1
|
Wendegatz EC, Lettow J, Wierzbicka W, Schüller HJ. Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc. Curr Genet 2025; 71:2. [PMID: 39820713 PMCID: PMC11739200 DOI: 10.1007/s00294-025-01309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast. We demonstrate that Myc and Max could be stably synthesized in S. cerevisiae and together significantly activated a target gene of Ino2/Ino4 but nevertheless were unable to functionally complement an ino2 ino4 double mutant. We also map two efficient transcriptional activation domains in the N-terminus of Myc (TAD1: aa 1-41 and TAD2: aa 91-140), corresponding to TAD positions in Ino2. We finally show that coactivators such as TFIID subunits Taf1, Taf4, Taf6, Taf10 and Taf12 as well as ATPase subunits of chromatin remodelling complexes Swi2, Sth1 and Ino80 previously shown to interact with TADs of Ino2 were also able to bind TADs of Myc, supporting the view that heterodimers Ino2/Ino4 and Myc/Max are evolutionary related but have undergone transcriptional rewiring of target genes.
Collapse
Affiliation(s)
- Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Wiktoria Wierzbicka
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Wang Z, Zhang YJ, Zhang QY, Bilsborrow K, Leslie M, Suhandynata RT, Zhou H. Sequence specificity of an essential nuclear localization sequence in Mcm3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623588. [PMID: 39605614 PMCID: PMC11601334 DOI: 10.1101/2024.11.14.623588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase. Through mutagenesis and AlphaFold 3 (AF3) modeling, we demonstrate that the precise positioning of basic residues within the NLS is critical for nuclear transport of Mcm3 through optimal interactions with importin. Disrupting these interactions impairs the nuclear import of Mcm3, resulting in defective chromatin loading of MCM and poor cell growth. Our results provide a structure-guided framework for predicting and analyzing monopartite NLSs, which, despite lacking a single consensus sequence, retain key characteristics shared between the NLSs of Mcm3 and the SV40 large T antigen.
Collapse
Affiliation(s)
- Ziyi Wang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Yun Jing Zhang
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Qian-yi Zhang
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
| | - Kate Bilsborrow
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | - Matthew Leslie
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
| | | | - Huilin Zhou
- Biomedical Science graduate program, School of Medicine, University of California at San Diego
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego
- Moores Cancer Center, School of Medicine, University of California at San Diego
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Develtere W, Decaestecker W, Rombaut D, Anders C, Clicque E, Vuylsteke M, Jacobs TB. Continual improvement of CRISPR-induced multiplex mutagenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1158-1172. [PMID: 38713824 DOI: 10.1111/tpj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.
Collapse
Affiliation(s)
- Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | | | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
5
|
Ly J, Xiang K, Su KC, Sissoko GB, Bartel DP, Cheeseman IM. Nuclear release of eIF1 globally increases stringency of start-codon selection to preserve mitotic arrest physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588385. [PMID: 38617206 PMCID: PMC11014515 DOI: 10.1101/2024.04.06.588385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Regulated start-codon selection has the potential to reshape the proteome through the differential production of uORFs, canonical proteins, and alternative translational isoforms. However, conditions under which start-codon selection is altered remain poorly defined. Here, using transcriptome-wide translation initiation site profiling, we reveal a global increase in the stringency of start-codon selection during mammalian mitosis. Low-efficiency initiation sites are preferentially repressed in mitosis, resulting in pervasive changes in the translation of thousands of start sites and their corresponding protein products. This increased stringency of start-codon selection during mitosis results from increased interactions between the key regulator of start-codon selection, eIF1, and the 40S ribosome. We find that increased eIF1-40S ribosome interactions during mitosis are mediated by the release of a nuclear pool of eIF1 upon nuclear envelope breakdown. Selectively depleting the nuclear pool of eIF1 eliminates the changes to translational stringency during mitosis, resulting in altered mitotic proteome composition. In addition, preventing mitotic translational rewiring results in substantially increased cell death and decreased mitotic slippage following treatment with anti-mitotic chemotherapeutics. Thus, cells globally control translation initiation stringency with critical roles during the mammalian cell cycle to preserve mitotic cell physiology.
Collapse
|
6
|
Davis RB, Supakar A, Ranganath AK, Moosa MM, Banerjee PR. Heterotypic interactions can drive selective co-condensation of prion-like low-complexity domains of FET proteins and mammalian SWI/SNF complex. Nat Commun 2024; 15:1168. [PMID: 38326345 PMCID: PMC10850361 DOI: 10.1038/s41467-024-44945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Prion-like domains (PLDs) are low-complexity protein sequences enriched within nucleic acid-binding proteins including those involved in transcription and RNA processing. PLDs of FUS and EWSR1 play key roles in recruiting chromatin remodeler mammalian SWI/SNF (mSWI/SNF) complex to oncogenic FET fusion protein condensates. Here, we show that disordered low-complexity domains of multiple SWI/SNF subunits are prion-like with a strong propensity to undergo intracellular phase separation. These PLDs engage in sequence-specific heterotypic interactions with the PLD of FUS in the dilute phase at sub-saturation conditions, leading to the formation of PLD co-condensates. In the dense phase, homotypic and heterotypic PLD interactions are highly cooperative, resulting in the co-mixing of individual PLD phases and forming spatially homogeneous condensates. Heterotypic PLD-mediated positive cooperativity in protein-protein interaction networks is likely to play key roles in the co-phase separation of mSWI/SNF complex with transcription factors containing homologous low-complexity domains.
Collapse
Affiliation(s)
- Richoo B Davis
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anushka Supakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | | | - Priya R Banerjee
- Department of Physics, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
7
|
Li Z, Huang Y, Hung TI, Sun J, Aispuro D, Chen B, Guevara N, Ji F, Cong X, Zhu L, Wang S, Guo Z, Chang CE, Xue M. MYC-Targeting Inhibitors Generated from a Stereodiversified Bicyclic Peptide Library. J Am Chem Soc 2024; 146:1356-1363. [PMID: 38170904 PMCID: PMC10797614 DOI: 10.1021/jacs.3c09615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Here, we present the second generation of our bicyclic peptide library (NTB), featuring a stereodiversified structure and a simplified construction strategy. We utilized a tandem ring-opening metathesis and ring-closing metathesis reaction (ROM-RCM) to cyclize the linear peptide library in a single step, representing the first reported instance of this reaction being applied to the preparation of macrocyclic peptides. Moreover, the resulting bicyclic peptide can be easily linearized for MS/MS sequencing with a one-step deallylation process. We employed this library to screen against the E363-R378 epitope of MYC and identified several MYC-targeting bicyclic peptides. Subsequent in vitro cell studies demonstrated that one candidate, NT-B2R, effectively suppressed MYC transcription activities and cell proliferation.
Collapse
Affiliation(s)
- Zhonghan Li
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Yi Huang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Ta I Hung
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Jianan Sun
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Desiree Aispuro
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Boxi Chen
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Nathan Guevara
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Fei Ji
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Xu Cong
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Lingchao Zhu
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Siwen Wang
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Zhili Guo
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Chia-en Chang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| | - Min Xue
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
8
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Baglamis S, Sheraton VM, Meijer D, Qian H, Hoebe RA, Lenos KJ, Betjes MA, Betjes MA, Tans S, van Zon J, Vermeulen L, Krawczyk PM. Using picoliter droplet deposition to track clonal competition in adherent and organoid cancer cell cultures. Sci Rep 2023; 13:18832. [PMID: 37914743 PMCID: PMC10620187 DOI: 10.1038/s41598-023-42849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 09/15/2023] [Indexed: 11/03/2023] Open
Abstract
Clonal growth and competition underlie processes of key relevance in etiology, progression and therapy response across all cancers. Here, we demonstrate a novel experimental approach, based on multi-color, fluorescent tagging of cell nuclei, in combination with picoliter droplet deposition, to study the clonal dynamics in two- and three-dimensional cell cultures. The method allows for the simultaneous visualization and analysis of multiple clones in individual multi-clonal colonies, providing a powerful tool for studying clonal dynamics and identifying clonal populations with distinct characteristics. Results of our experiments validate the utility of the method in studying clonal dynamics in vitro, and reveal differences in key aspects of clonal behavior of different cancer cell lines in monoculture conditions, as well as in co-cultures with stromal fibroblasts.
