1
|
Goldufsky JW, Daniels P, Williams MD, Gupta K, Lyday B, Chen T, Singh G, Kaufman HL, Zloza A, Marzo AL. Attenuated Dengue virus PV001-DV induces oncolytic tumor cell death and potent immune responses. J Transl Med 2023; 21:483. [PMID: 37468934 PMCID: PMC10357599 DOI: 10.1186/s12967-023-04344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Viral therapies developed for cancer treatment have classically prioritized direct oncolytic effects over their immune activating properties. However, recent clinical insights have challenged this longstanding prioritization and have shifted the focus to more immune-based mechanisms. Through the potential utilization of novel, inherently immune-stimulating, oncotropic viruses there is a therapeutic opportunity to improve anti-tumor outcomes through virus-mediated immune activation. PV001-DV is an attenuated strain of Dengue virus (DEN-1 #45AZ5) with a favorable clinical safety profile that also maintains the potent immune stimulatory properties characterstic of Dengue virus infection. METHODS In this study, we utilized in vitro tumor killing and immune multiplex assays to examine the anti-tumor effects of PV001-DV as a potential novel cancer immunotherapy. RESULTS In vitro assays demonstrated that PV001-DV possesses the ability to directly kill human melanoma cells lines as well as patient melanoma tissue ex vivo. Importantly, further work demonstrated that, when patient peripheral blood mononuclear cells (PBMCs) were exposed to PV001-DV, a substantial induction in the production of apoptotic factors and immunostimulatory cytokines was detected. When tumor cells were cultured with the resulting soluble mediators from these PBMCs, rapid cell death of melanoma and breast cancer cell lines was observed. These soluble mediators also increased dengue virus binding ligands and immune checkpoint receptor, PD-L1 expression. CONCLUSIONS The direct in vitro tumor-killing and immune-mediated tumor cytotoxicity facilitated by PV001-DV contributes support of its upcoming clinical evaluation in patients with advanced melanoma who have failed prior therapy.
Collapse
Affiliation(s)
- Josef W Goldufsky
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Preston Daniels
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Michael D Williams
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bruce Lyday
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Tony Chen
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Geeta Singh
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andrew Zloza
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
2
|
Ahmadzadeh M, Mohit E. Therapeutic potential of a novel IP-10-(anti-HER2 scFv) fusion protein for the treatment of HER2-positive breast cancer. Biotechnol Lett 2023; 45:371-385. [PMID: 36650341 DOI: 10.1007/s10529-022-03342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Interferon-γ-inducible protein 10 (IP-10) is a potent antitumor agent and acts by its angiostatic and immunomodulatory properties. IP-10 can target to tumor site by linking with single chain variable fragment (scFv) that recognized specific tumor antigen. In this study, we evaluated biological activity of the fusion protein including IP-10 and anti-HER2 scFv (IP-10-(anti-HER2 scFv)). RESULTS The HER2- and cell-based ELISA as well as the flow cytometry analysis demonstrated that the fusion protein specifically binds to HER2 antigen. In addition, competitive ELISA demonstrated that the fusion protein recognized the same epitope of HER2 antigen as trastuzumab. The results of MTT assay demonstrated that the growth of HER2-enriched SK-BR3 cells was inhibited in the presence of the fusion protein. Moreover, the cytotoxic effect of the fusion protein was not significantly different from that of trastuzumab. However, no significant cytotoxic effect compared to trastuzumab and anti-HER2 scFv was observed in HER2-low-expressing MDA-MB-231 cells. The obtained findings demonstrated that IP-10-(anti-HER2 scFv) can selectively reduce the cell viability in HER2+ cells. Moreover, similar inhibitory effect on growth of both SK-BR-3 and MDA-MB-231 cell lines was observed in the presence of anti-HER2 scFv protein even at high concentration after 72 h. The chemotaxis properties of the fusion protein were also analyzed by a chemotaxis assay. It was demonstrated that the fusion protein induced migration of activated T cell similar to recombinant IP-10 protein. CONCLUSIONS Our findings suggested that IP-10-(anti-HER2 scFv) fusion protein can specifically direct IP-10 to the HER2-expressing tumor cells and may act as an adjuvant along with HER2-based vaccine to gather the elicited immune response at the site of HER2-overexpressimg tumors.
Collapse
Affiliation(s)
- Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran
- Food and Drug Administration, The Ministry of Health and Medical Education, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, No. 2660, Vali-e-Asr Ave, Tehran, 1991953381, Iran.
| |
Collapse
|
3
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
4
|
A novel inflammatory response-related signature predicts the prognosis of cutaneous melanoma and the effect of antitumor drugs. World J Surg Oncol 2022; 20:263. [PMID: 35982458 PMCID: PMC9389732 DOI: 10.1186/s12957-022-02726-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/06/2022] [Indexed: 11/10/2022] Open
Abstract
Cutaneous melanoma (CM) is a skin cancer that is highly metastatic and aggressive, with a dismal prognosis. This is the first study to use inflammatory response-related genes to build a model and evaluate their predictive significance in CM. This study used public databases to download CM patients' mRNA expression profiles and clinical data to create multigene prognostic markers in the UCSC cohort. We compared overall survival (OS) between high- and low-risk groups using the Kaplan-Meier curve and determined independent predictors using Cox analysis. We also used enrichment analysis to assess immune cell infiltration fraction and immune pathway-related activity using KEGG enrichment analysis. Furthermore, we detected prognostic genes' mRNA and protein expression in CM and normal skin tissues using qRT-PCR and immunohistochemistry. Finally, we developed a 5-gene predictive model that showed that patients in the high-risk group had a considerably shorter OS than those in the low-risk group. The analysis of the receiver operating characteristic (ROC) curve proved the model's predictive ability. We also conducted a drug sensitivity analysis and discovered that the expression levels of prognostic genes were substantially linked with cancer cell sensitivity to antitumor medicines. The findings show that the model we developed, which consists of five inflammatory response-related genes, can be used to forecast the prognosis and immunological state of CM, giving personalized and precision medicine a new goal and direction.
Collapse
|
5
|
High Expression of Interferon Pathway Genes CXCL10 and STAT2 Is Associated with Activated T-Cell Signature and Better Outcome of Oral Cancer Patients. J Pers Med 2022; 12:jpm12020140. [PMID: 35207629 PMCID: PMC8877377 DOI: 10.3390/jpm12020140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
To improve the survival rate of cancer patients, biomarkers for both early diagnosis and patient stratification for appropriate therapeutics play crucial roles in precision oncology. Investigation of altered gene expression and the relevant molecular pathways in cancer cells are helpful for discovering such biomarkers. In this study, we explore the potential prognostic biomarkers for oral cancer patients through systematically analyzing five oral cancer transcriptomic data sets (TCGA, GSE23558, GSE30784, GSE37991, and GSE138206). Gene Set Enrichment Analysis (GSEA) was individually applied to each data set and the upregulated Hallmark molecular pathways of each data set were intersected to generate 13 common pathways including interferon-α/γ pathways. Among the 5 oral cancer data sets, 43 interferon pathway genes were commonly upregulated and 17 genes exhibited prognostic values in TCGA cohort. After validating in another oral cancer cohort (GSE65858), high expressions of C-X-C motif chemokine ligand 10 (CXCL10) and Signal transducer and activator of transcription 2 (STAT2) were confirmed to be good prognostic biomarkers. GSEA of oral cancers stratified by CXCL10/STAT2 expression showed that activation of T-cell pathways and increased tumor infiltration scores of Type 1 T helper (Th1) and CD8+ T cells were associated with high CXCL10/STAT2 expression. These results suggest that high CXCL10/STAT2 expression can predict a favorable outcome in oral cancer patients.
Collapse
|
6
|
Song W, Yin H, Han C, Mao Q, Tang J, Ji Z, Yan X, Wang L, Liu S, Ai C. The role of CXCL10 in prognosis of patients with colon cancer and tumor microenvironment remodeling. Medicine (Baltimore) 2021; 100:e27224. [PMID: 34559115 PMCID: PMC10545341 DOI: 10.1097/md.0000000000027224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUNG Tumor microenvironment (TME) has gradually emerged as an important research topic in the fight against cancer. The immune system is a major contributing factor in TME, and investigations have revealed that tumors are partially infiltrated with numerous immune cell subsets. METHOD We obtained transcriptome RNA-seq data from the the Cancer Genome Atlas databases for 521 patients with colon adenocarcinoma (COAD). ESTIMATE algorithms are then used to estimate the fraction of stromal and immune cells in COAD samples. RESULT A total of 1109 stromal-immune score-related differentially expressed genes were identified and used to generate a high-confidence protein-protein interaction network and univariate COX regression analysis. C-X-C motif chemokine 10 (CXCL10) was identified as the core gene by intersection analysis of data from protein-protein interaction network and univariate COX regression analysis. Then, for CXCL10, we performed gene set enrichment analysis, survival analysis and clinical analysis, and we used CIBERSORT algorithms to estimate the proportion of tumor-infiltrating immune cells in COAD samples. CONCLUSION We discovered that CXCL10 levels could be effective for predicting the prognosis of COAD patients as well as a clue that the status of TME is transitioning from immunological to metabolic activity, which provided additional information for COAD therapies.
