1
|
The role of pro-domains in human growth factors and cytokines. Biochem Soc Trans 2021; 49:1963-1973. [PMID: 34495310 PMCID: PMC8589418 DOI: 10.1042/bst20200663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
Many growth factors and cytokines are produced as larger precursors, containing pro-domains, that require proteolytic processing to release the bioactive ligand. These pro-domains can be significantly larger than the mature domains and can play an active role in the regulation of the ligands. Mining the UniProt database, we identified almost one hundred human growth factors and cytokines with pro-domains. These are spread across several unrelated protein families and vary in both their size and composition. The precise role of each pro-domain varies significantly between the protein families. Typically they are critical for controlling bioactivity and protein localisation, and they facilitate diverse mechanisms of activation. Significant gaps in our understanding remain for pro-domain function — particularly their fate once the bioactive ligand has been released. Here we provide an overview of pro-domain roles in human growth factors and cytokines, their processing, regulation and activation, localisation as well as therapeutic potential.
Collapse
|
2
|
Kim BW, Kim SK, Heo KW, Bae KB, Jeong KH, Lee SH, Kim TH, Kim YH, Kang SW. Association between epidermal growth factor (EGF) and EGF receptor gene polymorphisms and end-stage renal disease and acute renal allograft rejection in a Korean population. Ren Fail 2020; 42:98-106. [PMID: 31906817 PMCID: PMC6968622 DOI: 10.1080/0886022x.2019.1710535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Epidermal growth factor (EGF) has been found to be associated with the development and repair mechanisms of several renal diseases. In this study, we hypothesized that single nucleotide polymorphisms (SNPs) in EGF or its receptor genes might have an association with end-stage renal disease (ESRD) or acute renal allograft rejection (AR) in a Korean population. Methods Three-hundred and forty seven recipients of the first renal transplants for ESRD, including 63 AR patients along with 289 healthy adults were included in the study. Five EGF gene SNPs (rs11568835, rs11568943, rs2237051, rs11569017, and rs3756261) and four EGFR gene SNPs (rs1140475, rs2293347, rs1050171, and rs6965469) were analyzed. The genotypes of these SNPs were analyzed using the AxiomTM genome-wide human assay. Statistical analysis was performed using SNPStats and Haploview version 4.2 software. Multiple logistic regression models (codominant, dominant, recessive, and Log-additive) were used to estimate the odds ratio (OR), 95% confidence interval (CI), and P value. Results One SNP (rs11569017) in the EGF gene showed significant association with ESRD but not with AR. Another SNP (rs11568835) in the EGF gene showed significant association with susceptibility to AR but not with ESRD. One SNP (rs1050171) in the EGFR gene showed significant association with susceptibility to AR but not with ESRD. Conclusion Our findings suggest that SNPs in the EGF and EGFR gene may be associated with the risk of ESRD and AR development in the Korean population.
Collapse
Affiliation(s)
- Byeong Woo Kim
- Department of Internal Medicine, Haeundae Bumin Hospital, Busan, Korea
| | - Su Kang Kim
- Kohwang Medical Research Institute, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung Wook Heo
- Department of Otolaryngology, Inje University, Busan, Korea
| | - Ki Beom Bae
- Department of General Surgery, Inje University, Busan, Korea
| | - Kyung Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University, Seoul, Korea
| | - Tae Hee Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Yeong Hoon Kim
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| | - Sun Woo Kang
- Division of Nephrology, Department of Internal Medicine, Inje University, Busan, Korea
| |
Collapse
|
3
|
Chen R, Jin G, McIntyre TM. The soluble protease ADAMDEC1 released from activated platelets hydrolyzes platelet membrane pro-epidermal growth factor (EGF) to active high-molecular-weight EGF. J Biol Chem 2017; 292:10112-10122. [PMID: 28455445 DOI: 10.1074/jbc.m116.771642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/20/2017] [Indexed: 12/11/2022] Open
Abstract
Platelets are the sole source of EGF in circulation, yet how EGF is stored or released from stimulated cells is undefined. In fact, we found platelets did not store EGF, synthesized as a single 6-kDa domain in pro-EGF, but rather expressed intact pro-EGF precursor on granular and plasma membranes. Activated platelets released high-molecular-weight (HMW)-EGF, produced by a single cleavage between the EGF and the transmembrane domains of pro-EGF. We synthesized a fluorogenic peptide encompassing residues surrounding the putative sessile arginyl residue and found stimulated platelets released soluble activity that cleaved this pro-EGF1020-1027 peptide. High throughput screening identified chymostatins, bacterial peptides with a central cyclic arginyl structure, as inhibitors of this activity. In contrast, the matrix metalloproteinase/TACE (tumor necrosis factor-α-converting enzyme) inhibitor GM6001 was ineffective. Stimulated platelets released the soluble protease ADAMDEC1, recombinant ADAMDEC1 hydrolyzed pro-EGF1020-1027, and this activity was inhibited by chymostatin and not GM6001. Biotinylating platelet surface proteins showed ADAMDEC1 hydrolyzed surface pro-EGF to HMW-EGF that stimulated HeLa EGF receptor (EGFR) reporter cells and EGFR-dependent tumor cell migration. This proteolysis was inhibited by chymostatin and not GM6001. Metabolizing pro-EGF Arg1023 to citrulline with recombinant polypeptide arginine deiminase 4 (PAD4) abolished ADAMDEC1-catalyzed pro-EGF1020-1027 peptidolysis, while pretreating intact platelets with PAD4 suppressed ADAMDEC1-, thrombin-, or collagen-induced release of HMW-EGF. We conclude that activated platelets release ADAMDEC1, which hydrolyzes pro-EGF to soluble HMW-EGF, that HMW-EGF is active, that proteolytic cleavage of pro-EGF first occurs at the C-terminal arginyl residue of the EGF domain, and that proteolysis is the regulated and rate-limiting step in generating soluble EGF bioactivity from activated platelets.
Collapse
Affiliation(s)
- Rui Chen
- From the Departments of Cellular and Molecular Medicine and
| | - Ge Jin
- the Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio 44106
| | - Thomas M McIntyre
- From the Departments of Cellular and Molecular Medicine and .,Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland 44195 Ohio and
| |
Collapse
|
4
|
Del Angel-Mosqueda C, Gutiérrez-Puente Y, López-Lozano AP, Romero-Zavaleta RE, Mendiola-Jiménez A, Medina-De la Garza CE, Márquez-M M, De la Garza-Ramos MA. Epidermal growth factor enhances osteogenic differentiation of dental pulp stem cells in vitro. Head Face Med 2015; 11:29. [PMID: 26334535 PMCID: PMC4558932 DOI: 10.1186/s13005-015-0086-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) play an important role in extracellular matrix mineralization, a complex process required for proper bone regeneration, one of the biggest challenges in dentistry. The purpose of this study was to evaluate the osteogenic potential of EGF and bFGF on dental pulp stem cells (DPSCs). Material and methods Human DPSCs were isolated using CD105 magnetic microbeads and characterized by flow cytometry. To induce osteoblast differentiation, the cells were cultured in osteogenic medium supplemented with EGF or bFGF at a low concentration. Cell morphology and expression of CD146 and CD10 surface markers were analyzed using fluorescence microscopy. To measure mineralization, an alizarin red S assay was performed and typical markers of osteoblastic phenotype were evaluated by RT-PCR. Results EGF treatment induced morphological changes and suppression of CD146 and CD10 markers. Additionally, the cells were capable of producing calcium deposits and increasing the mRNA expression to alkaline phosphatase (ALP) and osteocalcin (OCN) in relation to control groups (p < 0.001). However, bFGF treatment showed an inhibitory effect. Conclusion These data suggests that DPSCs in combination with EGF could be an effective stem cell-based therapy for bone tissue engineering applications in periodontics and oral implantology.
