1
|
Nhim S, Tintó-Font E, Casas-Vila N, Michel-Todó L, Cortés A. Heterochromatin dynamics during the initial stages of sexual development in Plasmodium falciparum. Sci Rep 2024; 14:23180. [PMID: 39369041 PMCID: PMC11455859 DOI: 10.1038/s41598-024-73981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Asexual replication of Plasmodium falciparum in the human blood results in exponential parasite growth and causes all clinical symptoms of malaria. However, at each round of the replicative cycle, some parasites convert into sexual precursors called gametocytes, which develop through different stages until they become infective to mosquito vectors. The genome-wide distribution of heterochromatin, a type of chromatin generally refractory to gene expression, is identical at all asexual blood stages, but is altered in stage II/III and more mature gametocytes. However, it is not known if these changes occur concomitantly with sexual conversion or at a later time during gametocyte development. Using a transgenic line in which massive sexual conversion can be conditionally induced, we show that the genome-wide distribution of heterochromatin at the initial stages of sexual development (i.e., sexual rings and stage I gametocytes) is almost identical to asexual blood stages, and major changes do not occur until stage II/III. However, we found that at loci with heterochromatin alterations, transcriptional changes associated with sexual development typically precede, rather than follow, changes in heterochromatin occupancy.
Collapse
Affiliation(s)
- Sandra Nhim
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Elisabet Tintó-Font
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Casas-Vila
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lucas Michel-Todó
- ISGlobal, Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alfred Cortés
- ISGlobal, Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
2
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Dogga SK, Rop JC, Cudini J, Farr E, Dara A, Ouologuem D, Djimdé AA, Talman AM, Lawniczak MKN. A single cell atlas of sexual development in Plasmodium falciparum. Science 2024; 384:eadj4088. [PMID: 38696552 DOI: 10.1126/science.adj4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.
Collapse
Affiliation(s)
| | - Jesse C Rop
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Elias Farr
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute for Computational Biomedicine, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Antoine Dara
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Dinkorma Ouologuem
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Arthur M Talman
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
4
|
Yang B, Cheng Z, Luo L, Cheng K, Gan S, Shi Y, Liu C, Wang D. Comparative analysis of codon usage patterns of Plasmodium helical interspersed subtelomeric (PHIST) proteins. Front Microbiol 2023; 14:1320060. [PMID: 38156001 PMCID: PMC10752978 DOI: 10.3389/fmicb.2023.1320060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Background Plasmodium falciparum is a protozoan parasite that causes the most severe form of malaria in humans worldwide, which is predominantly found in sub-Saharan Africa, where it is responsible for the majority of malaria-related deaths. Plasmodium helical interspersed subtelomeric (PHIST) proteins are a family of proteins, with a conserved PHIST domain, which are typically located at the subtelomeric regions of the Plasmodium falciparum chromosomes and play crucial roles in the interaction between the parasite and its human host, such as cytoadherence, immune evasion, and host cell remodeling. However, the specific utilization of synonymous codons by PHIST proteins in Plasmodium falciparum is still unknown. Methods Codon usage bias (CUB) refers to the unequal usage of synonymous codons during translation, resulting in over- or underrepresentation of certain nucleotide patterns. This imbalance in CUB can impact various cellular processes, including protein expression levels and genetic variation. To investigate this, the CUB of 88 PHIST protein coding sequences (CDSs) from 5 subgroups were analyzed in this study. Results The results showed that both codon base composition and relative synonymous codon usage (RSCU) analysis identified a higher occurrence of AT-ended codons (AGA and UUA) in PHIST proteins of Plasmodium falciparum. The average effective number of codons (ENC) for these PHIST proteins was 36.69, indicating a weak codon preference among them, as it was greater than 35. Additionally, the correlation analysis among codon base composition (GC1, GC2, GC3, GCs), codon adaptation index (CAI), codon bias index (CBI), frequency of optimal codons (FOP), ENC, general average hydropathicity (GRAVY), aromaticity (AROMO), length of synonymous codons (L_sym), and length of amino acids (L_aa) revealed the influence of base composition and codon usage indices on codon usage bias, with GC1 having a significant impact in this study. Furthermore, the neutrality plot analysis, PR2-bias plot analysis, and ENC-GC3 plot analysis provided additional evidence that natural selection plays a crucial role in determining codon bias in PHIST proteins. Conclusion In conclusion, this study has enhanced our understanding of the characteristics of codon usage and genetic evolution in PHIST proteins, thereby providing data foundation for further research on antimalarial drugs or vaccines.
Collapse
Affiliation(s)
- Baoling Yang
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Ziwen Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Like Luo
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Kuo Cheng
- College of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Shengqi Gan
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yuyi Shi
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Che Liu
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Dawei Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
5
|
Bekić V, Kilian N. Novel secretory organelles of parasite origin - at the center of host-parasite interaction. Bioessays 2023; 45:e2200241. [PMID: 37518819 DOI: 10.1002/bies.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Reorganization of cell organelle-deprived host red blood cells by the apicomplexan malaria parasite Plasmodium falciparum enables their cytoadherence to endothelial cells that line the microvasculature. This increases the time red blood cells infected with mature developmental stages remain within selected organs such as the brain to avoid the spleen passage, which can lead to severe complications and cumulate in patient death. The Maurer's clefts are a novel secretory organelle of parasite origin established by the parasite in the cytoplasm of the host red blood cell in order to facilitate the establishment of cytoadherence by conducting the trafficking of immunovariant adhesins to the host cell surface. Another important function of the organelle is the sorting of other proteins the parasite traffics into its host cell. Although the organelle is of high importance for the pathology of malaria, additional putative functions, structure, and genesis remain shrouded in mystery more than a century after its discovery. In this review, we highlight our current knowledge about the Maurer's clefts and other novel secretory organelles established within the host cell cytoplasm by human-pathogenic malaria parasites and other parasites that reside within human red blood cells.