Collapse
Affiliation(s)
- Weiwei Song
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Hongli Yin
- German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Chenguang Han
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
- College of Nankai University, Tianjin, China
| | - Qiantai Mao
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Jing Tang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Zhaoshuai Ji
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Xu Yan
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Lan Wang
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Shengnan Liu
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| | - Chao Ai
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University. Beijing, China
| |
Collapse
|
7
|
Mnatsakanyan H, Salmeron-Sanchez M, Rico P. Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast-Like Cells. Adv Biol (Weinh) 2021; 5:e2000569. [PMID: 33969645 DOI: 10.1002/adbi.202000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Definitive hematopoietic stem cells (HSCs) derive from specialized regions of the endothelium known as the hemogenic endothelium (HE) during embryonic developmental processes. This knowledge opens up new possibilities for designing new strategies to obtain HSCs in vitro from pluripotent stem cells (PSCs). Previous advances in this field show that the Wnt/β-catenin signaling pathway plays a crucial role in PSC-derived HSC formation. In this work, lithium, a GSK3 inhibitor, is identified as an element capable of stabilizing β-catenin and inducing embryonic stem cells (ESCs) differentiation in hemangioblast-like cells, highly consistent with the role of Wnt agonists on ESC differentiation. ESCs treated with 10 mm lithium express CD31+, SCA-1+, Nkx2-5+, CD34+, and FLK1+ cells characteristic of the hemangioblast cells that precede HE development. However, 10 mm Li treated cells remain arrested in a hemangioblast-like phase, which switched into the expression of HE markers after stimulation with maturation medium. The ability of lithium-treated ESCs to further derive into HE is confirmed after defined maturation, resulting in a rapid increase in cells positive for the HE markers RUNX1 and SOX17. The results represent a novel strategy for generating HSC precursors in vitro as a multipotent source of stem cells for blood disease therapies.
Collapse
Affiliation(s)
- Hayk Mnatsakanyan
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Manuel Salmeron-Sanchez
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5 Pabellón 11, Madrid, 28029, Spain.,Centre for the Cellular Microenvironment, University of Glasgow, Glasgow, G12 8LT, United Kingdom
| | - Patricia Rico
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5 Pabellón 11, Madrid, 28029, Spain
| |
Collapse
|
8
|
Kazemi Fard T, Tavakoli S, Ahmadi R, Moradi N, Fadaei R, Mohammadi A, Fallah S. Evaluation of IP10 and miRNA 296-a Expression Levels in Peripheral Blood Mononuclear Cell of Coronary Artery Disease Patients and Controls. DNA Cell Biol 2020; 39:1678-1684. [PMID: 32716219 DOI: 10.1089/dna.2020.5650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coronary artery disease (CAD) is the main cause of death worldwide. Atherosclerosis, the leading underlying cause of CAD, is a progressive inflammatory disease. miRNAs play a substantial role in inflammation. The aim of this study was to investigate the associations of peripheral blood mononuclear cells (PBMCs) gene expression of IP10 and miRNA 296-a and serum levels of IP10 and serum inflammatory cytokines interleukin-6 (IL-6) in CAD patients and controls. This is a case-control study conducted on 82 angiography confirmed CAD patients and 82 controls. PBMC expressions of miR-296a and IP10 were evaluated by real-time method, and serum concentrations of IL-6 and TNF-α were evaluated by enzyme-linked immunosorbent assay in the study population. A significant increase was found for serum IP10, IL-6, and TNF-α levels, and PBMC expression of IP10 and miRNA 296-a genes expression of CAD as comparison with controls. No significant correlation was found between IP10 gene expression and miRNA 296-a. A significant positive correlation was found between PBMC gene expression level of IP10 and serum concentrations of IP10 and cytokines IL-6 and TNF-α levels. Taking together, in PBMC of CAD patients, the IP10 and 296-a miRNA genes expression levels were increased significantly than controls. IP10, IL-6, and TNF-α levels in CAD patients were more than those in controls significantly. Concerning positive relationship between miRNA 296-a gene expression level and serum concentrations of IL-6 and TNF-α in CAD patients, it is proposed that IL-6 and TNF-α inhibitor could be the main targets of miRNA 296a and, thereby the IL-6 and TNF-α levels were increased; however, further study is needed.
Collapse
Affiliation(s)
- Toktam Kazemi Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samareh Tavakoli
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nariman Moradi
- Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asghar Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ahmadzadeh M, Farshdari F, Behdani M, Nematollahi L, Mohit E. Cloning, Expression and One-Step Purification of a Novel IP-10-(anti-HER2 scFv) Fusion Protein in Escherichia coli. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10100-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Gao J, Wu L, Wang S, Chen X. Role of Chemokine (C-X-C Motif) Ligand 10 (CXCL10) in Renal Diseases. Mediators Inflamm 2020; 2020:6194864. [PMID: 32089645 PMCID: PMC7025113 DOI: 10.1155/2020/6194864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/02/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C ligand 10 (CXCL10), also known as interferon-γ-inducible protein 10 (IP-10), exerts biological function mainly through binding to its specific receptor, CXCR3. Studies have shown that renal resident mesangial cells, renal tubular epithelial cells, podocytes, endothelial cells, and infiltrating inflammatory cells express CXCL10 and CXCR3 under inflammatory conditions. In the last few years, strong experimental and clinical evidence has indicated that CXCL10 is involved in the development of renal diseases through the chemoattraction of inflammatory cells and facilitation of cell growth and angiostatic effects. In addition, CXCL10 has been shown to be a significant biomarker of disease severity, and it can be used as a prognostic indicator for a variety of renal diseases, such as renal allograft dysfunction and lupus nephritis. In this review, we summarize the structures and biological functions of CXCL10 and CXCR3, focusing on the important role of CXCL10 in the pathogenesis of kidney disease, and provide a theoretical basis for CXCL10 as a potential biomarker and therapeutic target in human kidney disease.
Collapse
Affiliation(s)
- Jie Gao
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road 324, Jinan 250000, China
| | - Lingling Wu
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Siyang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing Key Laboratory of Kidney Disease, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Fuxing Road 28, Beijing 100853, China
| |
Collapse
|
11
|
Chu H, Jia B, Qiu X, Pan J, Sun X, Wang Z, Zhao J. Investigation of proliferation and migration of tongue squamous cell carcinoma promoted by three chemokines, MIP-3α, MIP-1β, and IP-10. Onco Targets Ther 2017; 10:4193-4203. [PMID: 28919775 PMCID: PMC5587132 DOI: 10.2147/ott.s132855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aim of this work was to investigate the role of chemokines in proliferation and migration of tongue squamous cell carcinoma (TSCC). Out of the 80 cytokines surveyed by a human cytokine antibody array, three chemokines, macrophage inflammatory protein-3α (MIP-3α), macrophage inflammatory protein-1β (MIP-1β), and interferon gamma-induced protein 10 (IP-10), showed elevated expression in TSCC cells (CAL-27 and UM-1), compared to the oral mucosal epithelial cells. Immunohistochemistry confirmed the high level of expression of MIP-3α in the TSCC tissues, especially in the high clinical stages. Furthermore, Western blot and immunofluorescence staining indicated that C-C chemokine receptor type 5, C-C chemokine receptor type 6, and C-X-C motif chemokine receptor 3, which are the receptors for MIP-3α, MIP-1β, and IP-10, respectively, were expressed in the TSCC cells. Viability assay showed MIP-3α, MIP-1β, and IP-10 led to the proliferation of the CAL-27 cells. Interestingly, MIP-1β and IP-10 also induced apoptosis in the TSCC cells. Transwell invasion assay showed MIP-3α and IP-10 could increase the invasive capability of TSCC cells; consistently, the enzymatic activities of matrix metalloproteinase-2 and matrix metalloproteinase-9 increased in the MIP-3α- and IP-10-treated cells. In summary, our results indicate the expression of MIP-3α, MIP-1β, and IP-10 increased in the TSCC cells. The elevated expression of MIP-3α and IP-10 promoted proliferation and migration of TSCC. These chemokines, along with their receptors, could be potential biomarkers and therapeutic targets for TSCC, especially for those in the high clinical stages.
Collapse
Affiliation(s)
- Hongxing Chu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoling Qiu
- Department of Endodontology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Pan
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Sun
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Zhao
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Prediction of biomarkers of oral squamous cell carcinoma using microarray technology. Sci Rep 2017; 7:42105. [PMID: 28176846 PMCID: PMC5296717 DOI: 10.1038/srep42105] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Microarray data is used to screen the genes of oral squamous cell carcinoma (OSCC). Microarray data of OSCC and normal tissues were downloaded from GEO database and analyzed with Benjamini-Hochberg (BH) method. Differentially expressed genes (DEGs) were then uploaded on DAVID database to process enrichment analysis. Target genes were finally chosen for verification experiment in vitro and in vivo. 78 DEGs were selected from 54676 genes, including 46 up- and 32 down- regulation. GO term showed that these genes were related to epidermal growth (biological processes), extracellular region (cellular components) and cytokines activity (molecular function). Protein network interaction demonstrated that OSCC was closely allied to the five key genes including CXCL10, IFI6, IFI27, ADAMTS2 and COL5A1, which was consistent with the RT-PCR data. High-expressed gene CXCL10 was chosen for further cell experiment, and the results indicated that CXCL10 can promote the proliferation, migration and invasion of normal cells and inhibited the cancer cells after si-RNA transfection. Moreover, it has been proven that CXCL10 was possibly related to the occurrence and development of OSCC. Understanding the regulation of OSCC expression will shed light on the screening of cancer biomarker.