Collapse
Affiliation(s)
- Casiano Del Angel-Mosqueda
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Yolanda Gutiérrez-Puente
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.
| | - Ada Pricila López-Lozano
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Ricardo Emmanuel Romero-Zavaleta
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | | | - Carlos Eduardo Medina-De la Garza
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Marcela Márquez-M
- Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Department of Oncology-Pathology, CCK, Karolinska Institutet, Stockholm, Sweden.
| | - Myriam Angélica De la Garza-Ramos
- Unidad de Odontología Integral y Especialidades, Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México. .,Facultad de Odontología, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| |
Collapse
|
5
|
Mohammadian J, Mansoori-Derakhshan S, Mohammadian M, Shekari-Khaniani M. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF). Adv Pharm Bull 2013; 3:473-6. [PMID: 24312882 PMCID: PMC3848235 DOI: 10.5681/apb.2013.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 05/15/2013] [Accepted: 05/18/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. METHODS EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. RESULTS PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. CONCLUSION Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study.
Collapse
Affiliation(s)
- Jamal Mohammadian
- Department of Clinical Biochemistry, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori-Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahmoud Shekari-Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Charfi C, Levros LC, Edouard E, Rassart E. Characterization and identification of PARM-1 as a new potential oncogene. Mol Cancer 2013; 12:84. [PMID: 23902727 PMCID: PMC3750824 DOI: 10.1186/1476-4598-12-84] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/25/2013] [Indexed: 11/21/2022] Open
Abstract
Background The Graffi murine retrovirus is a powerful tool to find leukemia associated oncogenes. Using DNA microarrays, we recently identified several genes specifically deregulated in T- and B-leukemias induced by this virus. Results In the present study, probsets associated with T-CD8+ leukemias were analyzed and we validated the expression profile of the Parm-1 gene. PARM-1 is a member of the mucin family. We showed that human PARM-1 is an intact secreted protein accumulating predominantly, such as murine PARM-1, at the Golgi and in the early and late endosomes. PARM-1 colocalization with α-tubulin suggests that its trafficking within the cell involves the microtubule cytoskeleton. Also, the protein co-localizes with caveolin-1 which probably mediates its internalization. Transient transfection of both mouse and human Parm-1 cDNAs conferred anchorage- and serum-independent growth and enhanced cell proliferation. Moreover, deletion mutants of human PARM-1 without either extracellular or cytoplasmic portions seem to retain the ability to induce anchorage-independent growth of NIH/3T3 cells. In addition, PARM-1 increases ERK1/2, but more importantly AKT and STAT3 phosphorylation. Conclusions Our results strongly suggest the oncogenic potential of PARM-1.
Collapse
Affiliation(s)
- Cyndia Charfi
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C-3P8, Canada
| | | | | | | |
Collapse
|
7
|
Wu J, Zhang W, Xu A, Zhang L, Yan T, Li Z, Wu X, Zhu X, Ma J, Li K, Li H, Liu Y. Association of epidermal growth factor and epidermal growth factor receptor polymorphisms with the risk of hepatitis B virus-related hepatocellular carcinoma in the population of North China. Genet Test Mol Biomarkers 2013; 17:595-600. [PMID: 23790025 DOI: 10.1089/gtmb.2013.0031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common solid malignant tumor occurring worldwide that leads to the third largest cause of death compared to other cancers. Genetic and environmental factors are involved in the pathogenesis of HCC. Epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) can stimulate the proliferation of epidermal and epithelial cells. The EGF signal pathway has a relationship with the growth of the embryo, tissue repairing, and tumorigenesis. METHODS In this study, 416 patients with hepatitis B virus infection (HBV)-related HCC and 645 individuals who had never been infected with HBV of the Chinese Han population were enrolled. Eight single-nucleotide polymorphisms (SNPs), whose minor allele frequency >20% in the EGF and EGFR genes, were genotyped to examine their associations with hepatocarcinogenesis. Genotyping experiments were carried out using TaqMan. RESULTS There were significant differences in genotype distributions (p=0.005) and allele frequencies (p=0.001, odds ratio [OR]=1.43, 95% confidence interval [CI]=1.15-1.79) of rs11569017 in the EGF gene between the HCC and control groups. After binary logistic regression to determine independent factors for susceptibility to HCC under an additive model, rs11569017 was still independently associated with the susceptibility to HCC (p=0.021, OR=1.48, 95% CI=1.06-2.07), but no significant differences in other SNPs were found. Additionally, the haplotype T-G constructed by rs11569017 and rs4444903 of the EGF gene might increase the risk of HBV-related HCC (p=0.002, OR=1.44, 95% CI=1.15-1.82). CONCLUSION The rs11569017 T allele was associated with susceptibility to HBV-related HCC.
Collapse
Affiliation(s)
- Jia Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 2012; 18:519-27. [PMID: 22294205 PMCID: PMC3356419 DOI: 10.2119/molmed.2011.00217] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/26/2012] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma multiforme is a deadly cancer for which current treatment options are limited. The ability of glioblastoma tumor cells to infiltrate the surrounding brain parenchyma critically limits the effectiveness of current treatments. We investigated how microglia, the resident macrophages of the brain, stimulate glioblastoma cell invasion. We first examined the ability of normal microglia from C57Bl/6J mice to stimulate GL261 glioblastoma cell invasion in vitro. We found that microglia stimulate the invasion of GL261 glioblastoma cells by approximately eightfold in an in vitro invasion assay. Pharmacological inhibition of epidermal growth factor receptor (EGFR) strongly inhibited microglia-stimulated invasion. Furthermore, blockade of colony stimulating factor 1 receptor (CSF-1R) signaling using ribonucleic acid (RNA) interference or pharmacological inhibitors completely inhibited microglial enhancement of glioblastoma invasion. GL261 cells were found to constitutively secrete CSF-1, the levels of which were unaffected by epidermal growth factor (EGF) stimulation, EGFR inhibition or coculture with microglia. CSF-1 only stimulated microglia invasion, whereas EGF only stimulated glioblastoma cell migration, demonstrating a synergistic interaction between these two cell types. Finally, using PLX3397 (a CSF-1R inhibitor that can cross the blood-brain barrier) in live animals, we discovered that blockade of CSF-1R signaling in vivo reduced the number of tumor-associated microglia and glioblastoma invasion. These data indicate that glioblastoma and microglia interactions mediated by EGF and CSF-1 can enhance glioblastoma invasion and demonstrate the possibility of inhibiting glioblastoma invasion by targeting glioblastoma-associated microglia via inhibition of the CSF-1R.
