1
|
Johnson AF, Bushman SD, LaRock DL, Díaz JM, McCormick JK, LaRock CN. Proinflammatory synergy between protease and superantigen streptococcal pyogenic exotoxins. Infect Immun 2025:e0040524. [PMID: 39878494 DOI: 10.1128/iai.00405-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/01/2025] [Indexed: 01/31/2025] Open
Abstract
Streptococcal pyogenic exotoxins (Spe proteins) secreted by Streptococcus pyogenes (group A Streptococcus, GAS) are responsible for scarlet fever and streptococcal toxic shock syndrome. Most Spes are superantigens that cause excessive inflammation by activating large numbers of T cells. However, Streptococcal pyogenic exotoxin B (SpeB) is an exception, which is pro-inflammatory through its protease activity. Prior work shows that SpeB has the potential to cleave bacterial proteins. If cleavage of superantigens results in their inactivation, this gives the possibility that these two classes of exotoxins work at cross-purposes. We examined SpeB cleavage of the 11 major GAS superantigens and found that lability was not specific to structure, conservation, or, when compared to orthologous superantigens from Staphylococcus aureus, species of origin. We further show that rather than strictly antagonizing superantigen activity through degradation, SpeB can synergistically enhance superantigen-induced inflammation. For SpeB-labile superantigens, such as SmeZ, this is limited due to degradation, but for protease-resistant superantigens like SpeA, activity remains synergistic even at high protease concentrations. These findings suggest two modes by which proteases like SpeB may post-translationally regulate superantigens: positively, as a force amplifier that cooperatively increases inflammation, and negatively, through degradation that could act as a rheostat-like mechanism to limit excessive immune activation. Both mechanisms may contribute to the pathogenesis of GAS and other superantigen-producing pathogens.IMPORTANCEStreptococcus pyogenes produces both superantigen and protease virulence factors to subvert host immunity. However, its major protease is highly promiscuous and would potentially limit superantigen activity through its degradation. We profile the sensitivity of the streptococcal superantigens to degradation by the protease SpeB, providing evidence that many are highly resistant. Furthermore, we show that these important toxins can have synergistic proinflammatory activity. This provides insight into diseases like scarlet fever and toxic shock syndrome caused by these toxins and suggests anti-inflammatories that may be therapeutically useful.
Collapse
Affiliation(s)
- Anders F Johnson
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Summer D Bushman
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juan Manuel Díaz
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Graduate Program, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Bassetti M, Giacobbe DR, Larosa B, Lamarina A, Vena A, Brucci G. The reemergence of Streptococcus pyogenes in skin and soft tissue infections: a review of epidemiology, pathogenesis, and management strategies. Curr Opin Infect Dis 2025:00001432-990000000-00211. [PMID: 39851242 DOI: 10.1097/qco.0000000000001095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW To discuss skin and soft tissue infections (SSTIs) caused by group A Streptococcus (GAS) by focusing on their pathogenesis, clinical manifestations, and management strategies. RECENT FINDINGS GAS is responsible for a wide range of infections from mild disease to severe fatal invasive infections with high mortality rates. Invasive GAS (iGAS) infections affect both young and old individuals and account for 1.8 million cases worldwide, with a mortality rate of up to 20%. In addition, conditions resulting by immune responses triggered by GAS also contribute to GAS-associated morbidity, and should not be overlooked. GAS has the ability to produce a wide set of virulence factors which contribute to its pathogenicity and its ability to colonize different body site and subsequently cause invasive infections. Management of SSTIs caused by GAS is challenging due to the risk of rapid progression and the risk of developing complications. SUMMARY During the COVID-19 pandemic, a relevant increase in iGAS infections has been registered. A constantly updated knowledge of the clinical presentation of iGAS infections is thus necessary to reduce their high mortality rates. Proper recognition and treatment of iGAS infections remain crucial.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Barbara Larosa