Collapse
Affiliation(s)
- Selami Baglamis
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | - Vivek M Sheraton
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
- Institute for Advanced Study, University of Amsterdam, 1012 WX, Amsterdam, The Netherlands
| | - Debora Meijer
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Haibin Qian
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Kristiaan J Lenos
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | - Max A Betjes
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Oncode Institute, 3521 AL, Utrecht, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
- Oncode Institute, 3521 AL, Utrecht, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Cancer Center Amsterdam, 1081 HV, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam University Medical Centers (location AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Horsfall AJ, Chav T, Pederick JL, Kikhtyak Z, Vandborg BC, Kowalczyk W, Scanlon DB, Tilley WD, Hickey TE, Abell AD, Bruning JB. Designing Fluorescent Nuclear Permeable Peptidomimetics to Target Proliferating Cell Nuclear Antigen. J Med Chem 2023; 66:10354-10363. [PMID: 37489955 DOI: 10.1021/acs.jmedchem.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.
Collapse
Affiliation(s)
- Aimee J Horsfall
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Theresa Chav
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - Jordan L Pederick
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zoya Kikhtyak
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bethiney C Vandborg
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Denis B Scanlon
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CNBP), Adelaide, South Australia 5005, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Bloom SMK, O’Hare N, Forbes NS. Bacterial delivery of therapeutic proteins to the nuclei of cancer cells. Biotechnol Bioeng 2023; 120:1437-1448. [PMID: 36710503 PMCID: PMC10101893 DOI: 10.1002/bit.28340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Targeting nucleic targets with therapeutic proteins would enhance the treatment of hard-to-treat cancers. However, exogenous proteins are excluded from the nucleus by both the cellular and nuclear membranes. We have recently developed Salmonella that deliver active proteins into the cytoplasm of cancer cells. Here, we hypothesized that bacterially delivered proteins accumulate within nuclei, nuclear localization sequences (NLSs) increase delivery, and bacterially delivered proteins kill cancer cells. To test this hypothesis, we developed intranuclear delivering (IND) Salmonella and quantified the delivery of three model proteins. IND Salmonella delivered both ovalbumin and green fluorescent protein to nuclei of MCF7 cancer cells. The amount of protein in nuclei was linearly dependent on the amount delivered to the cytoplasm. The addition of a NLSs increased both the amount of protein in each nucleus and the number of nuclei that received protein. Delivery of Omomyc, a protein inhibitor of the nuclear transcript factor, Myc, altered cell physiology, and significantly induced cell death. These results show that IND Salmonella deliver functional proteins to the nucleus of cancerous cells. Extending this method to other transcription factors will increase the number of accessible targets for cancer therapy.
Collapse
Affiliation(s)
| | - Nicholas O’Hare
- Department of Chemical Engineering, University of Massachusetts, Amherst
| | - Neil S. Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst
- Institute for Applied Life Sciences, University of Massachusetts, Amherst
| |
Collapse
|
12
|
Wang R, Bhatt AB, Minden-Birkenmaier BA, Travis OK, Tiwari S, Jia H, Rosikiewicz W, Martinot O, Childs E, Loesch R, Tossou G, Jamieson S, Finkelstein D, Xu B, Labelle M. ZBTB18 restricts chromatin accessibility and prevents transcriptional adaptations that drive metastasis. SCIENCE ADVANCES 2023; 9:eabq3951. [PMID: 36608120 PMCID: PMC9821869 DOI: 10.1126/sciadv.abq3951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Metastases arise from rare cancer cells that successfully adapt to the diverse microenvironments encountered during dissemination through the bloodstream and colonization of distant tissues. How cancer cells acquire the ability to appropriately respond to microenvironmental stimuli remains largely unexplored. Here, we report an epigenetic pliancy mechanism that allows cancer cells to successfully metastasize. We find that a decline in the activity of the transcriptional repressor ZBTB18 defines metastasis-competent cancer cells in mouse models. Restoration of ZBTB18 activity reduces chromatin accessibility at the promoters of genes that drive metastasis, such as Tgfbr2, and this prevents TGFβ1 pathway activation and consequently reduces cell migration and invasion. Besides repressing the expression of metastatic genes, ZBTB18 also induces widespread chromatin closing, a global epigenetic adaptation previously linked to reduced phenotypic flexibility. Thus, ZBTB18 is a potent chromatin regulator, and the loss of its activity enhances chromatin accessibility and transcriptional adaptations that promote the phenotypic changes required for metastasis.
Collapse
Affiliation(s)
- Ruishan Wang
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Akshita B. Bhatt
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Benjamin A. Minden-Birkenmaier
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Olivia K. Travis
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Srishti Tiwari
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hong Jia
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ophelie Martinot
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Eleanor Childs
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Loesch
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Guenole Tossou
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sophie Jamieson
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Myriam Labelle
- Comprehensive Cancer Center, Solid Tumor Program, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
13
|
Rizzuti B, Iovanna JL, Neira JL. Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin α3. Int J Mol Sci 2022; 23:ijms232315333. [PMID: 36499669 PMCID: PMC9739371 DOI: 10.3390/ijms232315333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The oncoprotein Myc is a transcription factor regulating global gene expression and modulating cell proliferation, apoptosis, and metabolism. Myc has a nuclear localization sequence (NLS) comprising residues Pro320 to Asp328, to allow for nuclear translocation. We designed a peptide comprising such region and the flanking residues (Ala310-Asn339), NLS-Myc, to study, in vitro and in silico, the ability to bind importin α3 (Impα3) and its truncated species (ΔImpα3) depleted of the importin binding domain (IBB), by using fluorescence, circular dichroism (CD), biolayer interferometry (BLI), nuclear magnetic resonance (NMR), and molecular simulations. NLS-Myc interacted with both importin species, with affinity constants of ~0.5 µM (for Impα3) and ~60 nM (for ΔImpα3), as measured by BLI. The molecular simulations predicted that the anchoring of NLS-Myc took place in the major binding site of Impα3 for the NLS of cargo proteins. Besides clarifying the conformational behavior of the isolated NLS of Myc in solution, our results identified some unique properties in the binding of this localization sequence to the nuclear carrier Impα3, such as a difference in the kinetics of its release mechanism depending on the presence or absence of the IBB domain.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (J.L.N.)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13288 Marseille, France
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Correspondence: (B.R.); (J.L.N.)