Collapse
Affiliation(s)
- Salvatore J Coniglio
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Rousselet E, Benjannet S, Marcinkiewicz E, Asselin MC, Lazure C, Seidah NG. Proprotein convertase PC7 enhances the activation of the EGF receptor pathway through processing of the EGF precursor. J Biol Chem 2011; 286:9185-95. [PMID: 21209099 DOI: 10.1074/jbc.m110.189936] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although the processing profile of the membrane-bound epidermal growth factor precursor (pro-EGF) is tissue-specific, it has not been investigated at the cellular level nor have the cognate proteinases been defined. Among the proprotein convertases (PCs), only the membrane-bound PC7, the most ancient and conserved basic amino acid-specific PC family member, induces the processing of pro-EGF into an ∼115-kDa transmembrane form (EGF-115) at an unusual VHPR(290)↓A motif. Because site-directed mutagenesis revealed that Arg(290) is not critical, the generation of EGF-115 by PC7 is likely indirect. This was confirmed by testing a wide range of protease inhibitors, which revealed that the production of EGF-115 is most probably achieved via the activation by PC7 of a latent serine and/or cysteine protease(s). EGF-115 is more abundant at the cell surface than pro-EGF and is associated with a stronger EGF receptor (EGFR) activation, as evidenced by higher levels of phosphorylated ERK1/2. This suggests that the generation of EGF-115 represents a regulatory mechanism of juxtacrine EGFR activation. Thus, PC7 is distinct from the other PCs in its ability to enhance the activation of the cell surface EGFR.
Collapse
Affiliation(s)
- Estelle Rousselet
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Cooper GM, Miller ED, Decesare GE, Usas A, Lensie EL, Bykowski MR, Huard J, Weiss LE, Losee JE, Campbell PG. Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 2010; 16:1749-59. [PMID: 20028232 DOI: 10.1089/ten.tea.2009.0650] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The purpose of this study was to demonstrate spatial control of osteoblast differentiation in vitro and bone formation in vivo using inkjet bioprinting technology and to create three-dimensional persistent bio-ink patterns of bone morphogenetic protein-2 (BMP-2) and its modifiers immobilized within microporous scaffolds. Semicircular patterns of BMP-2 were printed within circular DermaMatrix human allograft scaffold constructs. The contralateral halves of the constructs were unprinted or printed with BMP-2 modifiers, including the BMP-2 inhibitor, noggin. Printed bio-ink pattern retention was validated using fluorescent or (125)I-labeled bio-inks. Mouse C2C12 progenitor cells cultured on patterned constructs differentiated in a dose-dependent fashion toward an osteoblastic fate in register to BMP-2 patterns. The fidelity of spatial restriction of osteoblastic differentiation at the boundary between neighboring BMP-2 and noggin patterns improved in comparison with patterns without noggin. Acellular DermaMatrix constructs similarly patterned with BMP-2 and noggin were then implanted into a mouse calvarial defect model. Patterns of bone formation in vivo were comparable with patterned responses of osteoblastic differentiation in vitro. These results demonstrate that three-dimensional biopatterning of a growth factor and growth factor modifier within a construct can direct cell differentiation in vitro and tissue formation in vivo in register to printed patterns.
Collapse
Affiliation(s)
- Gregory M Cooper
- Division of Plastic Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Vassiliou AG, Fragoulis EG, Vassilacopoulou D. Detection, purification and identification of an endogenous inhibitor of L-Dopa decarboxylase activity from human placenta. Neurochem Res 2008; 34:1089-100. [PMID: 19005753 DOI: 10.1007/s11064-008-9879-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2008] [Indexed: 01/01/2023]
Abstract
An endogenous inhibitor of L-Dopa decarboxylase activity was identified and purified from human placenta. The endogenous inhibitor of L-Dopa decarboxylase (Ddc) was localized in the membrane fraction of placental tissue. Treatment of membranes with phosphatidylinositol-specific phospholipase C or proteinase K did not affect membrane-associated Ddc inhibitory activity, suggesting that a population of the inhibitor is embedded within membranes. Purification was achieved by extraction from a nondenaturing polyacrylamide gel. The purification scheme resulted in the isolation of a single 35 kDa band, bearing L-Dopa decarboxylase inhibitory activity. The purified inhibitor was identified as Annexin V. The elucidation of the biological importance of the presence of an L-Dopa decarboxylase activity inhibitor in normal human tissues could provide us with new information leading to the better understanding of the biological pathways that Ddc is involved in.
Collapse
|
12
|
Affiliation(s)
- Stanley Cohen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.
| |
Collapse
|
13
|
NEMO RAGHAD, MURCIA NOEL, DELL KATHERINEMACRAE. Transforming growth factor alpha (TGF-alpha) and other targets of tumor necrosis factor-alpha converting enzyme (TACE) in murine polycystic kidney disease. Pediatr Res 2005; 57:732-7. [PMID: 15774823 PMCID: PMC1570100 DOI: 10.1203/01.pdr.0000159513.51898.60] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transforming growth factor-alpha (TGF-alpha) is abnormally expressed in autosomal recessive polycystic kidney disease (ARPKD). Tumor necrosis factor-alpha converting enzyme (TACE), a metalloproteinase, mediates TGF-alpha processing. In this study, we sought to determine whether TGF-alpha was an absolute requirement for renal cystogenesis and whether its absence would modulate disease severity or related growth factors/receptors expression. Bpk heterozygotes were bred with TGF-alpha null mice to produce cystic and noncystic offspring with or without TGF-alpha. Assessments included kidney weight (KW), body weight (BW), blood urea nitrogen (BUN), and kidney and liver immunohistology. Western analysis assessed kidney expression of amphiregulin (AR), epidermal growth factor (EGF), heparin-binding EGF (HB-EGF), and their receptors, EGFR and ErbB4. A PCR-based methodology for genotyping bpk mice was also developed. No significant differences in KW, BW, KW/BW%, or BUN were seen in cystic mice with versus without TGF-alpha. Cystic kidney disease and liver disease histology were similar. AR, EGF, HB-EGF, EGFR, and ErbB4 were abnormally expressed to an equal degree in kidneys of mice with versus without TGF-alpha. Although previous data suggest a critical role of TGF-alpha in murine PKD, these data show that TGF-alpha is not required for renal cyst formation or kidney or liver disease progression. We speculate that the therapeutic effect of WTACE2 could have been due to effects on several TACE targets, including TGF-alpha, AR, and ErbB4, as well as metalloproteinases other than TACE.