Collapse
Affiliation(s)
- Viktor Bekić
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nicole Kilian
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
6
|
Real E, Nardella F, Scherf A, Mancio-Silva L. Repurposing of Plasmodium falciparum var genes beyond the blood stage. Curr Opin Microbiol 2022; 70:102207. [PMID: 36183663 DOI: 10.1016/j.mib.2022.102207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/03/2022] [Indexed: 01/25/2023]
Abstract
A commonly observed survival strategy in protozoan parasites is the sequential expression of clonally variant-surface antigens to avoid elimination by the host's immune response. In malaria-causing P. falciparum, the immunovariant erythrocyte-membrane protein-1 (PfEMP1) adhesin family, encoded by var genes, is responsible for both antigenic variation and cytoadherence of infected erythrocytes to the microvasculature. Until recently, the biological function of these variant genes was believed to be restricted to intraerythrocytic developmental stages. With the advent of new technologies, var gene expression has been confirmed in transmission and pre-erythrocytic stages. Here, we discuss how repurposing of var gene expression beyond chronic blood-stage infection may be critical for successful transmission.
Collapse
Affiliation(s)
- Eliana Real
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Flore Nardella
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Artur Scherf
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| | - Liliana Mancio-Silva
- Institut Pasteur, Université Paris Cité, Inserm U1201, CNRS EMR9195, Unité de Biologie des Interactions Hôte-Parasite, 25 Rue du Dr Roux, F-75015 Paris, France.
| |
Collapse
|
7
|
van der Watt ME, Reader J, Birkholtz LM. Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination. Front Cell Infect Microbiol 2022; 12:901971. [PMID: 35755845 PMCID: PMC9218253 DOI: 10.3389/fcimb.2022.901971] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022] Open
Abstract
Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.
Collapse
Affiliation(s)
- Mariëtte E van der Watt
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| | - Janette Reader
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lyn-Marié Birkholtz
- Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
8
|
Giorgalli M, Cunningham DA, Broncel M, Sait A, Harrison TE, Hosking C, Vandomme A, Amis SI, Antonello A, Sullivan L, Uwadiae F, Torella L, Higgins MK, Langhorne J. Differential Trafficking and Expression of PIR Proteins in Acute and Chronic Plasmodium Infections. Front Cell Infect Microbiol 2022; 12:877253. [PMID: 35782145 PMCID: PMC9245118 DOI: 10.3389/fcimb.2022.877253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium multigene families are thought to play important roles in the pathogenesis of malaria. Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium species. However, their expression pattern and localisation remain to be elucidated. Understanding protein subcellular localisation is fundamental to reveal the functional importance and cell-cell interactions of the PIR proteins. Here, we use the rodent malaria parasite, Plasmodium chabaudi chabaudi, as a model to investigate the localisation pattern of this gene family. We found that most PIR proteins are co-expressed in clusters during acute and chronic infection; members of the S7 clade are predominantly expressed during the acute-phase, whereas members of the L1 clade dominate the chronic-phase of infection. Using peptide antisera specific for S7 or L1 PIRS, we show that these PIRs have different localisations within the infected red blood cells. S7 PIRs are exported into the infected red blood cell cytoplasm where they are co-localised with parasite-induced host cell modifications termed Maurer’s clefts, whereas L1 PIRs are localised on or close to the parasitophorous vacuolar membrane. This localisation pattern changes following mosquito transmission and during progression from acute- to chronic-phase of infection. The presence of PIRs in Maurer’s clefts, as seen for Plasmodium falciparum RIFIN and STEVOR proteins, might suggest trafficking of the PIRs on the surface of the infected erythrocytes. However, neither S7 nor L1 PIR proteins detected by the peptide antisera are localised on the surface of infected red blood cells, suggesting that they are unlikely to be targets of surface variant-specific antibodies or to be directly involved in adhesion of infected red blood cells to host cells, as described for Plasmodium falciparum VAR proteins. The differences in subcellular localisation of the two major clades of Plasmodium chabaudi PIRs across the blood cycle, and the apparent lack of expression on the red cell surface strongly suggest that the function(s) of this gene family may differ from those of other multigene families of Plasmodium, such as the var genes of Plasmodium falciparum.
Collapse
Affiliation(s)
- Maria Giorgalli
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Malgorzata Broncel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Aaron Sait
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Thomas E. Harrison
- Laboratory of Molecular Parasitology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Caroline Hosking
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Audrey Vandomme
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah I. Amis
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ana Antonello
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lauren Sullivan
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Faith Uwadiae
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laura Torella
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew K. Higgins
- Laboratory of Molecular Parasitology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Jean Langhorne,
| |
Collapse
|
9
|
Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat Commun 2022; 13:3004. [PMID: 35637187 PMCID: PMC9151791 DOI: 10.1038/s41467-022-30605-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Genetically identical cells are known to exhibit differential phenotypes in the same environmental conditions. These phenotypic variants are linked to transcriptional stochasticity and have been shown to contribute towards adaptive flexibility of a wide range of unicellular organisms. Here, we investigate transcriptional heterogeneity and stochastic gene expression in Plasmodium falciparum by performing the quasilinear multiple annealing and looping based amplification cycles (MALBAC) based amplification and single cell RNA sequencing of blood stage schizonts. Our data reveals significant transcriptional variations in the schizont stage with a distinct group of highly variable invasion gene transcripts being identified. Moreover, the data reflects several diversification processes including putative developmental “checkpoint”; transcriptomically distinct parasite sub-populations and transcriptional switches in variable gene families (var, rifin, phist). Most of these features of transcriptional variability are preserved in isogenic parasite cell populations (albeit with a lesser amplitude) suggesting a role of epigenetic factors in cell-to-cell transcriptional variations in human malaria parasites. Lastly, we apply quantitative RT-PCR and RNA-FISH approach and confirm stochastic expression of key invasion genes, such as, msp1, msp3, msp7, eba181 and ama1 which represent prime candidates for invasion-blocking vaccines. Genetically identical cells can be phenotypically diverse to allow adaptive flexibility in a given environment. This phenotypic diversity is driven by epigenetic and transcriptional variability. Here, Tripathi et al. perform scRNA-seq of isogenic and non-isogenic Plasmodium falciparum schizont populations to explore transcriptional heterogeneity and stochastic gene expression during the course of development.