| |
Collapse
|
14
|
Zhu Z, Hou Q, Wang B, Li C, Liu L, Gong W, Chai J, Guo H, Jia Y. FKBP4 regulates 5-fluorouracil sensitivity in colon cancer by controlling mitochondrial respiration. Life Sci Alliance 2022; 5:5/11/e202201413. [PMID: 35981890 PMCID: PMC9389594 DOI: 10.26508/lsa.202201413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
FKBP4 controls mitochondrial respiration via modulating COA6-mediated biogenesis and activity of mitochondrial complex IV, thereby regulating 5-fluorouracil sensitivity in colon cancer. Mitochondrial respiration and metabolism play a key role in the pathogenesis and progression of colon adenocarcinoma (COAD). Here, we report a functional pool of FKBP4, a co-chaperone protein, in the mitochondrial intermembrane space (IMS) of colon cancer cells. We found that IMS-localized FKBP4 is essential for the maintenance of mitochondrial respiration, thus contributing to the sensitivity of COAD cells to 5-fluorouracil (5-FU). Mechanistically, FKBP4 interacts with COA6 and controls the assembly of the mitochondrial COA6/SCO1/SCO2 complex, thereby governing COA6-regulated biogenesis and activity of mitochondrial cytochrome c oxidase (complex IV). Thus, our data reveal IMS-localized FKBP4 as a novel regulator of 5-FU sensitivity in COAD, linking mitochondrial respiration to 5-FU sensitivity in COAD.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingsheng Hou
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bishi Wang
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Changhao Li
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luguang Liu
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weipeng Gong
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Chai
- Gastrointestinal Surgery Ward I, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Hongliang Guo
- Gastrointestinal Surgery Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yanhan Jia
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
16
|
Benz C, Ali M, Krystkowiak I, Simonetti L, Sayadi A, Mihalic F, Kliche J, Andersson E, Jemth P, Davey NE, Ivarsson Y. Proteome-scale mapping of binding sites in the unstructured regions of the human proteome. Mol Syst Biol 2022; 18:e10584. [PMID: 35044719 PMCID: PMC8769072 DOI: 10.15252/msb.202110584] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Specific protein-protein interactions are central to all processes that underlie cell physiology. Numerous studies have together identified hundreds of thousands of human protein-protein interactions. However, many interactions remain to be discovered, and low affinity, conditional, and cell type-specific interactions are likely to be disproportionately underrepresented. Here, we describe an optimized proteomic peptide-phage display library that tiles all disordered regions of the human proteome and allows the screening of ~ 1,000,000 overlapping peptides in a single binding assay. We define guidelines for processing, filtering, and ranking the results and provide PepTools, a toolkit to annotate the identified hits. We uncovered >2,000 interaction pairs for 35 known short linear motif (SLiM)-binding domains and confirmed the quality of the produced data by complementary biophysical or cell-based assays. Finally, we show how the amino acid resolution-binding site information can be used to pinpoint functionally important disease mutations and phosphorylation events in intrinsically disordered regions of the proteome. The optimized human disorderome library paired with PepTools represents a powerful pipeline for unbiased proteome-wide discovery of SLiM-based interactions.
Collapse
Affiliation(s)
- Caroline Benz
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Muhammad Ali
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | | | | | - Ahmed Sayadi
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Filip Mihalic
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Johanna Kliche
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| | - Eva Andersson
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Per Jemth
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Norman E Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Ylva Ivarsson
- Department of Chemistry ‐ BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
17
|
Grabarczyk P, Delin M, Rogińska D, Schulig L, Forkel H, Depke M, Link A, Machaliński B, Schmidt CA. Nuclear import of BCL11B is mediated by a classical nuclear localization signal and not the Krüppel-like zinc fingers. J Cell Sci 2021; 134:272659. [PMID: 34714335 DOI: 10.1242/jcs.258655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/24/2021] [Indexed: 11/20/2022] Open
Abstract
The Krüppel-like transcription factor BCL11B is characterized by wide tissue distribution and crucial functions in key developmental and cellular processes and various pathologies including cancer or HIV infection. Although basics of BCL11B activity and relevant interactions with other proteins were uncovered, how this exclusively nuclear protein localizes to its compartment remained unclear. Here, we demonstrate that unlike other KLFs, BCL11B does not require the C-terminal DNA-binding domain to pass through the nuclear envelope but encodes an independent, previously unidentified nuclear localization signal (NLS) which is located distantly from the zinc finger domains and fulfills the essential criteria of an autonomous NLS. First, it can redirect a heterologous cytoplasmic protein to the nucleus. Second, its mutations cause aberrant localization of the protein of origin. Finally, we provide experimental and in silico evidences of the direct interaction with importin alpha. The relative conservation of this motif allows formulating a consensus sequence (K/R)K-X13-14-KR+K++ which can be found in all BCL11B orthologues among vertebrates and in the closely related protein BCL11A.
Collapse
Affiliation(s)
- Piotr Grabarczyk
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Martin Delin
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Hannes Forkel
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Maren Depke
- Clinic of Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
18
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
19
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Paci G, Caria J, Lemke EA. Cargo transport through the nuclear pore complex at a glance. J Cell Sci 2021; 134:237315. [PMID: 33495357 DOI: 10.1242/jcs.247874] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bidirectional transport of macromolecules across the nuclear envelope is a hallmark of eukaryotic cells, in which the genetic material is compartmentalized inside the nucleus. The nuclear pore complex (NPC) is the major gateway to the nucleus and it regulates nucleocytoplasmic transport, which is key to processes including transcriptional regulation and cell cycle control. Accordingly, components of the nuclear transport machinery are often found to be dysregulated or hijacked in diseases. In this Cell Science at a Glance article and accompanying poster, we provide an overview of our current understanding of cargo transport through the NPC, from the basic transport signals and machinery to more emerging aspects, all from a 'cargo perspective'. Among these, we discuss the transport of large cargoes (>15 nm), as well as the roles of different cargo properties to nuclear transport, from size and number of bound nuclear transport receptors (NTRs), to surface and mechanical properties.
Collapse
Affiliation(s)
- Giulia Paci
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Joana Caria
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany.,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Edward A Lemke
- Biocentre, Johannes Gutenberg-University Mainz, Hans-Dieter-Hüsch-Weg 15, 555128 Mainz, Germany .,Institute of Molecular Biology, Ackermannweg 4, 55128 Mainz, Germany.,European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
21
|
Madden SK, de Araujo AD, Gerhardt M, Fairlie DP, Mason JM. Taking the Myc out of cancer: toward therapeutic strategies to directly inhibit c-Myc. Mol Cancer 2021; 20:3. [PMID: 33397405 PMCID: PMC7780693 DOI: 10.1186/s12943-020-01291-6] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023] Open
Abstract
c-Myc is a transcription factor that is constitutively and aberrantly expressed in over 70% of human cancers. Its direct inhibition has been shown to trigger rapid tumor regression in mice with only mild and fully reversible side effects, suggesting this to be a viable therapeutic strategy. Here we reassess the challenges of directly targeting c-Myc, evaluate lessons learned from current inhibitors, and explore how future strategies such as miniaturisation of Omomyc and targeting E-box binding could facilitate translation of c-Myc inhibitors into the clinic.
Collapse
Affiliation(s)
- Sarah K Madden
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Aline Dantas de Araujo
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mara Gerhardt
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC 1066 Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
22
|
Oh S, Lee J, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Nuak1 phosphorylates histone H3 threonine 11 in low glucose stress by the cooperation of AMPK and CK2 signaling. eLife 2020; 9:e64588. [PMID: 33372657 PMCID: PMC7781599 DOI: 10.7554/elife.64588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/26/2020] [Indexed: 12/26/2022] Open
Abstract
Changes in available nutrients are inevitable events for most living organisms. Upon nutritional stress, several signaling pathways cooperate to change the transcription program through chromatin regulation to rewire cellular metabolism. In budding yeast, histone H3 threonine 11 phosphorylation (H3pT11) acts as a marker of low glucose stress and regulates the transcription of nutritional stress-responsive genes. Understanding how this histone modification 'senses' external glucose changes remains elusive. Here, we show that Tda1, the yeast ortholog of human Nuak1, is a direct kinase for H3pT11 upon low glucose stress. Yeast AMP-activated protein kinase (AMPK) directly phosphorylates Tda1 to govern Tda1 activity, while CK2 regulates Tda1 nuclear localization. Collectively, AMPK and CK2 signaling converge on histone kinase Tda1 to link external low glucose stress to chromatin regulation.