Collapse
Key Words
- adpkd, autosomal dominant polycystic kidney disease
- ar, amphiregulin
- arpkd, autosomal recessive polycystic kidney disease
- bun, blood urea nitrogen
- bw, body weight
- egf, epidermal growth factor
- egfr, epidermal growth factor receptor
- hb-egf, heparin-binding epidermal growth factor
- kw, kidney weight
- mmp, matrix metalloproteinase
- pkd, polycystic kidney disease
- tace, tumor necrosis factor-alpha converting enzyme
- tgf-α, transforming growth factor-alpha
Collapse
Affiliation(s)
| | | | - KATHERINE MACRAE DELL
- Correspondence: Katherine MacRae, M.D., Dell Division of Pediatric Nephrology, Rainbow Babies and Children’s Hospital 11100 Euclid Ave., Cleveland, OH 44106; e-mail:
| |
Collapse
|
14
|
Dong J, Opresko LK, Chrisler W, Orr G, Quesenberry RD, Lauffenburger DA, Wiley HS. The membrane-anchoring domain of epidermal growth factor receptor ligands dictates their ability to operate in juxtacrine mode. Mol Biol Cell 2005; 16:2984-98. [PMID: 15829568 PMCID: PMC1142441 DOI: 10.1091/mbc.e04-11-0994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF, still required proteolytic release for activity, whereas ligands with the membrane-anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus. However, cell-mixing experiments and fluorescence resonance energy transfer studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.
Collapse
Affiliation(s)
- Jianying Dong
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah, Salt Lake City, UT 84133, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
In this report, we investigated whether reactive astrocytes produce neuregulins (glial growth factor 2/heregulin/acetylcholine receptor-inducing activity or neu differentiation factor) and its putative receptors, ErbB2 and ErbB3 tyrosine kinases, in the injured CNS in vivo. Significant immunoreactivities with anti-neuregulin, anti-ErbB2, and anti-ErbB3 antibodies were detected on astrocytes at the injured site 4 d after injury to the adult rat cerebral cortex. To elucidate the mechanisms for the upregulation of neuregulin expression in astrocytes, primary cultured astrocytes were treated with certain reagents, including forskolin, that are known to elevate the intracellular level of cAMP and induce marked morphological changes in astrocytes. Western blot analysis showed that the expression of a 52 kDa membrane-spanning form of a neuregulin protein was enhanced in cultured astrocytes after administration of forskolin. The upregulation of glial fibrillary acidic protein was also observed in astrocytes treated with forskolin. In contrast, inactivation of protein kinase C because of chronic treatment with phorbol ester 12-O-tetradecanoyl phorbol 13-acetate downregulated the expression of the 52 kDa isoform, although other splice variants with apparent molecular sizes of 65 and 60 kDa were upregulated. These results suggest that the enhancement of neuregulin expression at injured sites is induced, at least in part, by elevation in intracellular cAMP levels and/or a protein kinase C signaling pathway. The neuregulin expressed on reactive astrocytes may stimulate their proliferation and support the survival of neurons surrounding cortical brain wounds in vivo.
Collapse
|
16
|
Ertuğrul A, Türkeri LN, Ozyürek M, Ozveri H, Akdaş A. Alteration of epidermal growth factor receptor expression following ischaemia of renal tissue. Int Urol Nephrol 2001; 31:611-7. [PMID: 10755351 DOI: 10.1023/a:1007100303378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was aimed to investigate Epidermal Growth Factor Receptor (EGF-R) expression after ischaemic injury in renal tissue and the effects of calcium channel blockers in the prevention of damage due to ischaemic insult. Simple nephrectomy was performed in a group of Sprague-Dawley rats, and kidneys were grouped according to cold ischaemia time (1, 6, 12, 24 and 48 hours, respectively) and to the type of calcium channel blockers (diltiazem and verapamil) used. EGF-R expression status was investigated in each group by immunohistochemistry on paraffin sections. Overall expression of EGF-receptor was detected in 8 (22.8%) kidneys. In terms of localization of EGF-receptor expression cortical tubular staining was detected in 8 (100%) kidneys, medullar tubular staining in (62.5%) kidneys and glomerular mesangial staining in 5 (62.5%) kidneys. There was no difference between various ischaemia times and different calcium channel blockers used. It has been concluded that hypoxia and cold ischaemia causes widespread down-regulation of EGF-receptor expression in renal tissue regardless of treatment with calcium channel blockers.
Collapse
Affiliation(s)
- A Ertuğrul
- Department of Urology, Marmara University School of Medicine, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
17
|
Klapper LN, Glathe S, Vaisman N, Hynes NE, Andrews GC, Sela M, Yarden Y. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for multiple stroma-derived growth factors. Proc Natl Acad Sci U S A 1999; 96:4995-5000. [PMID: 10220407 PMCID: PMC21805 DOI: 10.1073/pnas.96.9.4995] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The erbB-2/HER2 oncogene is overexpressed in a significant fraction of human carcinomas of the breast, ovary, and lung in a manner that correlates with poor prognosis. Although the encoded protein resembles several receptors for growth factors, no high affinity ligand of ErbB-2 has so far been fully characterized. However, several lines of evidence have raised the possibility that ErbB-2 can augment signal transduction initiated by binding of certain growth factors to their direct receptors. Here, we contrasted these two models of ErbB-2 function: First, examination of a large series of epidermal growth factor (EGF)-like ligands and neuregulins, including virus-encoded ligands as well as related motifs derived from the precursor of EGF, failed to detect interactions with ErbB-2 when this protein was singly expressed. Second, by using antibodies that block inter-ErbB interactions and cells devoid of surface ErbB-2, we learned that signaling by all ligands examined, except those derived from the precursor of EGF, was enhanced by the oncoprotein. These results imply that ErbB-2 evolved as a shared receptor subunit of all ErbB-specific growth factors. Thus, oncogenicity of ErbB-2 in human epithelia may not rely on the existence of a specific ligand but rather on its ability to act as a coreceptor for multiple stroma-derived growth factors.
Collapse
Affiliation(s)
- L N Klapper
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Wiley HS, Woolf MF, Opresko LK, Burke PM, Will B, Morgan JR, Lauffenburger DA. Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. J Cell Biol 1998; 143:1317-28. [PMID: 9832559 PMCID: PMC2133076 DOI: 10.1083/jcb.143.5.1317] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Revised: 09/11/1998] [Indexed: 11/22/2022] Open
Abstract
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti-EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti-EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.
