1
|
Pang XL, Du HF, Nie F, Yang XG, Xu Y. Tubulin Alpha-1b as a Potential Biomarker for Lung Adenocarcinoma Diagnosis and Prognosis. Technol Cancer Res Treat 2023; 22:15330338231178391. [PMID: 37489256 PMCID: PMC10369087 DOI: 10.1177/15330338231178391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 07/26/2023] Open
Abstract
Background: Because lung cancer is the main cause of cancer deaths and lung adenocarcinoma (LUAD) accounts for more than 40% of all lung malignancies, it is essential to develop clinically useful biomarkers for the disease. The aim of this investigation is to assess the potential application of tubulin alpha-1b (TUBA1B) as a biomarker for diagnosing and monitoring the outcome of LUAD. Methods: The clinical data of the LUAD patients was retrospectively analyzed. Immunohistochemistry (IHC) analysis of a tissue microarray containing 90 LUAD cases was implemented to examine the expression of TUBA1B. The protein and mRNA levels of TUBA1B in serum were detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) analysis respectively. UALCAN was employed to confirm the expression levels and survival probability of TUBA1B in LUAD patients. Results: Compared to adjacent non-cancerous tissues in the microarray, the expression of TUBA1B in LUAD tissues was much higher. The expression of TUBA1B in LUAD was statistically correlated with lymph node status (P = .031). Moreover, patients with higher TUBA1B expression had shorter overall survival (P < .0001). Furthermore, cox multi-factor analysis also suggested that TUBA1B may be an independent predictor for LUAD prognosis (P = .030). The results of TCGA data analysis by UALCAN were consistent with the microarray results, except for that TUBA1B was also significantly correlated with clinical tumor stages. Protein levels of TUBA1B in serum were obviously elevated in LUAD patients than control (P < .0001), and the area under the ROC curve was 0.99. TUBA1B also showed better sensitivity of 92.9% for LUAD than common clinical biomarkers. Conclusion: TUBA1B may be a non-invasive prognostic and diagnostic biomarker for LUAD patients.
Collapse
Affiliation(s)
- Xue-Li Pang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hong-Fei Du
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Nie
- Department of Clinical Laboratory, Second People's Hospital of Chengdu, Chengdu, China
| | - Xiang-Gui Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Ti SC. Reconstituting Microtubules: A Decades-Long Effort From Building Block Identification to the Generation of Recombinant α/β-Tubulin. Front Cell Dev Biol 2022; 10:861648. [PMID: 35573669 PMCID: PMC9096264 DOI: 10.3389/fcell.2022.861648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are cytoskeletal filaments underlying the morphology and functions of all eukaryotic cells. In higher eukaryotes, the basic building blocks of these non-covalent polymers, ɑ- and β-tubulins, are encoded by expanded tubulin family genes (i.e., isotypes) at distinct loci in the genome. While ɑ/β-tubulin heterodimers have been isolated and examined for more than 50 years, how tubulin isotypes contribute to the microtubule organization and functions that support diverse cellular architectures remains a fundamental question. To address this knowledge gap, in vitro reconstitution of microtubules with purified ɑ/β-tubulin proteins has been employed for biochemical and biophysical characterization. These in vitro assays have provided mechanistic insights into the regulation of microtubule dynamics, stability, and interactions with other associated proteins. Here we survey the evolving strategies of generating purified ɑ/β-tubulin heterodimers and highlight the advances in tubulin protein biochemistry that shed light on the roles of tubulin isotypes in determining microtubule structures and properties.
Collapse
|
3
|
Strassel C, Magiera MM, Dupuis A, Batzenschlager M, Hovasse A, Pleines I, Guéguen P, Eckly A, Moog S, Mallo L, Kimmerlin Q, Chappaz S, Strub JM, Kathiresan N, de la Salle H, Van Dorsselaer A, Ferec C, Py JY, Gachet C, Schaeffer-Reiss C, Kile BT, Janke C, Lanza F. An essential role for α4A-tubulin in platelet biogenesis. Life Sci Alliance 2019; 2:2/1/e201900309. [PMID: 30760556 PMCID: PMC6374996 DOI: 10.26508/lsa.201900309] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/24/2022] Open
Abstract
Alpha4A-tubulin is the predominant α-tubulin isotype in platelets. Mutations in α4A-tubulin cause abnormal platelet biogenesis and marginal band formation in mice and in a patient, establishing an essential role of this tubulin isotype. During platelet biogenesis, microtubules (MTs) are arranged into submembranous structures (the marginal band) that encircle the cell in a single plane. This unique MT array has no equivalent in any other mammalian cell, and the mechanisms responsible for this particular mode of assembly are not fully understood. One possibility is that platelet MTs are composed of a particular set of tubulin isotypes that carry specific posttranslational modifications. Although β1-tubulin is known to be essential, no equivalent roles of α-tubulin isotypes in platelet formation or function have so far been reported. Here, we identify α4A-tubulin as a predominant α-tubulin isotype in platelets. Similar to β1-tubulin, α4A-tubulin expression is up-regulated during the late stages of megakaryocyte differentiation. Missense mutations in the α4A-tubulin gene cause macrothrombocytopenia in mice and humans. Defects in α4A-tubulin lead to changes in tubulin tyrosination status of the platelet tubulin pool. Ultrastructural defects include reduced numbers and misarranged MT coils in the platelet marginal band. We further observed defects in megakaryocyte maturation and proplatelet formation in Tuba4a-mutant mice. We have, thus, discovered an α-tubulin isotype with specific and essential roles in platelet biogenesis.
Collapse
Affiliation(s)
- Catherine Strassel
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Maria M Magiera
- Institut Curie, Paris-Sciences-et-Lettres Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Arnaud Dupuis
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Morgane Batzenschlager
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
| | - Irina Pleines
- ACRF Australian Cancer Research Foundation Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Paul Guéguen
- Laboratoire de génétique moléculaire et d'histocompatibilité, Centre Hospitalier Régional et Universitaire Morvan, INSERM U1078, EFS Bretagne, Brest, France
| | - Anita Eckly
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Sylvie Moog
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Léa Mallo
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Quentin Kimmerlin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Stéphane Chappaz
- ACRF Australian Cancer Research Foundation Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jean-Marc Strub
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
| | - Natarajan Kathiresan
- Institut Curie, Paris-Sciences-et-Lettres Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Henri de la Salle
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
| | - Claude Ferec
- Laboratoire de génétique moléculaire et d'histocompatibilité, Centre Hospitalier Régional et Universitaire Morvan, INSERM U1078, EFS Bretagne, Brest, France
| | - Jean-Yves Py
- EFS Centre-Pays de la Loire, site d'Orléans, France
| | - Christian Gachet
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, CNRS UMR7178, Université de Strasbourg, Strasbourg, France
| | - Benjamin T Kile
- ACRF Australian Cancer Research Foundation Chemical Biology Division, the Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Carsten Janke
- Institut Curie, Paris-Sciences-et-Lettres Research University, CNRS UMR3348, Orsay, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - François Lanza
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand Est, Unité Mixte de Recherche-S 1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A. Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell 2017; 28:3564-3572. [PMID: 29021343 PMCID: PMC5706985 DOI: 10.1091/mbc.e17-02-0124] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/30/2022] Open
Abstract
We report the cryo-EM structure and dynamic parameters for unmodified α1B/βI+βIVb microtubules. These microtubules display markedly different dynamics compared to heterogeneous brain microtubules, and their dynamic parameters can be proportionally tuned by the addition of a recombinant neuronal tubulin isoform with different dynamic properties. Microtubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue. This preparation is not representative of tubulin found in many cell types. Here we report the 4.2-Å cryo-electron microscopy (cryo-EM) structure and in vitro dynamics parameters of α1B/βI+βIVb microtubules assembled from tubulin purified from a human embryonic kidney cell line with isoform composition characteristic of fibroblasts and many immortalized cell lines. We find that these microtubules grow faster and transition to depolymerization less frequently compared with brain microtubules. Cryo-EM reveals that the dynamic ends of α1B/βI+βIVb microtubules are less tapered and that these tubulin heterodimers display lower curvatures. Interestingly, analysis of EB1 distributions at dynamic ends suggests no differences in GTP cap sizes. Last, we show that the addition of recombinant α1A/βIII tubulin, a neuronal isotype overexpressed in many tumors, proportionally tunes the dynamics of α1B/βI+βIVb microtubules. Our study is an important step toward understanding how tubulin isoform composition tunes microtubule dynamics.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Lung and Blood Institute, Bethesda, MD 20892 .,Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| |
Collapse
|
5
|
Breuss MW, Leca I, Gstrein T, Hansen AH, Keays DA. Tubulins and brain development - The origins of functional specification. Mol Cell Neurosci 2017; 84:58-67. [PMID: 28347630 DOI: 10.1016/j.mcn.2017.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/19/2022] Open
Abstract
The development of the vertebrate central nervous system is reliant on a complex cascade of biological processes that include mitotic division, relocation of migrating neurons, and the extension of dendritic and axonal processes. Each of these cellular events requires the diverse functional repertoire of the microtubule cytoskeleton for the generation of forces, assembly of macromolecular complexes and transport of molecules and organelles. The tubulins are a multi-gene family that encode for the constituents of microtubules, and have been implicated in a spectrum of neurological disorders. Evidence is building that different tubulins tune the functional properties of the microtubule cytoskeleton dependent on the cell type, developmental profile and subcellular localisation. Here we review of the origins of the functional specification of the tubulin gene family in the developing brain at a transcriptional, translational, and post-transcriptional level. We remind the reader that tubulins are not just loading controls for your average Western blot.