- Department of Health Sciences (DISSAL), University of Genoa
| | | | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Giorgia Brucci
- Department of Health Sciences (DISSAL), University of Genoa
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
3
|
Muna T, Rutbeek N, Horne J, Lao Y, Krokhin O, Prehna G. The phage protein paratox is a multifunctional metabolic regulator of Streptococcus. Nucleic Acids Res 2025; 53:gkae1200. [PMID: 39673798 PMCID: PMC11754733 DOI: 10.1093/nar/gkae1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a commensal bacteria and human pathogen. Central to GAS pathogenesis is the presence of prophage encoded virulence genes. The conserved phage gene for the protein paratox (Prx) is genetically linked to virulence genes, but the reason for this linkage is unknown. Prx inhibits GAS quorum sensing and natural competence by binding the transcription factor ComR. However, inhibiting ComR does not explain the virulence gene linkage. To address this, we took a mass spectrometry approach to search for other Prx interaction partners. The data demonstrates that Prx binds numerous DNA-binding proteins and transcriptional regulators. We show binding of Prx in vitro with the GAS protein Esub1 (SpyM3_0890) and the phage protein JM3 (SpyM3_1246). An Esub1:Prx complex X-ray crystal structure reveals that Esub1 and ComR possess a conserved Prx-binding helix. Computational modelling predicts that the Prx-binding helix is present in several, but not all, binding partners. Namely, JM3 lacks the Prx-binding helix. As Prx is conformationally dynamic, this suggests partner-dependent binding modes. Overall, Prx acts as a metabolic regulator of GAS to maintain the phage genome. As such, Prx maybe a direct contributor to the pathogenic conversion of GAS.
Collapse
Affiliation(s)
- Tasneem Hassan Muna
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Nicole R Rutbeek
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Julia Horne
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| | - Ying W Lao
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Avenue, Winnipeg MB, R3E 3P4, Canada
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, 45 Chancellors Circle, Buller Building, Winnipeg MB, R3T 2N2, Canada
| |
Collapse
|
4
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2024:e0015422. [PMID: 39584819 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Inada M, Iwamoto N, Nomoto H, Tsuzuki S, Takemoto N, Fuwa N, Moriya A, Ohmagari N. Characteristics of Streptococcal Toxic Shock Syndrome Caused by Different Beta-hemolytic Streptococci Species: A Single-center Retrospective Study. Open Forum Infect Dis 2024; 11:ofae486. [PMID: 39296344 PMCID: PMC11409875 DOI: 10.1093/ofid/ofae486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Background Streptococcal toxic shock syndrome (STSS) is a life-threatening condition caused by beta-hemolytic streptococci (BHS). Streptococcus pyogenes is the main causative agent of this disease; other BHS such as Streptococcus agalactiae or Streptococcus dysgalactiae could also cause STSS. However, the clinical characteristics of STSS caused by other types of BHS remain poorly understood. In this study, we evaluated the likelihood of STSS development in various streptococcal species. Methods We conducted a retrospective observational study using adult medical records of patients with invasive BHS in a tertiary care institution from 2002 to 2022 and classified them into STSS or non-STSS groups. Multivariable analysis of bacterial species adjusted for age and diabetes mellitus was conducted. S pyogenes cases were propensity-matched (1:4) to non-pyogenes BHS cases. Results A total of 43 STSS and 285 non-STSS cases were identified. S pyogenes, S agalactiae, and S dysgalactiae accounted for 17, 13, and 13 STSS cases, respectively. The crude mortality of STSS was approximately 35% in all groups. A multivariable analysis suggested that STSS was less frequent in S agalactiae and S dysgalactiae cases with odds ratio 0.24 (95% confidence interval [CI], 0.10-0.54; P < .001) and 0.23 (95% CI, .10-.55; P < .001), respectively. Propensity score matching showed that S pyogenes caused STSS more frequently than other BHS cases with an odds ratio of 3.28 (95% CI 1.21-8.77; P = .010). Conclusions This study described and compared the clinical characteristics of STSS caused by different BHS. We demonstrated that S pyogenes caused STSS more often than other BHS.