Collapse
Affiliation(s)
- H S Wiley
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Nishi N, Matsushita O, Yuube K, Miyanaka H, Okabe A, Wada F. Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc Natl Acad Sci U S A 1998; 95:7018-23. [PMID: 9618531 PMCID: PMC22723 DOI: 10.1073/pnas.95.12.7018] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The autocrine/paracrine peptide signaling molecules such as growth factors have many promising biologic activities for clinical applications. However, one cannot expect specific therapeutic effects of the factors administered by ordinary drug delivery systems as they have limited target specificity and short half-lives in vivo. To overcome the difficulties in using growth factors as therapeutic agents, we have produced fusion proteins consisting of growth factor moieties and a collagen-binding domain (CBD) derived from Clostridium histolyticum collagenase. The fusion proteins carrying the epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) at the N terminal of CBD (CBEGF/CBFGF) tightly bound to insoluble collagen and stimulated the growth of BALB/c 3T3 fibroblasts as much as the unfused counterparts. CBEGF, when injected subcutaneously into nude mice, remained at the sites of injection for up to 10 days, whereas EGF was not detectable 24 h after injection. Although CBEGF did not exert a growth-promoting effect in vivo, CBFGF, but not bFGF, strongly stimulated the DNA synthesis in stromal cells at 5 days and 7 days after injection. These results indicate that CBD may be used as an anchoring unit to produce fusion proteins nondiffusible and long-lasting in vivo.
Collapse
Affiliation(s)
- N Nishi
- Department of Endocrinology, Faculty of Medicine, Kagawa Medical University, Kagawa 761-0793, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Dempsey PJ, Meise KS, Yoshitake Y, Nishikawa K, Coffey RJ. Apical enrichment of human EGF precursor in Madin-Darby canine kidney cells involves preferential basolateral ectodomain cleavage sensitive to a metalloprotease inhibitor. J Cell Biol 1997; 138:747-58. [PMID: 9265643 PMCID: PMC2138042 DOI: 10.1083/jcb.138.4.747] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1996] [Revised: 05/14/1997] [Indexed: 02/05/2023] Open
Abstract
EGF precursor (proEGF) is a member of the family of membrane-anchored EGF-like growth factors that bind with high affinity to the epidermal growth factor receptor (EGFR). In contrast to human transforming growth factor-alpha precursor (proTGFalpha), which is sorted basolaterally in Madin-Darby canine kidney (MDCK) cells (Dempsey, P., and R. Coffey, 1994. J. Biol. Chem. 269:16878-16889), we now demonstrate that human proEGF overexpressed in MDCK cells is found predominantly at the apical membrane domain under steady-state conditions. Nascent proEGF (185 kD) is not sorted but is delivered equally to the apical and basolateral membranes, where it is proteolytically cleaved within its ectodomain to release a soluble 170-kD EGF form into the medium. Unlike the fate of TGFalpha in MDCK cells, the soluble 170-kD EGF species accumulates in the medium, does not interact with the EGFR, and is not processed to the mature 6-kD peptide. We show that the rate of ectodomain cleavage of 185-kD proEGF is fourfold greater at the basolateral surface than at the apical surface and is sensitive to a metalloprotease inhibitor, batimastat. Batimastat dramatically inhibited the release of soluble 170-kD EGF into the apical and basal medium by 7 and 60%, respectively, and caused a concordant increase in the expression of 185-kD proEGF at the apical and basolateral cell surfaces of 150 and 280%, respectively. We propose that preferential ectodomain cleavage at the basolateral surface contributes to apical domain localization of 185-kD proEGF in MDCK cells, and this provides a novel mechanism to achieve a polarized distribution of cell surface membrane proteins under steady-state conditions. In addition, differences in disposition of EGF and TGFalpha in polarized epithelial cells offer a new conceptual framework to consider the actions of these polypeptide growth factors.
Collapse
Affiliation(s)
- P J Dempsey
- Department of Medicine, Vanderbilt University School of Medicine,p5 Veterans Affairs Medical Center, Nashville, Tennessee 37232-2279, USA.
| | | | | | | | | |
Collapse
|
21
|
Briley GP, Hissong MA, Chiu ML, Lee DC. The carboxyl-terminal valine residues of proTGF alpha are required for its efficient maturation and intracellular routing. Mol Biol Cell 1997; 8:1619-31. [PMID: 9285829 PMCID: PMC276180 DOI: 10.1091/mbc.8.8.1619] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Soluble forms of transforming growth factor-alpha (TGF alpha) are derived by proteolytic processing of an integral membrane glycoprotein precursor (pro TGF alpha). Previous studies indicated that phorbol ester-induced cleavage of pro TGF alpha in CHO cells is dependent on the presence of a valine residue located at the carboxyl terminus of the precursor's cytoplasmic domain. We reassessed this requirement with epitope-tagged constructs introduced into transformed rat liver epithelial cells that normally express and process TGF alpha. We found that pro TGF alpha mutants lacking the terminal valine residues showed greatly reduced maturation to the fully glycosylated form. Additionally, they were present at substantially reduced levels on the cell surface and, instead, accumulated in the endoplasmic reticulum. Consistent with these results, enzyme-linked immunosorbent assay (ELISA) and Western blot analyses revealed little or no soluble TGF alpha in medium conditioned by cells expressing the mutant constructs. Finally, a truncated pro TGF alpha mutant lacking most of the cytoplasmic domain but retaining a carboxyl-terminal valine was processed and cleaved in a near-normal manner. These results, some of which were reproduced in CHO cells, indicate that the predominant effect of the carboxyl-terminal valines is to ensure normal maturation and routing of the precursor.
Collapse
Affiliation(s)
- G P Briley
- University of North Carolina, Lineberger Comprehensive Cancer Center 27599-7295, USA
| | | | | | | |
Collapse
|
22
|
Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol 1997; 17:977-88. [PMID: 9001251 PMCID: PMC231823 DOI: 10.1128/mcb.17.2.977] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
pref-1 is an epidermal growth factor-like repeat protein present on the surface of preadipocytes that functions in the maintenance of the preadipose state. pref-1 expression is completely abolished during 3T3-L1 adipocyte differentiation. Bypassing this downregulation by constitutive expression of full-length transmembrane pref-1 in preadipocytes drastically inhibits differentiation. For the first time, we show processing of cell-associated pref-1 to generate both a soluble pref-1 protein of approximately 50 kDa that corresponds to the ectodomain and also smaller products of 24 to 25 kDa and 31 kDa. Furthermore, while all four of the alternately spliced forms of pref-1 produce cell-associated protein, only the two largest of the four alternately spliced isoforms undergo cleavage in the juxtamembrane region to release the soluble 50-kDa ectodomain. We demonstrate that addition of Escherichia coli-expressed pref-1 ectodomain to 3T3-L1 preadipocytes blocks differentiation, thus overriding the adipogenic actions of dexamethasone and methylisobutylxanthine. The inhibitory effects of the pref-1 ectodomain are blocked by preincubation of the protein with pref-1 antibody. That the ectodomain alone is sufficient for inhibition demonstrates that transmembrane pref-1 can be processed to generate an inhibitory soluble form, thereby greatly extending its range of action. Furthermore, we present evidence that alternate splicing is the mechanism that governs the production of transmembrane versus soluble pref-1, thereby determining the mode of action, juxtacrine or paracrine, of the pref-1 protein.