Collapse
Affiliation(s)
- Martin W Breuss
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ines Leca
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Thomas Gstrein
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria
| | - Andi H Hansen
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria; Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - David A Keays
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Dr Bohr-Gasse 7, Vienna 1030, Austria.
| |
Collapse
|
6
|
Jeruschke S, Jeruschke K, DiStasio A, Karaterzi S, Büscher AK, Nalbant P, Klein-Hitpass L, Hoyer PF, Weiss J, Stottmann RW, Weber S. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression. PLoS One 2015; 10:e0137043. [PMID: 26331477 PMCID: PMC4557973 DOI: 10.1371/journal.pone.0137043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. METHODS To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. RESULTS Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm's tumour 1, Podocin, Nephrin and Synaptopodin. CONCLUSIONS Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development.
Collapse
Affiliation(s)
- Stefanie Jeruschke
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
- * E-mail:
| | - Kay Jeruschke
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Andrew DiStasio
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sinem Karaterzi
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Anja K. Büscher
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Perihan Nalbant
- Center for Medical Biotechnology, Molecular Cell Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Peter F. Hoyer
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jürgen Weiss
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Rolf W. Stottmann
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Stefanie Weber
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Breuss M, Morandell J, Nimpf S, Gstrein T, Lauwers M, Hochstoeger T, Braun A, Chan K, Sánchez Guajardo ER, Zhang L, Suplata M, Heinze KG, Elsayad K, Keays DA. The Expression of Tubb2b Undergoes a Developmental Transition in Murine Cortical Neurons. J Comp Neurol 2015; 523:2161-86. [PMID: 26105993 DOI: 10.1002/cne.23836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/20/2023]
Abstract
The development of the mammalian brain requires the generation, migration, and differentiation of neurons, cellular processes that are dependent on a dynamic microtubule cytoskeleton. Mutations in tubulin genes, which encode for the structural subunits of microtubules, cause detrimental neurological disorders known as the tubulinopathies. The disease spectra associated with different tubulin genes are overlapping but distinct, an observation believed to reflect functional specification of this multigene family. Perturbation of the β-tubulin TUBB2B is known to cause polymicrogyria, pachygyria, microcephaly, and axon guidance defects. Here we provide a detailed analysis of the expression pattern of its murine homolog Tubb2b. The generation and characterization of BAC-transgenic eGFP reporter mouse lines has revealed that it is highly expressed in progenitors and postmitotic neurons during cortical development. This contrasts with the 8-week-old cortex, in which Tubb2b expression is restricted to macroglia, and expression is almost completely absent in mature neurons. This developmental transition in neurons is mirrored in the adult hippocampus and the cerebellum but is not a universal feature of Tubb2b; its expression persists in a population of postmitotic neurons in the 8-week-old retina. We propose that the dynamic spatial and temporal expression of Tubb2b reflects specific functional requirements of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Martin Breuss
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Jasmin Morandell
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Simon Nimpf
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Thomas Gstrein
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Mattias Lauwers
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Tobias Hochstoeger
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| | - Andreas Braun
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria.,Centre for Genomic Regulation (CRG), 08003, Barcelona, Spain
| | - Kelvin Chan
- Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, New York, 11794
| | | | - Lijuan Zhang
- Advanced Microscopy, Campus Science Support Facilities (CSF), Vienna, 1030, Austria
| | - Marek Suplata
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine of the University of Würzburg, Würzburg, 97080, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, DFG-Research Center for Experimental Biomedicine of the University of Würzburg, Würzburg, 97080, Germany
| | - Kareem Elsayad
- Advanced Microscopy, Campus Science Support Facilities (CSF), Vienna, 1030, Austria
| | - David A Keays
- IMP-Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Vienna, 1030, Austria
| |
Collapse
|
8
|
Roll-Mecak A. Intrinsically disordered tubulin tails: complex tuners of microtubule functions? Semin Cell Dev Biol 2014; 37:11-9. [PMID: 25307498 DOI: 10.1016/j.semcdb.2014.09.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023]
Abstract
Microtubules are essential cellular polymers assembled from tubulin heterodimers. The tubulin dimer consists of a compact folded globular core and intrinsically disordered C-terminal tails. The tubulin tails form a lawn of densely grafted, negatively charged, flexible peptides on the exterior of the microtubule, potentially akin to brush polymers in the field of synthetic materials. These tails are hotspots for conserved, chemically complex posttranslational modifications that have the potential to act in a combinatorial fashion to regulate microtubule polymer dynamics and interactions with microtubule effectors, giving rise to a "tubulin code". In this review, I summarize our current knowledge of the enzymes that generate the astonishing tubulin chemical diversity observed in cells and describe recent advances in deciphering the roles of tubulin C-terminal tails and their posttranslational modifications in regulating the activity of molecular motors and microtubule associated proteins. Lastly, I outline the promises, challenges and potential pitfalls of deciphering the tubulin code.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biophysics Center, National Heart, Lung and Blood Institute, MD 20892, USA.
| |
Collapse
|
9
|
Jung IS, Kim HJ, Noh R, Kim SC, Kim CW. Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Bioelectromagnetics 2014; 35:459-69. [DOI: 10.1002/bem.21861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Affiliation(s)
- In-Soo Jung
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Hyun-Jung Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Ran Noh
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Soo-Chan Kim
- Department of Electrical Electronic and Control Engineering; Hankyong National University; Anseong-si Kyonggi-do Korea
| | - Chan-Wha Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
10
|
Enyedi P, Veres I, Braun G, Czirják G. Tubulin binds to the cytoplasmic loop of TRESK background K⁺ channel in vitro. PLoS One 2014; 9:e97854. [PMID: 24830385 PMCID: PMC4022642 DOI: 10.1371/journal.pone.0097854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/25/2014] [Indexed: 12/02/2022] Open
Abstract
The cytoplasmic loop between the second and third transmembrane segments is pivotal in the regulation of TRESK (TWIK-related spinal cord K+ channel, K2P18.1, KCNK18). Calcineurin binds to this region and activates the channel by dephosphorylation in response to the calcium signal. Phosphorylation-dependent anchorage of 14-3-3 adaptor protein also modulates TRESK at this location. In the present study, we identified molecular interacting partners of the intracellular loop. By an affinity chromatography approach using the cytoplasmic loop as bait, we have verified the specific association of calcineurin and 14-3-3 to the channel. In addition to these known interacting proteins, we observed substantial binding of tubulin to the intracellular loop. Successive truncation of the polypeptide and pull-down experiments from mouse brain cytosol narrowed down the region sufficient for the binding of tubulin to a 16 amino acid sequence: LVLGRLSYSIISNLDE. The first six residues of this sequence are similar to the previously reported tubulin-binding region of P2X2 purinergic receptor. The tubulin-binding site of TRESK is located close to the protein kinase A (PKA)-dependent 14-3-3-docking motif of the channel. We provide experimental evidence suggesting that 14-3-3 competes with tubulin for the binding to the cytoplasmic loop of TRESK. It is intriguing that the 16 amino acid tubulin-binding sequence includes the serines, which were previously shown to be phosphorylated by microtubule-affinity regulating kinases (MARK kinases) and contribute to channel inhibition. Although tubulin binds to TRESK in vitro, it remains to be established whether the two proteins also interact in the living cell.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Irén Veres
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gabriella Braun
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
11
|
Breuss M, Keays DA. Microtubules and neurodevelopmental disease: the movers and the makers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:75-96. [PMID: 24243101 DOI: 10.1007/978-94-007-7687-6_5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The development of the mammalian cortex requires the generation, migration and differentiation of neurons. Each of these cellular events requires a dynamic microtubule cytoskeleton. Microtubules are required for interkinetic nuclear migration, the separation of chromatids in mitosis, nuclear translocation during migration and the outgrowth of neurites. Their importance is underlined by the finding that mutations in a host of microtubule associated proteins cause detrimental neurological disorders. More recently, the structural subunits of microtubules, the tubulin proteins, have been implicated in a spectrum of human diseases collectively known as the tubulinopathies. This chapter reviews the discovery of microtubules, the role they play in neurodevelopment, and catalogues the tubulin isoforms associated with neurodevelopmental disease. Our focus is on the molecular and cellular mechanisms that underlie the pathology of tubulin-associated diseases. Finally, we reflect on whether different tubulin genes have distinct intrinsic functions.