Collapse
Affiliation(s)
- Seunghee Oh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Jaehyoun Lee
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory Medicine, University of Kansas Medical CenterKansas CityUnited States
| | - Jerry L Workman
- Stowers Institute for Medical ResearchKansas CityUnited States
| |
Collapse
|
23
|
Marinkovic D, Marinkovic T. The new role for an old guy: MYC as an immunoplayer. J Cell Physiol 2020; 236:3234-3243. [PMID: 33094851 DOI: 10.1002/jcp.30123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022]
Abstract
As an oncogene, myelocytomatosis oncogene (MYC) is implicated in the concept of "oncogene addiction," where switching off the oncogene leads to the cell cycle arrest and cell differentiation. However, recent data suggest that MYC also controls the establishment of the tumour microenvironment and that "oncogene addiction" actually has a strong immune background. Evaluation of the MYC role in the immunoediting process led to the speculation that cancer just uses and distorts the physiological mechanism by which MYC normally prevents rapidly proliferating cells from the elicitation of an autoimmune response. Concordantly, elevated levels of MYC and induction of immunosuppressive molecules are observed during the processes of growth and development, tissue repair, placenta development, and so forth, implying that MYC may be involved in saving regular physiologically proliferating cells from the immune system attack. Even more, a growing body of evidence suggests MYC involvement in the shaping of the adaptive immune response, immunological memory development, and establishment of immunotolerance. This paper offers an overview of MYC actions in the context of modulation of the immune response in pathological and physiological conditions. The determination of such a new role for a well-known oncogene opens new perspectives in biomedicine, and consequently, in the treatment of various pathological conditions.
Collapse
Affiliation(s)
- Dragan Marinkovic
- Faculty of Special Education and Rehabilitation, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
24
|
Tsukada K, Matsumoto Y, Shimada M. Linker region is required for efficient nuclear localization of polynucleotide kinase phosphatase. PLoS One 2020; 15:e0239404. [PMID: 32970693 PMCID: PMC7514006 DOI: 10.1371/journal.pone.0239404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/05/2020] [Indexed: 01/10/2023] Open
Abstract
Polynucleotide kinase phosphatase (PNKP) is a DNA repair factor with dual enzymatic functions, i.e., phosphorylation of 5’-end and dephosphorylation of 3’-end, which are prerequisites for DNA ligation and, thus, is involved in multiple DNA repair pathways, i.e., base excision repair, single-strand break repair and double-strand break repair through non-homologous end joining. Mutations in PNKP gene causes inherited diseases, such as microcephaly and seizure (MCSZ) by neural developmental failure and ataxia with oculomotor apraxia 4 (AOA4) and Charcot-Marie-Tooth disease 2B2 (CMT2B2) by neurodegeneration. PNKP consists of the Forkhead-associated (FHA) domain, linker region, phosphatase domain and kinase domain. Although the functional importance of PNKP interaction with XRCC1 and XRCC4 through the FHA domain and that of phosphatase and kinase enzyme activities have been well established, little is known about the function of linker region. In this study, we identified a functional putative nuclear localization signal (NLS) of PNKP located in the linker region, and showed that lysine 138 (K138), arginine 139 (R139) and arginine 141 (R141) residues therein are critically important for nuclear localization. Furthermore, double mutant of K138A and R35A, the latter of which mutates arginine 35, central amino acid of FHA domain, showed additive effect on nuclear localization, indicating that the FHA domain as well as the NLS is important for PNKP nuclear localization. Thus, this study revealed two distinct mechanisms regulating nuclear localization and subnuclear distribution of PNKP. These findings would contribute to deeper understanding of a variety of DNA repair pathway, i.e., base excision repair, single-strand break repair and double-strand break repair.
Collapse
Affiliation(s)
- Kaima Tsukada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshihisa Matsumoto
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
| | - Mikio Shimada
- Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan
- * E-mail:
| |
Collapse
|
25
|
Binder JL, Chander P, Deretic V, Weick JP, Bhaskar K. Optical induction of autophagy via Transcription factor EB (TFEB) reduces pathological tau in neurons. PLoS One 2020; 15:e0230026. [PMID: 32208437 PMCID: PMC7092971 DOI: 10.1371/journal.pone.0230026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/19/2020] [Indexed: 01/25/2023] Open
Abstract
Pathological accumulation of microtubule associated protein tau in neurons is a major neuropathological hallmark of Alzheimer's disease (AD) and related tauopathies. Several attempts have been made to promote clearance of pathological tau (p-Tau) from neurons. Transcription factor EB (TFEB) has shown to clear p-Tau from neurons via autophagy. However, sustained TFEB activation and autophagy can create burden on cellular bioenergetics and can be deleterious. Here, we modified previously described two-plasmid systems of Light Activated Protein (LAP) from bacterial transcription factor-EL222 and Light Responsive Element (LRE) to encode TFEB. Upon blue-light (465 nm) illumination, the conformation changes in LAP induced LRE-driven expression of TFEB, its nuclear entry, TFEB-mediated expression of autophagy-lysosomal genes and clearance of p-Tau from neuronal cells and AD patient-derived human iPSC-neurons. Turning the blue-light off reversed the expression of TFEB-target genes and attenuated p-Tau clearance. Together, these results suggest that optically regulated TFEB expression unlocks the potential of opto-therapeutics to treat AD and other dementias.
Collapse
Affiliation(s)
- Jessica L. Binder
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Praveen Chander
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence (CoBRE), University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Jason P. Weick
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, United States of America
| |
Collapse
|
26
|
Chastel A, Worm DJ, Alves ID, Vimont D, Petrel M, Fernandez S, Garrigue P, Fernandez P, Hindié E, Beck-Sickinger AG, Morgat C. Design, synthesis, and biological evaluation of a multifunctional neuropeptide-Y conjugate for selective nuclear delivery of radiolanthanides. EJNMMI Res 2020; 10:16. [PMID: 32124111 PMCID: PMC7052099 DOI: 10.1186/s13550-020-0612-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Background Targeting G protein-coupled receptors on the surface of cancer cells with peptide ligands is a promising concept for the selective tumor delivery of therapeutically active cargos, including radiometals for targeted radionuclide therapy (TRT). Recently, the radiolanthanide terbium-161 (161Tb) gained significant interest for TRT application, since it decays with medium-energy β-radiation but also emits a significant amount of conversion and Auger electrons with short tissue penetration range. The therapeutic efficiency of radiometals emitting Auger electrons, like 161Tb, can therefore be highly boosted by an additional subcellular delivery into the nucleus, in order to facilitate maximum dose deposition to the DNA. In this study, we describe the design of a multifunctional, radiolabeled neuropeptide-Y (NPY) conjugate, to address radiolanthanides to the nucleus of cells naturally overexpressing the human Y1 receptor (hY1R). By using solid-phase peptide synthesis, the hY1R-preferring [F7,P34]-NPY was modified with a fatty acid, a cathepsin B-cleavable linker, followed by a nuclear localization sequence (NLS), and a DOTA chelator (compound pb12). In this proof-of-concept study, labeling was performed with either native terbium-159 (natTb), as surrogate for 161Tb, or with indium-111 (111In). Results [natTb]Tb-pb12 showed a preserved high binding affinity to endogenous hY1R on MCF-7 cells and was able to induce receptor activation and internalization similar to the hY1R-preferring [F7,P34]-NPY. Specific internalization of the 111In-labeled conjugate into MCF-7 cells was observed, and importantly, time-dependent nuclear uptake of 111In was demonstrated. Study of metabolic stability showed that the peptide is insufficiently stable in human plasma. This was confirmed by injection of [111In]In-pb12 in nude mice bearing MCF-7 xenograft which showed specific uptake only at very early time point. Conclusion The multifunctional NPY conjugate with a releasable DOTA-NLS unit represents a promising concept for enhanced TRT with Auger electron-emitting radiolanthanides. Our research is now focusing on improving the reported concept with respect to the poor plasmatic stability of this promising radiopeptide.