Collapse
Affiliation(s)
- Makoto Inada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hidetoshi Nomoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiko Takemoto
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Fuwa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ataru Moriya
- Laboratory Testing Department, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Tuffs SW, Dufresne K, Rishi A, Walton NR, McCormick JK. Novel insights into the immune response to bacterial T cell superantigens. Nat Rev Immunol 2024; 24:417-434. [PMID: 38225276 DOI: 10.1038/s41577-023-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Bacterial T cell superantigens (SAgs) are a family of microbial exotoxins that function to activate large numbers of T cells simultaneously. SAgs activate T cells by direct binding and crosslinking of the lateral regions of MHC class II molecules on antigen-presenting cells with T cell receptors (TCRs) on T cells; these interactions alter the normal TCR-peptide-MHC class II architecture to activate T cells in a manner that is independent of the antigen specificity of the TCR. SAgs have well-recognized, central roles in human diseases such as toxic shock syndrome and scarlet fever through their quantitative effects on the T cell response; in addition, numerous other consequences of SAg-driven T cell activation are now being recognized, including direct roles in the pathogenesis of endocarditis, bloodstream infections, skin disease and pharyngitis. In this Review, we summarize the expanding family of bacterial SAgs and how these toxins can engage highly diverse adaptive immune receptors. We highlight recent findings regarding how SAg-driven manipulation of the adaptive immune response may operate in multiple human diseases, as well as contributing to the biology and life cycle of SAg-producing bacterial pathogens.
Collapse
Affiliation(s)
- Stephen W Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karine Dufresne
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Nicholas R Walton
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
7
|
Kim TH. Toxic Shock Syndrome (TSS) Caused by Group A Streptococcus: Novel Insights Within the Context of a Familiar Clinical Syndrome. J Korean Med Sci 2024; 39:e154. [PMID: 38711318 PMCID: PMC11074494 DOI: 10.3346/jkms.2024.39.e154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
The emergence of invasive infections attributed to group A Streptococcus (GAS) infections, has resurged since the 1980s. The recent surge in reports of toxic shock syndrome due to GAS in Japan in 2024, while sensationalized in the media, does not represent a novel infectious disease per se, as its diagnosis, treatment, and prevention are already well-established. However, due to signs of increasing incidence since 2011, further research is needed. Health authorities in neighboring countries like The Republic of Korea should not only issue travel advisories but also establish meticulous surveillance systems and initiate epidemiological studies on the genotypic variations of this disease while awaiting various epidemiological research findings from Japan.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Ruland KL, Beneschott N, Creech CB, Umfress A. Amniotic membrane transplantation as part of a multimodal management approach to Streptococcus pyogenes necrotizing keratoconjunctivitis. J AAPOS 2024:103900. [PMID: 38537895 DOI: 10.1016/j.jaapos.2024.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/28/2023] [Accepted: 02/11/2024] [Indexed: 04/26/2024]
Abstract
Streptococcus pyogenes (group A beta-hemolytic Streptococcus, GABHS) causes a range of human infections, including necrotizing fasciitis and toxic shock syndrome, because it produces exotoxins that damage host cells, facilitate immune evasion, and serve as T cell superantigens. GABHS conjunctivitis is rare. We report a case of membranous conjunctivitis in a 3-year-old child who was treated with a combination of targeted bactericidal antimicrobials, toxin-synthesis inhibition, and amniotic membrane transplantation.
Collapse
Affiliation(s)
- Kelly L Ruland
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Natalya Beneschott
- Vanderbilt Vaccine Research Program, Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Buddy Creech
- Vanderbilt Vaccine Research Program, Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Allison Umfress
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
10
|
Shannon BA, Hurst JR, Flannagan RS, Craig HC, Rishi A, Kasper KJ, Tuffs SW, Heinrichs DE, McCormick JK. Streptolysin S is required for Streptococcus pyogenes nasopharyngeal and skin infection in HLA-transgenic mice. PLoS Pathog 2024; 20:e1012072. [PMID: 38452154 PMCID: PMC10950238 DOI: 10.1371/journal.ppat.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.