Collapse
Affiliation(s)
- Martin Breuss
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, 1030, Vienna, Austria
| | | |
Collapse
|
12
|
Bhagwat S, Dalvi V, Chandrasekhar D, Matthew T, Acharya K, Gajbhiye R, Kulkarni V, Sonawane S, Ghosalkar M, Parte P. Acetylated α-tubulin is reduced in individuals with poor sperm motility. Fertil Steril 2014; 101:95-104.e3. [DOI: 10.1016/j.fertnstert.2013.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
13
|
Kim HJ, Jung J, Park JH, Kim JH, Ko KN, Kim CW. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp Biol Med (Maywood) 2013; 238:923-31. [DOI: 10.1177/1535370213497173] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extremely low-frequency electromagnetic fields (ELF-EMF) affect numerous biological functions such as gene expression, cell fate determination and even cell differentiation. To investigate the correlation between ELF-EMF exposure and differentiation, bone marrow derived mesenchymal stem cells (BM-MSCs) were subjected to a 50-Hz electromagnetic field during in vitro expansion. The influence of ELF-EMF on BM-MSCs was analysed by a range of different analytical methods to understand its role in the enhancement of neural differentiation. ELF-EMF exposure significantly decreased the rate of proliferation, which in turn caused an increase in neuronal differentiation. The ELF-EMF-treated cells showed increased levels of neuronal differentiation marker (MAP2), while early neuronal marker (Nestin) was down-regulated. In addition, eight differentially expressed proteins were detected in two-dimensional electrophoresis maps, and were identified using ESI-Q-TOF LC/MS/MS. Among them, ferritin light chain, thioredoxin-dependent peroxide reductase, and tubulin β-6 chain were up-regulated in the ELF-EMF-stimulated group. Ferritin and thioredoxin-dependent peroxide reductase are involved in a wide variety of functions, including Ca2+ regulation, which is a critical component of neurodegeneration. We also observed that the intracellular Ca2+ content was significantly elevated after ELF-EMF exposure, which strengthens the modulatory role of ferritin and thioredoxin-dependent peroxide reductase, during differentiation. Notably, western blot analysis indicated significantly increased expression of the ferritin light chain in the ELF-EMF-stimulated group (0.60 vs. 1.08; P < 0.01). These proteins may help understand the effect of ELF-EMF stimulation on BM-MSCs during neural differentiation and its potential use as a clinically therapeutic option for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jessica Jung
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jee-Hye Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jin-Hee Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Kyung-Nam Ko
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Chan-Wha Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
14
|
Pallavicini A, Canapa A, Barucca M, Alfőldi J, Biscotti MA, Buonocore F, De Moro G, Di Palma F, Fausto AM, Forconi M, Gerdol M, Makapedua DM, Turner-Meier J, Olmo E, Scapigliati G. Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics 2013; 14:538. [PMID: 23927401 PMCID: PMC3750513 DOI: 10.1186/1471-2164-14-538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 06/26/2013] [Indexed: 02/01/2023] Open
Abstract
Background Latimeria menadoensis is a coelacanth species first identified in 1997 in Indonesia, at 10,000 Km of distance from its African congener. To date, only six specimens have been caught and just a very limited molecular data is available. In the present work we describe the de novo transcriptome assembly obtained from liver and testis samples collected from the fifth specimen ever caught of this species. Results The deep RNA sequencing performed with Illumina technologies generated 145,435,156 paired-end reads, accounting for ~14 GB of sequence data, which were de novo assembled using a Trinity/CLC combined strategy. The assembly output was processed and filtered producing a set of 66,308 contigs, whose quality was thoroughly assessed. The comparison with the recently sequenced genome of the African congener Latimeria chalumnae and with the available genomic resources of other vertebrates revealed a good reconstruction of full length transcripts and a high coverage of the predicted full coelacanth transcriptome. The RNA-seq analysis revealed remarkable differences in the expression profiles between the two tissues, allowing the identification of liver- and testis-specific transcripts which may play a fundamental role in important biological processes carried out by these two organs. Conclusion Given the high genomic affinity between the two coelacanth species, the here described de novo transcriptome assembly can be considered a valuable support tool for the improvement of gene prediction within the genome of L. chalumnae and a valuable resource for investigation of many aspects of tetrapod evolution.
Collapse
|
15
|
Cushion TD, Dobyns WB, Mullins JGL, Stoodley N, Chung SK, Fry AE, Hehr U, Gunny R, Aylsworth AS, Prabhakar P, Uyanik G, Rankin J, Rees MI, Pilz DT. Overlapping cortical malformations and mutations in TUBB2B and TUBA1A. ACTA ACUST UNITED AC 2013; 136:536-48. [PMID: 23361065 DOI: 10.1093/brain/aws338] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually single-gene disorders affecting neuronal migration during cerebral cortical development. Polymicrogyria has been associated with genetic and environmental causes and is considered a malformation secondary to abnormal post-migrational development. However, the aetiology in many individuals with these cortical malformations is still unknown. During the past few years, mutations in a number of neuron-specific α- and β-tubulin genes have been identified in both lissencephaly and polymicrogyria, usually associated with additional cerebral anomalies including callosal hypoplasia or agenesis, abnormal basal ganglia and cerebellar hypoplasia. The tubulin proteins form heterodimers that incorporate into microtubules, cytoskeletal structures essential for cell motility and function. In this study, we sequenced the TUBB2B and TUBA1A coding regions in 47 patients with a diagnosis of polymicrogyria and five with an atypical lissencephaly on neuroimaging. We identified four β-tubulin and two α-tubulin mutations in patients with a spectrum of cortical and extra-cortical anomalies. Dysmorphic basal ganglia with an abnormal internal capsule were the most consistent feature. One of the patients with a TUBB2B mutation had a lissencephalic phenotype, similar to that previously associated with a TUBA1A mutation. The remainder had a polymicrogyria-like cortical dysplasia, but the grey matter malformation was not typical of that seen in 'classical' polymicrogyria. We propose that the cortical malformations associated with these genes represent a recognizable tubulinopathy-associated spectrum that ranges from lissencephalic to polymicrogyric cortical dysplasias, suggesting shared pathogenic mechanisms in terms of microtubular function and interaction with microtubule-associated proteins.
Collapse
Affiliation(s)
- Thomas D Cushion
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Freitas SP, Dias CS, Fonseca AM. Elite portuguese soccer players’ use of psychological techniques: where, when and why. JOURNAL OF HUMAN SPORT AND EXERCISE 2013. [DOI: 10.4100/jhse.2013.83.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
17
|
Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN. One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 2012; 23:4393-401. [PMID: 22993214 PMCID: PMC3496613 DOI: 10.1091/mbc.e12-06-0444] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A method is presented that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. It eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research. We have developed a protocol that allows rapid and efficient purification of native, active tubulin from a variety of species and tissue sources by affinity chromatography. The affinity matrix comprises a bacterially expressed, recombinant protein, the TOG1/2 domains from Saccharomyces cerevisiae Stu2, covalently coupled to a Sepharose support. The resin has a high capacity to specifically bind tubulin from clarified crude cell extracts, and, after washing, highly purified tubulin can be eluted under mild conditions. The eluted tubulin is fully functional and can be efficiently assembled into microtubules. The method eliminates the need to use heterologous systems for the study of microtubule-associated proteins and motor proteins, which has been a major issue in microtubule-related research.