Collapse
|
10
|
Rawat M, Kanyal A, Choubey D, Deshmukh B, Malhotra R, Mamatharani DV, Rao AG, Karmodiya K. Identification of Co-Existing Mutations and Gene Expression Trends Associated With K13-Mediated Artemisinin Resistance in Plasmodium falciparum. Front Genet 2022; 13:824483. [PMID: 35464842 PMCID: PMC9019836 DOI: 10.3389/fgene.2022.824483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum infects millions and kills thousands of people annually the world over. With the emergence of artemisinin and/or multidrug resistant strains of the pathogen, it has become even more challenging to control and eliminate the disease. Multiomics studies of the parasite have started to provide a glimpse into the confounding genetics and mechanisms of artemisinin resistance and identified mutations in Kelch13 (K13) as a molecular marker of resistance. Over the years, thousands of genomes and transcriptomes of artemisinin-resistant/sensitive isolates have been documented, supplementing the search for new genes/pathways to target artemisinin-resistant isolates. This meta-analysis seeks to recap the genetic landscape and the transcriptional deregulation that demarcate artemisinin resistance in the field. To explore the genetic territory of artemisinin resistance, we use genomic single-nucleotide polymorphism (SNP) datasets from 2,517 isolates from 15 countries from the MalariaGEN Network (The Pf3K project, pilot data release 4, 2015) to dissect the prevalence, geographical distribution, and co-existing patterns of genetic markers associated with/enabling artemisinin resistance. We have identified several mutations which co-exist with the established markers of artemisinin resistance. Interestingly, K13-resistant parasites harbor α-ß hydrolase and putative HECT domain-containing protein genes with the maximum number of SNPs. We have also explored the multiple, publicly available transcriptomic datasets to identify genes from key biological pathways whose consistent deregulation may be contributing to the biology of resistant parasites. Surprisingly, glycolytic and pentose phosphate pathways were consistently downregulated in artemisinin-resistant parasites. Thus, this meta-analysis highlights the genetic and transcriptomic features of resistant parasites to propel further exploratory studies in the community to tackle artemisinin resistance.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Deepak Choubey
- Life Science Research Unit, Persistent Systems Limited, Pune, India
| | - Bhagyashree Deshmukh
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rashim Malhotra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - D V Mamatharani
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Anjani Gopal Rao
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
11
|
Zhang H, Guo J, Li H, Guan Y. Machine learning for artemisinin resistance in malaria treatment across in vivo-in vitro platforms. iScience 2022; 25:103910. [PMID: 35243261 PMCID: PMC8873607 DOI: 10.1016/j.isci.2022.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Drug resistance has been rapidly evolving with regard to the first-line malaria treatment, artemisinin-based combination therapies. It has been an open question whether predictive models for this drug resistance status can be generalized across in vivo-in vitro transcriptomic measurements. In this study, we present a model that predicts artemisinin treatment resistance developed with transcriptomic information of Plasmodium falciparum. We demonstrated the robustness of this model across in vivo clearance rate and in vitro IC50 measurement and based on different microarray and data processing modalities. The validity of the algorithm is further supported by its first placement in the DREAM Malaria challenge. We identified transcription biomarkers to artemisinin treatment resistance that can predict artemisinin resistance and are conserved in their expression modules. This is a critical step in the research of malaria treatment, as it demonstrated the potential of a platform-robust, personalized model for artemisinin resistance using molecular biomarkers.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jiantao Guo
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Shang X, Wang C, Shen L, Sheng F, He X, Wang F, Fan Y, He X, Jiang M. PfAP2-EXP2, an Essential Transcription Factor for the Intraerythrocytic Development of Plasmodium falciparum. Front Cell Dev Biol 2022; 9:782293. [PMID: 35083215 PMCID: PMC8785209 DOI: 10.3389/fcell.2021.782293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum undergoes a series of asexual replications in human erythrocytes after infection, which are effective targets for combatting malaria. Here, we report roles of an ApiAP2 transcription factor PfAP2-EXP2 (PF3D7_0611200) in the intraerythrocytic developmental cycle of P. falciparum. PfAP2-EXP2 conditional knockdown resulted in an asexual growth defect but without an appreciable effect on parasite morphology. Further ChIP-seq analysis revealed that PfAP2-EXP2 targeted genes related to virulence and interaction between erythrocytes and parasites. Especially, PfAP2-EXP2 regulation of euchromatic genes does not depend on recognizing specific DNA sequences, while a CCCTAAACCC motif is found in its heterochromatic binding sites. Combined with transcriptome profiling, we suggest that PfAP2-EXP2 is participated in the intraerythrocytic development by affecting the expression of genes related to cell remodeling at the schizont stage. In summary, this study explores an ApiAP2 member plays an important role for the P. falciparum blood-stage replication, which suggests a new perspective for malaria elimination.