Collapse
Affiliation(s)
- Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Jacklyn R. Hurst
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Ronald S. Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Heather C. Craig
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katherine J. Kasper
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
11
|
Wang J, Ma C, Li M, Gao X, Wu H, Dong W, Wei L. Streptococcus pyogenes: Pathogenesis and the Current Status of Vaccines. Vaccines (Basel) 2023; 11:1510. [PMID: 37766186 PMCID: PMC10534548 DOI: 10.3390/vaccines11091510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive coccal bacterium, poses a significant global disease burden, especially in low- and middle-income countries. Its manifestations can range from pharyngitis and skin infection to severe and aggressive diseases, such as necrotizing fasciitis and streptococcal toxic shock syndrome. At present, although GAS is still sensitive to penicillin, there are cases of treatment failure for GAS pharyngitis, and antibiotic therapy does not universally prevent subsequent disease. In addition to strengthening global molecular epidemiological surveillance and monitoring of antibiotic resistance, developing a safe and effective licensed vaccine against GAS would be the most effective way to broadly address GAS-related diseases. Over the past decades, the development of GAS vaccines has been stalled, mainly because of the wide genetic heterogeneity of GAS and the diverse autoimmune responses to GAS. With outbreaks of scarlet fever in various countries in recent years, accelerating the development of a safe and effective vaccine remains a high priority. When developing a GAS vaccine, many factors need to be considered, including the selection of antigen epitopes, avoidance of self-response, and vaccine coverage. Given the challenges in GAS vaccine development, this review describes the important virulence factors that induce disease by GAS infection and how this has influenced the progression of vaccine development efforts, focusing on several candidate vaccines that are further along in development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lin Wei
- Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
12
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
13
|
Johnson AF, Sands JS, Trivedi KM, Russell R, LaRock DL, LaRock CN. Constitutive secretion of pro-IL-18 allows keratinocytes to initiate inflammation during bacterial infection. PLoS Pathog 2023; 19:e1011321. [PMID: 37068092 PMCID: PMC10138833 DOI: 10.1371/journal.ppat.1011321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 03/27/2023] [Indexed: 04/18/2023] Open
Abstract
Group A Streptococcus (GAS, Streptococcus pyogenes) is a professional human pathogen that commonly infects the skin. Keratinocytes are one of the first cells to contact GAS, and by inducing inflammation, they can initiate the earliest immune responses to pathogen invasion. Here, we characterized the proinflammatory cytokine repertoire produced by primary human keratinocytes and surrogate cell lines commonly used in vitro. Infection induces several cytokines and chemokines, but keratinocytes constitutively secrete IL-18 in a form that is inert (pro-IL-18) and lacks proinflammatory activity. Canonically, IL-18 activation and secretion are coupled through a single proteolytic event that is regulated intracellularly by the inflammasome protease caspase-1 in myeloid cells. The pool of extracellular pro-IL-18 generated by keratinocytes is poised to sense extracellular proteases. It is directly processed into a mature active form by SpeB, a secreted GAS protease that is a critical virulent factor during skin infection. This mechanism contributes to the proinflammatory response against GAS, resulting in T cell activation and the secretion of IFN-γ. Under these conditions, isolates of several other major bacterial pathogens and microbiota of the skin were found to not have significant IL-18-maturing ability. These results suggest keratinocyte-secreted IL-18 is a sentinel that sounds an early alarm that is highly sensitive to GAS, yet tolerant to non-invasive members of the microbiota.