Collapse
Affiliation(s)
- Adrien Chastel
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076, Bordeaux, France.,University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France.,CNRS, INCIA UMR 5287, F-33400, Talence, France
| | - Dennis J Worm
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nano-objects (CBMN), CNRS UMR 5248, University of Bordeaux, F-33600, Pessac, France
| | - Delphine Vimont
- University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France.,CNRS, INCIA UMR 5287, F-33400, Talence, France
| | - Melina Petrel
- University of Bordeaux, Bordeaux Imaging Center, F-33000, Bordeaux, France
| | - Samantha Fernandez
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, 13385, Marseille, France.,Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, 13005, Marseille, France
| | - Philippe Garrigue
- Aix-Marseille University, INSERM, Institut National de la Recherche Agronomique, Centre de Recherche en Cardiovasculaire et Nutrition, 13385, Marseille, France.,Aix-Marseille University, Centre Européen de Recherche en Imagerie Médicale, 13005, Marseille, France
| | - Philippe Fernandez
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076, Bordeaux, France.,University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France.,CNRS, INCIA UMR 5287, F-33400, Talence, France
| | - Elif Hindié
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076, Bordeaux, France.,University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France.,CNRS, INCIA UMR 5287, F-33400, Talence, France
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103, Leipzig, Germany
| | - Clément Morgat
- Department of Nuclear Medicine, University Hospital of Bordeaux, F-33076, Bordeaux, France. .,University of Bordeaux, INCIA UMR 5287, F-33400, Talence, France. .,CNRS, INCIA UMR 5287, F-33400, Talence, France.
| |
Collapse
|
27
|
Day AH, Übler MH, Best HL, Lloyd-Evans E, Mart RJ, Fallis IA, Allemann RK, Al-Wattar EAH, Keymer NI, Buurma NJ, Pope SJA. Targeted cell imaging properties of a deep red luminescent iridium(iii) complex conjugated with a c-Myc signal peptide. Chem Sci 2020; 11:1599-1606. [PMID: 32206278 PMCID: PMC7069228 DOI: 10.1039/c9sc05568a] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/14/2019] [Indexed: 12/05/2022] Open
Abstract
A nuclear localisation sequence (NLS) peptide, PAAKRVKLD, derived from the human c-Myc regulator gene, has been functionalised with a long wavelength (λ ex = 550 nm; λ em = 677 nm) cyclometalated organometallic iridium(iii) complex to give the conjugate Ir-CMYC. Confocal fluorescence microscopy studies on human fibroblast cells imaged after 18-24 h incubation show that Ir-CMYC concentrations of 80-100 μM promote good cell uptake and nuclear localisation, which was confirmed though co-localisation studies using Hoechst 33342. In comparison, a structurally related, photophysically analogous iridium(iii) complex lacking the peptide sequence, Ir-PYR, showed very different biological behaviour, with no evidence of nuclear, lysosomal or autophagic vesicle localisation and significantly increased toxicity to the cells at concentrations >10 μM that induced mitochondrial dysfunction. Supporting UV-visible and circular dichroism spectroscopic studies show that Ir-PYR and Ir-CMYC display similarly low affinities for DNA (ca. 103 M-1), consistent with electrostatic binding. Therefore the translocation and nuclear uptake properties of Ir-CMYC are attributed to the presence of the PAAKRVKLD nuclear localisation sequence in this complex.
Collapse
Affiliation(s)
- Adam H Day
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Martin H Übler
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Hannah L Best
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Emyr Lloyd-Evans
- School of Biosciences , Cardiff University , Sir Martin Evans Building , Cardiff , UK
| | - Robert J Mart
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Ian A Fallis
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Rudolf K Allemann
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Eman A H Al-Wattar
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Nathaniel I Keymer
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Niklaas J Buurma
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| | - Simon J A Pope
- School of Chemistry , Cardiff University , Main Building , Cardiff , CF10 3AT , UK .
| |
Collapse
|
28
|
Zhang Y, Shao Y, Lv Z, Zhang W, Zhao X, Guo M, Li C. Molecular cloning and functional characterization of MYC transcription factor in pathogen-challenged Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103487. [PMID: 31472172 DOI: 10.1016/j.dci.2019.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
29
|
Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles. Int J Mol Sci 2019; 20:ijms20174147. [PMID: 31450682 PMCID: PMC6747261 DOI: 10.3390/ijms20174147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma membrane during inflammation. Radicals cause cellular damage leading to cell death, as they react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also important for many physiological processes, including signaling, pathogen killing and chemotaxis. The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production, but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific localization signals to induce ROS with high precision. Selective ROS production did not affect cell viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally targeted ROS production, opening up new possibilities to investigate processes and organelles that are affected by localized ROS production.
Collapse
|
30
|
Groves NR, McKenna JF, Evans DE, Graumann K, Meier I. A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants. J Cell Sci 2019; 132:jcs226134. [PMID: 30858196 DOI: 10.1242/jcs.226134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Norman R Groves
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes, Oxford OX3 0BP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
31
|
Carabet LA, Rennie PS, Cherkasov A. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci 2018; 20:E120. [PMID: 30597997 PMCID: PMC6337544 DOI: 10.3390/ijms20010120] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
Myc (avian myelocytomatosis viral oncogene homolog) represents one of the most sought after drug targets in cancer. Myc transcription factor is an essential regulator of cell growth, but in most cancers it is overexpressed and associated with treatment-resistance and lethal outcomes. Over 40 years of research and drug development efforts did not yield a clinically useful Myc inhibitor. Drugging the "undruggable" is problematic, as Myc inactivation may negatively impact its physiological functions. Moreover, Myc is a disordered protein that lacks effective binding pockets on its surface. It is well established that the Myc function is dependent on dimerization with its obligate partner, Max (Myc associated factor X), which together form a functional DNA-binding domain to activate genomic targets. Herein, we provide an overview of the knowledge accumulated to date on Myc regulation and function, its critical role in cancer, and summarize various strategies that are employed to tackle Myc-driven malignant transformation. We focus on important structure-function relationships of Myc with its interactome, elaborating structural determinants of Myc-Max dimer formation and DNA recognition exploited for therapeutic inhibition. Chronological development of small-molecule Myc-Max prototype inhibitors and corresponding binding sites are comprehensively reviewed and particular emphasis is placed on modern computational drug design methods. On the outlook, technological advancements may soon provide the so long-awaited Myc-Max clinical candidate.
Collapse
Affiliation(s)
- Lavinia A Carabet
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Paul S Rennie
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
32
|
Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J. Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 2018; 174:1200-1215.e20. [PMID: 30100187 DOI: 10.1016/j.cell.2018.07.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Nuclear pore complexes (NPCs) regulate nuclear-cytoplasmic transport, transcription, and genome integrity in eukaryotic cells. However, their functional roles in cancer remain poorly understood. We interrogated the evolutionary transcriptomic landscape of NPC components, nucleoporins (Nups), from primary to advanced metastatic human prostate cancer (PC). Focused loss-of-function genetic screen of top-upregulated Nups in aggressive PC models identified POM121 as a key contributor to PC aggressiveness. Mechanistically, POM121 promoted PC progression by enhancing importin-dependent nuclear transport of key oncogenic (E2F1, MYC) and PC-specific (AR-GATA2) transcription factors, uncovering a pharmacologically targetable axis that, when inhibited, decreased tumor growth, restored standard therapy efficacy, and improved survival in patient-derived pre-clinical models. Our studies molecularly establish a role of NPCs in PC progression and give a rationale for NPC-regulated nuclear import targeting as a therapeutic strategy for lethal PC. These findings may have implications for understanding how NPC deregulation contributes to the pathogenesis of other tumor types.
