapse
|
2
|
Iwanski JB, Pappas CT, Mayfield RM, Farman GP, Ahrens-Nicklas R, Churko JM, Gregorio CC. Leiomodin 2 neonatal dilated cardiomyopathy mutation results in altered actin gene signatures and cardiomyocyte dysfunction. NPJ Regen Med 2024; 9:21. [PMID: 39285234 PMCID: PMC11405699 DOI: 10.1038/s41536-024-00366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Neonatal dilated cardiomyopathy (DCM) is a poorly understood muscular disease of the heart. Several homozygous biallelic variants in LMOD2, the gene encoding the actin-binding protein Leiomodin 2, have been identified to result in severe DCM. Collectively, LMOD2-related cardiomyopathies present with cardiac dilation and decreased heart contractility, often resulting in neonatal death. Thus, it is evident that Lmod2 is essential to normal human cardiac muscle function. This study aimed to understand the underlying pathophysiology and signaling pathways related to the first reported LMOD2 variant (c.1193 G > A, p.Trp398*). Using patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model harboring the homologous mutation to the patient, we discovered dysregulated actin-thin filament lengths, altered contractility and calcium handling properties, as well as alterations in the serum response factor (SRF)-dependent signaling pathway. These findings reveal that LMOD2 may be regulating SRF activity in an actin-dependent manner and provide a potential new strategy for the development of biologically active molecules to target LMOD2-related cardiomyopathies.
Collapse
Grants
- R01HL123078 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R00 HL128906 NHLBI NIH HHS
- R01 HL164644 NHLBI NIH HHS
- R01 GM120137 NIGMS NIH HHS
- F30HL151139 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32HL007249 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 HL007249 NHLBI NIH HHS
- R01 HL123078 NHLBI NIH HHS
- R01HL164644 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30 HL151139 NHLBI NIH HHS
- R01GM120137 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jessika B Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rachel M Mayfield
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA
| | - Rebecca Ahrens-Nicklas
- Department of Pediatrics and Division of Human Genetics and Metabolism, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jared M Churko
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ, 85724, USA.
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Maurice D, Costello P, Diring J, Gualdrini F, Frederico B, Treisman R. IL-2 delivery to CD8 + T cells during infection requires MRTF/SRF-dependent gene expression and cytoskeletal dynamics. Nat Commun 2024; 15:7956. [PMID: 39261466 PMCID: PMC11391060 DOI: 10.1038/s41467-024-52230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Paracrine IL-2 signalling drives the CD8 + T cell expansion and differentiation that allow protection against viral infections, but the underlying molecular events are incompletely understood. Here we show that the transcription factor SRF, a master regulator of cytoskeletal gene expression, is required for effective IL-2 signalling during L. monocytogenes infection. Acting cell-autonomously with its actin-regulated cofactors MRTF-A and MRTF-B, SRF is dispensible for initial TCR-mediated CD8+ T cell proliferation, but is required for sustained IL-2 dependent CD8+ effector T cell expansion, and persistence of memory cells. Following TCR activation, Mrtfab-null CD8+ T cells produce IL-2 normally, but homotypic clustering is impaired both in vitro and in vivo. Expression of cytoskeletal structural and regulatory genes, most notably actins, is defective in Mrtfab-null CD8+ T cells. Activation-induced cell clustering in vitro requires F-actin assembly, and Mrtfab-null cell clusters are small, contain less F-actin, and defective in IL-2 retention. Clustering of Mrtfab-null cells can be partially restored by exogenous actin expression. IL-2 mediated CD8+ T cell proliferation during infection thus depends on the control of cytoskeletal dynamics and actin gene expression by MRTF-SRF signalling.
Collapse
Affiliation(s)
- Diane Maurice
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Autoimmunity Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Patrick Costello
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jessica Diring
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Francesco Gualdrini
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- European Institute of Oncology (IEO), Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, 20139, Italy
| | - Bruno Frederico
- Immunobiology Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Early Oncology, R&D, AstraZeneca, Cambridge, UK
| | - Richard Treisman
- Signalling and transcription Laboratory, Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
4
|
Visconti A, Qiu H. Recent advances in serum response factor posttranslational modifications and their therapeutic potential in cardiovascular and neurological diseases. Vascul Pharmacol 2024; 156:107421. [PMID: 39209126 PMCID: PMC11626983 DOI: 10.1016/j.vph.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Serum Response Factor (SRF) is a key regulatory transcription factor present in various cell types throughout the body, playing essential roles in cellular functions under physiological conditions. Mutations and abnormal expression of SRF have been linked to the development of various diseases and disorders. Recent evidence highlights that post-translational modifications (PTMs) are critical for regulating SRF function in different cell types and contribute to disease pathogenesis. Targeting SRF-related PTMs is emerging as a promising therapeutic approach for treating SRF-associated diseases. In this review, we summarize recent advances in understanding SRF PTMs and their underlying regulatory mechanisms. We also explore the implications of SRF-PTM in related cardiovascular and neurological diseases and their potential for therapeutic intervention. This information underscores the significance of SRF PTMs in both physiological and pathological contexts, enhancing our understanding of disease mechanisms and paving the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Visconti
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA.
| | - Hongyu Qiu
- Cardiovascular Translational Research Center, Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA; Clinical Translational Sciences (CTS) and Bio5 Institution, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
5
|
Gao L, Zhang C, Zhu Y, Zhang N, Zhang C, Zhou S, Feng G, Huang F, Zhang L. Serum response factor promoting axonal regeneration by activating the Ras-Raf-Cofilin signaling pathway after the spinal cord injury. CNS Neurosci Ther 2024; 30:e14585. [PMID: 38421133 PMCID: PMC10851317 DOI: 10.1111/cns.14585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Serum response factor (SRF) is important in muscle development, tissue repair, and neuronal regulation. OBJECTIVES This research aims to thoroughly examine the effects of SRF on spinal cord injury (SCI) and its ability to significantly impact the recovery and regeneration of neuronal axons. METHODS The researchers created rat models of SCI and scratch injury to primary spinal cord neurons to observe the expression of relevant factors after neuronal injury. RESULTS We found that the SRF, Ras, Raf, and cofilin levels increased after injury and gradually returned to normal levels. Afterward, researchers gave rats with SCI an SRF inhibitor (CCG1423) and studied the effects with nuclear magnetic resonance and transmission electron microscopy. The SRF inhibitor rodents had worse spinal cord recovery and axon regrowth than the control group. And the apoptosis of primary neurons after scratch injury was significantly higher in the SRF inhibitor group. Additionally, the researchers utilized lentiviral transfection to modify the SRF expression in neurons. SRF overexpression increased neuron migration while silencing SRF decreased it. Finally, Western blotting and RT-PCR were conducted to examine the expression changes of related factors upon altering SRF expression. The results revealed SRF overexpression increased Ras, Raf, and cofilin expression. Silencing SRF decreased Ras, Raf, and Cofilin expression. CONCLUSION Based on our research, the SRF promotes axonal regeneration by activating the "Ras-Raf-Cofilin" signaling pathway.
Collapse
Affiliation(s)
- Limin Gao
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- Department of NeurobiologySchool of Basic Medical Sciences, Capital Medical UniversityBeijingChina
| | - Chen Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- Experimental Neurosurgery, Department of NeurosurgeryNeuroscience Center, Frankfurt University HospitalFrankfurt am MainGermany
| | - Yonglin Zhu
- Department of Bone and JointYantai Affiliated Hospital of Binzhou Medical UniversityYantaiShandongChina
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Guoying Feng
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
- University of Health and Rehabilitation SciencesQingdaoShandong ProvinceChina
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical UniversityYantaiShandong ProvinceChina
| |
Collapse
|
6
|
Grunert M, Dorn C, Rickert-Sperling S. Cardiac Transcription Factors and Regulatory Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:295-311. [PMID: 38884718 DOI: 10.1007/978-3-031-44087-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Cardiac development is a fine-tuned process governed by complex transcriptional networks, in which transcription factors (TFs) interact with other regulatory layers. In this chapter, we introduce the core cardiac TFs including Gata, Hand, Nkx2, Mef2, Srf, and Tbx. These factors regulate each other's expression and can also act in a combinatorial manner on their downstream targets. Their disruption leads to various cardiac phenotypes in mice, and mutations in humans have been associated with congenital heart defects. In the second part of the chapter, we discuss different levels of regulation including cis-regulatory elements, chromatin structure, and microRNAs, which can interact with transcription factors, modulate their function, or are downstream targets. Finally, examples of disturbances of the cardiac regulatory network leading to congenital heart diseases in human are provided.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
8
|
Insulin and Insulin-Like Growth Factor 1 Signaling Preserves Sarcomere Integrity in the Adult Heart. Mol Cell Biol 2022; 42:e0016322. [PMID: 36125265 PMCID: PMC9583714 DOI: 10.1128/mcb.00163-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF1) signaling is transduced by insulin receptor substrate 1 (IRS1) and IRS2. To elucidate physiological and redundant roles of insulin and IGF1 signaling in adult hearts, we generated mice with inducible cardiomyocyte-specific deletion of insulin and IGF1 receptors or IRS1 and IRS2. Both models developed dilated cardiomyopathy, and most mice died by 8 weeks post-gene deletion. Heart failure was characterized by cardiomyocyte loss and disarray, increased proapoptotic signaling, and increased autophagy. Suppression of autophagy by activating mTOR signaling did not prevent heart failure. Transcriptional profiling revealed reduced serum response factor (SRF) transcriptional activity and decreased mRNA levels of genes encoding sarcomere and gap junction proteins as early as 3 days post-gene deletion, in concert with ultrastructural evidence of sarcomere disruption and intercalated discs within 1 week after gene deletion. These data confirm conserved roles for constitutive insulin and IGF1 signaling in suppressing autophagic and apoptotic signaling in the adult heart. The present study also identifies an unexpected role for insulin and IGF1 signaling in regulating an SRF-mediated transcriptional program, which maintains expression of genes encoding proteins that support sarcomere integrity in the adult heart, reduction of which results in rapid development of heart failure.