Collapse
Affiliation(s)
- Anders F Johnson
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Jenna S Sands
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Keya M Trivedi
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Raedeen Russell
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Doris L LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Christopher N LaRock
- Department of Microbiology and Immunology and Department of Medicine, Emory School of Medicine, Atlanta, Georgia, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory School of Medicine, Atlanta, Georgia, United States of America
- Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Vilhonen J, Koivuviita N, Vahlberg T, Vuopio J, Oksi J. Acute kidney injury in group A streptococcal bacteraemia: incidence, outcome and predictive value of C-reactive protein. Infect Dis (Lond) 2022; 54:852-860. [PMID: 36047611 DOI: 10.1080/23744235.2022.2114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND A ubiquitous human pathogen, Streptococcus pyogenes (Group A Streptococcus, GAS) causes infections from mild pharyngitis to severe septic infections. Acute kidney injury (AKI) is a condition of prompt decline of renal function. The aim of the present study was to report the incidence and outcome of AKI in GAS bacteraemia and to evaluate the diagnostic value of serum C-reactive protein as an indicator of AKI. METHODS All adult patients with GAS bacteraemia treated at Turku University Hospital from 2007 to 2018 were identified and their patient records were scrutinised. RESULTS Of 195 included patients, 38 (19.5%) had AKI stage 1, 20 (10.3%) AKI stage 2 and 26 (13.3%) AKI stage 3 and 111 (56.9%) did not have AKI. The adjusted seven-day mortality was significantly higher in AKI stages 2 and 3 compared to the non-AKI group (15% and 19% vs. 3.6%; p = .046 and .006, respectively). Of the survivors, 95.8% met the criteria of renal recovery at discharge. The higher the AKI stage, the higher was the mean serum CRP level on admission. The optimal cut-off for CRP to identify patients with AKI stage 2 or 3 was ≥244 mg/l (sensitivity 82.6% and specificity 75.8%). CONCLUSIONS AKI is common in patients with GAS bacteraemia and the severity of AKI correlates with the CRP level on admission. The mortality of patients with GAS bacteraemia and AKI is significantly higher than of patients without AKI. Most survivors, however, show renal recovery.Key MessageAKI is common in group A Streptococcal bacteraemia and increases mortality compared to bacteraemia alone. However, renal recovery is also common. A high CRP level on admission correlates significantly positively with the degree of severity of AKI.
Collapse
Affiliation(s)
- Johanna Vilhonen
- Department of Infectious Diseases, Turku University Hospital, Turku, Finland.,Doctoral Programme in Clinical Research (DPCR), University of Turku, Turku, Finland
| | - Niina Koivuviita
- Kidney Centre, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| | - Tero Vahlberg
- Biostatistics, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jaana Vuopio
- Institute of Biomedicine, University of Turku, Turku, Finland.,Clinical Microbiology, Turku University Hospital, Turku, Finland.,Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Jarmo Oksi
- Department of Infectious Diseases, Turku University Hospital, Turku, Finland.,University of Turku, Turku, Finland
| |
Collapse
|
15
|
Kelly EJ, Oliver MA, Carney BC, Shupp JW. Infection and Burn Injury. EUROPEAN BURN JOURNAL 2022; 3:165-179. [PMID: 39604183 PMCID: PMC11575387 DOI: 10.3390/ebj3010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2024]
Abstract
Burn injury is debilitating and among one of the most frequently occurring traumas. Critical care improvements have allowed for increasingly positive outcomes. However, infection, whether it be localized to the site of the wound or systemic in nature, remains a serious cause of morbidity and mortality. Immune suppression predisposes the burn population to the development of invasive infections; and this along with the possibility of inhalation injury puts them at a significant risk for mortality. Emerging multi-drug-resistant pathogens, including Staphylococcus aureus, Enterococcus, Pseudomonas, Acinetobacter, Enterobacter, and yeast spp., continue to complicate clinical care measures, requiring innovative therapies and antimicrobial treatment. Close monitoring of antimicrobial regimens, strict decontamination procedures, early burn eschar removal, adequate wound closure, proper nutritional maintenance, and management of shock and resuscitation all play a significant role in mitigating infection. Novel antimicrobial therapies such as ultraviolet light, cold plasma and topical antiseptics must continue to evolve in order to lower the burden of infection in burn.
Collapse
Affiliation(s)
- Edward J. Kelly
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Mary A. Oliver
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
| | - Bonnie C. Carney
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| | - Jeffrey W. Shupp
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA; (M.A.O.); (B.C.C.); (J.W.S.)