Collapse
Affiliation(s)
- Xiaomin Shang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Parasitology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Changhong Wang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Sheng
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui He
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Fei Wang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanting Fan
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoqin He
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mei Jiang
- Department of Medical Genetics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Parreira KS, Scarpelli P, Rezende Lima W, Garcia RS. Contribution of Transcriptome to Elucidate the Biology of Plasmodium spp. Curr Top Med Chem 2022; 22:169-187. [PMID: 35021974 DOI: 10.2174/1568026622666220111140803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 11/22/2022]
Abstract
In the present review, we discuss some of the new technologies that have been applied to elucidate how Plasmodium spp escape from the immune system and subvert the host physiology to orchestrate the regulation of its biological pathways. Our manuscript describes how techniques such as microarray approaches, RNA-Seq and single-cell RNA sequencing have contributed to the discovery of transcripts and changed the concept of gene expression regulation in closely related malaria parasite species. Moreover, the text highlights the contributions of high-throughput RNA sequencing for the current knowledge of malaria parasite biology, physiology, vaccine target and the revelation of new players in parasite signaling.
Collapse
Affiliation(s)
| | - Pedro Scarpelli
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Wânia Rezende Lima
- Departamento de Medicina, Instituto de Biotecnologia-Universidade Federal de Catalão
| | - R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
14
|
Prata IO, Cubillos EFG, Krüger A, Barbosa D, Martins J, Setubal JC, Wunderlich G. Plasmodium falciparum Acetyl-CoA Synthetase Is Essential for Parasite Intraerythrocytic Development and Chromatin Modification. ACS Infect Dis 2021; 7:3224-3240. [PMID: 34766750 DOI: 10.1021/acsinfecdis.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malaria parasite Plasmodium falciparum possesses a unique Acetyl-CoA Synthetase (PfACS), which provides acetyl moieties for different metabolic and regulatory cellular pathways. We characterized PfACS and studied its role focusing on epigenetic modifications using the var gene family as reporter genes. For this, mutant lines to modulate plasmodial ACS expression by degron-mediated protein degradation and ribozyme-induced transcript decay were created. Additionally, an inhibitor of the human Acetyl-CoA Synthetase 2 was tested for its effectiveness in interfering with PfACS. The knockdown of PfACS or its inhibition resulted in impaired parasite growth. Decreased levels of PfACS also led to differential histone acetylation patterns, altered variant gene expression, and concomitantly decreased cytoadherence of infected red blood cells containing knocked-down parasites. Further, ChIP analysis revealed the presence of PfACS in many loci in ring stage parasites, underscoring its involvement in the regulation of chromatin. Due to its central function in the plasmodial metabolism and significant differences to human ACS, PfACS is an interesting target for drug development.
Collapse
Affiliation(s)
- Isadora Oliveira Prata
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Eliana Fernanda Galindo Cubillos
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Arne Krüger
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|
15
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
16
|
Dia A, Cheeseman IH. Single-cell genome sequencing of protozoan parasites. Trends Parasitol 2021; 37:803-814. [PMID: 34172399 PMCID: PMC8364489 DOI: 10.1016/j.pt.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
Despite considerable genetic variation within hosts, most parasite genome sequencing studies focus on bulk samples composed of millions of cells. Analysis of bulk samples is biased toward the dominant genotype, concealing cell-to-cell variation and rare variants. To tackle this, single-cell sequencing approaches have been developed and tailored to specific host-parasite systems. These are allowing the genetic diversity and kinship in complex parasite populations to be deciphered and for de novo genetic variation to be captured. Here, we outline the methodologies being used for single-cell sequencing of parasitic protozoans, such as Plasmodium and Leishmania spp., and how these tools are being applied to understand parasite biology.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
17
|
Mohamad N, O’Donoghue A, Kantsadi AL, Vakonakis I. Structures of the Plasmodium falciparum heat-shock protein 70-x ATPase domain in complex with chemical fragments identify conserved and unique binding sites. Acta Crystallogr F Struct Biol Commun 2021; 77:262-268. [PMID: 34341192 PMCID: PMC8329712 DOI: 10.1107/s2053230x21007378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
Plasmodium falciparum invades erythrocytes and extensively modifies them in a manner that increases the virulence of this malaria parasite. A single heat-shock 70 kDa-type chaperone, PfHsp70-x, is among the parasite proteins exported to the host cell. PfHsp70-x assists in the formation of a key protein complex that underpins parasite virulence and supports parasite growth during febrile episodes. Previous work resolved the crystallographic structures of the PfHsp70-x ATPase and substrate-binding domains, and showed them to be highly similar to those of their human counterparts. Here, 233 chemical fragments were screened for binding to the PfHsp70-x ATPase domain, resulting in three crystallographic structures of this domain in complex with ligands. Two binding sites were identified, with most ligands binding proximal to the ATPase nucleotide-binding pocket. Although amino acids participating in direct ligand interactions are conserved between the parasite and human erythrocytic chaperones, one nonconserved residue is also present near the ligand. This work suggests that PfHsp70-x features binding sites that may be exploitable by small-molecule ligands towards the specific inhibition of the parasite chaperone.