Collapse
|
9
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
10
|
Mubeen H, Farooq M, Rehman AU, Zubair M, Haque A. Gene expression and transcriptional regulation driven by transcription factors involved in congenital heart defects. Ir J Med Sci 2022; 192:595-604. [PMID: 35441975 DOI: 10.1007/s11845-022-02974-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most important birth defects caused by more than one mutated gene. Mutations in the genes could cause different types of congenital heart defects including atrial septal defect (ASD), tetralogy of Fallot (TOF), and ventricular septal defect (VSD). OBJECTIVES Cardiac transcription factors are key players for heart development and are actively involved in controlling stress regulation of the heart. Transcription factors are sequence-specific DNA binding proteins that control the process of transcription and work in a synergistic manner. We aim to characterize core cardiac transcription factors including NKX2-5, TBX, SRF, GATA4, and MEF2, which encode homeobox and MADS domain and play a crucial role in heart development. METHODS In this study, we have explored the important transcription factors involved in cardiac development and genes controlling the expression and regulation process by using the bioinformatics approach. RESULTS We have predicted the orthologs and homologs based on their evolutionary history, conserved protein domains, functional sites, and 3D structures for better understanding and presentation of factors responsible for causing CHD. Results showed the importance of these transcription factors for normal heart functioning and development. CONCLUSION Understanding the molecular pathways and genetic basis of CHD will help to open a new door for the treatment of patients with cardiac defects.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan. .,Department of Bioinformatics, Institute of Biochemistry, Biotechnology & Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | | | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Rust MB, Marcello E. Disease association of cyclase-associated protein (CAP): Lessons from gene-targeted mice and human genetic studies. Eur J Cell Biol 2022; 101:151207. [PMID: 35150966 DOI: 10.1016/j.ejcb.2022.151207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/03/2022] Open
Abstract
Cyclase-associated protein (CAP) is an actin binding protein that has been initially described as partner of the adenylyl cyclase in yeast. In all vertebrates and some invertebrate species, two orthologs, named CAP1 and CAP2, have been described. CAP1 and CAP2 are characterized by a similar multidomain structure, but different expression patterns. Several molecular studies clarified the biological function of the different CAP domains, and they shed light onto the mechanisms underlying CAP-dependent regulation of actin treadmilling. However, CAPs are crucial elements not only for the regulation of actin dynamics, but also for signal transduction pathways. During recent years, human genetic studies and the analysis of gene-targeted mice provided important novel insights into the physiological roles of CAPs and their involvement in the pathogenesis of several diseases. In the present review, we summarize and discuss recent progress in our understanding of CAPs' physiological functions, focusing on heart, skeletal muscle and central nervous system as well as their involvement in the mechanisms controlling metabolism. Remarkably, loss of CAPs or impairment of CAPs-dependent pathways can contribute to the pathogenesis of different diseases. Overall, these studies unraveled CAPs complexity highlighting their capability to orchestrate structural and signaling pathways in the cells.
Collapse
Affiliation(s)
- Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany.
| | - Elena Marcello
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
12
|
Dinsmore CJ, Soriano P. Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. eLife 2022; 11:e75106. [PMID: 35044299 PMCID: PMC8806183 DOI: 10.7554/elife.75106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the ternary complex factors (TCFs) and myocardin-related transcription factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in SrfaI allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous SrfaI/aI mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Philippe Soriano
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
13
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Abe I, Terabayashi T, Hanada K, Kondo H, Teshima Y, Ishii Y, Miyoshi M, Kira S, Saito S, Tsuchimochi H, Shirai M, Yufu K, Arakane M, Daa T, Thumkeo D, Narumiya S, Takahashi N, Ishizaki T. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction. Cardiovasc Res 2021; 117:1103-1117. [PMID: 32647865 DOI: 10.1093/cvr/cvaa206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. METHODS AND RESULTS Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10-12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy-related genes, including immediate early genes, in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the filamentous/globular (F/G)-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors and serum response factor were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. CONCLUSION mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Aged
- Aged, 80 and over
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Arterial Pressure
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Female
- Formins/genetics
- Formins/metabolism
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Ligation
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats, Sprague-Dawley
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
- Rats
Collapse
Affiliation(s)
- Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Miho Miyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Shintaro Kira
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Shotaro Saito
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Motoki Arakane
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| |
Collapse
|
15
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
16
|
Yingling CV, Pruyne D. FHOD formin and SRF promote post-embryonic striated muscle growth through separate pathways in C. elegans. Exp Cell Res 2021; 398:112388. [PMID: 33221314 PMCID: PMC7750259 DOI: 10.1016/j.yexcr.2020.112388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.
Collapse
Affiliation(s)
- Curtis V Yingling
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| | - David Pruyne
- Department of Cell and Developmental Biology, 107 Weiskotten Hall, State University of New York Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13210, USA.
| |
Collapse
|
17
|
Liu R, Xiong X, Nam D, Yechoor V, Ma K. SRF-MRTF signaling suppresses brown adipocyte development by modulating TGF-β/BMP pathway. Mol Cell Endocrinol 2020; 515:110920. [PMID: 32603734 PMCID: PMC7484394 DOI: 10.1016/j.mce.2020.110920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
The SRF/MRTF and upstream signaling cascade play key roles in actin cytoskeleton organization and myocyte development. To date, how this signaling axis may function in brown adipocyte lineage commitment and maturation has not been delineated. Here we report that MRTF-SRF signaling exerts inhibitory actions on brown adipogenesis, and suppressing this negative regulation promotes brown adipocyte lineage development. During brown adipogenic differentiation, protein expressions of SRF, MRTFA/B and its transcription targets were down-regulated, and MRTFA/B shuttled from nucleus to cytoplasm. Silencing of SRF or MRTF-A/MRTF-B enhanced two distinct stages of brown adipocyte development, mesenchymal stem cell determination to brown adipocytes and terminal differentiation of brown adipogenic progenitors. We further demonstrate that the MRTF-SRF axis exerts transcriptional regulations of the TGF-β and BMP signaling pathway, critical developmental cues for brown adipocyte development. TGF-β signaling activity was significantly attenuated, whereas that of the BMP pathway augmented by inhibition of SRF or MRTF-A/MRTF-B, leading to enhanced brown adipocyte differentiation. Our study demonstrates the MRTF-SRF transcriptional cascade as a negative regulator of brown adipogenesis, through its transcriptional control of the TGF-β/BMP signaling pathways.
Collapse
Affiliation(s)
- Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Deokhwa Nam
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
18
|
Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2020; 288:3120-3134. [PMID: 32885587 PMCID: PMC7925694 DOI: 10.1111/febs.15544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Serum response factor (SRF), a member of the Mcm1, Agamous, Deficiens, and SRF (MADS) box transcription factor, is widely expressed in all cell types and plays a crucial role in the physiological function and development of diseases. SRF regulates its downstream genes by binding to their CArG DNA box by interacting with various cofactors. However, the underlying mechanisms are not fully understood, therefore attracting increasing research attention due to the importance of this topic. This review's objective is to discuss the new progress in the studies of the molecular mechanisms involved in the activation of SRF and its impacts in physiological and pathological conditions. Notably, we summarized the recent studies on the interaction of SRF with its two main types of cofactors belonging to the myocardin families of transcription factors and the members of the ternary complex factors. The knowledge of these mechanisms will create new opportunities for understanding the dynamics of many traits and disease pathogenesis especially, cardiovascular diseases and cancer that could serve as targets for pharmacological control and treatment of these diseases.