Collapse
Affiliation(s)
- Per O Widlund
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Proteome analysis reveals protein candidates involved in early stages of brain regeneration of teleost fish. Neuroscience 2012; 219:302-13. [PMID: 22659563 DOI: 10.1016/j.neuroscience.2012.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/10/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
Exploration of the molecular dynamics underlying regeneration in the central nervous system of regeneration-competent organisms has received little attention thus far. By combining a cerebellar lesion paradigm with differential proteome analysis at a post-lesion survival time of 30 min, we screened for protein candidates involved in the early stages of regeneration in the cerebellum of such an organism, the teleost fish Apteronotus leptorhynchus. Out of 769 protein spots, the intensity of 26 spots was significantly increased by a factor of at least 1.5 in the lesioned hemisphere, relative to the intact hemisphere. The intensity of 9 protein spots was significantly reduced by a factor of at least 1.5. The proteins associated with 15 of the spots were identified by peptide mass fingerprinting and/or tandem mass spectrometry, resulting in the identification of a total of 11 proteins. Proteins whose abundance was significantly increased include: erythrocyte membrane protein 4.1N, fibrinogen gamma polypeptide, fructose-biphosphate aldolase C, alpha-internexin neuronal intermediate filament protein, major histocompatibility complex class I heavy chain, 26S proteasome non-ATPase regulatory subunit 8, tubulin alpha-1C chain, and ubiquitin-specific protease 5. Proteins with significantly decreased levels of abundance include: brain glycogen phosphorylase, neuron-specific calcium-binding protein hippocalcin, and spectrin alpha 2. We hypothesize that these proteins are involved in energy metabolism, blood clotting, electron transfer in oxidative reactions, cytoskeleton degradation, apoptotic cell death, synaptic plasticity, axonal regeneration, and promotion of mitotic activity.
Collapse
|
19
|
Asakawa H, Ikegami K, Setou M, Watanabe N, Tsukada M, Fukuma T. Submolecular-scale imaging of α-helices and C-terminal domains of tubulins by frequency modulation atomic force microscopy in liquid. Biophys J 2011; 101:1270-6. [PMID: 21889465 DOI: 10.1016/j.bpj.2011.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/13/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022] Open
Abstract
In this study, we directly imaged subnanometer-scale structures of tubulins by performing frequency modulation atomic force microscopy (FM-AFM) in liquid. Individual α-helices at the surface of a tubulin protofilament were imaged as periodic corrugations with a spacing of 0.53 nm, which corresponds to the common pitch of an α-helix backbone (0.54 nm). The identification of individual α-helices allowed us to determine the orientation of the deposited tubulin protofilament. As a result, C-terminal domains of tubulins were identified as protrusions with a height of 0.4 nm from the surface of the tubulin. The imaging mechanism for the observed subnanometer-scale contrasts is discussed in relation to the possible structures of the C-terminal domains. Because the C-terminal domains are chemically modified to regulate the interactions between tubulins and other biomolecules (e.g., motor proteins and microtubule-associated proteins), detailed structural information on individual C-terminal domains is valuable for understanding such regulation mechanisms. The results obtained in this study demonstrate that FM-AFM is capable of visualizing the structural variation of tubulins with subnanometer resolution. This is an important first step toward using FM-AFM to analyze the functions of tubulins.
Collapse
Affiliation(s)
- Hitoshi Asakawa
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev 2011; 31:443-81. [PMID: 21381049 DOI: 10.1002/med.20242] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These "biological vectors" can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work.
Collapse
|
21
|
Gardiner J, Marc J. Arabidopsis thaliana, a plant model organism for the neuronal microtubule cytoskeleton? JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:89-97. [PMID: 20813785 DOI: 10.1093/jxb/erq278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The microtubule cytoskeleton is an important component of both neuronal cells and plant cells. While there are large differences in the function of microtubules between the two groups of organisms, for example plants coordinate the ordered deposition of cellulose through the microtubule cytoskeleton, there are also some notable similarities. It is suggested that Arabidopsis thaliana, with its superior availability of knockout lines, may be a suitable model organism for some aspects of the neuronal microtubule cytoskeleton. Some cellular processes that involve the neuronal microtubule cytoskeleton including neurotransmitter signalling and neurotrophic support may have homologous processes in plant cells. A number of microtubule-associated proteins (MAPs) are conserved, including katanin, EB1, CLASP, spastin, gephyrin, CRIPT, Atlastin/RHD3, and ELP3. As a demonstration of the usefulness of a plant model system for neuronal biology, an analysis of plant tubulin-binding proteins was used to show that Charcot-Marie-Tooth disease type 2D and spinal muscular atrophy may be due to microtubule dysfunction and suggest that indeed the plant microtubule cytoskeleton may be particularly similar to that of motor neurons as both are heavily reliant upon motor proteins.
Collapse
Affiliation(s)
- John Gardiner
- The School of Biological Sciences, The University of Sydney 2006, Australia.
| | | |
Collapse
|
22
|
|
23
|
Tian G, Jaglin XH, Keays DA, Francis F, Chelly J, Cowan NJ. Disease-associated mutations in TUBA1A result in a spectrum of defects in the tubulin folding and heterodimer assembly pathway. Hum Mol Genet 2010; 19:3599-613. [PMID: 20603323 DOI: 10.1093/hmg/ddq276] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malformations of cortical development are characteristic of a plethora of diseases that includes polymicrogyria, periventricular and subcortical heterotopia and lissencephaly. Mutations in TUBA1A and TUBB2B, each a member of the multigene families that encode alpha- and beta-tubulins, have recently been implicated in these diseases. Here we examine the defects that result from nine disease-causing mutations (I188L, I238V, P263T, L286F, V303G, L397P, R402C, 402H, S419L) in TUBA1A. We show that the expression of all the mutant proteins in vitro results in the generation of tubulin heterodimers in varying yield and that these can co-polymerize with microtubules in vitro. We identify several kinds of defects that result from these mutations. Among these are various defects in the chaperone-dependent pathway leading to de novo tubulin heterodimer formation. These include a defective interaction with the chaperone prefoldin, a reduced efficiency in the generation of productive folding intermediates as a result of inefficient interaction with the cytosolic chaperonin, CCT, and, in several cases, a failure to stably interact with TBCB, one of five tubulin-specific chaperones that act downstream of CCT in the tubulin heterodimer assembly pathway. Other defects include structural instability in vitro, diminished stability in vivo, a compromised ability to co-assemble with microtubules in vivo and a suppression of microtubule growth rate in the neurites (but not the soma) of cultured neurons. Our data are consistent with the notion that some mutations in TUBA1A result in tubulin deficit, whereas others reflect compromised interactions with one or more MAPs that are essential to proper neuronal migration.
Collapse
Affiliation(s)
- Guoling Tian
- Department of Biochemistry, NYU Langone Medical Center, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
24
|
Deidda G, Rossi N, Putti S, Tocchini-Valentini GP. ARCHAEA-ExPRESs targeting of alpha-tubulin 4 mRNA: a model for high-specificity trans-splicing. FASEB J 2010; 24:2976-84. [PMID: 20371619 DOI: 10.1096/fj.10-154658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effectiveness of trans-splicing-mediated mRNA reprogramming depends on specificity and efficiency. We have previously developed a new strategy (ARCHAEA-ExPRESs) that uses a tRNA endonuclease derived from Archaea and its natural substrate, the bulge-helix-bulge (BHB) structure. ARCHAEA-ExPRESs provides increased specificity in functional targeting. In fact, this system is based on a double check, the base pairing and the formation of a BHB structure between the target mRNA and the targeting RNA. In this study, we demonstrate the high specificity of ARCHAEA-ExPRESs by tagging the endogenous alpha-tubulin 4 via trans-splicing. Alpha-tubulin 4 belongs to a gene family sharing high degree of nucleotide sequence homology. The formation of a perfect BHB structure between targeting RNAs and the isotype alpha-tubulin 4 enables selective trans-splicing. Most important, ARCHAEA-ExPRESs functionality is conserved in vivo following transient expression of archaeal tRNA endonuclease in mouse liver. Production of the recombinant protein is strictly dependent on the expression of the archaeal endonuclease, and the efficiency of the system depends on the relative amount of the target and targeting mRNAs. These data prove the effectiveness of ARCHAEA-ExPRESs in an endogenous highly demanding context and disclose the possibility to utilize this system in a variety of technological or therapeutic applications.