Collapse
Affiliation(s)
- C M Smas
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
23
|
Efthimiopoulos S, Vassilacopoulou D, Ripellino JA, Tezapsidis N, Robakis NK. Cholinergic agonists stimulate secretion of soluble full-length amyloid precursor protein in neuroendocrine cells. Proc Natl Acad Sci U S A 1996; 93:8046-50. [PMID: 8755600 PMCID: PMC38872 DOI: 10.1073/pnas.93.15.8046] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Abeta peptide of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APP), which are considered type I transmembrane glycoproteins. Recently, however, soluble forms of full-length APP were also detected in several systems including chromaffin granules. In this report we used antisera specific for the cytoplasmic sequence of APP to show that primary bovine chromaffin cells secrete a soluble APP, termed solAPPcyt, of an apparent molecular mass of 130 kDa. This APP was oversecreted from Chinese hamster ovary cells transfected with a full-length APP cDNA indicating that solAPPcyt contained both the transmembrane and Abeta sequence. Deglycosylation of solAPPcyt showed that it contained both N- and O-linked sugars, suggesting that this APP was transported through the endoplasmic reticulum-Golgi pathway. Secretion of solAPPcyt from primary chromatin cells was temperature-, time-, and energy-dependent and was stimulated by cell depolarization in a Ca2+-dependent manner. Cholinergic receptor agonists, including acetylcholine, nicotine, or carbachol, stimulated the rapid secretion of solAPPcyt, a process that was inhibited by cholinergic antagonists. Stimulation of solAPPcyt secretion was paralleled by a stimulation of secretion in catecholamines and chromogranin A, indicating that secretion of solAPPcyt was mediated by chromaffin granule vesicles. Taken together, our results show that release of the potentially amyloidogenic solAPPcyt is an active cellular process mediated by both the constitutive and regulated pathways. solAPPcyt was also detected in human cerebrospinal fluid. Combined with the neuronal physiology of chromaffin cells, our data suggest that cholinergic agonists may stimulate the release of this APP in neuronal synapses where it may exert its biological functions. Moreover, vesicular or secreted solAPPcyt may serve as a soluble precursor of Abeta.
Collapse
Affiliation(s)
- S Efthimiopoulos
- Department of Psychiatry and Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, NY 10029, USA
| | | | | | | | | |
Collapse
|
24
|
Davies DE, Farmer S, White J, Senior PV, Warnes SL, Alexander P. Contribution of host-derived growth factors to in vivo growth of a transplantable murine mammary carcinoma. Br J Cancer 1994; 70:263-9. [PMID: 8054274 PMCID: PMC2033494 DOI: 10.1038/bjc.1994.290] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The contribution of host-derived growth factors to tumour growth in vivo was studied using the transplantable murine mammary carcinoma, MT1, grown in syngeneic mice. Promotion of growth of the mammary carcinoma by a factor(s) from the host was evident in experiments in which the carcinoma cells were inoculated intraperitoneally. In this environment, tumours develop as multiple solid nodules, each probably arising from an individual cell or a small cluster of cells. Tumour growth was found to occur in the peritoneal cavity following inoculation of 10(3) cells, but an inoculum of as few as ten cells grew if a leucocyte-rich exudate had first been induced. To determine which host-derived growth factors might contribute to growth of MT1, extracts of the tumour were first examined for growth factor activity. Fractionation of tumour extracts by either ion-exchange chromatography or gel filtration revealed several peaks of mitogenic activity, but none of this could be attributed to epidermal growth factor (EGF). Accordingly, an anti-EGF antibody was tested as a putative inhibitor of tumour growth as any effect of this antibody could be ascribed to removal of EGF derived from the host. The antibody was found to have potent anti-tumour activity when tested against MT1 tumours that had been inoculated into the peritoneal cavity. In contrast, the antibody had little effect on growth of the discrete tumour mass which formed when MT1 was transplanted subcutaneously. The results suggest that host-derived EGF contributes to establishment of microcolonies of MT1 carcinoma within the peritoneal cavity. This may be directly, by providing growth factors to supplement those produced by the tumour until it reaches a certain critical mass to sustain autocrine growth, or indirectly, by affecting the production of other growth-stimulatory factors or cytokines.
Collapse
Affiliation(s)
- D E Davies
- CRC Medical Oncology Unit, Southampton General Hospital, UK
| | | | | | | | | | | |
Collapse
|
25
|
The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell Biol 1994. [PMID: 8114701 DOI: 10.1128/mcb.14.3.1635] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.
Collapse
|
26
|
Thorne BA, Plowman GD. The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell Biol 1994; 14:1635-46. [PMID: 8114701 PMCID: PMC358522 DOI: 10.1128/mcb.14.3.1635-1646.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The five members of the human epidermal growth factor (EGF) family (EGF, transforming growth factor alpha [TGF-alpha], heparin-binding EGF-like growth factor [HB-EGF], betacellulin, and amphiregulin [AR]) are synthesized as transmembrane proteins whose extracellular domains are proteolytically processed to release the biologically active mature growth factors. These factors all activate the EGF receptor, but in contrast to EGF and TGF-alpha, the mature forms of HB-EGF and AR are also glycosylated, heparin-binding proteins. We have constructed a series of mutants to examine the influence of the distinct precursor domains in the biosynthesis of AR. The transmembrane and cytoplasmic domains of the precursor are not required for secretion of bioactive AR from either COS or mammary epithelium-derived cells, although proteolytic removal of the N-terminal pro-region is less efficient in the absence of the membrane anchor. Deletion of the N-terminal pro-region, however, results in rapid intracellular degradation of the molecule with no detectable secretion of active growth factor. AR secretion is preserved by replacing the native pro-region with the corresponding domain of the HB-EGF precursor but not with that of the TGF-alpha precursor. In the absence of any N-terminal pro-region, secretion of the molecule is restored by deleting the N-terminal heparin-binding domain of mature AR. Both EGF and TGF-alpha, in contrast, can be secreted without their pro-regions. However, if the protein is fused with the AR heparin-binding domain, TGF-alpha secretion is inhibited unless the AR pro-region is also present. We propose that the heparin-binding domain of mature AR necessitates the presence of a specific structural motif in an N-terminal pro-region to permit proper folding, and thus secretion, of a bioactive molecule.