Collapse
Affiliation(s)
- John Oloche Onuh
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
19
|
Mengmeng X, Yuejuan X, Sun C, Yanan L, Fen L, Kun S. Novel mutations of the SRF gene in Chinese sporadic conotruncal heart defect patients. BMC MEDICAL GENETICS 2020; 21:95. [PMID: 32380971 PMCID: PMC7203814 DOI: 10.1186/s12881-020-01032-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/22/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Conotruncal heart defects (CTDs) are a group of congenital heart malformations that cause anomalies of cardiac outflow tracts. In the past few decades, many genes related to CTDs have been reported. Serum response factor (SRF) is a ubiquitous nuclear protein that acts as transcription factor, and SRF was found to be a critical factor in heart development and to be strongly expressed in the myocardium of the developing mouse and chicken hearts. The targeted inactivation of SRF during heart development leads to embryonic lethality and myocardial defects in mice. METHODS To illustrate the relationship between SRF and human heart defects, we screened SRF mutations in 527 CTD patients, a cross sectional study. DNA was extracted from peripheral leukocyte cells for target sequencing. The mutations of SRF were detected and validated by Sanger sequencing. The affection of the mutations on wild-type protein was analyzed by in silico softwares. Western blot and real time PCR were used to analyze the changes of the expression of the mutant mRNA and protein. In addition, we carried out dual luciferase reporter assay to explore the transcriptional activity of the mutant SRF. RESULTS Among the target sequencing results of 527 patients, two novel mutations (Mut1: c.821A > G p.G274D, the adenine(A) was mutated to guanine(G) at position 821 of the SRF gene coding sequences (CDS), lead to the Glycine(G) mutated to Asparticacid(D) at position 274 of the SRF protein amino acid sequences; Mut2: c.880G > T p.G294C, the guanine(G) was mutated to thymine (T) at position 880 of the SRF CDS, lead to the Glycine(G) mutated to Cysteine (C) at position 294 of the SRF protein amino acid sequences.) of SRF (NM_003131.4) were identified. Western blotting and real-time PCR showed that there were no obvious differences between the protein expression and mRNA transcription of mutants and wild-type SRF. A dual luciferase reporter assay showed that both SRF mutants (G274D and G294C) impaired SRF transcriptional activity at the SRF promoter and atrial natriuretic factor (ANF) promoter (p < 0.05), additionally, the mutants displayed reduced synergism with GATA4. CONCLUSION These results suggest that SRF-p.G274D and SRF-p.G294C may have potential pathogenic effects.
Collapse
Affiliation(s)
- Xu Mengmeng
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Xu Yuejuan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| | - Chen Sun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Lu Yanan
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China
| | - Li Fen
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678, Dongfang Road, Shanghai, 200127, China
| | - Sun Kun
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang road, Shanghai, 200092, China.
| |
Collapse
|
20
|
Angelini A, Gorey MA, Dumont F, Mougenot N, Chatzifrangkeskou M, Muchir A, Li Z, Mericskay M, Decaux JF. Cardioprotective effects of α-cardiac actin on oxidative stress in a dilated cardiomyopathy mouse model. FASEB J 2019; 34:2987-3005. [PMID: 31908029 DOI: 10.1096/fj.201902389r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/12/2022]
Abstract
The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.
Collapse
Affiliation(s)
- Aude Angelini
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mark-Alexander Gorey
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Florent Dumont
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nathalie Mougenot
- Faculté de Médecine, Pierre et Marie Curie, INSERM UMS 28 Phénotypage du petit animal, Sorbonne Université, Paris, France
| | - Maria Chatzifrangkeskou
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Antoine Muchir
- Center of Research in Myology, Institut de Myologie, INSERM UMRS 974, Sorbonne Université, Paris, France
| | - Zhenlin Li
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| | - Mathias Mericskay
- Signalling and Cardiovascular Pathophysiology, INSERM UMR-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jean-Francois Decaux
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, INSERM ERL U1164, Sorbonne Université, Paris, France
| |
Collapse
|
21
|
Rangrez AY, Kilian L, Stiebeling K, Dittmann S, Schulze-Bahr E, Frey N, Frank D. A cardiac α-actin (ACTC1) p. Gly247Asp mutation inhibits SRF-signaling in vitro in neonatal rat cardiomyocytes. Biochem Biophys Res Commun 2019; 518:500-505. [PMID: 31434612 DOI: 10.1016/j.bbrc.2019.08.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
We recently identified a novel, heterozygous, and non-synonymous ACTC1 mutation (p.Gly247Asp or G247D) in a large, multi-generational family, causing atrial-septal defect followed by late-onset dilated cardiomyopathy (DCM). Molecular dynamics studies revealed possible actin polymerization defects as G247D mutation resides at the juncture of side-chain interaction, which was indeed confirmed by in vitro actin polymerization assays. Since polymerization/de-polymerization is important for the activation of Rho-GTPase-mediated serum response factor (SRF)-signaling, we studied the effect of G247D mutation using luciferase assay. Overexpression of native human ACTC1 in neonatal rat cardiomyocytes (NRVCMs) strongly activated SRF-signaling both in C2C12 cells and NRVCMs, whereas, G247D mutation abolished this activation. Mechanistically, we found reduced GTP-bound Rho-GTPase and increased nuclear localization of globular actin in NRVCMs overexpressing mutant ACTC1 possibly causing inhibition of SRF-signaling activation. In conclusion, our data suggests that human G247D ACTC1 mutation negatively regulates SRF-signaling likely contributing to the late-onset DCM observed in mutation carrier patients.
Collapse
Affiliation(s)
- Ashraf Yusuf Rangrez
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Lucia Kilian
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Katharina Stiebeling
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Norbert Frey
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
22
|
Djemai H, Hassani M, Daou N, Li Z, Sotiropoulos A, Noirez P, Coletti D. Srf KO and wild-type mice similarly adapt to endurance exercise. Eur J Transl Myol 2019; 29:8205. [PMID: 31354926 PMCID: PMC6615070 DOI: 10.4081/ejtm.2019.8205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Physical exercise has important effects as secondary prevention or intervention against several diseases. Endurance exercise induces local and global effects, resulting in skeletal muscle adaptations to aerobic activity and contributes to an amelioration of muscle performance. Furthermore, it prevents muscle loss. Serum response factor (Srf) is a transcription factor of pivotal importance for muscle tissues and animal models of Srf genetic deletion/over-expression are widely used to study Srf role in muscle homeostasis, physiology and pathology. A global characterisation of exercise adaptation in the absence of Srf has not been reported. We measured body composition, muscle force, running speed, energy expenditure and metabolism in WT and inducible skeletal muscle-specific Srf KO mice, following three weeks of voluntary exercise by wheel running. We found a major improvement in the aerobic capacity and muscle function in WT mice following exercise, as expected, and no major differences were observed in Srf KO mice as compared to WT mice, following exercise. Taken together, these observations suggest that Srf is not required for an early (within 3 weeks) adaptation to spontaneous exercise and that Srf KO mice behave similarly to the WT in terms of spontaneous physical activity and the resulting adaptive responses. Therefore, Srf KO mice can be used in functional muscle studies, without the results being affected by the lack of Srf. Since lack of Srf induces premature sarcopenia, our observations suggest that the modifications due to the absence of Srf take time to occur and that young, Srf KO mice behave similarly to WT in aerobic physical activities.
Collapse
Affiliation(s)
- Haidar Djemai
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IRMES, INSEP, Paris, France.,= equal contribution
| | - Medhi Hassani
- Sorbonne University, Paris, France.,Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy.,= equal contribution
| | | | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Philippe Noirez
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,IRMES, INSEP, Paris, France.,Department of Exercise Science, UQAM, Montréal, Canada
| | - Dario Coletti
- Sorbonne University, Paris, France.,Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
23
|
DeAguero AA, Castillo L, Oas ST, Kiani K, Bryantsev AL, Cripps RM. Regulation of fiber-specific actin expression by the Drosophila SRF ortholog Blistered. Development 2019; 146:dev.164129. [PMID: 30872277 PMCID: PMC6467476 DOI: 10.1242/dev.164129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
Serum response factor (SRF) has an established role in controlling actin homeostasis in mammalian cells, yet its role in non-vertebrate muscle development has remained enigmatic. Here, we demonstrate that the single Drosophila SRF ortholog, termed Blistered (Bs), is expressed in all adult muscles, but Bs is required for muscle organization only in the adult indirect flight muscles. Bs is a direct activator of the flight muscle actin gene Act88F, via a conserved promoter-proximal binding site. However, Bs only activates Act88F expression in the context of the flight muscle regulatory program provided by the Pbx and Meis orthologs Extradenticle and Homothorax, and appears to function in a similar manner to mammalian SRF in muscle maturation. These studies place Bs in a regulatory framework where it functions to sustain the flight muscle phenotype in Drosophila Our studies uncover an evolutionarily ancient role for SRF in regulating muscle actin expression, and provide a model for how SRF might function to sustain muscle fate downstream of pioneer factors.