Collapse
|
13
|
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. Proteomics Clin Appl 2016; 9:1035-52. [PMID: 26768311 DOI: 10.1002/prca.201500106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism. EXPERIMENTAL DESIGN The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection. RESULTS We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes. CONCLUSION AND CLINICAL RELEVANCE Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jelena S Bezbradica
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mireya G Ramos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie B Conant
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jennifer J Gray
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mu Zheng
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
14
|
Zhou Y, Xu F, Tao F, Feng D, Ling B, Qian L, Yang X, Wang Q, Wang H, Zhao W, Cheng Y, Shan G, Kalvakolanu DV, Xiao W. GRIM-19 Restores Cervical Cancer Cell Senescence by Repressing hTERT Transcription. J Interferon Cytokine Res 2016; 36:506-15. [PMID: 27142689 DOI: 10.1089/jir.2015.0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
High telomerase activity promotes tumor growth by stabilizing damaged chromosomes and their mitotic replication. Overactivation of telomerase activity has been reported in cervical cancer, a malignancy caused by high-risk human papillomaviruses (HR-HPVs). The HR-HPV E6 can activate hTERT promoter by interacting with E6AP or other binding proteins and by stabilizing the interaction between hTERT and E6AP. GRIM-19 is a novel tumor suppressor that affects multiple targets in a cell to regulate growth. We have previously reported the interaction of GRIM-19 with 18E6 and E6AP to disrupt the E6/E6AP complex and increase the autoubiquitination of E6AP. In this study, we characterized the interaction of GRIM-19 with 16E6 (an oncoprotein produced by HPV16) and identified the binding sites that mediate this interaction. We also found that GRIM-19 expression in cervical cancer cells could inhibit telomerase activity by inhibiting the transactivation of the hTERT promoter by E6, thereby promoting cervical cancer cell senescence. Moreover, we identified a negative correlation between GRIM-19 and hTERT expression in cervical cancer tissues. Suppression of GRIM-19 and induction of hTERT levels were associated with lymph node metastasis, advanced clinical stage, and poor prognosis. This study identified another important novel antitumor molecular link associated with GRIM-19 in the tumorigenesis.
Collapse
Affiliation(s)
- Ying Zhou
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Fei Xu
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Feng Tao
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Dingqing Feng
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Bin Ling
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Lili Qian
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Xia Yang
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Qingyuan Wang
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Huiyan Wang
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Weidong Zhao
- 1 Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Yong Cheng
- 2 Department of Oncological Radiotherapy, Anhui Provincial Hospital Affiliated to Anhui Medical University , Hefei, China
| | - Ge Shan
- 3 Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| | - Dhan V Kalvakolanu
- 4 Department of Microbiology and Immunology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | - Weihua Xiao
- 3 Hefei National Laboratory for Physical Sciences, Microscale and School of Life Sciences, University of Science and Technology of China , Hefei, Anhui, China
| |
Collapse
|
15
|
Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clin Sci (Lond) 2016; 130:463-78. [DOI: 10.1042/cs20150666] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers.
Collapse
|
16
|
Huang J, Xu N, Pan J. A SNP in the porcine chemokine (C-X-C motif) ligand 10 gene is associated with blood hemoglobin concentration. Anim Genet 2015; 47:134-5. [PMID: 26498738 DOI: 10.1111/age.12345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Jing Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Ningying Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhi Pan
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| |
Collapse
|
17
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
18
|
Saleiro D, Mehrotra S, Kroczynska B, Beauchamp EM, Lisowski P, Majchrzak-Kita B, Bhagat TD, Stein BL, McMahon B, Altman JK, Kosciuczuk EM, Baker DP, Jie C, Jafari N, Thompson CB, Levine RL, Fish EN, Verma AK, Platanias LC. Central role of ULK1 in type I interferon signaling. Cell Rep 2015; 11:605-17. [PMID: 25892232 DOI: 10.1016/j.celrep.2015.03.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022] Open
Abstract
We provide evidence that the Unc-51-like kinase 1 (ULK1) is activated during engagement of the type I interferon (IFN) receptor (IFNR). Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE) and IFNγ activation site (GAS) elements and controls expression of key IFN-stimulated genes (ISGs). We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK) and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Swarna Mehrotra
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, 05-552 Jastrzebiec n/Warsaw, Poland; iPS Cell-Based Disease Modeling Group, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13092 Berlin, Germany
| | - Beata Majchrzak-Kita
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON M5G 2M1, Canada
| | - Tushar D Bhagat
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brandon McMahon
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Darren P Baker
- Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Chunfa Jie
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nadereh Jafari
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, and Leukemia Service, Memorial Sloan Kettering Cancer Center; and Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON M5G 2M1, Canada
| | - Amit K Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
19
|
Aoyama Y, Kobayashi K, Morishita Y, Maeda K, Murohara T. Wnt11 gene therapy with adeno-associated virus 9 improves the survival of mice with myocarditis induced by coxsackievirus B3 through the suppression of the inflammatory reaction. J Mol Cell Cardiol 2015; 84:45-51. [PMID: 25886696 DOI: 10.1016/j.yjmcc.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 04/03/2015] [Accepted: 04/09/2015] [Indexed: 01/09/2023]
Abstract
The wnt signaling pathway plays important roles in development and in many diseases. Recently several reports suggest that non-canonical Wnt proteins contribute to the inflammatory response in adult animals. However, the effects of Wnt proteins on virus-induced myocarditis have not been explored. Here, we investigated the effect of Wnt11 protein in a model of myocarditis induced by coxsackievirus B3 (CVB3) using recombinant adeno-associated virus 9 (rAAV9). The effect of Wnt11 gene therapy on a CVB3-induced myocarditis model was examined using male BALB/c mice. Mice received a single intravenous injection of either rAAV9-Wnt11 or rAAV9-LacZ 2 weeks before intraperitoneal administration of CVB3. Intravenous injection of the rAAV9 vector resulted in efficient, durable, and relatively cardiac-specific transgene expression. Survival was significantly greater among rAAV9-Wnt11 treated mice than among mice treated with rAAV9-LacZ (87.5% vs. 54.1%, P < 0.05). Wnt11 expression also reduced the infiltration of inflammatory cells, necrosis of the myocardium, and suppressed the mRNA expression of inflammatory cytokines. This is the first report to show that Wnt11 expression improves the survival of mice with CVB3-induced myocarditis. AAV9-mediated Wnt11 gene therapy produces beneficial effects on cardiac function and increases the survival of mice with CVB3-induced myocarditis through the suppression of both infiltration of inflammatory cells and gene expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Yutaka Aoyama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466, Japan
| | - Koichi Kobayashi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466, Japan.
| | - Yoshihiro Morishita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466, Japan
| | - Kengo Maeda
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466, Japan
| |
Collapse
|
20
|
Andrographolide induces vascular smooth muscle cell apoptosis through a SHP-1-PP2A-p38MAPK-p53 cascade. Sci Rep 2014; 4:5651. [PMID: 25007834 PMCID: PMC4090621 DOI: 10.1038/srep05651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 06/24/2014] [Indexed: 02/06/2023] Open
Abstract
The abnormal growth of vascular smooth muscle cells (VSMCs) is considered a critical pathogenic process in inflammatory vascular diseases. We have previously demonstrated that protein phosphatase 2 A (PP2A)-mediated NF-κB dephosphorylation contributes to the anti-inflammatory properties of andrographolide, a novel NF-κB inhibitor. In this study, we investigated whether andrographolide causes apoptosis, and characterized its apoptotic mechanisms in rat VSMCs. Andrographolide activated the p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. Phosphorylated p53 subsequently transactivated the expression of Bax, a pro-apoptotic protein. Transfection with pp2a small interfering RNA (siRNA) suppressed andrographolide-induced p38MAPK activation, p53 phosphorylation, and caspase 3 activation. Andrographolide also activated the Src homology 1 domain-containing protein tyrosine phosphatase (SHP-1), and induced PP2A dephosphorylation, both of which were inhibited by the SHP-1 inhibitor sodium stibogluconate (SSG) or shp-1 siRNA. SSG or shp-1 siRNA prevented andrographolide-induced apoptosis. These results suggest that andrographolide activates the PP2A-p38MAPK-p53-Bax cascade, causing mitochondrial dysfunction and VSMC death through an SHP-1-dependent mechanism.
Collapse
|
21
|
Gao J, Gao J, Qian L, Wang X, Wu M, Zhang Y, Ye H, Zhu S, Yu Y, Han W. Activation of p38-MAPK by CXCL4/CXCR3 axis contributes to p53-dependent intestinal apoptosis initiated by 5-fluorouracil. Cancer Biol Ther 2014; 15:982-91. [PMID: 24800927 DOI: 10.4161/cbt.29114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chemotherapy-induced mucositis (CIM) is a major does limiting side-effect of chemoagents such as 5-fluorouracil (5-FU). Molecules involved in this disease process are still not fully understood. We proposed that the homeostatically regulated genes during CIM may participate in the disease. A cluster of such genes were previously identified by expression gene-array from the mouse jejunum in 5-FU-induced mucositis model. Here, we report that CXCL4 is such a homeostatically regulated gene and serves as a new target for the antibody treatment of CIM. CXCL4 and its receptor CXCR3 were confirmed at both the gene and protein levels to be homeostatically regulated during 5-FU-induced mucositis. Using of CXCL4 neutralizing monoclonal antibody (CXCL4mab) decreased the incidence, severity, and duration of the chemotherapy-induced diarrhea, the major symptom of CIM, in a 5-FU mouse CIM model. Mechanistically, CXCL4mab reduced the apoptosis of the crypt epithelia by suppression of the 5-FU-induced expression of p53 and Bax through its receptor CXCR3. The downstream signaling pathway of CXCL4 in activation of the epithelial apoptosis was identified in an intestinal epithelial cell line (IEC-6). CXCL4 activated the phosphorylation of p38 MAPK, which mediated the stimulated expression of p53 and Bax, and resulted in the ultimate activation of Caspase-8, -9, and -3. Taken together, activation of CXCL4 expression by 5-FU in mice participates in 5-FU-induced intestinal mucositis through upregulation of p53 via activation of p38-MAPK, and CXCL4mab is potentially beneficial in preventing CIM in the intestinal tract.