Collapse
Affiliation(s)
- B A Thorne
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, Washington 98121
| | | |
Collapse
|
27
|
Olsen M, Krog L, Edvardsen K, Skovgaard LT, Bock E. Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane. Biochem J 1993; 295 ( Pt 3):833-40. [PMID: 8240299 PMCID: PMC1134637 DOI: 10.1042/bj2950833] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Three soluble neural cell adhesion molecule (NCAM) polypeptide classes of M(r) values 190,000 (NCAM-s1), 135,000 (NCAM-s2) and 115,000-110,000 (NCAM-s3) have been demonstrated in rat brain and cerebrospinal fluid [Krog, Olsen, Dalseg, Roth and Bock (1992) J. Neurochem. 59, 838-847]. NCAM-s3 is known to arise from released glycosylphosphatidylinositol (GPI)-linked NCAM [He, Finne and Goridis (1987) J. Cell. Biol. 105, 2489-2500] as well as from extracellularly cleaved transmembrane NCAM isoforms [Nybroe, Linnemann and Bock (1989) J. Neurochem. 53, 1372-1378]. In this study the origin of NCAM-s1 and NCAM-s2 and the function of soluble NCAM forms were investigated. It was shown that all three soluble forms could be released from brain membranes with M(r) values identical to the three major membrane-associated forms: the large transmembrane 190,000-M(r) form (NCAM-A), the smaller transmembrane 135,000-M(r) form (NCAM-B) and the GPI-anchored 115,000-110,000-M(r) form (NCAM-C). A polyclonal antibody, directed against transmembrane and cytoplasmic epitopes common to NCAM-A and NCAM-B, was shown to react with NCAM-s1 and NCAM-s2. Furthermore, NCAM-B was shown to be shed in a presumably intact soluble form from membranes of cells transfected with this isoform. Thus, NCAM-s1 and NCAM-s2 probably represent intact released transmembrane NCAM-A and NCAM-B. The soluble transmembrane forms are likely to exist in vivo, as NCAM-s1 and NCAM-s2 were readily demonstrated in cerebrospinal fluid. By density-gradient centrifugation it was shown that shed transmembrane NCAM-B was present in fractions of high, as well as low, density, indicating that a fraction of the shed NCAM is associated with minor plasma membrane fragments. Finally, it was shown that isolated soluble NCAM inhibited cell binding to an immobilized NCAM substratum, attributing a pivotal role to soluble NCAM in vivo as a modulator of NCAM-mediated cell behaviour.
Collapse
Affiliation(s)
- M Olsen
- Research Centre for Medical Biotechnology, University of Copenhagen, Panum Institute, Denmark
| | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- R Flaumenhaft
- Department of Cell Biology, New York University Medical Center, New York
| | | |
Collapse
|
29
|
Salido EC, Lakshmanan J, Fisher DA, Shapiro LJ, Barajas L. Expression of epidermal growth factor in the rat kidney. An immunocytochemical and in situ hybridization study. HISTOCHEMISTRY 1991; 96:65-72. [PMID: 1938482 DOI: 10.1007/bf00266763] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The renal localization and the site of synthesis of epidermal growth factor (EGF) were investigated in the rat kidney by immunohistochemistry and in situ hybridization techniques. EGF was localized in the cells of the thick ascending limb of Henle (TAL) and distal convoluted tubule (DCT). At the ultrastructural level, EGF immunoreactivity was distributed on the apical membrane and trans-Golgi complex of the TAL and DCT cells. These segments of the rat nephron also hybridized to prepro-EGF cRNA probes in a specific manner, indicating that TAL and DCT are the sites of EGF synthesis in the rat kidney.
Collapse
Affiliation(s)
- E C Salido
- Department of Pathology, School of Medicine, University of California, Los Angeles, Harbor-UCLA Medical Center, Torrance 90509
| | | | | | | | | |
Collapse
|
30
|
Lee BA, Donoghue DJ. Membrane-anchored form of v-sis/PDGF-B induces mitogenesis without detectable PDGF receptor autophosphorylation. J Cell Biol 1991; 113:361-70. [PMID: 1849139 PMCID: PMC2288947 DOI: 10.1083/jcb.113.2.361] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The v-sis protein is structurally and functionally related to PDGF. Forms of the v-sis protein which are anchored to the cell membrane via the transmembrane domain of the vesicular stomatitis virus G protein have been previously described (Hannink, M., and D.J. Donoghue. 1986. J. Cell Biol. 103:2311-2322). Several of these fusion proteins were shown to interact productively with the PDGF receptor (PDGFR) based on their ability to transform NIH 3T3 cells. In this report, we further characterized one of these membrane-anchored v-sis proteins, designated v-sis239-G. The gene encoding v-sis239-G was placed under control of the Drosophila melanogaster hsp70 promotor and synthesis of this protein was shown to induce a mitogenic response in NIH 3T3 cells. Unexpectedly, v-sis239-G did not induce detectable autophosphorylation of the PDGFR, in contrast to a similarly expressed secreted form of the v-sis protein. Thus, it appears that a PDGFR-mediated mitogenic response may be dissociated from detectable receptor autophosphorylation. Furthermore, induced synthesis of v-sis239-G was shown to lead to c-fos expression even in the absence of detectable receptor autophosphorylation. Interestingly, a nonmitogenic membrane-anchored form of the v-sis protein, designated v-sis239-G338, also induced c-fos without receptor autophosphorylation. These results raise interesting questions regarding the roles of autophosphorylation and c-fos induction in PDGFR-mediated signal transduction and suggest the possibility of an autophosphorylation-independent signal transduction pathway.
Collapse
Affiliation(s)
- B A Lee
- Department of Chemistry, University of California, San Diego, La Jolla 92093-0322
| | | |
Collapse
|
31
|
Cleavage of the membrane precursor for transforming growth factor alpha is a regulated process. Proc Natl Acad Sci U S A 1991; 88:1726-30. [PMID: 2000380 PMCID: PMC51097 DOI: 10.1073/pnas.88.5.1726] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor alpha (TGF-alpha) is generated by cleavage of a membrane-anchored precursor protein, proTGF-alpha. ProTGF-alpha is cleaved at a slow rate and accumulates on the cell surface, thereby mediating cell-cell adhesion and mitogenic stimulation. We show here that cleavage of membrane proTGF-alpha by an elastase-like enzyme constitutes an important regulatory step in the generation of soluble TGF-alpha. Cleavage is activated in response to serum factors and tumor-promoting phorbol esters, leading to depletion of cell surface proTGF-alpha, which disperses as soluble factor. Activation of proTGF-alpha cleavage is mediated by protein kinase C-dependent and -independent mechanisms. The results demonstrate the existence of mechanisms that control the switch of TGF-alpha from a juxtacrine to a paracrine growth factor.