Collapse
Affiliation(s)
- Ashley A DeAguero
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lizzet Castillo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Kaveh Kiani
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA .,Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
24
|
Xiong Y, Bedi K, Berritt S, Attipoe BK, Brooks TG, Wang K, Margulies KB, Field J. Targeting MRTF/SRF in CAP2-dependent dilated cardiomyopathy delays disease onset. JCI Insight 2019; 4:124629. [PMID: 30762586 DOI: 10.1172/jci.insight.124629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
About one-third of dilated cardiomyopathy (DCM) cases are caused by mutations in sarcomere or cytoskeletal proteins. However, treating the cytoskeleton directly is not possible because drugs that bind to actin are not well tolerated. Mutations in the actin binding protein CAP2 can cause DCM and KO mice, either whole body (CAP2-KO) or cardiomyocyte-specific KOs (CAP2-CKO) develop DCM with cardiac conduction disease. RNA sequencing analysis of CAP2-KO hearts and isolated cardiomyocytes revealed overactivation of fetal genes, including serum response factor-regulated (SRF-regulated) genes such as Myl9 and Acta2 prior to the emergence of cardiac disease. To test if we could treat CAP2-KO mice, we synthesized and tested the SRF inhibitor CCG-1423-8u. CCG-1423-8u reduced expression of the SRF targets Myl9 and Acta2, as well as the biomarker of heart failure, Nppa. The median survival of CAP2-CKO mice was 98 days, while CCG-1423-8u-treated CKO mice survived for 116 days and also maintained normal cardiac function longer. These results suggest that some forms of sudden cardiac death and cardiac conduction disease are under cytoskeletal stress and that inhibiting signaling through SRF may benefit DCM by reducing cytoskeletal stress.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Systems Pharmacology and Translational Therapeutics
| | - Kenneth Bedi
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Simon Berritt
- Department of Chemistry, Merck High throughput Experimentation Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Thomas G Brooks
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin Wang
- Department of Systems Pharmacology and Translational Therapeutics
| | - Kenneth B Margulies
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics
| |
Collapse
|
25
|
Kannan S, Kwon C. Regulation of cardiomyocyte maturation during critical perinatal window. J Physiol 2019; 598:2941-2956. [PMID: 30571853 DOI: 10.1113/jp276754] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A primary limitation in the use of pluripotent stem cell-derived cardiomyocytes (PSC-CMs) for both patient health and scientific investigation is the failure of these cells to achieve full functional maturity. In vivo, cardiomyocytes undergo numerous adaptive structural, functional and metabolic changes during maturation. By contrast, PSC-CMs fail to fully undergo these developmental processes, instead remaining arrested at an embryonic stage of maturation. There is thus a significant need to understand the biological processes underlying proper CM maturation in vivo. Here, we discuss what is known regarding the initiation and coordination of CM maturation. We postulate that there is a critical perinatal window, ranging from embryonic day 18.5 to postnatal day 14 in mice, in which the maturation process is exquisitely sensitive to perturbation. While the initiation mechanisms of this process are unknown, it is increasingly clear that maturation proceeds through interconnected regulatory circuits that feed into one another to coordinate concomitant structural, functional and metabolic CM maturation. We highlight PGC1α, SRF and the MEF2 family as transcription factors that may potentially mediate this cross-talk. We lastly discuss several emerging technologies that will facilitate future studies into the mechanisms of CM maturation. Further study will not only produce a better understanding of its key processes, but provide practical insights into developing a robust strategy to produce mature PSC-CMs.
Collapse
Affiliation(s)
- Suraj Kannan
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Chulan Kwon
- Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| |
Collapse
|
26
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
27
|
Lam M, Calvo F. Regulation of mechanotransduction: Emerging roles for septins. Cytoskeleton (Hoboken) 2018; 76:115-122. [PMID: 30091182 PMCID: PMC6519387 DOI: 10.1002/cm.21485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022]
Abstract
Cells exist in dynamic three‐dimensional environments where they experience variable mechanical forces due to their interaction with the extracellular matrix, neighbouring cells and physical stresses. The ability to constantly and rapidly alter cellular behaviour in response to the mechanical environment is therefore crucial for cell viability, tissue development and homeostasis. Mechanotransduction is the process whereby cells translate mechanical inputs into biochemical signals. These signals in turn adjust cell morphology and cellular functions as diverse as proliferation, differentiation, migration and apoptosis. Here, we provide an overview of the current understanding of mechanotransduction and how septins may participate in it, drawing on their architecture and localization, their ability to directly bind and modify actomyosin networks and membranes, and their associations with the nuclear envelope.
Collapse
Affiliation(s)
- Maxine Lam
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Fernando Calvo
- Tumour Microenvironment Team, Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom.,Tumour Microenvironment Team, Department of Molecular and Cellular Signalling, Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| |
Collapse
|
28
|
Guo Y, Jardin BD, Zhou P, Sethi I, Akerberg BN, Toepfer CN, Ai Y, Li Y, Ma Q, Guatimosim S, Hu Y, Varuzhanyan G, VanDusen NJ, Zhang D, Chan DC, Yuan GC, Seidman CE, Seidman JG, Pu WT. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat Commun 2018; 9:3837. [PMID: 30242271 PMCID: PMC6155060 DOI: 10.1038/s41467-018-06347-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
After birth, cardiomyocytes (CM) acquire numerous adaptations in order to efficiently pump blood throughout an animal's lifespan. How this maturation process is regulated and coordinated is poorly understood. Here, we perform a CRISPR/Cas9 screen in mice and identify serum response factor (SRF) as a key regulator of CM maturation. Mosaic SRF depletion in neonatal CMs disrupts many aspects of their maturation, including sarcomere expansion, mitochondrial biogenesis, transverse-tubule formation, and cellular hypertrophy. Maintenance of maturity in adult CMs is less dependent on SRF. This stage-specific activity is associated with developmentally regulated SRF chromatin occupancy and transcriptional regulation. SRF directly activates genes that regulate sarcomere assembly and mitochondrial dynamics. Perturbation of sarcomere assembly but not mitochondrial dynamics recapitulates SRF knockout phenotypes. SRF overexpression also perturbs CM maturation. Together, these data indicate that carefully balanced SRF activity is essential to promote CM maturation through a hierarchy of cellular processes orchestrated by sarcomere assembly.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 02215, USA
| | - Pingzhu Zhou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Brynn N Akerberg
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Christopher N Toepfer
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Radcliffe Department of Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Yulan Ai
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yifei Li
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Yongwu Hu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Wenzhou Medical University, School of Life Sciences, Wenzhou, China
| | - Grigor Varuzhanyan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 430062, Wuhan, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA, 91125, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD, 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
29
|
Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018; 52:48-64. [PMID: 30172025 DOI: 10.1016/j.cellsig.2018.08.019] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are the major cell type in blood vessels. Unlike many other mature cell types in the adult body, VSMC do not terminally differentiate but retain a remarkable plasticity. Fully differentiated medial VSMCs of mature vessels maintain quiescence and express a range of genes and proteins important for contraction/dilation, which allows them to control systemic and local pressure through the regulation of vascular tone. In response to vascular injury or alterations in local environmental cues, differentiated/contractile VSMCs are capable of switching to a dedifferentiated phenotype characterized by increased proliferation, migration and extracellular matrix synthesis in concert with decreased expression of contractile markers. Imbalanced VSMC plasticity results in maladaptive phenotype alterations that ultimately lead to progression of a variety of VSMC-driven vascular diseases. The nature, extent and consequences of dysregulated VSMC phenotype alterations are diverse, reflecting the numerous environmental cues (e.g. biochemical factors, extracellular matrix components, physical) that prompt VSMC phenotype switching. In spite of decades of efforts to understand cues and processes that normally control VSMC differentiation and their disruption in VSMC-driven disease states, the crucial molecular mechanisms and signalling pathways that shape the VSMC phenotype programme have still not yet been precisely elucidated. In this article we introduce the physiological functions of vascular smooth muscle/VSMCs, outline VSMC-driven cardiovascular diseases and the concept of VSMC phenotype switching, and review molecular mechanisms that play crucial roles in the regulation of VSMC phenotypic plasticity.