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC 20010, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC 20057, USA
| |
Collapse
|
16
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
17
|
Johnson AF, LaRock CN. Antibiotic Treatment, Mechanisms for Failure, and Adjunctive Therapies for Infections by Group A Streptococcus. Front Microbiol 2021; 12:760255. [PMID: 34803985 PMCID: PMC8601407 DOI: 10.3389/fmicb.2021.760255] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Group A Streptococcus (GAS; Streptococcus pyogenes) is a nearly ubiquitous human pathogen responsible for a significant global disease burden. No vaccine exists, so antibiotics are essential for effective treatment. Despite a lower incidence of antimicrobial resistance than many pathogens, GAS is still a top 10 cause of death due to infections worldwide. The morbidity and mortality are primarily a consequence of the immune sequelae and invasive infections that are difficult to treat with antibiotics. GAS has remained susceptible to penicillin and other β-lactams, despite their widespread use for 80 years. However, the failure of treatment for invasive infections with penicillin has been consistently reported since the introduction of antibiotics, and strains with reduced susceptibility to β-lactams have emerged. Furthermore, isolates responsible for outbreaks of severe infections are increasingly resistant to other antibiotics of choice, such as clindamycin and macrolides. This review focuses on the challenges in the treatment of GAS infection, the mechanisms that contribute to antibiotic failure, and adjunctive therapeutics. Further understanding of these processes will be necessary for improving the treatment of high-risk GAS infections and surveillance for non-susceptible or resistant isolates. These insights will also help guide treatments against other leading pathogens for which conventional antibiotic strategies are increasingly failing.
Collapse
Affiliation(s)
- Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Emory Antibiotic Resistance Center, Atlanta, GA, United States
| |
Collapse
|
18
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
20
|
Gajdács M, Ábrók M, Lázár A, Burián K. Beta-Haemolytic Group A, C and G Streptococcal Infections in Southern Hungary: A 10-Year Population-Based Retrospective Survey (2008-2017) and a Review of the Literature. Infect Drug Resist 2021; 13:4739-4749. [PMID: 33408489 PMCID: PMC7781025 DOI: 10.2147/idr.s279157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction Pyogenic β-hemolytic streptococci (including Group A, C and G Streptococcus) are some of the most important Gram-positive bacterial pathogens in human medicine. Although effective therapy is available, invasive streptococcal infections are associated with a significant disease burden. Methods In this retrospective study, the epidemiological characteristics of invasive Group A (iGAS) and Group C and G (iGCGS) streptococci, along with tonsillo-pharyngitis-causing pGAS and pGCGS infections, were assessed in Southern Hungary. A total of 1554 cases of streptococcal tonsillo-pharyngitis infections (26.5–44.1/100,000 persons, pGAS: 95.5%; n=1484) and 1104 cases of invasive streptococcal infections were detected (12.5–31.4/100,000 persons, iGAS: 77.9%; n=861). Results The average age of the affected patients in the various groups were the following: pGAS: 13.2±13.1 years, pGCGS: 21.0±15.0 years (p=0.039), iGAS: 49.1±12.8 years, iGCGS: 58.7±18.5 years (p>0.05). iGAS isolates originated from abscesses (47.1%), blood culture samples (24.1%), surgical samples (16.7%), biopsies (4.6%), pleural fluid (3.5%), pus (2.0%), synovial fluid (1.3%) and cerebrospinal fluid samples (0.7%). In contrast, iGCGS isolates mainly originated from blood culture samples (53.8%), abscesses (22.9%), surgical samples (12.3%), synovial fluid (5.1%), pleural fluid (3.7%), pus (1.8%) and cerebrospinal fluid samples (0.4%). All respective isolates were susceptible to benzyl-penicillin; overall resistance levels for erythromycin (10.5% for GAS, 21.4% for GCGS) and clindamycin (9.2% for GAS, 17.2% for GCGS) were significantly higher in GCGS isolates, while resistance levels for norfloxacin were higher in GAS isolates (13.5% for GAS, 6.9% for GCGS). Conclusion The rates of resistance to macrolides and clindamycin are a cause for concern (especially among GCGS isolates); however, resistance levels are still relatively low, compared to Southern European countries.