Collapse
Affiliation(s)
- Giancarlo Deidda
- Istituto di Biologia Cellulare-CNR, Campus A. Buzzati-Traverso, Via E. Ramarini 32, I-00015 Monterondo Scalo, Rome, Italy.
| | | | | | | |
Collapse
|
25
|
Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T. Post-translational modifications of tubulin in the nervous system. J Neurochem 2009; 109:683-93. [DOI: 10.1111/j.1471-4159.2009.06013.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Arce CA, Casale CH, Barra HS. Submembraneous microtubule cytoskeleton: regulation of ATPases by interaction with acetylated tubulin. FEBS J 2008; 275:4664-74. [DOI: 10.1111/j.1742-4658.2008.06615.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Fanarraga ML, Avila J, Zabala JC. Expression of unphosphorylated class III β-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur J Neurosci 2008. [DOI: 10.1046/j.1460-9568.1999.00459.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Banerjee A, Jensen-Smith H, Lazzell A, Prasad V, Elguezabal G, Hallworth R, Ludueña RF. Localization of betav tubulin in the cochlea and cultured cells with a novel monoclonal antibody. ACTA ACUST UNITED AC 2008; 65:505-14. [PMID: 18412253 DOI: 10.1002/cm.20280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubulin, the dimeric structural protein of microtubules, is a heterodimer of alpha and beta subunits; both alpha and beta exist as numerous isotypes encoded by different genes. In vertebrates the sequence differences among the beta(I), beta(II), beta(III), beta(IV) and beta(V) isotypes are highly conserved in evolution, implying that the isotypes may have functional significance. Isotype-specific monoclonal antibodies have been useful in determining the cellular and sub-cellular distributions and possible functions of the beta(I), beta(II), beta(III), and beta(IV) isotypes; however, little is known about the beta(V) isotype. We here report the creation and purification of a monoclonal antibody (SHM.12G11) specific for beta(V). The antibody was designed to be specific for the C-terminal sequence EEEINE, which is unique to rodent and chicken beta(V). The antibody was found to bind specifically to the C-terminal peptide EEEINE, and does not cross-react with the carboxy-termini of either alpha-tubulin or the other beta-tubulin isotypes. However, the antibody also binds to the peptide EEEVNE, but not to the peptide EEEIDG, corresponding respectively to the C-terminal peptides of bovine and human beta(V). Immunofluorescence analysis indicates that beta(V) is found in microtubules of both the interphase network and the mitotic spindle. In gerbils, beta(V) also occurs in the cochlea where it is found largely in the specialized cells that are unique in containing bundled microtubules with 15 protofilaments.
Collapse
Affiliation(s)
- Asok Banerjee
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Utreras E, Jiménez-Mateos EM, Contreras-Vallejos E, Tortosa E, Pérez M, Rojas S, Saragoni L, Maccioni RB, Avila J, González-Billault C. Microtubule-Associated Protein 1B Interaction with Tubulin Tyrosine Ligase Contributes to the Control of Microtubule Tyrosination. Dev Neurosci 2007; 30:200-10. [DOI: 10.1159/000109863] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/15/2007] [Indexed: 01/24/2023] Open
|
30
|
Khodiyar VK, Maltais LJ, Ruef BJ, Sneddon KMB, Smith JR, Shimoyama M, Cabral F, Dumontet C, Dutcher SK, Harvey RJ, Lafanechère L, Murray JM, Nogales E, Piquemal D, Stanchi F, Povey S, Lovering RC. A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics 2007; 90:285-9. [PMID: 17543498 DOI: 10.1016/j.ygeno.2007.04.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 01/21/2023]
Abstract
An essential component of microtubules, alpha-tubulin is also a multigene family in many species. An orthology-based nomenclature for this gene family has previously been difficult to assign due to incomplete genome builds and the high degree of sequence similarity between members of this family. Using the current genome builds, sequence analysis of human, mouse, and rat alpha-tubulin genes has enabled an updated nomenclature to be generated. This revised nomenclature provides a unified language for the discussion of these genes in mammalian species; it has been approved by the gene nomenclature committees of the three species and is supported by researchers in the field.
Collapse
Affiliation(s)
- Varsha K Khodiyar
- HUGO Gene Nomenclature Committee, Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang XL, Fu A, Raghavakaimal S, Lee HC. Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics 2007; 7:588-596. [PMID: 17309104 DOI: 10.1002/pmic.200600568] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Isotope-coded affinity tags (cICAT) coupled with mass spectrometric analysis is one of the leading technologies for quantitative proteomic profiling and protein quantification. We performed proteomic analysis of bovine aortic endothelial cells (BAEC) in response to laminar shear stress using cICAT labeling coupled with LC-MS/MS. Protein expressions in BAEC under 15 dynes/cm2 of shear stress for 10 min, 3 h, and 6 h were compared with matched stationary controls. Analysis of each sample produced 1800-2400 proteins at >or=75% confidence level. We found 142, 213, and 186 candidate proteins that were up- or down-regulated by at least two-fold after 10 min, 3 h, and 6 h of shear stress, respectively. Some of these proteins have known cellular functions and they encompass many signaling pathways. The signaling pathways that respond to shear stress include those of integrins, G-protein-coupled receptors, glutamate receptors, PI3K/AKT, apoptosis, Notch and cAMP-mediated signaling pathways. The validity of the mass spectrometric analysis was also confirmed by Western blot and confocal immunofluorescence microscopy. The present quantitative proteomic analysis suggests novel potential regulatory mechanisms in vascular endothelial cells in response to shear stress. These results provide preliminary footprints for further studies on the signaling mechanisms induced by shear stress.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alex Fu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hon-Chi Lee
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Keays DA, Tian G, Poirier K, Huang GJ, Siebold C, Cleak J, Oliver PL, Fray M, Harvey RJ, Molnár Z, Piñon MC, Dear N, Valdar W, Brown SD, Davies KE, Rawlins JNP, Cowan NJ, Nolan P, Chelly J, Flint J. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007; 128:45-57. [PMID: 17218254 PMCID: PMC1885944 DOI: 10.1016/j.cell.2006.12.017] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 07/25/2006] [Accepted: 12/18/2006] [Indexed: 02/06/2023]
Abstract
The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- David A. Keays
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Guoling Tian
- Department of Biochemistry, New York University Medical Center, New York, NY10016, USA
| | - Karine Poirier
- Institut Cochin, INSERM Unité 567, CNRS UMR 8104, Université René Descartes – Paris 5, Faculté de Médecine René Descartes, Paris, F-75014, France
| | - Guo-Jen Huang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Christian Siebold
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - James Cleak
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Peter L. Oliver
- MRC Functional Genetics Unit, South Parks Road, Oxford, OX1 3QX, UK
| | - Martin Fray
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Robert J. Harvey
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Maria C. Piñon
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Neil Dear
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - William Valdar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Steve D.M. Brown
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Kay E. Davies
- MRC Functional Genetics Unit, South Parks Road, Oxford, OX1 3QX, UK
| | - J. Nicholas P. Rawlins
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | - Nicholas J. Cowan
- Department of Biochemistry, New York University Medical Center, New York, NY10016, USA
| | - Patrick Nolan
- MRC Mammalian Genetics Unit, Harwell, Didcot, OX11 0RD, Oxfordshire, UK
| | - Jamel Chelly
- Institut Cochin, INSERM Unité 567, CNRS UMR 8104, Université René Descartes – Paris 5, Faculté de Médecine René Descartes, Paris, F-75014, France
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Corresponding author
| |
Collapse
|
33
|
Vashist YK, Tiffon C, Stoupis C, Redaelli CA. Inhibition of hepatic tumor cell proliferation in vitro and tumor growth in vivo by taltobulin, a synthetic analogue of the tripeptide hemiasterlin. World J Gastroenterol 2006; 12:6771-8. [PMID: 17106924 PMCID: PMC4087430 DOI: 10.3748/wjg.v12.i42.6771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the inhibitory effects of taltobulin (HTI-286), a synthetic analogue of natural hemiasterlin derived from marine sponges, on hepatic tumor growth in vitro and in vivo.