Collapse
Affiliation(s)
- Agne Frismantiene
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Paul Erne
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Therese J Resink
- Department of Biomedicine, Laboratory for Signal Transduction, University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
31
|
Randrianarison-Huetz V, Papaefthymiou A, Herledan G, Noviello C, Faradova U, Collard L, Pincini A, Schol E, Decaux JF, Maire P, Vassilopoulos S, Sotiropoulos A. Srf controls satellite cell fusion through the maintenance of actin architecture. J Cell Biol 2017; 217:685-700. [PMID: 29269426 PMCID: PMC5800804 DOI: 10.1083/jcb.201705130] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/20/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023] Open
Abstract
This work describes a crucial role for the transcription factor Srf and F-actin scaffold to drive muscle stem cell fusion in vitro and in vivo and provides evidence of how actin cytoskeleton architecture affects myoblast fusion in vertebrates. Satellite cells (SCs) are adult muscle stem cells that are mobilized when muscle homeostasis is perturbed. Here, we show that serum response factor (Srf) is needed for optimal SC-mediated hypertrophic growth. We identified Srf as a master regulator of SC fusion required in both fusion partners, whereas it was dispensable for SC proliferation and differentiation. We show that SC-specific Srf deletion leads to impaired actin cytoskeleton and report the existence of finger-like actin–based protrusions at fusion sites in vertebrates that were notoriously absent in fusion-defective myoblasts lacking Srf. Restoration of a polymerized actin network by overexpression of an α-actin isoform in Srf mutant SCs rescued their fusion with a control cell in vitro and in vivo and reestablished overload-induced muscle growth. These findings demonstrate the importance of Srf in controlling the organization of actin cytoskeleton and actin-based protrusions for myoblast fusion in mammals and its requirement to achieve efficient hypertrophic myofiber growth.
Collapse
Affiliation(s)
- Voahangy Randrianarison-Huetz
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Aikaterini Papaefthymiou
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Gaëlle Herledan
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Chiara Noviello
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Ulduz Faradova
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | | | - Alessandra Pincini
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Emilie Schol
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Jean François Decaux
- Université Pierre et Marie Curie Paris 6, Centre National de la Recherche Scientifique UMR8256, Institut National de la Santé et de la Recherche Médicale U1164, Institute of Biology Paris-Seine, Paris, France
| | - Pascal Maire
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| | - Stéphane Vassilopoulos
- Institut National de la Santé et de la Recherche Médicale/University Pierre and Marie Curie UMR-S974, Institut de Myologie, Paris, France
| | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France .,Centre National de la Recherche Scientifique UMR8104, Paris, France.,Université Paris Descartes, Paris, France
| |
Collapse
|
32
|
Pagiatakis C, Sun D, Tobin SW, Miyake T, McDermott JC. TGFβ-TAZ/SRF signalling regulates vascular smooth muscle cell differentiation. FEBS J 2017; 284:1644-1656. [PMID: 28342289 DOI: 10.1111/febs.14070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
Vascular smooth muscle cells (VSMCs) do not terminally differentiate; they modulate their phenotype between proliferative and differentiated states, which is a major factor contributing to vascular diseases. TGFβ signalling has been implicated in inducing VSMC differentiation, although the exact mechanism remains largely unknown. Our goal was to assess the network of transcription factors involved in the induction of VSMC differentiation, and to determine the role of TAZ in promoting the quiescent VSMC phenotype. TGFβ robustly induces VSMC marker genes in 10T1/2 mouse embryonic fibroblast cells and the potent transcriptional regulator TAZ has been shown to retain Smad complexes on DNA. Thus, the role of TAZ in regulation of VSMC differentiation was studied. Using primary aortic VSMCs coupled with siRNA-mediated gene silencing, our studies reveal that TAZ is required for TGFβ induction of smooth muscle genes and is also required for the differentiated VSMC phenotype; synergy between TAZ and SRF, and TAZ and Myocardin (MyoC856), in regulating smooth muscle gene activation was observed. These data provide evidence of components of a novel signalling pathway that links TGFβ signalling to induction of smooth muscle genes through a mechanism involving regulation of TAZ and SRF proteins. In addition, we report a physical interaction of TAZ and MyoC856. These observations elucidate a novel level of control of VSMC induction which may have implications for vascular diseases and congenital vascular malformations.
Collapse
Affiliation(s)
- Christina Pagiatakis
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Dandan Sun
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | - Stephanie W Tobin
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada
| | | | - John C McDermott
- Department of Biology, York University, Toronto, ON, Canada.,Muscle Health Research Centre (MHRC), York University, Toronto, ON, Canada.,Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, Canada.,Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, ON, Canada
| |
Collapse
|
33
|
Tobin SW, Li SH, Li J, Wu J, Yeganeh A, Yu P, Weisel RD, Li RK. Dual roles for bone marrow-derived Sca-1 cells in cardiac function. FASEB J 2017; 31:2905-2915. [PMID: 28336524 DOI: 10.1096/fj.201601363rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/06/2017] [Indexed: 01/04/2023]
Abstract
Recruitment of stem cells from the bone marrow (BM) is an important aspect of cardiac healing that becomes inefficient with age. We investigated the role of young stem cell antigen 1 (Sca-1)-positive BM cells on the aged heart by microarray analysis after BM reconstitution. Sca-1+ and Sca-1- BM cells from young green fluorescent protein (GFP)-positive mice were used to reconstitute the BM of aged mice. Myocardial infarction (MI) was induced 3 mo later. GFP+ cells were more abundant in the BM, blood, and heart of Sca-1+ mice, which corresponded to preserved cardiac function after MI. At baseline, Sca-1+ BM reconstitution increased cardiac expression of serum response factor, vascular endothelial growth factor A, and myogenic genes, but reduced the expression of Il-1β. After MI, inflammation was identified as a key difference between Sca-1- and Sca-1+ groups, as cytokine expression and cell surface markers associated with inflammatory cells were up-regulated with Sca-1+ reconstitution. Mac-3 and F4/80 staining showed that the postinfarction heart was composed of a mixture of GFP+ (donor) macrophages, GFP- (host) macrophages, and GFP+ cells that did not contribute to the macrophage population. This study demonstrates that Sca-1+ BM cells regulate cardiac healing though an acute inflammatory response and also before injury by stimulating formation of a beneficial cardiac niche.-Tobin, S. W., Li, S.-H., Li, J., Wu, J., Yeganeh, A., Yu, P., Weisel, R. D., Li, R.-K. Dual roles for bone marrow-derived Sca-1 cells in cardiac function.
Collapse
Affiliation(s)
- Stephanie W Tobin
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jiao Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Cardiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Azadeh Yeganeh
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Pan Yu
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; .,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality. Sci Rep 2016; 6:34501. [PMID: 27687577 PMCID: PMC5043281 DOI: 10.1038/srep34501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/15/2016] [Indexed: 12/23/2022] Open
Abstract
Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5.
Collapse
|
35
|
Ang SY, Uebersohn A, Spencer CI, Huang Y, Lee JE, Ge K, Bruneau BG. KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development 2016; 143:810-21. [PMID: 26932671 PMCID: PMC4813342 DOI: 10.1242/dev.132688] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
KMT2D, which encodes a histone H3K4 methyltransferase, has been implicated in human congenital heart disease in the context of Kabuki syndrome. However, its role in heart development is not understood. Here, we demonstrate a requirement for KMT2D in cardiac precursors and cardiomyocytes during cardiogenesis in mice. Gene expression analysis revealed downregulation of ion transport and cell cycle genes, leading to altered calcium handling and cell cycle defects. We further determined that myocardial Kmt2d deletion led to decreased H3K4me1 and H3K4me2 at enhancers and promoters. Finally, we identified KMT2D-bound regions in cardiomyocytes, of which a subset was associated with decreased gene expression and decreased H3K4me2 in mutant hearts. This subset included genes related to ion transport, hypoxia-reoxygenation and cell cycle regulation, suggesting that KMT2D is important for these processes. Our findings indicate that KMT2D is essential for regulating cardiac gene expression during heart development primarily via H3K4 di-methylation. Highlighted article: Cardiac-specific depletion of the H3K4 methyltransferase KMT2D causes dysregulation of genes associated with cell cycle regulation, ion homeostasis and hypoxia signaling.