Collapse
Affiliation(s)
- Veronica Rodriguez-Bravo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Raffaella Pippa
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Won-Min Song
- Genetic and Genomic Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marc Carceles-Cordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana Dominguez-Andres
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungreem Woo
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna P Koh
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Ertel
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ravi K Lokareddy
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alvaro Cuesta-Dominguez
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosa S Kim
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Peiyao Li
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ronald Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hadassa Hirschfield
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep M Prats
- Urology Department, Hospital de Calella, Barcelona 08370, Spain
| | - E Premkumar Reddy
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alessandro Fatatis
- Pharmacology and Physiology Department, Drexler University, Philadelphia, PA 19104, USA
| | - Daniel P Petrylak
- Medical Oncology Department, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard Gomella
- Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W Kevin Kelly
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karen E Knudsen
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Urology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthew D Galsky
- Medical Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Amaia Lujambio
- Oncological Sciences Department. Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Liver Diseases, Medicine Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Domingo-Domenech
- Cancer Biology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Medical Oncology Department, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
33
|
Contribution of the residue at position 4 within classical nuclear localization signals to modulating interaction with importins and nuclear targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1114-1129. [DOI: 10.1016/j.bbamcr.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
|
34
|
Fock V, Gudmundsson SR, Gunnlaugsson HO, Stefansson JA, Ionasz V, Schepsky A, Viarigi J, Reynisson IE, Pogenberg V, Wilmanns M, Ogmundsdottir MH, Steingrimsson E. Subcellular localization and stability of MITF are modulated by the bHLH-Zip domain. Pigment Cell Melanoma Res 2018; 32:41-54. [PMID: 29938923 DOI: 10.1111/pcmr.12721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/01/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Microphthalmia-associated transcription factor (MITF) is a member of the basic helix-loop-helix leucine zipper (bHLH-Zip) family and functions as the master regulator of the melanocytic lineage. MITF-M is the predominant isoform expressed in melanocytes and melanoma cells, and, unlike other MITF isoforms, it is constitutively nuclear. Mutational analysis revealed three karyophilic signals in the bHLH-Zip domain of MITF-M, spanning residues 197-206, 214-217, and 255-265. Structural characterization of the MITF protein showed that basic residues within these signals are exposed for interactions in the absence of DNA. Moreover, our data indicate that neither DNA binding nor dimerization of MITF-M are required for its nuclear localization. Finally, dimerization-deficient MITF-M mutants exhibited a significantly reduced stability in melanoma cells when compared to the wild-type protein. Taken together, we have shown that, in addition to its well-established role in DNA binding and dimer formation, the bHLH-Zip domain of MITF modulates the transcription factor's subcellular localization and stability.
Collapse
Affiliation(s)
- Valerie Fock
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Sigurdur Runar Gudmundsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Hilmar Orn Gunnlaugsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Jon August Stefansson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Vivien Ionasz
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Alexander Schepsky
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Jade Viarigi
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Indridi Einar Reynisson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | | | | | - Margret Helga Ogmundsdottir
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Eirikur Steingrimsson
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
35
|
Intracellular Localization of Blattella germanica Densovirus (BgDV1) Capsid Proteins. Viruses 2018; 10:v10070370. [PMID: 30011943 PMCID: PMC6071259 DOI: 10.3390/v10070370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
Densovirus genome replication and capsid assembly take place in the nucleus of the infected cells. However, the mechanisms underlying such processes as the delivery of virus proteins to the nucleus and the export of progeny virus from the nucleus remain elusive. It is evident that nuclear transport signals should be involved in these processes. We performed an in silico search for the putative nuclear localization signal (NLS) and nuclear export signal (NES) motifs in the capsid proteins of the Blattella germanica Densovirus 1 (BgDV1) densovirus. A high probability NLS motif was found in the common C-terminal of capsid proteins together with a NES motif in the unique N-terminal of VP2. We also performed a global search for the nuclear traffic signals in the densoviruses belonging to five Densovirinae genera, which revealed high diversity in the patterns of NLSs and NESs. Using a heterologous system, the HeLa mammalian cell line expressing GFP-fused BgDV1 capsid proteins, we demonstrated that both signals are functionally active. We suggest that the NLS shared by all three BgDV1 capsid proteins drives the trafficking of the newly-synthesized proteins into the nucleus, while the NES may play a role in the export of the newly-assembled BgDV1 particles into the cytoplasm through nuclear pore complexes.
Collapse
|
36
|
Fu X, Liang C, Li F, Wang L, Wu X, Lu A, Xiao G, Zhang G. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins. Int J Mol Sci 2018; 19:ijms19051445. [PMID: 29757215 PMCID: PMC5983729 DOI: 10.3390/ijms19051445] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.
Collapse
Affiliation(s)
- Xuekun Fu
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Luyao Wang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| | - Guozhi Xiao
- Department of Biology and Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518057, China.
| |
Collapse
|
37
|
Orłowski M, Popławska K, Pieprzyk J, Szczygieł-Sommer A, Więch A, Zarębski M, Tarczewska A, Dobrucki J, Ożyhar A. Molecular determinants of Drosophila immunophilin FKBP39 nuclear localization. Biol Chem 2018; 399:467-484. [PMID: 29337690 DOI: 10.1515/hsz-2017-0251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
FK506-binding proteins (FKBPs) belong to a distinct class of immunophilins that interact with immunosuppressants. They use their peptidyl-prolyl isomerase (PPIase) activity to catalyze the cis-trans conversion of prolyl bonds in proteins during protein-folding events. FKBPs also act as a unique group of chaperones. The Drosophila melanogaster peptidyl-prolyl cis-trans isomerase FK506-binding protein of 39 kDa (FKBP39) is thought to act as a transcriptional modulator of gene expression in 20-hydroxyecdysone and juvenile hormone signal transduction. The aim of this study was to analyze the molecular determinants responsible for the subcellular distribution of an FKBP39-yellow fluorescent protein (YFP) fusion construct (YFP-FKBP39). We found that YFP-FKBP39 was predominantly nucleolar. To identify the nuclear localization signal (NLS), a series of YFP-tagged FKBP39 deletion mutants were prepared and examined in vivo. The identified NLS signal is located in a basic domain. Detailed mutagenesis studies revealed that residues K188 and K191 are crucial for the nuclear targeting of FKBP39 and its nucleoplasmin-like (NPL) domain contains the sequence that controls the nucleolar-specific translocation of the protein. These results show that FKBP39 possesses a specific NLS in close proximity to a putative helix-turn-helix (HTH) motif and FKBP39 may bind DNA in vivo and in vitro.
Collapse
Affiliation(s)
- Marek Orłowski
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Popławska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Joanna Pieprzyk
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Aleksandra Szczygieł-Sommer
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Więch
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
38
|
Synthetic gene regulation for independent external induction of the Saccharomyces cerevisiae pseudohyphal growth phenotype. Commun Biol 2018; 1:7. [PMID: 30271894 PMCID: PMC6123699 DOI: 10.1038/s42003-017-0008-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Pseudohyphal growth is a multicellular phenotype naturally performed by wild budding yeast cells in response to stress. Unicellular yeast cells undergo gross changes in their gene regulation and elongate to form branched filament structures consisting of connected cells. Here, we construct synthetic gene regulation systems to enable external induction of pseudohyphal growth in Saccharomyces cerevisiae. By controlling the expression of the natural PHD1 and FLO8 genes we are able to trigger pseudohyphal growth in both diploid and haploid yeast, even in different types of rich media. Using this system, we also investigate how members of the BUD gene family control filamentation in haploid cells. Finally, we employ a synthetic genetic timer network to control pseudohyphal growth and further explore the reversibility of differentiation. Our work demonstrates that synthetic regulation can exert control over a complex multigene phenotype and offers opportunities for rationally modifying the resulting multicellular structure. Georgios Pothoulakis and Tom Ellis report the construction of a synthetic gene regulation system for inducing pseudohyphal growth in Saccharomyces cerevisiae. This multicellular yeast phenotype can now be switched on and off via external control in a variety of conditions.