Collapse
Affiliation(s)
- Jing Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Jin Gao
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Lan Qian
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Xia Wang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Mingyuan Wu
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yang Zhang
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| | - Shunying Zhu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology; School of Agriculture and Biology; Shanghai Jiao Tong University; Shanghai, PR China
| | - Wei Han
- Laboratory of Regeneromics; School of Pharmacy; Shanghai Jiao Tong University; Shanghai, PR China
| |
Collapse
|
22
|
Huang J, Ma G, Fu L, Jia H, Zhu M, Li X, Zhao S. Pseudorabies viral replication is inhibited by a novel target of miR-21. Virology 2014; 456-457:319-28. [DOI: 10.1016/j.virol.2014.03.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
23
|
Andrographolide, a Novel NF- κ B Inhibitor, Induces Vascular Smooth Muscle Cell Apoptosis via a Ceramide-p47phox-ROS Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:821813. [PMID: 24489592 PMCID: PMC3893871 DOI: 10.1155/2013/821813] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/04/2013] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is linked with the development of many cardiovascular complications. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in the development of atherosclerosis. Accordingly, the apoptosis of VSMCs, which occurs in the progression of vascular proliferation, may provide a beneficial strategy for managing cardiovascular diseases. Andrographolide, a novel nuclear factor-κB inhibitor, is the most active and critical constituent isolated from the leaves of Andrographis paniculata. Recent studies have indicated that andrographolide is a potential therapeutic agent for treating cancer through the induction of apoptosis. In this study, the apoptosis-inducing activity and mechanisms in andrographolide-treated rat VSMCs were characterized. Andrographolide significantly induced reactive oxygen species (ROS) formation, p53 activation, Bax, and active caspase-3 expression, and these phenomena were suppressed by pretreating the cells with N-acetyl-L-cysteine, a ROS scavenger, or diphenylene iodonium, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) inhibitor. Furthermore, p47phox, a Nox subunit protein, was phosphorylated in andrographolide-treated rat VSMCs. However, pretreatment with 3-O-methyl-sphingomyelin, a neutral sphingomyelinase inhibitor, significantly inhibited andrographolide-induced p47phox phosphorylation as well as Bax and active caspase-3 expression. Our results collectively demonstrate that andrographolide-reduced cell viability can be attributed to apoptosis in VSMCs, and this apoptosis-inducing activity was associated with the ceramide-p47phox-ROS signaling cascade.
Collapse
|
24
|
Guerriero E, Capone F, Rusolo F, Colonna G, Castello G, Costantini S. Dissimilar cytokine patterns in different human liver and colon cancer cell lines. Cytokine 2013; 64:584-9. [PMID: 24064000 DOI: 10.1016/j.cyto.2013.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/20/2013] [Accepted: 09/01/2013] [Indexed: 12/14/2022]
Abstract
An accurate and simultaneous estimate of cellular levels of a large cytokine number is very useful to obtain information about an organ dysfunction leading to cancer because through the understanding of the evolution of cytokine patterns we can recognize and predict the disease progression. Cancer cell lines are commonly used to study the cancer microenvironment, to analyze their chemosensitivity and carcinogenesis as well as to test in vitro the effect of molecules, such as drugs or anti-oxidants, on the inflammation status and its progression. We noted that various cell lines commonly used as a model for studies on liver and colon cancer possess different patterns of cytokines. This aspect may generate data not comparable in laboratories using different cell lines; thus, to investigate the origin of these abnormalities we compared the cell lines HepG2 and Huh7, and HT-29 and HCT-116, for liver and colon cancer, respectively. In this context we have evaluated and compared the levels of cytokines, chemokines and growth factors in the supernatants of these cellular lines. Our aim was to identify what cytokines were significantly different correlating similarities and differences to the specific inflammation status of each cellular model of cancer.
Collapse
Affiliation(s)
- Eliana Guerriero
- Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Italy
| | | | | | | | | | | |
Collapse
|
25
|
De Schutter T, Andrei G, Topalis D, Naesens L, Snoeck R. Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage. BMC Med Genomics 2013; 6:18. [PMID: 23702334 PMCID: PMC3681722 DOI: 10.1186/1755-8794-6-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/17/2013] [Indexed: 12/05/2022] Open
Abstract
Background Cidofovir (CDV) proved efficacious in treatment of human papillomaviruses (HPVs) hyperplasias. Antiproliferative effects of CDV have been associated with apoptosis induction, S-phase accumulation, and increased levels of tumor suppressor proteins. However, the molecular mechanisms for the selectivity and antitumor activity of CDV against HPV-transformed cells remain unexplained. Methods We evaluated CDV drug metabolism and incorporation into cellular DNA, in addition to whole genome gene expression profiling by means of microarrays in two HPV+ cervical carcinoma cells, HPV- immortalized keratinocytes, and normal keratinocytes. Results Determination of the metabolism and drug incorporation of CDV into genomic DNA demonstrated a higher rate of drug incorporation in HPV+ tumor cells and immortalized keratinocytes compared to normal keratinocytes. Gene expression profiling clearly showed distinct and specific drug effects in the cell types investigated. Although an effect on inflammatory response was seen in all cell types, different pathways were identified in normal keratinocytes compared to immortalized keratinocytes and HPV+ tumor cells. Notably, Rho GTPase pathways, LXR/RXR pathways, and acute phase response signaling were exclusively activated in immortalized cells. CDV exposed normal keratinocytes displayed activated cell cycle regulation upon DNA damage signaling to allow DNA repair via homologous recombination, resulting in genomic stability and survival. Although CDV induced cell cycle arrest in HPV- immortalized cells, DNA repair was not activated in these cells. In contrast, HPV+ cells lacked cell cycle regulation, leading to genomic instability and eventually apoptosis. Conclusions Taken together, our data provide novel insights into the mechanism of action of CDV and its selectivity for HPV-transformed cells. The proposed mechanism suggests that this selectivity is based on the inability of HPV+ cells to respond to DNA damage, rather than on a direct anti-HPV effect. Since cell cycle control is deregulated by the viral oncoproteins E6 and E7 in HPV+ cells, these cells are more susceptible to DNA damage than normal keratinocytes. Our findings underline the therapeutic potential of CDV for HPV-associated malignancies as well as other neoplasias.
Collapse
Affiliation(s)
- Tim De Schutter
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
26
|
Abstract
Porphyromonas gingivalis is a major pathogen in periodontal disease and is associated with immune dysbiosis. In this study, we found that P. gingivalis did not induce the expression of the T-cell chemokine IP-10 (CXCL10) from neutrophils, peripheral blood mononuclear cells (PBMCs), or gingival epithelial cells. Furthermore, P. gingivalis suppressed gamma interferon (IFN-γ)-stimulated release of IP-10, ITAC (CXCL11), and Mig (CXCL9) from epithelial cells and inhibited IP-10 secretion in a mixed infection with the otherwise stimulatory Fusobacterium nucleatum. Inhibition of chemokine expression occurred at the level of gene transcription and was associated with downregulation of interferon regulatory factor 1 (IRF-1) and decreased levels of Stat1. Ectopic expression of IRF-1 in epithelial cells relieved P. gingivalis-induced inhibition of IP-10 release. Direct contact between P. gingivalis and epithelial cells was not required for IP-10 inhibition. These results highlight the immune-disruptive potential of P. gingivalis. Suppression of IP-10 and other Th1-biasing chemokines by P. gingivalis may perturb the balance of protective and destructive immunity in the periodontal tissues and facilitate the pathogenicity of oral microbial communities.
Collapse
|
27
|
Matthews GM, Newbold A, Johnstone RW. Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 2013; 116:165-97. [PMID: 23088871 DOI: 10.1016/b978-0-12-394387-3.00005-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Histone deacetylase inhibitors (HDACi) can elicit a range of biological responses that impede the growth and/or survival of tumor cells. Depending on the physiological context, HDACi can induce apoptosis via two well-defined apoptotic pathways; the intrinsic/mitochondrial pathway and the death receptor (DR)/extrinsic pathway. A number of groups have demonstrated that overexpression of prosurvival Bcl-2 family members significantly reduces HDACi-mediated tumor cell death and therapeutic efficacy in preclinical models. In many cases, HDACi activate the intrinsic pathway via upregulation of a number of proapoptotic BH3-only Bcl-2 family genes including Bim, Bid, and Bmf. Additionally, HDACi can engage the extrinsic pathway through upregulation of DR expression, reductions in c-FLIP, and upregulation of ligands such as TRAIL. Overall, it appears that activation of the intrinsic apoptotic pathway is the predominant mechanism of HDACi-induced tumor cell death; however, the DR pathway may also be engaged, either to amplify the apoptotic signal through the intrinsic pathway or to directly induce cell death.