Collapse
Affiliation(s)
- Siang-Yun Ang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec Uebersohn
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benoit G Bruneau
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
36
|
Coletti D, Daou N, Hassani M, Li Z, Parlakian A. Serum Response Factor in Muscle Tissues: From Development to Ageing. Eur J Transl Myol 2016; 26:6008. [PMID: 27478561 PMCID: PMC4942704 DOI: 10.4081/ejtm.2016.6008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skeletal, cardiac and smooth muscle cells share various common characteristic features. During development the embryonic mesodermal layer contribute at different proportions to the formation of these tissues. At the functional level, contractility as well as its decline during ageing, are also common features. Cytoskeletal components of these tissues are characterized by various actin isoforms that govern through their status (polymerised versus monomeric) and their interaction with the myosins the contractile properties of these muscles. Finally, at the molecular level, a set of different transcription factors with the notable exception of Serum Response Factor SRF- which is commonly enriched in the 3 types of muscle- drive and maintain the differentiation of these cells (Myf5, MyoD, Myogenin for skeletal muscle; Nkx2.5, GATA4 for cardiomyocytes). In this review, we will focus on the transcription factor SRF and its role in the homeostasis of cardiac, smooth and skeletal muscle tissues as well as its behaviour during the age related remodelling process of these tissues with a specific emphasis on animal models and human data when available.
Collapse
Affiliation(s)
- Dario Coletti
- Sorbonne University, UPMC, Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France; Dept of Anatomy, Histology, Forensic Medicine & Ortopedics, School of Medicine Sapienza University of Rome, Italy
| | - Nissrine Daou
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Medhi Hassani
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Zhenlin Li
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| | - Ara Parlakian
- Sorbonne University, UPMC , Department of Biological Adaptation and Ageing, IBPS, UMR 8256 CNRS, INSERM U1164, Paris, France
| |
Collapse
|
37
|
Liu W, Liu Y, Zhang Y, Zhu X, Zhang R, Guan L, Tang Q, Jiang H, Huang C, Huang H. MicroRNA-150 Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Cell Biochem 2016; 116:2166-76. [PMID: 25639779 DOI: 10.1002/jcb.25057] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
Abstract
Cardiac hypertrophy is the response of the heart to a variety of hypertrophic stimuli; this condition progresses to heart failure and sudden death. MicroRNAs (miRs) are a family of small, non-coding RNAs that mediate posttranscriptional gene silencing. Recent studies have identified miRs as important regulators in cardiac hypertrophy. One specific miR, miR-150 has been reported to be downregulated in hypertrophic murine hearts. However, the role of miR-150 as a regulator of cardiac hypertrophy remains unclear. In the present study, we used gain-of-function and loss-of-function approaches to investigate the functional roles of miR-150 in cardiac hypertrophy induced by aortic banding. The extent of the cardiac hypertrophy was evaluated by echocardiography and by pathological and molecular analyses of heart samples. Our results revealed that transgenic mice that overexpress miR-150 in the heart were resistant to cardiac hypertrophy and fibrosis through down-regulation of serum response factor (SRF). Conversely, the loss of function of miR-150 by genetic knockdown or antagomiR approaches produced the opposite effects. These studies suggest that miR-150 plays an important role in the regulation of cardiac hypertrophy and SRF is involved in miR-150 mediated anti-hypertrophic effect. Thus, miR-150 may be a new therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Wanli Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Lihua Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, China
| |
Collapse
|
38
|
Ro S. Multi-phenotypic Role of Serum Response Factor in the Gastrointestinal System. J Neurogastroenterol Motil 2016; 22:193-200. [PMID: 26727951 PMCID: PMC4819857 DOI: 10.5056/jnm15183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/26/2015] [Indexed: 12/12/2022] Open
Abstract
Serum response factor (SRF) is a master transcription factor of the actin cytoskeleton that binds to highly conserved CArG boxes located within the majority of smooth muscle cell (SMC)-restricted promoters/enhancers. Although most studies of SRF focus on skeletal muscle, cardiac muscle, and vascular SMCs, SRF research has recently expanded into the gastrointestinal (GI) system. Genome scale analyses of GI SMC transcriptome and CArG boxes (CArGome) have identified new SRF target genes. In addition to circular and longitudinal smooth muscle layers, SRF is also expressed in GI mucosa and cancers. In the GI tract, SRF is the central regulator of genes involved in apoptosis, dedifferentiation, proliferation, and migration of cells. Since SRF is the cell phenotypic modulator, it may play an essential role in the development of myopathy, hypertrophy, ulcers, gastric and colon cancers within the GI tract. Given the multi-functional role displayed by SRF in the digestive system, SRF has received more attention emerging as a potential therapeutic target. This review summarizes the findings in SRF research pertaining to the GI tract and provides valuable insight into future directions.
Collapse
Affiliation(s)
- Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
39
|
Ladd AN. New Insights Into the Role of RNA-Binding Proteins in the Regulation of Heart Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 324:125-85. [PMID: 27017008 DOI: 10.1016/bs.ircmb.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regulation of gene expression during development takes place both at the transcriptional and posttranscriptional levels. RNA-binding proteins (RBPs) regulate pre-mRNA processing, mRNA localization, stability, and translation. Many RBPs are expressed in the heart and have been implicated in heart development, function, or disease. This chapter will review the current knowledge about RBPs in the developing heart, focusing on those that regulate posttranscriptional gene expression. The involvement of RBPs at each stage of heart development will be considered in turn, including the establishment of specific cardiac cell types and formation of the primitive heart tube, cardiac morphogenesis, and postnatal maturation and aging. The contributions of RBPs to cardiac birth defects and heart disease will also be considered in these contexts. Finally, the interplay between RBPs and other regulatory factors in the developing heart, such as transcription factors and miRNAs, will be discussed.
Collapse
Affiliation(s)
- A N Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States of America.
| |
Collapse
|
40
|
Ek WE, Hedman ÅK, Enroth S, Morris AP, Lindgren CM, Mahajan A, Gustafsson S, Gyllensten U, Lind L, Johansson Å. Genome-wide DNA methylation study identifies genes associated with the cardiovascular biomarker GDF-15. Hum Mol Genet 2015; 25:817-27. [PMID: 26681806 DOI: 10.1093/hmg/ddv511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Growth-differentiation factor 15 (GDF-15) is expressed in low to moderate levels in most healthy tissues and increases in response to inflammation. GDF-15 is associated with cardiovascular dysfunction and over-expressed in the myocardium of patients with myocardial infarction (MI). However, little is known about the function of GDF-15 in cardiovascular disease, and the underlying regulatory network of GDF-15 is not known. To investigate a possible association between GDF-15 levels and DNA methylation, we performed a genome-wide DNA methylation study of white blood cells in a population-based study (N = 717). Significant loci where replicated in an independent cohort (N = 963). We also performed a gene ontology (GO) enrichment analysis. We identified and replicated 16 CpG-sites (false discovery rate [FDR] < 0.05), at 11 independent loci including MIR21. MIR21 encodes a microRNA (miR-21) that has previously been shown to be associated with the development of heart disease. Interestingly, GDF15 mRNA contains a binding site for miR-21. Four sites were also differentially methylated in blood from participants previously diagnosed with MI and 14 enriched GO terms (FDR < 0.05, enrichment > 2) were identified, including 'cardiac muscle cell differentiation'. This study shows that GDF-15 levels are associated with differences in DNA methylation in blood cells, and a subset of the loci are also differentially methylated in participants with MI. However, there might be interactions between GDF-15 levels and methylation in other tissues not addressed in this study. These results provide novel links between GDF-15 and cardiovascular disease.
Collapse
Affiliation(s)
- Weronica E Ek
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, and
| | - Åsa K Hedman
- Department of Medical Sciences, Molecular epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 75108, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, and
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool L69 3BX, UK, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK and
| | - Cecilia M Lindgren
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK and
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK and
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular epidemiology and Science for Life Laboratory, Uppsala University, Uppsala 75108, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, and
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University Hospital, Uppsala 75185, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, and
| |
Collapse
|
41
|
Park C, Lee MY, Slivano OJ, Park PJ, Ha S, Berent RM, Fuchs R, Collins NC, Yu TJ, Syn H, Park JK, Horiguchi K, Miano JM, Sanders KM, Ro S. Loss of serum response factor induces microRNA-mediated apoptosis in intestinal smooth muscle cells. Cell Death Dis 2015; 6:e2011. [PMID: 26633717 PMCID: PMC4720888 DOI: 10.1038/cddis.2015.353] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023]
Abstract
Serum response factor (SRF) is a transcription factor known to mediate phenotypic plasticity in smooth muscle cells (SMCs). Despite the critical role of this protein in mediating intestinal injury response, little is known about the mechanism through which SRF alters SMC behavior. Here, we provide compelling evidence for the involvement of SRF-dependent microRNAs (miRNAs) in the regulation of SMC apoptosis. We generated SMC-restricted Srf inducible knockout (KO) mice and observed both severe degeneration of SMCs and a significant decrease in the expression of apoptosis-associated miRNAs. The absence of these miRNAs was associated with overexpression of apoptotic proteins, and we observed a high level of SMC death and myopathy in the intestinal muscle layers. These data provide a compelling new model that implicates SMC degeneration via anti-apoptotic miRNA deficiency caused by lack of SRF in gastrointestinal motility disorders.