Collapse
Affiliation(s)
- Nada Mohamad
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ailsa O’Donoghue
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Anastassia L. Kantsadi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
18
|
Isebe TI, Bargul JL, Gichuki BM, Njunge JM, Tuju J, Rono MK. Molecular characterization of Plasmodium falciparum PHISTb proteins as potential targets of naturally-acquired immunity against malaria. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.15919.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in Gambia, compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses indicate negative correlation between antibody levels and malaria transmission intensity for Pf3D7_1102500 and Pf3D7_1401600. We report a correlation in antibody responses between schizont and gametocyte extract, but this is not statistically significant (cor=0.102, p=0.2851, CI=95%) and, Pf3D7_0532400 (cor=0.11, p=0.249, CI=95%) and Pf3D7_1401600 (cor=0.02, p=0.7968, CI=95%). We report a negative correlation in antibody responses between schizont and Pf3D7_1102500 (cor=-0.008, p=0.9348, CI=95%). There is a correlation between gametocyte extract and Pf3D7_1401600 (cor=-0.0402, p=0.6735, CI=95%), Pf3D7_1102500 (cor=0.0758, p=0.4271, CI=95%) and Pf3D7_0532400 (cor=0.155, p=0.1028, CI=95%). Acquisition of anti-PHIST antibodies correlates with exposure to malaria for Pf3D7_0532400 (p=0.009) but not Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels which do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore their potential as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.
Collapse
|
19
|
Videvall E, Paxton KL, Campana MG, Cassin‐Sackett L, Atkinson CT, Fleischer RC. Transcriptome assembly and differential gene expression of the invasive avian malaria parasite Plasmodium relictum in Hawai'i. Ecol Evol 2021; 11:4935-4944. [PMID: 33976860 PMCID: PMC8093664 DOI: 10.1002/ece3.7401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The malaria parasite Plasmodium relictum (lineage GRW4) was introduced less than a century ago to the native avifauna of Hawai'i, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawai'i 'amakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 'amakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high-quality blood transcriptome of P. relictum GRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host-specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawai'i, genetic resources of the local Plasmodium lineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawai'i 'amakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future.
Collapse
Affiliation(s)
- Elin Videvall
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Kristina L. Paxton
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Present address:
Hawai‘i Cooperative Studies UnitUniversity of Hawai'i at HiloHawai‘i National ParkHIUSA
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| | - Loren Cassin‐Sackett
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
- Department of BiologyUniversity of LouisianaLafayetteLAUSA
| | - Carter T. Atkinson
- U.S. Geological Survey Pacific Island Ecosystems Research CenterKilauea Field StationHawai‘i National ParkHIUSA
| | - Robert C. Fleischer
- Center for Conservation GenomicsSmithsonian Conservation Biology InstituteNational Zoological ParkWashingtonDCUSA
| |
Collapse
|
20
|
de Oliveira TC, Rodrigues PT, Early AM, Duarte AMRC, Buery JC, Bueno MG, Catão-Dias JL, Cerutti C, Rona LDP, Neafsey DE, Ferreira MU. Plasmodium simium: population genomics reveals the origin of a reverse zoonosis. J Infect Dis 2021; 224:1950-1961. [PMID: 33870436 DOI: 10.1093/infdis/jiab214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/14/2021] [Indexed: 11/12/2022] Open
Abstract
The population history of Plasmodium simium, which causes malaria in sylvatic Neotropical monkeys and humans along the Atlantic Coast of Brazil, remains disputed. Genetically diverse P. vivax populations from various sources, including the lineages that founded the species P. simium, are thought to have arrived in the Americas in separate migratory waves. However, here we find a minimal genome-level differentiation between P. simium and present-day New World P. vivax isolates, consistent with their common geographic origin and subsequent divergence on this continent. The meagre genetic diversity in P. simium samples from humans and monkeys implies a recent transfer from humans to non-human primates - a unique example of malaria as a reverse zoonosis of public health significance. Likely genomic signatures of P. simium adaptation to new hosts include the deletion of >40% of a key erythrocyte invasion ligand, PvRBP2a, which may have favored more efficient simian host cell infection.
Collapse
Affiliation(s)
- Thaís C de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Ana Maria R C Duarte
- Laboratory of Biochemistry and Molecular Biology, Superintendency for the Control of Endemics (SUCEN), State Secretary of Health, São Paulo, Brazil.,Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Julyana C Buery
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Marina G Bueno
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - José L Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Crispim Cerutti
- Department of Social Medicine, Center for Health Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Luísa D P Rona
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.,National Council for Scientific and Technological Development, National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Wang J, Jiang N, Sang X, Yang N, Feng Y, Chen R, Wang X, Chen Q. Protein Modification Characteristics of the Malaria Parasite Plasmodium falciparum and the Infected Erythrocytes. Mol Cell Proteomics 2020; 20:100001. [PMID: 33517144 PMCID: PMC7857547 DOI: 10.1074/mcp.ra120.002375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo myriad posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both Plasmodium falciparum, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the host-parasite interaction and pathogenesis. Furthermore, P. falciparum stabilized the supporting proteins of erythrocyte origin by selective demodification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of P. falciparum and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.