Collapse
|
32
|
Maihle NJ, Flickinger TW, Raines MA, Sanders ML, Kung HJ. Native avian c-erbB gene expresses a secreted protein product corresponding to the ligand-binding domain of the receptor. Proc Natl Acad Sci U S A 1991; 88:1825-9. [PMID: 1672045 PMCID: PMC51118 DOI: 10.1073/pnas.88.5.1825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A primer-directed cDNA library was used to obtain cDNA clones corresponding to the 5' end (i.e., the ligand-binding domain) of the avian c-erbB gene. Bacterial c-erbB fusion proteins were synthesized and used to obtain polyclonal antisera specific for the ligand-binding domain of the avian receptor. These antisera and antisera specific for the carboxyl terminal domain of the chicken c-erbB gene product have been used to study the native protein products of the c-erbB locus in primary cell cultures by in vivo labeling and immunoprecipitation. Our studies reveal that three c-erbB gene products of Mr 300,000, Mr 170,000, and Mr 95,000 are synthesized in uninfected chicken embryo fibroblasts. Only the Mr 300,000 and Mr 170,000 species can be precipitated by using antisera specific for the cytoplasmic domain of the c-erbB product. The 95,000 species is not recognized by the antiserum directed against the carboxyl-terminal domain of c-erbB and is specifically released into the culture medium. Northern transfer studies reveal a lower molecular weight transcript of approximately 2.6 kilobases that selectively hybridizes to the ligand-binding domain of the avian c-erbB gene product but does not hybridize with probes specific for the cytoplasmic kinase domain of c-erbB. An additional cDNA clone corresponding to this transcript has been isolated, and its sequence suggests it may arise via alternative processing. Together, these data suggest that a truncated form of this growth factor receptor--i.e., a Mr 95,000 species--is synthesized from a low molecular weight c-erbB transcript that exclusively encodes the ligand-binding domain of the receptor. Secretion of truncated growth factor receptors has been reported recently in several systems, and our results are discussed in the light of these findings.
Collapse
Affiliation(s)
- N J Maihle
- Department of Biochemistry and Molecular Biology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | | | | | | |
Collapse
|
33
|
Transforming growth factor alpha in arterioles: cell surface processing of its precursor by elastases. Mol Cell Biol 1990. [PMID: 2201895 DOI: 10.1128/mcb.10.9.4596] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of the transforming growth factor alpha (TGF alpha) cDNA predicts that the mature TGF alpha polypeptide is cleaved from the extracellular domain of its precursor, which is an integral membrane protein. Furthermore, the cleavage sites for the release of this mitogen are compatible with the participation of an elastaselike protease. We have immunohistochemically localized TGF alpha to the vascular smooth muscle cells in the arterioles. To investigate whether polymorphonuclear (PMN) leukocytic elastase, a blood-borne protease, could process the cell surface TGF alpha, NR6 cells were transfected with the rat TGF alpha cDNA. The cDNA encoded the entire open reading frame, and its expression was under the control of the mouse metallothionein I promoter. A cloned transfectant, termed 1B2, synthesized the TGF alpha precursor in a zinc-inducible manner, and the precursor was localized to the cell surface. Western blot (immunoblot) analysis indicated that treatment of the zinc-induced 1B2 cells with either PMN leukocytic or pancreatic elastase resulted in the release of the mature TGF alpha polypeptide. The released TGF alpha was bioactive, as it was capable of both competing with epidermal growth factor for binding to its receptor and stimulating [3H]thymidine incorporation in the mitogenic assay. Formaldehyde fixation of the 1B2 cells eliminated basal release of TGF alpha but allowed normal processing by both PMN leukocytic and pancreatic elastase to occur. However, human cathepsin G, bovine pancreatic alpha 1-chymotrypsin, collagenase, trypsin, subtilisin, and plasmin failed to release any detectable fragments of the TGF alpha precursor from the fixed cells. The location of TGF alpha in the arterioles and ability of PMN leukocytic elastase to process the membrane-bound TGF alpha precursor suggests a novel role for this elastase at the wound site.
Collapse
|
34
|
Mueller SG, Paterson AJ, Kudlow JE. Transforming growth factor alpha in arterioles: cell surface processing of its precursor by elastases. Mol Cell Biol 1990; 10:4596-602. [PMID: 2201895 PMCID: PMC361048 DOI: 10.1128/mcb.10.9.4596-4602.1990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Analysis of the transforming growth factor alpha (TGF alpha) cDNA predicts that the mature TGF alpha polypeptide is cleaved from the extracellular domain of its precursor, which is an integral membrane protein. Furthermore, the cleavage sites for the release of this mitogen are compatible with the participation of an elastaselike protease. We have immunohistochemically localized TGF alpha to the vascular smooth muscle cells in the arterioles. To investigate whether polymorphonuclear (PMN) leukocytic elastase, a blood-borne protease, could process the cell surface TGF alpha, NR6 cells were transfected with the rat TGF alpha cDNA. The cDNA encoded the entire open reading frame, and its expression was under the control of the mouse metallothionein I promoter. A cloned transfectant, termed 1B2, synthesized the TGF alpha precursor in a zinc-inducible manner, and the precursor was localized to the cell surface. Western blot (immunoblot) analysis indicated that treatment of the zinc-induced 1B2 cells with either PMN leukocytic or pancreatic elastase resulted in the release of the mature TGF alpha polypeptide. The released TGF alpha was bioactive, as it was capable of both competing with epidermal growth factor for binding to its receptor and stimulating [3H]thymidine incorporation in the mitogenic assay. Formaldehyde fixation of the 1B2 cells eliminated basal release of TGF alpha but allowed normal processing by both PMN leukocytic and pancreatic elastase to occur. However, human cathepsin G, bovine pancreatic alpha 1-chymotrypsin, collagenase, trypsin, subtilisin, and plasmin failed to release any detectable fragments of the TGF alpha precursor from the fixed cells. The location of TGF alpha in the arterioles and ability of PMN leukocytic elastase to process the membrane-bound TGF alpha precursor suggests a novel role for this elastase at the wound site.
Collapse
Affiliation(s)
- S G Mueller
- Department of Clinical Biochemistry, University of Toronto, Banting and Best Diabetes Centre, Toronto General Hospital, Ontario, Canada
| | | | | |
Collapse
|
35
|
McKeehan WL, Barnes D, Reid L, Stanbridge E, Murakami H, Sato GH. Frontiers in mammalian cell culture. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1990; 26:9-23. [PMID: 2407711 DOI: 10.1007/bf02624149] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For the past 60 years, fundamental discoveries in eukaryotic biology using mammalian cell cultures have been significant but modest relative to the enormous potential. Combined with advances in technologies of cell and molecular biology, mammalian cell culture technology is becoming a major, if not essential tool, for fundamental discovery in eukaryotic biology. Reconstruction of the milieu for cells has progressed from simple salt solutions supporting brief survival of tissues outside the body to synthesis of the complete set of structurally defined nutrients, hormones and elements of the extracellular matrix needed to reconstruct complex tissues from cells. The isolation of specific cell types in completely defined environments reveals the true complexity of the mammalian cell and its environment as a dynamic interactive physiological unit. Cell cultures provide the tool for detection and dissection of the mechanism of action of cellular regulators and the genes that determine individual aspects of cell behavior. The technology underpins advances in virology, somatic cell genetics, endocrinology, carcinogenesis, toxicology, pharmacology, hematopoiesis and immunology, and is becoming a major tool in developmental biology, complex tissue physiology and production of unique mammalian cell-derived biologicals in industry.
Collapse
Affiliation(s)
- W L McKeehan
- W. Alton Jones Cell Science Center, Inc., Lake Placid, New York 12946
| | | | | | | | | | | |
Collapse
|