Collapse
Affiliation(s)
- C Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - M Y Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
- Department of Physiology, Wonkwang Digestive Disease Research Institute and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - O J Slivano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - P J Park
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - S Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - R M Berent
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - R Fuchs
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - N C Collins
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - T J Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - H Syn
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - J K Park
- Division of Biological Science, Wonkwang University, Iksan, Jeollabuk-do, Korea
| | - K Horiguchi
- Department of Anatomy, University of Fukui Faculty of Medical Sciences, Matsuoka, Fukui, Japan
| | - J M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - K M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - S Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
42
|
Abstract
MicroRNAs (miRs) are a group of small RNAs that play a major role in post-transcriptional regulation of gene expression. In animals, many of the miRs are expressed in a conserved spatiotemporal manner. Muscle tissues, the major cellular systems involved in the locomotion and physiological functions of animals, have been one of the main sites for verification of miR targets and analysis of their developmental functions. During the determination and differentiation of muscle cells, numerous miRs bind to and repress target mRNAs in a highly specific but redundant manner. Interspecific comparisons of the sequences and expression of miRs have suggested that miR regulation became increasingly important during the course of vertebrate evolution. However, the detailed molecular interactions that have led to the highly complex morphological structures still await investigation. In this review, we will summarize the recent findings on the functional and developmental characteristics of miRs that have played major roles in vertebrate myogenesis, and discuss how the evolution of miRs is related to the morphological complexity of the vertebrates.
Collapse
|
43
|
Angelini A, Li Z, Mericskay M, Decaux JF. Regulation of Connective Tissue Growth Factor and Cardiac Fibrosis by an SRF/MicroRNA-133a Axis. PLoS One 2015; 10:e0139858. [PMID: 26440278 PMCID: PMC4595333 DOI: 10.1371/journal.pone.0139858] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/16/2015] [Indexed: 01/26/2023] Open
Abstract
Myocardial fibrosis contributes to the remodeling of heart and the loss of cardiac function leading to heart failure. SRF is a transcription factor implicated in the regulation of a large variety of genes involved in cardiac structure and function. To investigate the impact of an SRF overexpression in heart, we developed a new cardiac-specific and tamoxifen-inducible SRF overexpression mouse model by the Cre/loxP strategy. Here, we report that a high level overexpression of SRF leads to severe modifications of cardiac cytoarchitecture affecting the balance between cardiomyocytes and cardiac fibroblasts and also a profound alteration of cardiac gene expression program. The drastic development of fibrosis was characterized by intense sirius red staining and associated with an increased expression of genes encoding extracellular matrix proteins such as fibronectin, procollagen type 1α1 and type 3α1 and especially connective tissue growth factor (CTGF). Furthermore miR-133a, one of the most predominant cardiac miRNAs, is strongly downregulated when SRF is overexpressed. By comparison a low level overexpression of SRF has minor impact on these different processes. Investigation with miR-133a, antimiR-133a and AdSRF-VP16 experiments in H9c2 cardiac cells demonstrated that: 1)–miR-133a acts as a repressor of SRF and CTGF expression; 2)–a simultaneous overexpression of SRF by AdSRF-VP16 and inhibition of miR-133a by a specific antimiR increase CTGF expression; 3)–miR-133a overexpression can block the upregulation of CTGF induced by AdSRF-VP16. Taken together, these findings reveal a key role of the SRF/CTGF/miR-133a axis in the regulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Aude Angelini
- Biology of Adaptation and Ageing, Institut de Biologie Paris Seine (IBPS), DHU FAST Sorbonne Universités, UPMC Université Paris 06, Paris, France
- CNRS, UMR8256, Paris, France
- INSERM, U1164, Paris, France
| | - Zhenlin Li
- Biology of Adaptation and Ageing, Institut de Biologie Paris Seine (IBPS), DHU FAST Sorbonne Universités, UPMC Université Paris 06, Paris, France
- CNRS, UMR8256, Paris, France
- INSERM, U1164, Paris, France
| | - Mathias Mericskay
- Biology of Adaptation and Ageing, Institut de Biologie Paris Seine (IBPS), DHU FAST Sorbonne Universités, UPMC Université Paris 06, Paris, France
- CNRS, UMR8256, Paris, France
- INSERM, U1164, Paris, France
- * E-mail: (JD); (MM)
| | - Jean-François Decaux
- Biology of Adaptation and Ageing, Institut de Biologie Paris Seine (IBPS), DHU FAST Sorbonne Universités, UPMC Université Paris 06, Paris, France
- CNRS, UMR8256, Paris, France
- INSERM, U1164, Paris, France
- * E-mail: (JD); (MM)
| |
Collapse
|
44
|
Su Y, Fu Y, Zhang H, Shi Z, Zhang J, Gao L. Identification and expression of SRF targeted by miR-133a during early development of Paralichthys olivaceus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1093-1104. [PMID: 26036211 DOI: 10.1007/s10695-015-0071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/08/2015] [Indexed: 06/04/2023]
Abstract
Serum response factor (SRF) is a MADS-box transcription factor that regulates the expression of genes involved in development, metabolism, cell proliferation, and differentiation. In the present study, we cloned the full-length SRF cDNA which includes the coding region of 1503 bp, a 573-bp 5'untranslated region (UTR) and a 400-bp 3'-UTR. The deduced 501 amino acid sequence of the SRF protein contained a MADS domain and NLS at the N terminus, similar to other organisms, and it also is highly phylogenetically conserved. SRF mRNA is ubiquitously expressed in various tissues, with the highest level in the kidneys, and it is also highly expressed during the embryonic and metamorphic stages. During metamorphosis, the SRF mRNA levels are down-regulated by exogenous thyroid hormone (TH) at 17 dph and by thiourea (TU) at 29, 36, and 41 dph, whereas SRF mRNA levels were significantly up-regulated by the added exogenous TH to the TU-treated larvae at 41 dph, which indicates that thyroid hormone is essential for expression of SRF mRNA, so, higher levels of TH did not result in changes of SRF mRNA levels, while TH deficiency or inhibited by the non-specific TU toxicity cause down-regulation of SRF mRNA, which indicated that TH can indirectly affect the SRF mRNA levels. Meanwhile, using a luciferase reporter assay, we verified that SRF is a common target gene of miR-133a which is a muscle-specific microRNA (miRNA), which indicated that SRF may be involved in the signaling pathway of miRNA that regulates muscle development.
Collapse
Affiliation(s)
- Yanfang Su
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Hongmei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| | - Junling Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Lina Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| |
Collapse
|
45
|
Myocardin-related transcription factors are required for cardiac development and function. Dev Biol 2015; 406:109-16. [PMID: 26386146 DOI: 10.1016/j.ydbio.2015.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/24/2023]
Abstract
Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks.
Collapse
|
46
|
Abstract
The microRNAs and microRNA clusters have been implicated in normal cardiac development and also disease, including cardiac hypertrophy, cardiomyopathy, heart failure, and arrhythmias. Since a microRNA cluster has from two to dozens of microRNAs, the expression of a microRNA cluster could have a substantial impact on its target genes. In the present study, the configuration and distribution of microRNA clusters in the mouse genome were examined at various inter-microRNA distances. Three important microRNA clusters that are significantly impacted during adult cardiac aging, the miR-17-92, miR-106a-363, and miR-106b-25, were also examined in terms of their genomic location, RNA transcript character, sequence homology, and their relationship with the corresponding microRNA families. Multiple microRNAs derived from the three clusters potentially target various protein components of the cdc42-SRF signaling pathway, which regulates cytoskeleton dynamics associated with cardiac structure and function. The data indicate that aging impacted the expression of both guide and passenger strands of the microRNA clusters; nutrient stress also affected the expression of the three microRNA clusters. The miR-17-92, miR-106a-363, and miR-106b-25 clusters are likely to impact the Cdc42-SRF signaling pathway and thereby affect cardiac morphology and function during pathological conditions and the aging process.