Collapse
Affiliation(s)
- Geoffrey M Matthews
- Cancer Therapeutics Program, Gene Regulation Laboratory, The Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Victoria, Australia
| | | | | |
Collapse
|
28
|
Sahin H, Borkham-Kamphorst E, do O NT, Berres ML, Kaldenbach M, Schmitz P, Weiskirchen R, Liedtke C, Streetz KL, Maedler K, Trautwein C, Wasmuth HE. Proapoptotic effects of the chemokine, CXCL 10 are mediated by the noncognate receptor TLR4 in hepatocytes. Hepatology 2013; 57:797-805. [PMID: 22996399 DOI: 10.1002/hep.26069] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/28/2012] [Indexed: 01/10/2023]
Abstract
UNLABELLED Aberrant expression of the chemokine CXC chemokine ligand (CXCL)10 has been linked to the severity of hepatitis C virus (HCV)-induced liver injury, but the underlying molecular mechanisms remain unclear. In this study, we describe a yet-unknown proapoptotic effect of CXCL10 in hepatocytes, which is not mediated through its cognate chemokine receptor, but the lipopolysaccharide receptor Toll-like receptor 4 (TLR4). To this end, we investigated the link of CXCL10 expression with apoptosis in HCV-infected patients and in murine liver injury models. Mice were treated with CXCL10 or neutralizing antibody to systematically analyze effects on hepatocellular apoptosis in vivo. Direct proapoptotic functions of CXCL10 on different liver cell types were evaluated in detail in vitro. The results showed that CXCL10 expression was positively correlated with liver cell apoptosis in humans and mice. Neutralization of CXCL10 ameliorated concanavalin A-induced tissue injury in vivo, which was strongly associated with reduced liver cell apoptosis. In vitro, CXCL10 mediated the apoptosis of hepatocytes involving TLR4, but not CXC chemokine receptor 3 signaling. Specifically, CXCL10 induced long-term protein kinase B and Jun N-terminal kinase activation, leading to hepatocyte apoptosis by caspase-8, caspase-3, and p21-activated kinase 2 cleavage. Accordingly, systemic application of CXCL10 led to TLR4-induced liver cell apoptosis in vivo. CONCLUSION The results identify CXCL10 and its noncognate receptor, TLR4, as a proapoptotic signaling cascade during liver injury. Antagonism of the CXCL10/TLR4 pathway might be a therapeutic option in liver diseases associated with increased apoptosis.
Collapse
Affiliation(s)
- Hacer Sahin
- Medical Department III and University Hospital Aachen, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sidahmed AME, León AJ, Bosinger SE, Banner D, Danesh A, Cameron MJ, Kelvin DJ. CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro. Cytokine 2012; 59:433-41. [PMID: 22652417 PMCID: PMC7129786 DOI: 10.1016/j.cyto.2012.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 01/08/2023]
Abstract
CXCL10 is part of the group of interferon-stimulated genes and it plays an important role during different viral infections by inducing cell activation, chemotaxis and lymphocyte priming toward the Th1 phenotype. In this study, we investigated in vitro the effects of CXCL10 in activated human primary T lymphocytes in terms of apoptosis or survival, and delineated the signaling pathways that are involved. CXCL10, in combination with IL-2 and/or IFNα, induces apoptosis in T lymphocytes. Moreover, CXCL10-induced activation of CXCR3 also triggers pro-survival signals that can be blocked by pertussis toxin. The analysis of the downstream signaling kinases shows that apoptosis is p38 MAPK-dependent and the pro-survival signals rely on the sustained activation of PI3K and the transient activation of Akt. On the other hand, the transient activation of p44/p42 ERK did not have an impact on T lymphocyte survival. We propose an immunological model in which CXCL10, together with other co-stimulating cytokines, participates in the activation of T lymphocytes, promotes survival and expansion of certain lymphocyte subsets, and induces chemotaxis toward the infected tissues. On the other hand, CXCL10 might contribute to the triggering of apoptosis in other subsets of T lymphocytes, including those lymphocytes that were transiently activated but later lacked the appropriate sets of specific co-stimulating signals to ensure their survival.
Collapse
Affiliation(s)
- Abubaker M E Sidahmed
- Division of Experimental Therapeutics, Toronto General Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Yang LL, Wang BQ, Chen LL, Luo HQ, Wu JB. CXCL10 enhances radiotherapy effects in HeLa cells through cell cycle redistribution. Oncol Lett 2011; 3:383-386. [PMID: 22740916 DOI: 10.3892/ol.2011.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/11/2011] [Indexed: 11/06/2022] Open
Abstract
Radiotherapy is a crucial treatment for cervical cancer, the second most common type of cancer in women worldwide. In this study, we investigated the effects of CXC chemokine ligand 10 (CXCL10) gene therapy combined with radiotherapy on cervical cancer using HeLa cells. TUNEL assay revealed that the apoptotic rate in the combined treatment of CXCL10 gene therapy and radiotherapy was greatly increased compared with that of CXCL10 or radiotherapy alone. Flow cytometry showed that CXCL10 overexpression in HeLa cells resulted in a prolonged G1 phase and shortened S phase at 72 h post-transfection. Western blot analysis revealed that p27(Kip1) was up-regulated in CXCL10-treated HeLa cells; however, cyclin E was down-regulated. These results indicate that the combination of CXCL10 gene therapy and radiotherapy is an effective strategy for the growth suppression of HeLa cells, and that CXCL10 enhances the radiotherapy effects through cell cycle redistribution. Our data provide new insight into the treatment of cervical carcinoma, involving an effective combination of gene therapy and radiotherapy against tumors.
Collapse
Affiliation(s)
- Ling-Lin Yang
- Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | | | | | | | | |
Collapse
|
31
|
GRIM-19 disrupts E6/E6AP complex to rescue p53 and induce apoptosis in cervical cancers. PLoS One 2011; 6:e22065. [PMID: 21765936 PMCID: PMC3134474 DOI: 10.1371/journal.pone.0022065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/14/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Our previous studies showed a down-regulation of GRIM-19 in primary human cervical cancers, and restoration of GRIM-19 induced tumor regression. The induction of tumor suppressor protein p53 ubiquitination and degradation by E6 oncoportein of high risk-HPV through forming a stable complex with E6AP is considered as a critical mechanism for cervical tumor development. The aims of this study were to determine the potential role of GRIM-19 in rescuing p53 protein and inducing cervical cancer cell apoptosis. METHODOLOGY/PRINCIPAL FINDINGS The protein levels of GRIM-19 and p53 were detected in normal cervical tissues from 45 patients who underwent hysterectomy for reasons other than neoplasias of either the cervix or endometrium, and cervical cancer tissues from 60 patients with non-metastatic squamous epithelial carcinomas. Coimmunoprecipitation and GST pull-down assay were performed to examine the interaction of GRIM-19 with 18E6 and E6AP in vivo and in vitro respectively. The competition of 18E6 with E6AP in binding GRIM-19 by performing competition pull-down assays was designed to examine the disruption of E6/E6AP complex by GRIM-19. The augment of E6AP ubiquitination by GRIM-19 was detected in vivo and in vitro ubiquitination assay. The effects of GRIM-19-dependent p53 accumulation on cell proliferation, cell cycle, apoptosis were explored by MTT, flow cytometry and transmission electron microscopy respectively. The tumor suppression was detected by xenograft mouse model. CONCLUSION/SIGNIFICANCE The levels of GRIM-19 and p53 were concurrently down regulated in cervical cancers. The restoration of GRIM-19 can induce ubiquitination and degradation of E6AP, and disrupt the E6/E6AP complex through the interaction of N-terminus of GRIM-19 with both E6 and E6AP, which protected p53 from degradation and promoted cell apoptosis. Tumor xenograft studies also revealed the suppression of p53 degradation in presence of GRIM-19. These data suggest that GRIM-19 can block E6/E6AP complex; and synergistically suppress cervical tumor growth with p53.
Collapse
|
32
|
Yue Y, Gui J, Ai W, Xu W, Xiong S. Direct gene transfer with IP-10 mutant ameliorates mouse CVB3-induced myocarditis by blunting Th1 immune responses. PLoS One 2011; 6:e18186. [PMID: 21445362 PMCID: PMC3062568 DOI: 10.1371/journal.pone.0018186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/22/2011] [Indexed: 12/22/2022] Open
Abstract
Background Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated. Methodology/Principal Findings The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4+/CD8+IFN-γ+ T cell percentages and reduced myocardial Th1 cytokine levels. Conclusion/Significance Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activity could ameliorate CVB3 induced myocarditis. This strategy may represent as a new therapeutic approach in treating viral myocarditis.
Collapse
Affiliation(s)
- Yan Yue
- Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Jun Gui
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wenqing Ai
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Wei Xu
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- * E-mail: (SX); (WX)
| | - Sidong Xiong
- Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, People's Republic of China
- Institute for Immunobiology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- * E-mail: (SX); (WX)
| |
Collapse
|
33
|
p53 in trichostatin A induced C6 glioma cell death. Biochim Biophys Acta Gen Subj 2011; 1810:504-13. [PMID: 21376104 DOI: 10.1016/j.bbagen.2011.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 01/21/2011] [Accepted: 02/23/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors were demonstrated to induce cell cycle arrest, promote cell differentiation or apoptosis, and inhibit metastasis. HDAC inhibitors have thus emerged as a new class of anti-tumor agents for various types of tumors. However, the mechanisms by which HDAC inhibition-induced cell death remain to be fully defined. METHODS In the present study, we explored the apoptotic actions of trichostatin A (TSA), a HDAC inhibitor, in C6 glioma cells. RESULTS TSA activated p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation and activation. P53, a proapoptotic transcription factor, in turn transactivated the expression of a proapoptotic protein, Bax. In addition, survivin, a member of inhibitor of apoptotic protein, was significantly decreased in TSA-treated C6 cells. P53 recruited to the endogenous survivin promoter region was increased and accompanied by decreasing recruitment of SP1 in response to TSA. TSA was also shown to induce IKK dephosphorylation and to suppress NF-κB reporter activity. CONCLUSIONS TSA may cause C6 cell apoptosis through activating p38MAPK-p53 cascade resulting in Bax expression and survivin suppression. Negative regulation of IKK-NF-κB signaling may also lead to p53 activation and contribute to TSA apoptotic actions. GENERAL SIGNIFICANCE TSA-induced p53 activation may occur through p53 modification by phosphorylation or by acetylation via IKK inactivation. The present study delineates, in part, the signaling pathways involved in TSA-induced glioma cell death.