METHODS: The potential anti-proliferative effects of HTI-286 on different hepatic tumor cell lines in vitro and in vivo were examined.
RESULTS: HTI-286 significantly inhibited proliferation of all three hepatic tumor cell lines (mean IC50 = 2 nmol/L ± 1 nmol/L) in vitro. Interestingly, no decrease in viable primary human hepatocytes (PHH) was detected under HTI-286 exposure. Moreover, intravenous administration of HTI-286 significantly inhibited tumor growth in vivo (rat allograft model).
CONCLUSION: HTI-286 might be considered a potent promising drug in treatment of liver malignancies. HTI-286 is currently undergoing clinical evaluation in cancer patients.
Collapse
Affiliation(s)
- Yogesh-K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | | |
Collapse
|
34
|
Goping IS, Sawchuk T, Underhill DA, Bleackley RC. Identification of {alpha}-tubulin as a granzyme B substrate during CTL-mediated apoptosis. J Cell Sci 2006; 119:858-65. [PMID: 16495481 DOI: 10.1242/jcs.02791] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytotoxic lymphocytes induce target cell apoptosis via two major pathways: Fas/FasL and granule exocytosis. The latter pathway has largely been defined by the roles of the pore-forming protein perforin and by the serine proteinases granzymes A and B. Upon entry into target cells, the granzymes cleave substrates that ultimately result in cell death. To gain further insight into granzyme B function, we have identified novel substrates. SDS-PAGE analysis of S100 cell lysates identified a 51 kDa protein that was cleaved by granzyme B. Mass spectrometry analysis revealed that this fragment was the microtubule protein, alpha-tubulin, which was confirmed by western blotting. In addition, two-dimensional gel analysis showed that the truncated form of alpha-tubulin had a more basic isoelectric point than the full-length molecule, suggesting that granzyme B removed the acidic C-terminus. Site-directed mutagenesis within this region of alpha-tubulin revealed the granzyme B recognition site, which is conserved in a subset of alpha-tubulin isoforms. Significantly, we showed that alpha-tubulin was cleaved in target cells undergoing apoptosis as induced by cytotoxic T lymphocytes. Therefore, in addition to its role in the activation of mitochondria during apoptosis, these results suggest a role for granzyme B in the dismantling of the cytoskeleton.
Collapse
Affiliation(s)
- Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | | | | | | |
Collapse
|
35
|
Araki R, Fukumura R, Sasaki N, Kasama Y, Suzuki N, Takahashi H, Tabata Y, Saito T, Abe M. More than 40,000 transcripts, including novel and noncoding transcripts, in mouse embryonic stem cells. Stem Cells 2006; 24:2522-8. [PMID: 16825609 DOI: 10.1634/stemcells.2006-0005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
To study the transcriptome of embryonic stem cells, we used a new gene expression profiling method that can measure the expression levels of unknown and rarely expressed transcripts precisely. We detected a total of 33,136 signal peaks representing transcripts in mouse embryonic stem cells, E14. Subsequent random cloning of the peaks suggests that mouse embryonic stem cells express at least 40,000 transcripts, of which about 2,000 are still unknown. In addition, we identified 1,022 noncoding transcripts, several of which change depending on differentiation in gene expression. Our database provides a high-resolution expression profile of E14 cells and is applicable to other mouse embryonic stem cell analyses. It includes most transcription regulation factor-encoding genes and a significant number of unknown and noncoding transcripts.
Collapse
Affiliation(s)
- Ryoko Araki
- Transcriptome Research Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ijiri TW, Nagase T, Matsuda Y. Isolation and characterization of novel testis-specific genes from mouse pachytene spermatocyte-enriched cDNA library. Reprod Med Biol 2005; 4:231-237. [PMID: 32351317 DOI: 10.1111/j.1447-0578.2005.00111.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 06/16/2005] [Indexed: 11/29/2022] Open
Abstract
Background and Aims: Isolation and analysis of spermatogenesis-specific genes provide important information for elucidating the mechanisms of human infertility. The aim of the present study was to suggest an effective strategy for the comprehensive isolation of novel genes associated with spermatogenesis in mice. Methods: To isolate novel testis-specific genes associated with meiosis in mice, we constructed a mouse pachytene spermatocyte-enriched cDNA library by the centrifugal elutriation method, and sequenced 120 cDNA clones isolated from the cDNA library. A basic local alignment search tool (BLAST) search was carried out on the cDNA clones to find novel genes and then a detailed expression analysis was carried out by Northern blot hybridization and in situ hybridization. Results: Of the 120 cDNA clones, 35 clones (29%) were novel and 18 clones (15%) were expressed only in the testis. The expression patterns of seven novel testis-specific clones were examined on the testis sections. Three clones were expressed in spermatocytes and other germ cells, and two clones were exclusively expressed in spermatocytes. Amino acid sequences of seven novel testis-specific clones were deduced from their nucleotide sequences, suggesting that two of them contain known functional repeat structures. Conclusions: This method provides a powerful strategy to isolate novel testis-specific genes efficiently. (Reprod Med Biol 2005; 4: 231-237).
Collapse
Affiliation(s)
- Takashi W Ijiri
- Laboratory of Cytogenetics, Division of Bioscience, Graduate School of Environmental Earth Science and
| | - Takahiro Nagase
- Department of Human Gene Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Yoichi Matsuda
- Laboratory of Cytogenetics, Division of Bioscience, Graduate School of Environmental Earth Science and.,Laboratory of Animal Cytogenetics, Center for Advanced Science and Technology, Hokkaido University, Sapporo, and
| |
Collapse
|
37
|
Pohlers M, Truss M, Frede U, Scholz A, Strehle M, Kuban RJ, Hoffmann B, Morkel M, Birchmeier C, Hagemeier C. A role for E2F6 in the restriction of male-germ-cell-specific gene expression. Curr Biol 2005; 15:1051-7. [PMID: 15936277 DOI: 10.1016/j.cub.2005.04.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 04/10/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
E2F transcription factors play a pivotal role in the regulation of cellular proliferation and can be subdivided into activating and repressing family members [1]. Like other E2Fs, E2F6 binds to E2F consensus sites, but in contrast to E2F1-5, it lacks an Rb binding domain and functions as an Rb-independent transcriptional repressor [2, 3, 4 and 5]. Instead, E2F6 has been shown to complex with Polycomb (PcG) group proteins [6 and 7], which have a well-established role in gene silencing. Here, we show that E2F6 plays an unexpected and essential role in the tissue specificity of gene expression. E2F6-deficient mice ubiquitously express the alpha-tubulin 3 and 7 genes, which are expressed strictly testis-specifically in control mice. Like an additional E2F6 target gene, Tex12, that we identified, tubulin 3 and 7 are normally expressed in male germ cells only. The promoters of the alpha-tubulin and Tex12 genes share a perfectly conserved E2F site, which E2F6 binds to. Mechanistically, E2F6-mediated repression involves CpG hypermethylation locking target promoters in an inactive state. Thus, E2F6 is essential for the long-term somatic silencing of certain male-germ-cell-specific genes, but it is dispensable for cell-cycle regulation.