Collapse
Affiliation(s)
- Jianhua Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China; College of Food Science, Shenyang Agricultural Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, Shengyang, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
22
|
Yang B, Wang X, Jiang N, Sang X, Feng Y, Chen R, Wang X, Chen Q. Interaction Analysis of a Plasmodium falciparum PHISTa-like Protein and PfEMP1 Proteins. Front Microbiol 2020; 11:611190. [PMID: 33281807 PMCID: PMC7691434 DOI: 10.3389/fmicb.2020.611190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum extensively remodels host cells by translocating numerous proteins into the cytoplasm of red blood cells (RBCs) after invasion. Among these exported proteins, members of the Plasmodium helical interspersed subtelomeric (PHIST) family are crucial for host cell remodeling and host-parasite interactions, and thereby contribute to malaria pathogenesis. Herein, we explored the function of PF3D7_1372300, a member of the PHIST/PHISTa-like subfamily. PF3D7_1372300 was highly transcribed and expressed during the blood stage of P. falciparum, and distributed throughout RBCs, but most abundant at the erythrocyte membrane. Specific interaction of PF3D7_1372300 with the cytoplasmic tail of P. falciparum erythrocyte membrane protein 1 (PfEMP1) was revealed by immunofluorescence assay, in vitro intermolecular interaction assays. The interaction sites of PF3D7_1372300 with PfEMP1 ATS domain were found involved more than 30 amino acids (aa) at several positions. The findings deepen our understanding of host-parasite interactions and malaria pathogenesis.
Collapse
Affiliation(s)
- Baoling Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,College of Food Science and Technology, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), University of Chinese Academy of Sciences, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xinyi Wang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,College of Basic Sciences, Shenyang Agricultural University, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China.,The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
23
|
Mutisya JM, Mobegi VA, Kinyua JK, Kivecu MN, Okoth RO, Chemwor GC, Mwakio EW, Cheruiyot AC, Yeda RA, Okello CO, Juma JA, Opot BH, Juma DW, Roth AL, Akala HM, Andagalu BM. Characterization of sulfated polysaccharide activity against virulent Plasmodium falciparum PHISTb/RLP1 protein. F1000Res 2020; 9:1268. [PMID: 35600144 PMCID: PMC9096147 DOI: 10.12688/f1000research.26756.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modeled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: This research identifies inhibitors of exported proteins that can be used in in vitro tests against the Plasmodium parasite.
Collapse
Affiliation(s)
- Jennifer M. Mutisya
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Johnson K. Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Martha N. Kivecu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redempta A. Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles O. Okello
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis W. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Amanda L. Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hosea M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Ben M. Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| |
Collapse
|
24
|
Mutisya JM, Mobegi VA, Kinyua JK, Kivecu MN, Okoth RO, Chemwor GC, Mwakio EW, Cheruiyot AC, Yeda RA, Okello CO, Juma JA, Opot BH, Juma DW, Roth AL, Akala HM, Andagalu BM. Characterization of sulfated polysaccharide activity against virulent Plasmodium falciparum PHISTb/RLP1 protein. F1000Res 2020; 9:1268. [PMID: 35600144 PMCID: PMC9096147 DOI: 10.12688/f1000research.26756.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 05/14/2024] Open
Abstract
Background: The emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. Plasmodium falciparum (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets. The aim of this study is to identify inhibitors of PHIST from sulfated polysaccharides as new antimalarials. Methods: 251 samples from an ongoing study of epidemiology of malaria and drug resistance sensitivity patterns in Kenya were sequenced for PHISTb/RLP1 gene using Sanger sequencing. The sequenced reads were mapped to the reference Pf3D7 protein sequence of PHISTb/RLP1 using CLC Main Workbench. Homology modeling of both reference and mutant protein structures was achieved using the LOMETs tool. The models were refined using ModRefiner for energy minimization. Ramachandran plot was generated by ProCheck to assess the conformation of amino acids in the protein model. Protein binding sites predictions were assessed using FT SITE software. We searched for prospective antimalarials from PubChem. Docking experiments were achieved using AutoDock Vina and analysis results visualized in PyMOL. Results: Sanger sequencing generated 86 complete sequences. Upon mapping of the sequences to the reference, 12 non-synonymous single nucleotide polymorphisms were considered for mutant protein structure analysis. Eleven drug compounds with antiplasmodial activity were identified. Both modelled PHISTb/RLP1 reference and mutant structures had a Ramachandran score of >90% of the amino acids in the favored region. Ten of the drug compounds interacted with amino acid residues in PHISTb and RESA domains, showing potential activity against these proteins. Conclusion: These interactions provide lead compounds for new anti-malarial molecules. Further in vivo testing is recommended.
Collapse
Affiliation(s)
- Jennifer M. Mutisya
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, University of Nairobi, Nairobi, Kenya
| | - Johnson K. Kinyua
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Martha N. Kivecu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Raphael O. Okoth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Gladys C. Chemwor
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Edwin W. Mwakio
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Agnes C. Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Redempta A. Yeda
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Charles O. Okello
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Jackline A. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Benjamin H. Opot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Dennis W. Juma
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Amanda L. Roth
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Hosea M. Akala
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| | - Ben M. Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI)/Walter Reed Project, Kisumu, Kenya
| |
Collapse
|
25
|
Schmidt J, Vakonakis I. Structure of the substrate-binding domain of Plasmodium falciparum heat-shock protein 70-x. Acta Crystallogr F Struct Biol Commun 2020; 76:495-500. [PMID: 33006578 PMCID: PMC7531245 DOI: 10.1107/s2053230x2001208x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 11/10/2022] Open
Abstract
The malaria parasite Plasmodium falciparum extensively modifies erythrocytes that it invades by exporting a large complement of proteins to the host cell. Among these exported components is a single heat-shock 70 kDa class protein, PfHsp70-x, that supports the virulence and growth rate of the parasite during febrile episodes. The ATP-binding domain of PfHsp70-x has previously been resolved and showed the presence of potentially druggable epitopes that differ from those on human Hsp70 chaperones. Here, the crystallographic structure of the substrate-binding domain (SBD) of PfHsp70-x is presented in complex with a hydrophobic peptide. The PfHsp70-x SBD is shown to be highly similar to the counterpart from a human erythrocytic Hsp70 chaperone. The binding of substrate at the interface between β-sandwich and α-helical subdomains of this chaperone segment is also conserved between the malaria parasite and humans. It is hypothesized that the parasite may partly exploit human chaperones for intra-erythrocytic trafficking and maintenance of its exported proteome.