Collapse
|
34
|
Guikema JEJ, Schrader CE, Brodsky MH, Linehan EK, Richards A, El Falaky N, Li DH, Sluss HK, Szomolanyi-Tsuda E, Stavnezer J. p53 represses class switch recombination to IgG2a through its antioxidant function. THE JOURNAL OF IMMUNOLOGY 2010; 184:6177-87. [PMID: 20483782 DOI: 10.4049/jimmunol.0904085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ig class switch recombination (CSR) occurs in activated mature B cells, and causes an exchange of the IgM isotype for IgG, IgE, or IgA isotypes, which increases the effectiveness of the humoral immune response. DNA ds breaks in recombining switch (S) regions, where CSR occurs, are required for recombination. Activation-induced cytidine deaminase initiates DNA ds break formation by deamination of cytosines in S regions. This reaction requires reactive oxygen species (ROS) intermediates, such as hydroxyl radicals. In this study we show that the ROS scavenger N-acetylcysteine inhibits CSR. We also demonstrate that IFN-gamma treatment, which is used to induce IgG2a switching, increases intracellular ROS levels, and activates p53 in switching B cells, and show that p53 inhibits IgG2a class switching through its antioxidant-regulating function. Finally, we show that p53 inhibits DNA breaks and mutations in S regions in B cells undergoing CSR, suggesting that p53 inhibits the activity of activation-induced cytidine deaminase.
Collapse
Affiliation(s)
- Jeroen E J Guikema
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Singh L, Arora SK, Bakshi DK, Majumdar S, Wig JD. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction. Int J Exp Pathol 2009; 91:210-23. [PMID: 20041963 DOI: 10.1111/j.1365-2613.2009.00697.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chemokines have been known to play a critical role in pathogenesis of chronic pancreatitis and acinar cell death. However, the role played by one of the CXC chemokines: CXCL10 in regulation of acinar cell death has remained unexplored. Hence, this study was designed to assess the role of CXCL10 promoting apoptosis in ex vivo cultured acinar cells. Primary human pancreatic acinar cell cultures were established and exposed to varying doses of CXCL10 for different time intervals. Apoptotic induction was evaluated by both qualitative as well as quantitative analyses. Various mediators of apoptosis were also studied by Western blotting, membrane potential (Psim) and ATP depletion in acinar cells. Analysis of apoptosis via DNA ladder and cell death detection - ELISA demonstrated that CXCL10 induced 3.9-fold apoptosis when administrated at an optimal dose of 0.1 mug of recombinant CXCL10 for 8 h. Quantitative analysis using FACS and dual staining by PI-annexin showed increased apoptosis (48.98 and 53.78% respectively). The involvement of upstream apoptotic regulators like pJNK, p38 and Bax was established on the basis of their increased expression of CXCL10. The change of Psim by 50% was observed in the presence of CXCL10 in treated acinar cells along with enhanced expression of Cytochrome C, apaf-1 and caspase 9/3 activation. In addition, ATP depletion was also noticed in CXCL10 stimulated acinar cells. CXCL10 induces cell death in human cultured pancreatic cells leading to apoptosis and DNA fragmentation via CXCR3 signalling. These signalling mechanisms may play an important role in parenchymal cell loss and injury in pancreatitis.
Collapse
Affiliation(s)
- Lipi Singh
- Department of General Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | |
Collapse
|
36
|
Sall A, Zhang HM, Qiu D, Liu Z, Yuan J, Liu Z, Lim T, Ye X, Marchant D, McManus B, Yang D. Pro-apoptotic activity of mBNIP-21 depends on its BNIP-2 and Cdc42GAP homology (BCH) domain and is enhanced by coxsackievirus B3 infection. Cell Microbiol 2009; 12:599-614. [PMID: 19951366 DOI: 10.1111/j.1462-5822.2009.01416.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous study reported that mouse BNIP-21 (mBNIP-21) induces apoptosis through a mitochondria-dependent pathway. To map the functional domains of mBNIP-21, we performed mutational analyses and demonstrated that the BNIP-2 and Cdc42GAP homology (BCH) domain is required for apoptosis induction by mBNIP-21 targeting the mitochondria and inducing cytochrome c release. This pro-apoptotic activity was enhanced by coxsackievirus infection. However, deletion of the Bcl-2 homology 3 (BH3)-like domain, a well-known cell 'death domain' in proapoptotic Bcl-2 family proteins, did not affect the activity of mBNIP-21. These data were further supported by transfection of a mouse Bax (mBax) mutant, whose BH3 was replaced by the mBNIP-21 BH3-like domain. This replacement significantly reduced the pro-apoptotic activity of mBax. We also found that the predicted calcium binding domain has no contribution to the mBNIP-21-induced apoptosis. Further mapping of the motifs of BCH domain demonstrated that deletion of the hydrophobic motif proximal to the C-terminal of the BCH significantly reduced its proapoptotic activity. These findings suggest that mBNIP-21, as a member of the BNIP subgroup of the Bcl-2-related proteins, functions without need of BH3 but its BCH domain is critical for its activity in inducing cell elongation, membrane protrusions and apoptotic cell death.
Collapse
Affiliation(s)
- Alhousseynou Sall
- Department of Pathology and Laboratory Medicine, University of British Columbia-Providence Heart and Lung Institute, the iCapture Center, St. Paul's Hospital, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Durand SVM, Hulst MM, de Wit AAC, Mastebroek L, Loeffen WLA. Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence. Arch Virol 2009; 154:1417-31. [PMID: 19649765 PMCID: PMC2744773 DOI: 10.1007/s00705-009-0460-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/08/2009] [Indexed: 12/16/2022]
Abstract
The immune response to CSFV and the strategies of this virus to evade and suppress the pigs’ immune system are still poorly understood. Therefore, we investigated the transcriptional response in the tonsils, median retropharyngeal lymph node (MRLN), and spleen of pigs infected with CSFV strains of similar origin with high, moderate, and low virulence. Using a porcine spleen/intestinal cDNA microarray, expression levels in RNA pools prepared from infected tissue at 3 dpi (three pigs per virus strain) were compared to levels in pools prepared from uninfected homologue tissues (nine pigs). A total of 44 genes were found to be differentially expressed. The genes were functionally clustered in six groups: innate and adaptive immune response, interferon-regulated genes, apoptosis, ubiquitin-mediated proteolysis, oxidative phosphorylation and cytoskeleton. Significant up-regulation of three IFN-γ-induced genes in the MRLNs of pigs infected with the low virulence strain was the only clear qualitative difference in gene expression observed between the strains with high, moderate and low virulence. Real-time PCR analysis of four response genes in all individual samples largely confirmed the microarray data at 3 dpi. Additional PCR analysis of infected tonsil, MRLN, and spleen samples collected at 7 and 10 dpi indicated that the strong induction of expression of the antiviral response genes chemokine CXCL10 and 2′–5′ oligoadenylate synthetase 2, and of the TNF-related apoptosis-inducing ligand (TRAIL) gene at 3 dpi, decreased to lower levels at 7 and 10 dpi. For the highly and moderately virulent strains, this decrease in antiviral and apoptotic gene expression coincided with higher levels of virus in these immune tissues.
Collapse
Affiliation(s)
- S V M Durand
- Central Veterinary Institute of Wageningen University and Research Centre, P.O. Box 65, 8200 AB, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
38
|
Zhang HM, Su Y, Guo S, Yuan J, Lim T, Liu J, Guo P, Yang D. Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Res 2009; 83:307-16. [PMID: 19616030 PMCID: PMC3909712 DOI: 10.1016/j.antiviral.2009.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 11/22/2022]
Abstract
Coxsackievirus B3 (CVB3) is a common pathogen of myocarditis. We previously synthesized a siRNA targeting the CVB3 protease 2A (siRNA/2A) gene and achieved reduction of CVB3 replication by 92% in vitro. However, like other drugs under development, CVB3 siRNA faces a major challenge of targeted delivery. In this study, we investigated a novel approach to deliver CVB3 siRNAs to a specific cell population (e.g. HeLa cells containing folate receptor) using receptor ligand (folate)-linked packaging RNA (pRNA) from bacterial phage phi29. pRNA monomers can spontaneously form dimers and multimers under optimal conditions by base-pairing between their stem loops. By covalently linking a fluorescence-tag to folate, we delivered the conjugate specifically to HeLa cells without the need of transfection. We further demonstrated that pRNA covalently conjugated to siRNA/2A achieved an equivalent antiviral effect to that of the siRNA/2A alone. Finally, the drug targeted delivery was further evaluated by using pRNA monomers or dimers, which carried both the siRNA/2A and folate ligand and demonstrated that both of them strongly inhibited CVB3 replication. These data indicate that pRNA as a siRNA carrier can specifically deliver the drug to target cells via its ligand and specific receptor interaction and inhibit virus replication effectively.