Collapse
|
47
|
Forward Programming of Cardiac Stem Cells by Homogeneous Transduction with MYOCD plus TBX5. PLoS One 2015; 10:e0125384. [PMID: 26047103 PMCID: PMC4457652 DOI: 10.1371/journal.pone.0125384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/23/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adult cardiac stem cells (CSCs) express many endogenous cardiogenic transcription factors including members of the Gata, Hand, Mef2, and T-box family. Unlike its DNA-binding targets, Myocardin (Myocd)-a co-activator not only for serum response factor, but also for Gata4 and Tbx5-is not expressed in CSCs. We hypothesised that its absence was a limiting factor for reprogramming. Here, we sought to investigate the susceptibility of adult mouse Sca1+ side population CSCs to reprogramming by supplementing the triad of GATA4, MEF2C, and TBX5 (GMT), and more specifically by testing the effect of the missing co-activator, Myocd. Exogenous factors were expressed via doxycycline-inducible lentiviral vectors in various combinations. High throughput quantitative RT-PCR was used to test expression of 29 cardiac lineage markers two weeks post-induction. GMT induced more than half the analysed cardiac transcripts. However, no protein was detected for the induced sarcomeric genes Actc1, Myh6, and Myl2. Adding MYOCD to GMT affected only slightly the breadth and level of gene induction, but, importantly, triggered expression of all three proteins examined (α-cardiac actin, atrial natriuretic peptide, sarcomeric myosin heavy chains). MYOCD + TBX was the most effective pairwise combination in this system. In clonal derivatives homogenously expressing MYOCD + TBX at high levels, 93% of cardiac transcripts were up-regulated and all five proteins tested were visualized. IN SUMMARY (1) GMT induced cardiac genes in CSCs, but not cardiac proteins under the conditions used. (2) Complementing GMT with MYOCD induced cardiac protein expression, indicating a more complete cardiac differentiation program. (3) Homogeneous transduction with MYOCD + TBX5 facilitated the identification of differentiating cells and the validation of this combinatorial reprogramming strategy. Together, these results highlight the pivotal importance of MYOCD in driving CSCs toward a cardiac muscle fate.
Collapse
|
48
|
Dasgupta T, Coram RJ, Stillwagon SJ, Ladd AN. Gene Expression Analyses during Spontaneous Reversal of Cardiomyopathy in Mice with Repressed Nuclear CUG-BP, Elav-Like Family (CELF) Activity in Heart Muscle. PLoS One 2015; 10:e0124462. [PMID: 25894229 PMCID: PMC4404138 DOI: 10.1371/journal.pone.0124462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/03/2015] [Indexed: 01/05/2023] Open
Abstract
CUG-BP, Elav-like family (CELF) proteins regulate cell type- and developmental stage-specific alternative splicing in the heart. Repression of CELF-mediated splicing activity via expression of a nuclear dominant negative CELF protein in heart muscle was previously shown to induce dysregulation of alternative splicing, cardiac dysfunction, cardiac hypertrophy, and dilated cardiomyopathy in MHC-CELFΔ transgenic mice. A “mild” line of MHC-CELFΔ mice that expresses a lower level of the dominant negative protein exhibits cardiac dysfunction and myopathy at a young age, but spontaneously recovers normal cardiac function and heart size with age despite the persistence of splicing defects. To the best of our knowledge, this was the first example of a genetically induced cardiomyopathy that spontaneously recovers without intervention. In this study, we explored the basis for this recovery. We examined whether a transcriptional program regulated by serum response factor (SRF) that is dysregulated in juvenile MHC-CELFΔ mice is restored in the mild line with age, and evaluated global changes in gene expression by microarray analyses. We found that differences in gene expression between the mild line and wild type hearts are greatly reduced in older animals, including a partial recovery of SRF target gene expression. We did not find evidence of a new compensatory pathway being activated in the mild line with age, and propose that recovery may occur due to developmental stage-specific compatibility of CELF-dependent splice variants with the cellular environment of the cardiomyocyte.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ryan J. Coram
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Samantha J. Stillwagon
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Andrea N. Ladd
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
49
|
Costello P, Sargent M, Maurice D, Esnault C, Foster K, Anjos-Afonso F, Treisman R. MRTF-SRF signaling is required for seeding of HSC/Ps in bone marrow during development. Blood 2015; 125:1244-55. [PMID: 25573994 PMCID: PMC4335080 DOI: 10.1182/blood-2014-08-595603] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/30/2014] [Indexed: 12/18/2022] Open
Abstract
Chemokine signaling is important for the seeding of different sites by hematopoietic stem cells (HSCs) during development. Serum response factor (SRF) controls multiple genes governing adhesion and migration, mainly by recruiting members of the myocardin-related transcription factor (MRTF) family of G-actin-regulated cofactors. We used vav-iCre to inactivate MRTF-SRF signaling early during hematopoietic development. In both Srf- and Mrtf-deleted animals, hematopoiesis in fetal liver and spleen is intact but does not become established in fetal bone marrow. Srf-null HSC progenitor cells (HSC/Ps) fail to effectively engraft in transplantation experiments, exhibiting normal proximal signaling responses to SDF-1, but reduced adhesiveness, F-actin assembly, and reduced motility. Srf-null HSC/Ps fail to polarize in response to SDF-1 and cannot migrate through restrictive membrane pores to SDF-1 or Scf in vitro. Mrtf-null HSC/Ps were also defective in chemotactic responses to SDF-1. Srf-null HSC/Ps exhibit substantial deficits in cytoskeletal gene expression. MRTF-SRF signaling is thus critical for expression of genes required for the response to chemokine signaling during hematopoietic development.
Collapse
Affiliation(s)
| | | | | | | | - Katie Foster
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | |
Collapse
|
50
|
Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, Johnston D, Roselli E, Gillinov AM, McCurry K, Moravec C, Smith JD, Van Wagoner DR, Chung MK. Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. Circ Arrhythm Electrophysiol 2014; 8:32-41. [PMID: 25523945 DOI: 10.1161/circep.114.001632] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Prior transcriptional studies of atrial fibrillation (AF) have been limited to specific transcripts, animal models, chronic AF, right atria, or small samples. We sought to characterize the left atrial transcriptome in human AF to distinguish changes related to AF susceptibility and persistence. METHODS AND RESULTS Left atrial appendages from 239 patients stratified by coronary artery disease, valve disease, and AF history (no history of AF, AF history in sinus rhythm at surgery, and AF history in AF at surgery) were selected for genome-wide mRNA microarray profiling. Transcripts were examined for differential expression with AF phenotype group. Enrichment in differentially expressed genes was examined in 3 gene set collections: a transcription factor collection, defined by shared conserved cis-regulatory motifs, a miRNA collection, defined by shared 3' untranslated region motifs, and a molecular function collection, defined by shared Gene Ontology molecular function. AF susceptibility was associated with decreased expression of the targets of CREB/ATF family, heat-shock factor 1, ATF6, SRF, and E2F1 transcription factors. Persistent AF activity was associated with decreased expression in genes and gene sets related to ion channel function consistent with reported functional changes. CONCLUSIONS AF susceptibility was associated with decreased expression of targets of several transcription factors related to inflammation, oxidation, and cellular stress responses. In contrast, changes in ion channel expression were associated with AF activity but were limited in AF susceptibility. Our results suggest that significant transcriptional remodeling marks susceptibility to AF, whereas remodeling of ion channel expression occurs later in the progression or as a consequence of AF.
Collapse
Affiliation(s)
- Amrish Deshmukh
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - John Barnard
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Han Sun
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - David Newton
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Laurie Castel
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Gosta Pettersson
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Douglas Johnston
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Eric Roselli
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - A Marc Gillinov
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Kenneth McCurry
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Christine Moravec
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Jonathan D Smith
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - David R Van Wagoner
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.)
| | - Mina K Chung
- From the Department of Medicine, University of Chicago, IL (A.D.); Department of Quantitative Health Sciences (J.B; H.S.), Department of Molecular Cardiology (L.C., D.R.V.W., M.K.C.), and Department of Cellular and Molecular Medicine, Cleveland Clinic (J.D.S.), Lerner Research Institute, OH; Department of Cardiovascular Medicine (D.N., C.M., J.D.S., M.K.C.) and Department of Cardiovascular Medicine and Thoracic and Cardiovascular Surgery (G.P., D.J., E.R., A.M.G., K.M.), Heart and Vascular Institute, Cleveland, OH; and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, OH (C.M., J.D.S., D.R.V.W., M.K.C.).
| |
Collapse
|