Collapse
Affiliation(s)
- Julia Schmidt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
26
|
Isebe TI, Bargul JL, Gichuki BM, Njunge JM, Tuju J, Rono MK. Molecular characterization of Plasmodium falciparum PHISTb proteins as potential targets of naturally-acquired immunity against malaria. Wellcome Open Res 2020. [DOI: 10.12688/wellcomeopenres.15919.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins in order to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Our findings show that children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against the PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in the Gambia, as compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses show a negative correlation between antibody levels and malaria transmission intensity for two PHIST antigens, Pf3D7_1102500 and Pf3D7_1401600. However, we report a correlation in antibody responses between schizont extract and Pf3D7_0532400 (p=0.00582). Acquisition of anti-PHIST antibodies was correlated with exposure to malaria for PHISTb protein Pf3D7_0532400 (p=0.009) but not the other PHIST antigens Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels, but the responses do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore potential for these parasite antigens as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.
Collapse
|
27
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
28
|
Role of Plasmodium falciparum Kelch 13 Protein Mutations in P. falciparum Populations from Northeastern Myanmar in Mediating Artemisinin Resistance. mBio 2020; 11:mBio.01134-19. [PMID: 32098812 PMCID: PMC7042691 DOI: 10.1128/mbio.01134-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Artemisinin resistance has emerged in Southeast Asia, endangering the substantial progress in malaria elimination worldwide. It is associated with mutations in the PfK13 protein, but how PfK13 mediates artemisinin resistance is not completely understood. Here we used a new antibody against PfK13 to show that the PfK13 protein is expressed in all stages of the asexual intraerythrocytic cycle as well as in gametocytes and is partially localized in the endoplasmic reticulum. By introducing four PfK13 mutations into the 3D7 strain and reverting these mutations in field parasite isolates, we determined the impacts of these mutations identified in the parasite populations from northern Myanmar on the ring stage using the in vitro ring survival assay. The introduction of the N458Y mutation into the 3D7 background significantly increased the survival rates of the ring-stage parasites but at the cost of the reduced fitness of the parasites. Introduction of the F446I mutation, the most prevalent PfK13 mutation in northern Myanmar, did not result in a significant increase in ring-stage survival after exposure to dihydroartemisinin (DHA), but these parasites showed extended ring-stage development. Further, parasites with the F446I mutation showed only a marginal loss of fitness, partially explaining its high frequency in northern Myanmar. Conversely, reverting all these mutations, except for the C469Y mutation, back to their respective wild types reduced the ring-stage survival of these isolates in response to in vitro DHA treatment. Mutations in the Plasmodium falciparum Kelch 13 (PfK13) protein are associated with artemisinin resistance. PfK13 is essential for asexual erythrocytic development, but its function is not known. We tagged the PfK13 protein with green fluorescent protein in P. falciparum to study its expression and localization in asexual and sexual stages. We used a new antibody against PfK13 to show that the PfK13 protein is expressed ubiquitously in both asexual erythrocytic stages and gametocytes and is localized in punctate structures, partially overlapping an endoplasmic reticulum marker. We introduced into the 3D7 strain four PfK13 mutations (F446I, N458Y, C469Y, and F495L) identified in parasites from the China-Myanmar border area and characterized the in vitro artemisinin response phenotypes of the mutants. We found that all the parasites with the introduced PfK13 mutations showed higher survival rates in the ring-stage survival assay (RSA) than the wild-type (WT) control, but only parasites with N458Y displayed a significantly higher RSA value (26.3%) than the WT control. After these PfK13 mutations were reverted back to the WT in field parasite isolates, all revertant parasites except those with the C469Y mutation showed significantly lower RSA values than their respective parental isolates. Although the 3D7 parasites with introduced F446I, the predominant PfK13 mutation in northern Myanmar, did not show significantly higher RSA values than the WT, they had prolonged ring-stage development and showed very little fitness cost in in vitro culture competition assays. In comparison, parasites with the N458Y mutations also had a prolonged ring stage and showed upregulated resistance pathways in response to artemisinin, but this mutation produced a significant fitness cost, potentially leading to their lower prevalence in the Greater Mekong subregion.
Collapse
|
29
|
Das D, Krishnan SR, Roy A, Bulusu G. A network-based approach reveals novel invasion and Maurer's clefts-related proteins in Plasmodium falciparum. Mol Omics 2019; 15:431-441. [PMID: 31631203 DOI: 10.1039/c9mo00124g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Malaria continues to be a major concern in developing countries despite continuous efforts to find a cure for the disease. Understanding the pathogenesis mechanism is necessary to identify more effective drug targets against malaria. Many years of experimental research have generated a large amount of data for the malarial parasite, Plasmodium falciparum. These data are useful to understand the importance of certain parasite proteins, but it often remains unclear how these proteins come together, interact with other proteins and carry out their function. Identification of all proteins involved in pathogenesis is an important step towards understanding the molecular mechanism of pathogenesis. In this study, dynamic stage-specific protein-protein interaction networks were created based on gene expression data during the parasite's intra-erythrocytic stages and static protein-protein interaction data. Using previously known proteins of a biological event as seed proteins, the random walk with restart (RWR) method was used on the dynamic protein-protein interaction networks to identify novel proteins related to that event. Two screening procedures namely, permutation test and GO enrichment test were performed to increase the reliability of the RWR predictions. The proposed method was first validated on Plasmodium falciparum proteins related to invasion, where it could reproduce the existing knowledge from a small set of seed proteins. It was then used to identify novel Maurer's clefts resident proteins, where it could identify 152 parasite proteins. We show that the current approach can annotate conserved proteins with unknown function. The predicted proteins can help build a mechanistic model for disease pathogenesis, which will be useful in identifying new drug targets.