Collapse
Affiliation(s)
- Huifang M Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li H, Yi T, Zhao S, Chen P, Cheng C, Wei Y, Zhao X. The anti-condyloma acuminatum effects of interferon-inducible protein 10 in vitro. Int J Dermatol 2009; 48:136-41. [PMID: 19200187 DOI: 10.1111/j.1365-4632.2009.03776.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Interferon-inducible protein 10 (IP-10) has been reported to show an effective antiviral and antineoplastic role in various murine models. AIM To investigate the anti-condyloma acuminatum effect and human papillomavirus (HPV)-inhibiting efficacy of a recombinant plasmid encoding IP-10 in vitro. METHODS A recombinant plasmid DNA carrying IP-10 cDNA was constructed. Condyloma acuminatum tissue particles were transfected with IP-10 and examined for apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and flow cytometry techniques. Relative real-time polymerase chain reaction (PCR) was used to validate the HPV inhibited level of the treatment groups. Immunohistochemistry was used to determine the IP-10 expression on condyloma acuminatum tissues. RESULTS Transfected IP-10 was expressed mainly in the cytoplasm of the condyloma acuminatum tissues. Plentiful apoptosis was observed in condyloma acuminatum tissues transfected with IP-10. In addition, HPV expression was lower in IP-10-treated tissues than in control tissues. CONCLUSIONS These observations suggest that IP-10 has strong anti-condyloma acuminatum effects, inducing apoptosis and inhibiting HPV, and therefore may be a novel and potentially effective therapy for condyloma acuminatum.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Gynecology and Obstetrics, West China Second University Hospital, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
40
|
Interferon-dependent engagement of eukaryotic initiation factor 4B via S6 kinase (S6K)- and ribosomal protein S6K-mediated signals. Mol Cell Biol 2009; 29:2865-75. [PMID: 19289497 DOI: 10.1128/mcb.01537-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although the roles of Jak-Stat pathways in type I and II interferon (IFN)-dependent transcriptional regulation are well established, the precise mechanisms of mRNA translation for IFN-sensitive genes remain to be defined. We examined the effects of IFNs on the phosphorylation/activation of eukaryotic translation initiation factor 4B (eIF4B). Our data show that eIF4B is phosphorylated on Ser422 during treatment of sensitive cells with alpha IFN (IFN-alpha) or IFN-gamma. Such phosphorylation is regulated, in a cell type-specific manner, by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) and results in enhanced interaction of the protein with eIF3A (p170/eIF3A) and increased associated ATPase activity. Our data also demonstrate that IFN-inducible eIF4B activity and IFN-stimulated gene 15 protein (ISG15) or IFN-gamma-inducible chemokine CXCL-10 protein expression are diminished in S6k1/S6k2 double-knockout mouse embryonic fibroblasts. In addition, IFN-alpha-inducible ISG15 protein expression is blocked by eIF4B or eIF3A knockdown, establishing a requirement for these proteins in mRNA translation/protein expression by IFNs. Importantly, the generation of IFN-dependent growth inhibitory effects on primitive leukemic progenitors is dependent on activation of the S6K/eIF4B or RSK/eIF4B pathway. Taken together, our findings establish critical roles for S6K and RSK in the induction of IFN-dependent biological effects and define a key regulatory role for eIF4B as a common mediator and integrator of IFN-generated signals from these kinases.
Collapse
|
41
|
Schulthess FT, Paroni F, Sauter NS, Shu L, Ribaux P, Haataja L, Strieter RM, Oberholzer J, King CC, Maedler K. CXCL10 impairs beta cell function and viability in diabetes through TLR4 signaling. Cell Metab 2009; 9:125-39. [PMID: 19187771 DOI: 10.1016/j.cmet.2009.01.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 11/05/2008] [Accepted: 01/14/2009] [Indexed: 12/20/2022]
Abstract
In type 1 and type 2 diabetes (T1/T2DM), beta cell destruction by apoptosis results in decreased beta cell mass and progression of the disease. In this study, we found that the interferon gamma-inducible protein 10 plays an important role in triggering beta cell destruction. Islets isolated from patients with T2DM secreted CXCL10 and contained 33.5-fold more CXCL10 mRNA than islets from control patients. Pancreatic sections from obese nondiabetic individuals and patients with T2DM and T1DM expressed CXCL10 in beta cells. Treatment of human islets with CXCL10 decreased beta cell viability, impaired insulin secretion, and decreased insulin mRNA. CXCL10 induced sustained activation of Akt, JNK, and cleavage of p21-activated protein kinase 2 (PAK-2), switching Akt signals from proliferation to apoptosis. These effects were not mediated by the commonly known CXCL10 receptor CXCR3 but through TLR4. Our data suggest CXCL10 as a binding partner for TLR4 and as a signal toward beta cell failure in diabetes.
Collapse
Affiliation(s)
- Fabienne T Schulthess
- Larry L. Hillblom Islet Research Center, Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yuan J, Liu Z, Lim T, Zhang H, He J, Walker E, Shier C, Wang Y, Su Y, Sall A, McManus B, Yang D. CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis. Circ Res 2009; 104:628-38. [PMID: 19168435 DOI: 10.1161/circresaha.108.192179] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Coxsackievirus (CV)B3 is the primary cause of viral myocarditis. We previously observed CXC chemokine ligand 10 (CXCL10) upregulation in the myocardium early in infection. However, the impact of CXCL10 in CVB3-induced myocarditis is unknown. Using isolated primary mouse cardiomyocytes we demonstrated for the first time that cardiomyocytes can express CXCL10 on interferon-gamma stimulation. To explore the role of CXCL10 in CVB3-induced myocarditis, both CXCL10 transgenic and knockout mice were used. Following CVB3 challenges, the viral titer in the hearts inversely correlated with the levels of CXCL10 at early phase of infection before visible immune infiltration. Furthermore, as compared with the control mice, the decreased virus titers in the CXCL10 transgenic mouse hearts led to less cardiac damage and better cardiac function and vice verse in the knockout mice. This antiviral ability of CXCL10 might be through recruitment of natural killer (NK) cells to the heart and increased interferon-gamma expression early in infection. At day 7 postinfection, with massive influx of mononuclear cells the expression of CXCL10 enhanced the infiltration of CXCR3(+) cells, CD4(+), and CD8(+) T cells, as well as the expression of associated inflammatory cytokines. However, the augmented accumulation of these immune cells and associated cytokines failed to alter the viral clearance and mice survival. These results suggest the protective role of CXCL10 during the early course of CVB3 infection, which is attributed to the recruitment of NK cells. Nonetheless, CXCL10-directed chemoattractant effect is not sufficient for host to clear the virus in the heart.
Collapse
Affiliation(s)
- Ji Yuan
- Department of Pathology and Laboratory Medicine, The iCAPTURE Center, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kaur S, Sassano A, Joseph AM, Majchrzak-Kita B, Eklund EA, Verma A, Brachmann SM, Fish EN, Platanias LC. Dual regulatory roles of phosphatidylinositol 3-kinase in IFN signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7316-23. [PMID: 18981154 PMCID: PMC2597572 DOI: 10.4049/jimmunol.181.10.7316] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PI3K is activated by the type I and II IFN receptors, but its precise role in the generation of IFN responses is not well understood. In the present study we used embryonic fibroblasts from mice with targeted disruption of the genes encoding for both the p85alpha and p85beta regulatory subunits of PI3'-kinase (p85alpha(-/-)beta(-/-)) to precisely define the role of PI3K in the control of IFN-induced biological responses. Our data demonstrate that PI3K plays dual regulatory roles in the induction of IFN responses by controlling both IFN-alpha- and IFN-gamma-dependent transcriptional regulation of IFN-sensitive genes and simultaneously regulating the subsequent initiation of mRNA translation for such genes. These processes include the Isg15, Cxcl10, and/or Irf7 genes, whose functions are important in the generation of the biological effects of IFNs. Consistent with this, the induction of IFN antiviral responses is defective in double p85alpha/p85beta knockout cells. Thus, integration of signals via PI3K is a critical event during engagement of the IFN receptors that complements both the transcriptional activity of Jak-STAT pathways and controls initiation of mRNA translation.
Collapse
Affiliation(s)
- Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 2008; 82:8149-60. [PMID: 18550677 DOI: 10.1128/jvi.00047-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enteroviruses such as coxsackievirus B3 (CVB3) are able to induce lethal acute and chronic myocarditis. In resistant C57BL/6 mice, CVB3 myocarditis is abrogated by T-cell-dependent mechanisms, whereas major histocompatibility complex (MHC)-matched permissive A.BY/SnJ mice develop chronic myocarditis based on virus persistence. To define the role of T-cell-priming dendritic cells (DCs) in the outcome of CVB3 myocarditis, DCs were analyzed in this animal model in the course of CVB3 infection. In both mouse strains, DCs were found to be infectible with CVB3; however, formation of infectious virions was impaired. In DCs derived from C57BL/6 mice, significantly higher quantities of interleukin-10 (IL-10) and the proinflammatory cytokines IL-6 and tumor necrosis factor alpha were measured compared to those from A.BY/SnJ mice. Additionally, the chemokines interferon-inducible protein 10 (IP-10) and RANTES were secreted by DCs from resistant C57BL/6 mice earlier in infection and at significantly higher levels. The protective role of IP-10 in CVB3 myocarditis was confirmed in IP-10(-/-) mice, which had increased myocardial injury compared to the immunocompetent control animals. Also, major differences in resistant and permissive mice were found in DC subsets, with C57BL/6 mice harboring more cross-priming CD4(-) CD8(+) DCs. As CD4(-) CD8(+) DCs are known to express 10 times more Toll-like receptor 3 (TLR3) than other DC subsets, we followed the course of CVB3 infection in TLR3(-/-) mice. These mice developed a fulminant acute myocarditis and secreted sustained low amounts of type I interferons; secretion of IP-10 and RANTES was nearly abrogated in DCs. We conclude that MHC-independent genetic factors involving DC-related IP-10 secretion and TLR3 expression are beneficial in the prevention of chronic coxsackievirus myocarditis.
Collapse
|
45
|
Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci U S A 2008; 105:4808-13. [PMID: 18339807 DOI: 10.1073/pnas.0710907105] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Multiple signaling pathways are engaged by the type I and II IFN receptors, but their specific roles and possible coordination in the generation of IFN-mediated biological responses remain unknown. We provide evidence that activation of Akt kinases is required for IFN-inducible engagement of the mTOR/p70 S6 kinase pathway. Our data establish that Akt activity is essential for up-regulation of key IFN-alpha- and IFN-gamma-inducible proteins, which have important functional consequences in the induction of IFN responses. Such effects of the Akt pathway are unrelated to regulatory activities on IFN-dependent STAT phosphorylation/activation or transcriptional regulation. By contrast, they reflect regulatory activities on mRNA translation via direct control of the mTOR pathway. In studies using Akt1 and Akt2 double knockout cells, we found that the absence of Akt kinases results in dramatic reduction in IFN-induced antiviral responses, establishing a critical role of the Akt pathway in IFN signaling. Thus, activation of the Akt pathway by the IFN receptors complements the function of IFN-activated JAK-STAT pathways, by allowing mRNA translation of IFN-stimulated genes and, ultimately, the induction of the biological effects of IFNs.