Collapse
Affiliation(s)
- Márió Gajdács
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged 6720, Hungary
| | - Marianna Ábrók
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Andrea Lázár
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.,Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| |
Collapse
|
21
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
22
|
Li H, Zhou L, Zhao Y, Ma L, Liu X, Hu J. Molecular epidemiology and antimicrobial resistance of group a streptococcus recovered from patients in Beijing, China. BMC Infect Dis 2020; 20:507. [PMID: 32660436 PMCID: PMC7359455 DOI: 10.1186/s12879-020-05241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children's Hospital in Beijing. METHODS From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children's Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). RESULTS A total of 297 GAS isolates were collected. The susceptibility of the isolates to penicillin, ceftriaxone, and levofloxacin was 100%. The resistance rate to erythromycin and clindamycin was 98.3 and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. CONCLUSIONS The prevalent strain of GAS isolates in Beijing has a high resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. Erythromycin resistance was predominantly mediated by ermB. The common emm types were emm12 and emm1. There was a correlation between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yong Zhao
- The Sixth Medical Centre of PLA, General Hospital, Beijing, 100048, China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoyan Liu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Hu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
23
|
Santos VL, Silva LG, Martini CL, Anjos IHV, Maia MM, Genteluci GL, Sant'Anna V, Ferreira AMA, Couceiro JNSS, Figueiredo AMS, Ferreira-Carvalho BT. Low lineage diversity and increased virulence of group C Streptococcus dysgalactiae subsp. equisimilis. J Med Microbiol 2020; 69:576-586. [PMID: 32125264 DOI: 10.1099/jmm.0.001165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. In some species, the population structure of pathogenic bacteria is clonal. However, the mechanisms that determine the predominance and persistence of specific bacterial lineages of group C Streptococcus remain poorly understood. In Brazil, a previous study revealed the predominance of two main lineages of Streptococcus dysgalactiae subsp. equisimilis (SDSE).Aim. The aim of this study was to assess the virulence and fitness advantages that might explain the predominance of these SDSE lineages for a long period of time.Methodology. emm typing was determined by DNA sequencing. Adhesion and invasion tests were performed using human bronchial epithelial cells (16HBE14o-). Biofilm formation was tested on glass surfaces and the presence of virulence genes was assessed by PCR. Additionally, virulence was studied using Caenorhabditis elegans models and competitive fitness was analysed in murine models.Results. The predominant lineages A and B were mostly typed as emm stC839 and stC6979, respectively. Notably, these lineages exhibited a superior ability to adhere and invade airway cells. Furthermore, the dominant lineages were more prone to induce aversive olfactory learning and more likely to kill C. elegans. In the competitive fitness assays, they also showed increased adaptability. Consistent with the increased virulence observed in the ex vivo and in vivo models, the predominant lineages A and B showed a higher number of virulence-associated genes and a superior ability to accumulate biofilm.Conclusion. These results suggest strongly that this predominance did not occur randomly but rather was due to adaptive mechanisms that culminated in increased colonization and other bacterial properties that might confer increased bacteria-host adaptability to cause disease.
Collapse
Affiliation(s)
- Victor Lima Santos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ligia Guedes Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Caroline Lopes Martini
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Isis Hazelman V Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Mariana Masello Maia
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Gabrielle L Genteluci
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Viviane Sant'Anna
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Ana Maria A Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - José Nelson S S Couceiro
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brazil
| | | |
Collapse
|
24
|
Changes in emm types and superantigen gene content of Streptococcus pyogenes causing invasive infections in Portugal. Sci Rep 2019; 9:18051. [PMID: 31792274 PMCID: PMC6888849 DOI: 10.1038/s41598-019-54409-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
Fluctuations in the clonal composition of Group A Streptococcus (GAS) have been associated with the emergence of successful lineages and with upsurges of invasive infections (iGAS). This study aimed at identifying changes in the clones causing iGAS in Portugal. Antimicrobial susceptibility testing, emm typing and superantigen (SAg) gene profiling were performed for 381 iGAS isolates from 2010-2015. Macrolide resistance decreased to 4%, accompanied by the disappearance of the M phenotype and an increase of the iMLSB phenotype. The dominant emm types were: emm1 (28%), emm89 (11%), emm3 (9%), emm12 (8%), and emm6 (7%). There were no significant changes in the prevalence of individual emm types, emm clusters, or SAg profiles when comparing to 2006-2009, although an overall increasing trend was recorded during 2000-2015 for emm1, emm75, and emm87. Short-term increases in the prevalence of emm3, emm6, and emm75 may have been driven by concomitant SAg profile changes observed within these emm types, or reflect the emergence of novel genomic variants of the same emm types carrying different SAgs.
Collapse
|