Collapse
Affiliation(s)
- Michael Pohlers
- Children's Hospital, Laboratory for Molecular Biology, Charité-CCM, Humboldt University, Ziegelstrasse 5-9, D-10098 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McPhail LT, Oschipok LW, Liu J, Tetzlaff W. Both positive and negative factors regulate gene expression following chronic facial nerve resection. Exp Neurol 2005; 195:199-207. [PMID: 15935349 DOI: 10.1016/j.expneurol.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Previously, we reported that following a chronic nerve resection, removal of the neuroma reversed the atrophy, increased the number of countable motoneurons and resulted in the re-expression of GAP-43 and alpha tubulin mRNA. In the present study, we questioned whether this response was due to the removal of the neuroma, or a result of factors such as neurotrophins, produced at the injury site. To test this hypothesis, 10 weeks after axotomy, the axonal transport blocker colchicine or, glial derived neurotrophic factor (GDNF) was injected proximal to the neuroma. The injection of GDNF or colchicine elicited an increase in motoneuron size and in GAP-43, but not alpha tubulin, mRNA. These data suggest that in addition to factors produced at the injury site, the neuroma acts as a source of target-like repressive signals that when removed results in an increase in gene expression and motoneuron size. To analyze the regenerative potential of chronically resected motoneurons, mice without a previous nerve injury and mice with a chronic resection received a pre-degenerated segment of sciatic nerve attached to the proximal facial nerve stump. Axons from both the chronic and acute groups grew into the grafts, however, significantly more retrogradely labeled motoneurons were counted in the acute group compared to the chronic resection group. No difference in motoneuron cell size was observed between the two groups of regenerated neurons. Therefore, despite severe atrophy, many of the surviving mouse facial motoneurons retain the propensity to extend their axons when provided with the appropriate environment.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Rm 2465 Biosciences Building, 6270 University Boulevard, Vancouver, BC, Canada V6T1Z4
| | | | | | | |
Collapse
|
39
|
McPhail LT, Fernandes KJL, Chan CCM, Vanderluit JL, Tetzlaff W. Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Exp Neurol 2004; 188:331-40. [PMID: 15246833 DOI: 10.1016/j.expneurol.2004.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 04/08/2004] [Accepted: 04/12/2004] [Indexed: 12/16/2022]
Abstract
Recently, we reported that chronically axotomized rubrospinal neurons survive for up to 1 year in an atrophied state. This finding contrasted previous work suggesting the death of up to 50% of the neurons over time. In the adult mouse, the majority of facial motoneurons appear to be lost as a result of chronic nerve resection. Here, we sought to determine if chronically resected adult mouse facial motoneurons, like rubrospinal neurons, survive in an atrophied state. To test this hypothesis, we asked whether a second nerve injury, 10 weeks after an initial nerve resection, could stimulate a regenerative cell body response. After chronic resection (10 weeks), mouse facial motoneurons underwent atrophy resulting in a loss of countable neuronal cell bodies. In addition, the motoneurons failed to maintain their initial increase in expression of GAP-43 and alpha-tubulin mRNA. Reinjury of 10-week chronically resected facial motoneurons by the removal of the neuroma reversed the atrophy of the cell bodies and increased the percentage of identifiable cell bodies from 36% of contralateral to 79% in C57BL/6-C3H mice and from 28% of contralateral to 40% in Balb/c mice. Moreover, the reinjured motoneurons displayed an increase in GAP-43 and alpha-tubulin mRNA expression. The results of this study indicate that a second axon injury stimulates regenerative cell body responses in chronically resected mouse facial motoneurons and suggest previous studies using this model may have overestimated the number of dying motoneurons.
Collapse
Affiliation(s)
- Lowell T McPhail
- International Collaboration On Repair Discoveries, University of British Columbia, Vancouver, Canada V6T 1Z4
| | | | | | | | | |
Collapse
|
40
|
Yamada S, Nakajima H, Kuehn MR. Novel testis- and embryo-specific isoforms of the phosphofructokinase-1 muscle type gene. Biochem Biophys Res Commun 2004; 316:580-7. [PMID: 15020257 DOI: 10.1016/j.bbrc.2004.02.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Indexed: 10/26/2022]
Abstract
We have identified novel transcriptional isoforms of the human and mouse genes encoding muscle type phosphofructokinase-1 (PFK-M). These isoforms are expressed specifically in the testis and in the mid-gestation embryo, and have been termed TE-PFK-M (testis- and embryo-specific PFK-M). The 5'UTR of TE-PFK-M is composed of three newly identified exons that lie much farther upstream of the PFK-M coding region than the previously characterized 5'UTR. In addition, this upstream region encodes a series of small polyadenylated transcripts, some of which share the same exons found in the 5'UTR of TE-PFK-M, and which may play some role in regulating TE-PFK-M expression. These findings indicate an even more complex level of control of PFK-M expression than previously thought.
Collapse
Affiliation(s)
- Satoru Yamada
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
41
|
Simoncelli F, Sorbolini S, Fagotti A, Di Rosa I, Porceddu A, Pascolini R. Molecular characterization and expression of a divergent α-tubulin in planarian Schmidtea polychroa. ACTA ACUST UNITED AC 2003; 1629:26-33. [PMID: 14522077 DOI: 10.1016/s0167-4781(03)00159-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the cloning and sequencing of a cDNA from planarian Schmidtea polychroa (Platyhelminthes, Turbellaria, Tricladida) encoding for an unusual tubulin isoform (SpTub-1) which is specifically expressed in testis. Sequence comparison of SpTub-1 with other known tubulins reveals that it has the highest homology with alpha-tubulins, even though the analysis of the molecular features shows that this isoform is significantly divergent. Hybridization of SpTub-1 to restriction-digested genomic DNA to Southern blotting produced a multiple banding pattern indicating that in planarian, a tubulin multigene family exists. Using in situ hybridization, we showed that the transcript is specifically detectable in planarian testis, suggesting that it may play a role in spermatogenesis.
Collapse
Affiliation(s)
- Francesca Simoncelli
- Department of Cellular and Molecular Biology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Italiano JE, Bergmeier W, Tiwari S, Falet H, Hartwig JH, Hoffmeister KM, André P, Wagner DD, Shivdasani RA. Mechanisms and implications of platelet discoid shape. Blood 2003; 101:4789-96. [PMID: 12586623 DOI: 10.1182/blood-2002-11-3491] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet marginal band consists of a single peripheral microtubule (MT) that is wound in 8 to 12 coils and maintains discoid cell shape. About 90% of beta-tubulin in the marginal band is of the divergent, megakaryocyte (MK)/platelet-restricted beta1 isoform. beta1-tubulin-null mice show reduced proplatelet formation, thrombocytopenia, and platelet spherocytosis. Here, we show that structural abnormalities in resting beta1-tubulin-/- platelets include frequent kinks and breaks in the marginal band. Platelets derived from mice lacking the transcription factor GATA1 show similar defects, probably as a direct consequence of absent beta1-tubulin. beta1-tubulin+/- platelets have normal ratios of beta-tubulin isotypes but the marginal band is half the normal thickness, which is sufficient to maintain elliptical cell shape. Thus, a threshold 50% or less of the normal amount of beta1-tubulin is required to preserve marginal band integrity and cell shape. beta1-tubulin-/- platelets have normal size and contents and show no defects in serotonin release or aggregation. Accordingly, the apparently isolated spherocytosis allows investigation of the role of discoid platelet shape in hemostasis. On agonist stimulation, the disorganized MTs in beta1-tubulin-/- platelets fail to condense into central rings and instead are dispersed in short bundles and linear arrays. Nevertheless, intravital microscopy and flow chamber studies demonstrate full functionality of these spherocytic platelets under physiologic shear conditions. Together, these findings highlight the essential requirements of the MK/platelet-restricted beta1-tubulin isoform in platelet structure and suggest that spherocytosis does not impair many aspects of platelet function.
Collapse
Affiliation(s)
- Joseph E Italiano
- Division of Hematology and Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Banerjee A. Coordination of posttranslational modifications of bovine brain alpha-tubulin. Polyglycylation of delta2 tubulin. J Biol Chem 2002; 277:46140-4. [PMID: 12356754 DOI: 10.1074/jbc.m208065200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microtubules participate in a large number of intracellular events including cell division, intracellular transport and secretion, axonal transport, and maintenance of cell morphology. They are composed of tubulin, a heterodimeric protein, consisting of two similar polypeptides alpha and beta. In mammalian cells, both alpha- and beta-tubulin occur as seven to eight different genetic variants, which also undergo numerous posttranslational modifications that include tyrosination-detyrosination and deglutamylation, phosphorylation, acetylation, polyglutamylation, and polyglycylation. Tyrosination-detyrosination is one of the major posttranslational modifications in which the C-terminal tyrosine residue in alpha-tubulin is added or removed reversibly. Although this modification does not alter the assembly activity of tubulin in vitro, these two forms of tubulin have been found to be distributed differently in vivo and are also correlated with microtubule stability (Gunderson, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Cell 38, 779-789). Thus, the question arises as to whether these two forms of tubulin differ in any other modifications. In an effort to answer this question, the tyrosinated and the nontyrosinated forms of the alpha1/2 isoform have been purified from brain tubulin by immunoaffinity chromatography. matrix-assisted laser desorption/ionization-time of flight mass spectrometric analysis of the C-terminal peptide revealed that the tyrosinated form is polyglutamylated with one to four Glu residues, while the Delta2 tubulin is polyglycylated with one to three Gly residues. These results indicate that posttranslational modifications of tubulin are correlated with each other and that polyglutamylation and polyglycylation of tubulin may have important roles in regulating microtubule assembly, stability, and function in vivo.