Collapse
|
46
|
Kim TK, Lee JS, Oh SY, Jin X, Choi YJ, Lee TH, Lee EH, Choi YK, You S, Chung YG, Lee JB, DePinho RA, Chin L, Kim H. Direct Transcriptional Activation of Promyelocytic Leukemia Protein by IFN Regulatory Factor 3 Induces the p53-Dependent Growth Inhibition of Cancer Cells. Cancer Res 2007; 67:11133-40. [DOI: 10.1158/0008-5472.can-07-1342] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Singh L, Bakshi DK, Majumdar S, Vasishta RK, Arora SK, Wig JD. Expression of interferon-gamma- inducible protein-10 and its receptor CXCR3 in chronic pancreatitis. Pancreatology 2007; 7:479-90. [PMID: 17912012 DOI: 10.1159/000108965] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/23/2007] [Indexed: 12/11/2022]
Abstract
AIM The role of CXC chemokine, interferon-gamma-inducible protein-10 and its receptor CXCR3 in pathophysiology of chronic pancreatitis (CP) is not very clear. Hence, this study was carried out to analyze the expression of CXCL10 and CXCR3 in CP tissues. METHODS Pancreatic tissues from 25 histopathologically graded CP cases (11 alcohol associated CP, 5 confirmed idiopathic and 9 of undefined nature) and 10 normal cases were studied. Tissues were subjected to real-time PCR, immunohistochemistry, and Western blot analysis for CXCL10 and CXCR3 expression. RESULTS Real-time (RT)-PCR revealed increased expression of CXCL10 (13-fold) and CXCR3 (7-fold) in CP tissue. The immunohistochemistry and Western blot analysis of the same showed significant increased protein expression and correlated well with the histopathological grades. The CXCL10 was localized mainly in the cytoplasm of pancreatic acinar cells and expression increased from grade I to grade II and declined in grade III while no expression was recorded in normal. The CXCR3 was expressed strongly at the acinar cell membrane in CP as compared to normal. Further, comparative analysis by semiquantitative RT-PCR analysis was performed for other CXC/CC chemokines (CXCL9, CXCL11, CCL3, CCL4, CCL5) and receptor (CCR5) which revealed their upregulation in the diseased state. CONCLUSION The existence of CXCL10 and CXCR3 with other CXC/CC chemokine signature in CP is suggestive of their vital role in the progression of chronic inflammation.
Collapse
Affiliation(s)
- L Singh
- Department of General Surgery, Post-Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | | | | | |
Collapse
|
48
|
Hsu MJ, Hsu CY, Chen BC, Chen MC, Ou G, Lin CH. Apoptosis signal-regulating kinase 1 in amyloid beta peptide-induced cerebral endothelial cell apoptosis. J Neurosci 2007; 27:5719-29. [PMID: 17522316 PMCID: PMC6672775 DOI: 10.1523/jneurosci.1874-06.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A pathological hallmark of Alzheimer's disease is accumulation of amyloid-beta peptide (Abeta) in senile plaques. Abeta has also been implicated in vascular degeneration in cerebral amyloid angiopathy because of its cytotoxic effects on non-neuronal cells, including cerebral endothelial cells (CECs). We explore the role of apoptosis signal-regulating kinase 1 (ASK1) in Abeta-induced death in primary cultures of murine CECs. Abeta induced ASK1 dephosphorylation, which could be prevented by selective inhibition of protein phosphatase 2A (PP2A) but not PP2B. ASK1 dephosphorylation resulted in its dissociation from 14-3-3. ASK1, released from 14-3-3 inhibition, activated p38 mitogen-activated protein kinase (p38MAPK), leading to p53 phosphorylation. p53, a proapoptotic transcription factor, in turn transactivated the expression of Bax, a proapoptotic protein. Transfection with various dominant-negative mutants (DNs), including ASK1 DN and p38MAPK DN, suppressed Abeta-induced p38MAPK activation, p53 phosphorylation, and Bax upregulation and partially prevented CEC death. Bax knockdown using a bax small interfering RNA strategy also reduced Bax expression and subsequent CEC death. These results suggest that Abeta activates the ASK1-p38MAPK-p53-Bax cascade to cause CEC death in a PP2A-dependent manner.
Collapse
Affiliation(s)
- Ming-Jen Hsu
- Graduate Institute of Medical Sciences
- Topnotch Stroke Research Center, Taipei Medical University, Taipei 110, Taiwan, and
| | - Chung Y. Hsu
- Department of Neurology and Chi-Chin Huang Stroke Research Center
- Topnotch Stroke Research Center, Taipei Medical University, Taipei 110, Taiwan, and
| | | | - Mei-Chieh Chen
- Department of Microbiology and Immunology, College of Medicine, and
| | - George Ou
- Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences
- Topnotch Stroke Research Center, Taipei Medical University, Taipei 110, Taiwan, and
| |
Collapse
|
49
|
Chau DHW, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D. Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 2007; 12:513-24. [PMID: 17195095 DOI: 10.1007/s10495-006-0013-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 11/09/2006] [Indexed: 02/08/2023]
Abstract
By transfection of Coxsackievirus B3 (CVB3) individual protease gene into HeLa cells, we demonstrated that 2A(pro) and 3C(pro) induced apoptosis through multiple converging pathways. Firstly, both 2A(pro) and 3C(pro) induced caspase-8-mediated activation of caspase-3 and dramatically reduced cell viability. Secondly, they both activated the intrinsic mitochondria-mediated apoptosis pathway leading to cytochrome c release from mitochondria and activation of caspase-9. However, 3C(pro) induced these events via both up-regulation of Bax and cleavage of Bid, and 2A(pro) induced these events via cleavage of Bid only. Nevertheless, neither altered Bcl-2 expression. Thirdly, both proteases induced cell death through cleavage or down regulation of cellular factors for translation and transcription: both 2A(pro) and 3C(pro) cleaved eukaryotic translation initiation factor 4GI but their cleavage products are different, indicating different cleavage sites; further, both 2A(pro) and 3C(pro) down-regulated cyclic AMP responsive element binding protein, a transcription factor, with 2A(pro) exhibiting a stronger effect than 3C(pro). Surprisingly, neither could cleave DAP5/p97/NAT1, a translation regulator, although this cleavage was observed during CVB3 infection and could not be blocked by caspase inhibitor z-VAD-fmk. Taken together, these data suggest that 2A(pro) and 3C(pro) induce apoptosis through both activation of proapoptotic mediators and suppression of translation and transcription.
Collapse
Affiliation(s)
- David H W Chau
- Department of Pathology and Laboratory Medicine, The James Hogg iCAPTURE Centre, University of British Columbia, St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaur S, Lal L, Sassano A, Majchrzak-Kita B, Srikanth M, Baker DP, Petroulakis E, Hay N, Sonenberg N, Fish EN, Platanias LC. Regulatory Effects of Mammalian Target of Rapamycin-activated Pathways in Type I and II Interferon Signaling. J Biol Chem 2007; 282:1757-68. [PMID: 17114181 DOI: 10.1074/jbc.m607365200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms regulating initiation of mRNA translation for the generation of protein products that mediate interferon (IFN) responses are largely unknown. We have previously shown that both Type I and II IFNs engage the mammalian target of rapamycin (mTOR), resulting in downstream phosphorylation and deactivation of the translational repressor 4E-BP1 (eIF4E-binding protein 1). In the current study, we provide direct evidence that such regulation of 4E-BP1 by IFNalpha or IFNgamma results in sequential dissociation of 4E-BP1 from eukaryotic initiation factor-4E and subsequent formation of a functional complex between eukaryotic initiation factor-4E and eukaryotic initiation factor-4G, to allow initiation of mRNA translation. We also demonstrate that the induction of key IFNalpha- or IFNgamma-inducible proteins (ISG15 (interferon-stimulated gene 15) and CXCL10) that mediate IFN responses are enhanced in 4E-BP1 (4E-BP1(-/-)) knockout MEFs, as compared with wild-type 4E-BP1(+/+) MEFs. On the other hand, IFN-dependent transcriptional regulation of the Isg15 and Cxcl10 genes is intact in the absence of 4E-BP1, as determined by real time reverse transcriptase-PCR assays and promoter assays for ISRE and GAS, establishing that 4E-BP1 plays a selective negative regulatory role in IFN-induced mRNA translation. Interestingly, the induction of expression of ISG15 and CXCL10 proteins by IFNs was also strongly enhanced in cells lacking expression of the tuberin (TSC2(-/-)) or hamartin (TSC1(-/-)) genes, consistent with the known negative regulatory effect of the TSC1-TSC2 complex on mTOR activation. In other work, we demonstrate that the induction of an IFN-dependent antiviral response is strongly enhanced in cells lacking expression of 4E-BP1 and TSC2, demonstrating that these elements of the IFN-activated mTOR pathway exhibit important regulatory effects in the generation of IFN responses. Taken altogether, our data suggest an important role for mTOR-dependent pathways in IFN signaling and identify 4E-BP1 and TSC1-TSC2 as key components in the generation of IFN-dependent biological responses.
Collapse
Affiliation(s)
- Surinder Kaur
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Lakeside Veterans Affairs Medical Center, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|