Collapse
|
39
|
Chiu HY, Bates JA, Helma J, Engelke H, Harz H, Bein T, Leonhardt H. Nanoparticle mediated delivery and small molecule triggered activation of proteins in the nucleus. Nucleus 2018; 9:530-542. [PMID: 30217128 PMCID: PMC6244737 DOI: 10.1080/19491034.2018.1523665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/04/2022] Open
Abstract
Protein transfection is a versatile tool to study or manipulate cellular processes and also shows great therapeutic potential. However, the repertoire of cost effective techniques for efficient and minimally cytotoxic delivery remains limited. Mesoporous silica nanoparticles (MSNs) are multifunctional nanocarriers for cellular delivery of a wide range of molecules, they are simple and economical to synthesize and have shown great promise for protein delivery. In this work we present a general strategy to optimize the delivery of active protein to the nucleus. We generated a bimolecular Venus based optical sensor that exclusively detects active and bioavailable protein for the performance of multi-parameter optimization of protein delivery. In conjunction with cell viability tests we maximized MSN protein delivery and biocompatibility and achieved highly efficient protein transfection rates of 80%. Using the sensor to measure live-cell protein delivery kinetics, we observed heterogeneous timings within cell populations which could have a confounding effect on function studies. To address this problem we fused a split or dimerization dependent protein of interest to chemically induced dimerization (CID) components, permitting control over its activity following cellular delivery. Using the split Venus protein we directly show that addition of a small molecule dimerizer causes synchronous activation of the delivered protein across the entire cell population. This combination of cellular delivery and triggered activation provides a defined starting point for functional studies and could be applied to other protein transfection methods.
Collapse
Affiliation(s)
- Hsin-Yi Chiu
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Jack A. Bates
- Department of Biology II and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Planegg-Martinsried, Germany
| | - Jonas Helma
- Department of Biology II and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Planegg-Martinsried, Germany
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Hartmann Harz
- Department of Biology II and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Planegg-Martinsried, Germany
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München (LMU), Planegg-Martinsried, Germany
| |
Collapse
|
40
|
van Schaijik B, Davis PF, Wickremesekera AC, Tan ST, Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol 2017; 71:88-91. [PMID: 29180509 DOI: 10.1136/jclinpath-2017-204815] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/14/2022]
Abstract
The stem cell markers octamer-binding transcription factor 4, sex-determining region Y-box 2, NANOG, Kruppel-like factor 4 and c-MYC are key factors in inducing pluripotency in somatic cells, and they have been used to detect cancer stem cell subpopulations in a range of cancer types. Recent literature has described the subcellular localisation of these markers and their potential implications on cellular function. This is a relatively complex and unexplored area of research, and the extent of the effect that subcellular localisation has on cancer development and growth is largely unknown. This review analyses this area of research in the context of the biology of stem cells and cancer and explores the potential modulating effect of subcellular localisation of these proteins as supported by the literature.
Collapse
Affiliation(s)
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Agadha C Wickremesekera
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Department of Neurosurgery, Wellington Regional Hospital, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
| | | |
Collapse
|
41
|
Wang L, Huang D, Huang C, Yin Y, Vali K, Zhang M, Tang Y. Enhanced human somatic cell reprogramming efficiency by fusion of the MYC transactivation domain and OCT4. Stem Cell Res 2017; 25:88-97. [PMID: 29125994 DOI: 10.1016/j.scr.2017.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 11/28/2022] Open
Abstract
The development of human induced pluripotent stem cells (iPSCs) holds great promise for regenerative medicine. However the iPSC induction efficiency is still very low and with lengthy reprogramming process. We utilized the highly potent transactivation domain (TAD) of MYC protein to engineer the human OCT4 fusion proteins. Applying the MYC-TAD-OCT4 fusion proteins in mouse iPSC generation leads to shorter reprogramming dynamics, with earlier activation of pluripotent markers in reprogrammed cells than wild type OCT4 (wt-OCT4). Dramatic enhancement of iPSC colony induction efficiency and shortened reprogramming dynamics were observed when these MYC-TAD-OCT4 fusion proteins were used to reprogram primary human cells. The OCT4 fusion proteins induced human iPSCs are pluripotent. We further show that the MYC Box I (MBI) is dispensable while both MBII and the linking region between MBI/II are essential for the enhanced reprogramming activity of MYC-TAD-OCT4 fusion protein. Consistent with an enhanced transcription activity, the engineered OCT4 significantly stimulated the expression of genes specifically targeted by OCT4-alone, OCT4/SOX2, and OCT4/SOX2/KLF4 during human iPSC induction, compared with the wt-OCT4. The MYC-TAD-OCT4 fusion proteins we generated will be valuable tools for studying the reprogramming mechanisms and for efficient iPSC generation for humans as well as for other species.
Collapse
Affiliation(s)
- Ling Wang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Delun Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Chang Huang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Yexuan Yin
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Kaneha Vali
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi, China
| | - Young Tang
- Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
42
|
Gnanamony M, Antony R, Fernández KS, Jaime L, Lin J, Joseph PA, Gondi CS. Chronic radiation exposure of neuroblastoma cells reduces nMYC copy number. Oncol Lett 2017; 14:3363-3370. [PMID: 28927089 PMCID: PMC5587969 DOI: 10.3892/ol.2017.6652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/03/2017] [Indexed: 12/02/2022] Open
Abstract
Neuroblastoma accounts for >15% of cancer-associated mortalities of children in the USA. Despite aggressive treatment regimens, the long-term survival for these children remains <40%. The identification of v-Myc avian myelocytomatosis viral oncogene neuroblastoma-derived homolog (nMYC) gene amplification during diagnosis is associated with poor prognosis in neuroblastoma. There are limited studies examining changes in nMYC copy numbers in response to therapy and its biological effect on cancer cells. The aim of the present study was to evaluate the effect of radiation on nMYC expression and amplification status in high-risk neuroblastoma. The effect of acute (5 Gy) and chronic (25 Gy) radiation on two nMYC-amplified cell lines, SK-N-BE (2) and NB-1691, was investigated. The results demonstrate that, following chronic but not acute radiation, the two cell lines regained their proliferation potential similar to the controls. This increased proliferation was characterized by loss of nMYC mRNA and protein expression. It was also revealed that nMYC loss was accompanied by nuclear localization of c-Myc. Using fluorescent in situ hybridization and quantitative polymerase chain reaction analysis, the results of the present study demonstrated that chronic radiation causes a severe loss of nMYC gene copy number. The present study is the first to provide experimental evidence that prolonged radiation therapy affects nMYC gene copy number in high-risk neuroblastoma but does not significantly improve the prognostic outlook.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Reuben Antony
- UC Davis Comprehensive Cancer Center, Pediatric Hematology and Oncology, UC Davis Children's Hospital, Sacramento, CA 95817, USA
| | - Karen S Fernández
- Cancer and Blood Diseases Center, 9300 Valley Children's Place FC13, Madera, CA 93636, USA
| | - Libes Jaime
- Department of Pediatrics, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Julian Lin
- Department of Neurosurgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Pushpa A Joseph
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | - Christopher S Gondi
- Department of Pathology, University of Illinois College of Medicine, Peoria, IL 61605, USA.,Department of Internal Medicine, University of Illinois College of Medicine, Peoria, IL 61605, USA.,Department of Surgery, University of Illinois College of Medicine, Peoria, IL 61605, USA
| |
Collapse
|
43
|
Chen J, Guan X, Hu Y, Tian H, Chen X. Peptide-Based and Polypeptide-Based Gene Delivery Systems. Top Curr Chem (Cham) 2017; 375:32. [DOI: 10.1007/s41061-017-0115-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/28/2017] [Indexed: 12/15/2022]
|
44
|
Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type. Cell Signal 2016; 29:127-137. [PMID: 27989698 DOI: 10.1016/j.cellsig.2016.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 11/21/2022]
Abstract
Ectopically expressed Ring1 and YY1 binding protein (RYBP) induces tumor cell apoptosis through promoting the formation of the death-inducing signaling complex (DISC) in the cytoplasm. However, transiently overexpressed as well as endogenous RYBP in tumor tissues were observed to be mainly located in the nucleus while that in adjacent non-tumor tissues distributed majorly in the cytoplasm. Currently, we do not know the nuclear localization signals and biological function of different subcellular location of RYBP. In this study, we employed bioinformatic analysis, deletion, point mutation, enhanced green fluorescence protein (EGFP) fusion and others, to investigate the elements responsible for RYBP nuclear import and to explore the anti-tumor activities of cytoplasm- and nuclear-located RYBP. Herein, we identified three functional monopartite nuclear localization signals (NLSs), all of which located at the N-terminus of RYBP. Through four basic amino acid replacements within the NLSs, we obtained a cytoplasm-located RYBP mutant (RYBPmut). Compared with wild-type counterpart, RYBPmut exhibited more potent abilities to bind to caspase 8, to prevent MDM2-mediated polyubiquitination and degradation of p53, thereby leading to its stabilization. Further investigation revealed that, in contrast to its wild type, RYBPmut showed more potentials to inhibit tumor cell proliferation and to induce apoptosis, in both p53-dependent and -independent manner. Collectively, our current study revealed the molecular mechanism responsible for RYBP nuclear translocation, and provided evidences to support that RYBPmut could be a more promising candidate agent for cancer treatment.