Collapse
Affiliation(s)
- Asok Banerjee
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.
| |
Collapse
|
44
|
LAMERS ANNEE, HEINEY JAKEP, RAM JEFFREYL. cDNA sequence analysis of proteins involved in reproduction and cell cycle of the zebra mussel,Dreissena polymorpha. INVERTEBR REPROD DEV 2002. [DOI: 10.1080/07924259.2002.9652734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Al-Bassam J, Ozer RS, Safer D, Halpain S, Milligan RA. MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 2002; 157:1187-96. [PMID: 12082079 PMCID: PMC2173547 DOI: 10.1083/jcb.200201048] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.
Collapse
Affiliation(s)
- Jawdat Al-Bassam
- Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
46
|
Eddé B, Rossier J, Le Caer JP, Promé JC, Desbruyères E, Gros F, Denoulet P. Polyglutamylated .alpha.-tubulin can enter the tyrosination/detyrosination cycle. Biochemistry 2002; 31:403-10. [PMID: 1370628 DOI: 10.1021/bi00117a014] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously identified a major modification of neuronal alpha-tubulin which consists of the posttranslational addition of a varying number of glutamyl units on the gamma-carboxyl group of glutamate residue 445. This modification, called polyglutamylation, was initially found associated with detyrosinated alpha-tubulin [Eddé, B., Rossier, J., Le Caer, J.P., Desbruyères, E., Gros, F., & Denoulet, P. (1990) Science 247, 83-85]. In this report we show that a lateral chain of glutamyl units can also be present on tyrosinated alpha-tubulin. Incubation of cultured mouse brain neurons with radioactive tyrosine, in the presence of cycloheximide, resulted in a posttranslational labeling of six alpha-tubulin isoelectric variants. Because both tyrosination and polyglutamylation occur in the C-terminal region of alpha-tubulin, the structure of this region was investigated. [3H]tyrosinated tubulin was mixed with a large excess of unlabeled mouse brain tubulin and digested with thermolysin. Five peptides, detected by their radioactivity, were purified by high-performance liquid chromatography. Amino acid sequencing and mass spectrometry showed that one of these peptides corresponds to the native C-terminal part of alpha-tubulin 440VEGEGEEEGEEY451 and that the remainders bear a varying number of glutamyl units linked to glutamate residue 445, which explains the observed heterogeneity of tyrosinated alpha-tubulin. A quantitative analysis showed that the different tyrosinated forms of alpha-tubulin represent a minor (13%) fraction of the total alpha-tubulin present in the brain and that most (80%) of these tyrosinated forms are polyglutamylated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Eddé
- Laboratoire de Biochimie Cellulaire, Collège de France, Paris
| | | | | | | | | | | | | |
Collapse
|
47
|
Correa LM, Miller MG. Microtubule depolymerization in rat seminiferous epithelium is associated with diminished tyrosination of alpha-tubulin. Biol Reprod 2001; 64:1644-52. [PMID: 11369590 DOI: 10.1095/biolreprod64.6.1644] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.
Collapse
Affiliation(s)
- L M Correa
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
48
|
Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 2001; 106:3-23. [PMID: 11472831 DOI: 10.1016/s0925-4773(01)00413-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the striking differences in the patterns of transcription and translation in somatic and spermatogenic cells in mammals. In early haploid cells, mRNA translation evidently functions to restrict the synthesis of certain proteins, notably protamines, to transcriptionally inert late haploid cells. However, this does not explain why a substantial proportion of virtually all mRNA species are sequestered in translationally inactive free-messenger ribonucleoprotein particles (free-mRNPs) in meiotic cells, since most mRNAs undergo little or no increase in translational activity in transcriptionally active early haploid cells. In addition, most mRNAs in meiotic cells appear to be overexpressed because they are never fully loaded on polysomes and the levels of the corresponding protein are often much lower than the mRNA and are sometimes undetectable. A large number of genes are expressed at grossly higher levels in meiotic and/or early haploid spermatogenic cells than in somatic cells, yet they too are translated inefficiently. Many genes utilize alternative promoters in somatic and spermatogenic cells. Some of the resulting spermatogenic cell-altered transcripts (SCATs) encode proteins with novel functions, while others contain features in their 5'-UTRs, secondary structure or upstream reading frames, that are predicted to inhibit translation. This review proposes that the transcriptional machinery is modified to provide access to specific DNA sequences during meiosis, which leads to mRNA overexpression and creates a need for translational fine-tuning to prevent deleterious consequences of overproducing proteins.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA..
| |
Collapse
|
49
|
Guo X, Ying W, Wan J, Hu Z, Qian X, Zhang H, He F. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis 2001; 22:3067-75. [PMID: 11565801 DOI: 10.1002/1522-2683(200108)22:14<3067::aid-elps3067>3.0.co;2-v] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Embryonic stem (ES) cells are totipotent stem cells, which can differentiate into various kinds of cell types, including neurons. They are widely used as a model system for investigating mechanisms of differentiation events during early mouse development. In this study, proteomic techniques were used to approach the protein profile associated with the early-stage differentiation of ES cells into neuronal cells induced by all-trans retinoic acid (ATRA) in vitro. In comparison of the protein profile of parent ES cells with that of ES-derived neural-committed cells, which was induced by ATRA for four days, 24 differentially displayed protein spots were selected from two-dimensional electrophoresis (2-DE) gels for further protein identification by pepide mass fingerprinting (PMF). Nine proteins were known to being involved in the process of neural differentiation and/or neural survival. Of those, alpha-3/alpha-7 tubulin and vimentin were down-regulated, while cytokeratin 8, cytokeratin 18, G1/S-special cyclin D2, follistatin-related protein, NEL protein, platelet-activating factor acetylhydrolase IB alpha-subunit, and thioredoxin peroxidase 2 were upregulated during differentiation of ES cells to neural cells. Additionally, other 12 protein (five upregulated and seven downregulated) spots associated with ES cell differentiation into neuronal cells were not matched to known proteins so far, implicating that they might be novel proteins. The results above indicated that the molecular mechanisms of differentiation of ES cells to neural cells in vitro might be similar to those of other neural systems in vitro and identified that proteomic analysis is an effective strategy to comprehensively unravel the regulatory network of differentiation.
Collapse
Affiliation(s)
- X Guo
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Takano T, Hasegawa Y, Miyauchi A, Matsuzuka F, Yoshida H, Kuma K, Amino N. Overexpression of kα1 tubulin mRNA in thyroid anaplastic carcinoma. Cancer Lett 2001; 168:51-5. [PMID: 11368877 DOI: 10.1016/s0304-3835(01)00509-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression levels of (k)alpha1 tubulin in 84 benign and malignant thyroid tissues were measured by means of real-time quantitative reverse transcription-polymerase chain reaction. An increased expression of (k)alpha1 tubulin mRNA was observed in all of five anaplastic carcinomas and some of the papillary carcinomas. Expression levels of (k)alpha1 tubulin relative to thyroglobulin mRNA were slightly increased in papillary carcinomas and greatly increased in anaplastic carcinomas. Chemotherapeutic agents which are targeted to microtubules may be considered as an alternative choice for the treatment of anaplastic carcinomas and some differentiated carcinomas in which increased expression of (k)alpha1 mRNA is observed.
Collapse
Affiliation(s)
- T Takano
- Department of Laboratory Medicine, Osaka University Medical School, D2, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|