Collapse
|
45
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
46
|
Weninger A, Glieder A, Vogl T. A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 2015; 15:fov082. [PMID: 26347503 PMCID: PMC4629791 DOI: 10.1093/femsyr/fov082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022] Open
Abstract
Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications.
Collapse
Affiliation(s)
- Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia
| |
Collapse
|
47
|
Zwart L, Potgieter CA, Clift SJ, van Staden V. Characterising Non-Structural Protein NS4 of African Horse Sickness Virus. PLoS One 2015; 10:e0124281. [PMID: 25915516 PMCID: PMC4411093 DOI: 10.1371/journal.pone.0124281] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/12/2015] [Indexed: 01/07/2023] Open
Abstract
African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses. This has since been confirmed in bluetongue virus and Great Island virus, and the non-structural protein was named NS4. In this study, in silico analysis of AHSV Seg-9 sequences revealed the existence of two main types of AHSV NS4, designated NS4-I and NS4-II, with different lengths and amino acid sequences. The AHSV NS4 coding sequences were in the +1 reading frame relative to that of VP6. Both types of AHSV NS4 were expressed in cultured mammalian cells, with sizes close to the predicted 17–20 kDa. Fluorescence microscopy of these cells revealed a dual cytoplasmic and nuclear, but not nucleolar, distribution that was very similar for NS4-I and NS4-II. Immunohistochemistry on heart, spleen, and lung tissues from AHSV-infected horses showed that NS4 occurs in microvascular endothelial cells and mononuclear phagocytes in all of these tissues, localising to the both the cytoplasm and the nucleus. Interestingly, NS4 was also detected in stellate-shaped dendritic macrophage-like cells with long cytoplasmic processes in the red pulp of the spleen. Finally, nucleic acid protection assays using bacterially expressed recombinant AHSV NS4 showed that both types of AHSV NS4 bind dsDNA, but not dsRNA. Further studies will be required to determine the exact function of AHSV NS4 during viral replication.
Collapse
Affiliation(s)
- Lizahn Zwart
- Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Christiaan A. Potgieter
- Deltamune (Pty) Ltd, Lyttelton, Centurion, South Africa
- Department of Biochemistry, Centre for Human Metabonomics, North-West University, Potchefstroom, South Africa
| | - Sarah J. Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Vida van Staden
- Department of Genetics, University of Pretoria, Pretoria, South Africa
- * E-mail:
| |
Collapse
|
48
|
Abstract
The MYC family of proteins is a group of basic-helix-loop-helix-leucine zipper transcription factors that feature prominently in cancer. Overexpression of MYC is observed in the vast majority of human malignancies and promotes an extraordinary set of changes that impact cell proliferation, growth, metabolism, DNA replication, cell cycle progression, cell adhesion, differentiation, and metastasis. The purpose of this review is to introduce the reader to the mammalian family of MYC proteins, highlight important functional properties that endow them with their potent oncogenic potential, describe their mechanisms of action and of deregulation in cancer cells, and discuss efforts to target the unique properties of MYC, and of MYC-driven tumors, to treat cancer.
Collapse
|
49
|
Huang YY, Shi Y, Lei Y, Li Y, Fan J, Xu YJ, Ma XF, Zhao JQ, Xiao S, Wang WM. Functional identification of multiple nucleocytoplasmic trafficking signals in the broad-spectrum resistance protein RPW8.2. PLANTA 2014; 239:455-68. [PMID: 24218059 DOI: 10.1007/s00425-013-1994-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
Nuclear localization signals (NLSs) and nuclear export signals (NESs) are important intramolecular regulatory elements for protein nucleocytoplasmic trafficking. This regulation confers spatial specificity to signal initiation and transduction in eukaryotic cells and thus is fundamental to the viability of all eukaryotic organisms. Here, we developed a simple and rapid method in which activity of putative NLSs or NESs was reported by subcellular localization of two tandem fluorescent proteins in fusion with the respective NLSs or NESs after agroinfiltration-mediated transient expression in leaves of Nicotiana benthamiana (Nb). We further demonstrated that the predicted NES from amino acid residue (aa) 9 to 22 and the NLS from aa91 to 101 in the broad-spectrum disease resistance protein RPW8.2 possess nuclear export and import activity, respectively. Additionally, by testing overlapping fragments covering the full length of RPW8.2, we identified another NLS from aa65 to 74 with strong nuclear import activity and two tandem non-canonical NESs in the C-terminus with strong nuclear export activity. Taken together, our results demonstrated the utility of a simple method to evaluate potential NLSs and NESs in plant cells and suggested that RPW8.2 may be subject to opposing nucleocytoplasmic trafficking forces for its subcellular localization and functional execution.
Collapse
Affiliation(s)
- Yan-Yan Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell Oncol (Dordr) 2013; 36:363-74. [PMID: 23928726 DOI: 10.1007/s13402-013-0142-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The aim of this study was to examine the expression of established stem cell markers in ascites and tumor tissue obtained from ovarian cancer patients. METHODS Mononuclear cells present in ascites were collected by density gradient centrifugation. Intracellular flowcytometry was used to assess the putative presence of stem cell markers. RT-PCR was used to detect full length Oct4A, a splice variant Oct4B, implicated in glioma and breast cancer, Oct4 pseudogenes and c-Myc. Genes were cloned and sequenced to determine putative mutations. Confocal laser scanning microscopy was performed to localize the markers in ascites cells as well as in tumor tissue. Material from carcinomas other than epithelial ovarian carcinoma served as control. RESULTS A small quantity of cells in ascites and in tumor tissue of ovarian cancer patients was detected that expresses c-Myc, Oct4A and Nanog. Besides Oct4A, present in the nucleus, also the cytoplasmic resident Oct4B splice variant was detected. Remarkably, c-Myc was found partially in the cytoplasm. Since no mutations in c-Myc were found that could explain the cytoplasmic localization, we hypothesize that this is due an IL-6 induced c-Myc shuttle factor. CONCLUSIONS The expression of stem cell genes was detected in a small proportion of tumor cells present in ascites as well as in tumor tissue. IL-6 plays an important role in the induction of c-Myc.
Collapse
|