Collapse
Affiliation(s)
- Dibyajyoti Das
- TCS Innovation Labs - Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India.
| | | | | | | |
Collapse
|
30
|
Day J, Passecker A, Beck HP, Vakonakis I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J 2019; 33:14611-14624. [PMID: 31690116 PMCID: PMC6894070 DOI: 10.1096/fj.201901741r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 01/25/2023]
Abstract
Plasmodium falciparum is the most lethal of human-infective malaria parasites. A hallmark of P. falciparum malaria is extensive remodeling of host erythrocytes by the parasite, which facilitates the development of virulence properties such as host cell adhesion to the endothelial lining of the microvasculature. Host remodeling is mediated by a large complement of parasite proteins exported to the erythrocyte; among them is a single heat shock protein (Hsp)70-class protein chaperone, P. falciparum Hsp70-x (PfHsp70-x). PfHsp70-x was previously shown to assist the development of virulent cytoadherence characteristics. Here, we show that PfHsp70-x also supports parasite growth under elevated temperature conditions that simulate febrile episodes, especially at the beginning of the parasite life cycle when most of host cell remodeling takes place. Biochemical and biophysical analyses of PfHsp70-x, including crystallographic structures of its catalytic domain and the J-domain of its stimulatory Hsp40 cochaperone, suggest that PfHsp70-x is highly similar to human Hsp70 chaperones endogenous to the erythrocyte. Nevertheless, our results indicate that selective inhibition of PfHsp70-x function using small molecules may be possible and highlight specific sites of its catalytic domain as potentially of high interest. We discuss the likely roles of PfHsp70-x and human chaperones in P. falciparum biology and how specific inhibitors may assist us in disentangling their relative contributions.-Day, J., Passecker, A., Beck, H.-P., Vakonakis, I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite.
Collapse
Affiliation(s)
- Jemma Day
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Armin Passecker
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Neveu G, Lavazec C. Erythrocyte Membrane Makeover by Plasmodium falciparum Gametocytes. Front Microbiol 2019; 10:2652. [PMID: 31787966 PMCID: PMC6856072 DOI: 10.3389/fmicb.2019.02652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022] Open
Abstract
Plasmodium falciparum sexual parasites, called gametocytes, are the only parasite stages responsible for transmission from humans to Anopheles mosquitoes. During their maturation, P. falciparum gametocytes remodel the structural and mechanical properties of the membrane of their erythrocyte host. This remodeling is induced by the export of several parasite proteins and a dynamic reorganization of the erythrocyte cytoskeleton. Some of these modifications are specific for sexual stages and play a key role for gametocyte maturation, sequestration in internal organs, subsequent release in the bloodstream and ability to persist in circulation. Here we discuss the mechanisms developed by gametocytes to remodel their host cell and the functional relevance of these modifications.
Collapse
Affiliation(s)
- Gaëlle Neveu
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Lavazec
- Inserm U1016, CNRS UMR 8104, Université de Paris, Institut Cochin, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
32
|
Warncke JD, Passecker A, Kipfer E, Brand F, Pérez-Martínez L, Proellochs NI, Kooij TWA, Butter F, Voss TS, Beck HP. The PHIST protein GEXP02 targets the host cytoskeleton during sexual development of Plasmodium falciparum. Cell Microbiol 2019; 22:e13123. [PMID: 31652487 DOI: 10.1111/cmi.13123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 11/27/2022]
Abstract
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte-infected host cell periphery. Co-immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock-out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage-specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.
Collapse
Affiliation(s)
- Jan D Warncke
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Armin Passecker
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Enja Kipfer
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Françoise Brand
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Lara Pérez-Martínez
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Nicholas I Proellochs
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Taco W A Kooij
- Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Falk Butter
- Proteomics Core Facility, Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Hans-Peter Beck
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Host Cytoskeleton Remodeling throughout the Blood Stages of Plasmodium falciparum. Microbiol Mol Biol Rev 2019; 83:83/4/e00013-19. [PMID: 31484690 DOI: 10.1128/mmbr.00013-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The asexual intraerythrocytic development of Plasmodium falciparum, causing the most severe form of human malaria, is marked by extensive host cell remodeling. Throughout the processes of invasion, intracellular development, and egress, the erythrocyte membrane skeleton is remodeled by the parasite as required for each specific developmental stage. The remodeling is facilitated by a plethora of exported parasite proteins, and the erythrocyte membrane skeleton is the interface of most of the observed interactions between the parasite and host cell proteins. Host cell remodeling has been extensively described and there is a vast body of information on protein export or the description of parasite-induced structures such as Maurer's clefts or knobs on the host cell surface. Here we specifically review the molecular level of each host cell-remodeling step at each stage of the intraerythrocytic development of P. falciparum We describe key events, such as invasion, knob formation, and egress, and identify the interactions between exported parasite proteins and the host cell cytoskeleton. We discuss each remodeling step with respect to time and specific requirement of the developing parasite to explain host cell remodeling in a stage-specific manner. Thus, we highlight the interaction with the host membrane skeleton as a key event in parasite survival.
Collapse
|
34
|
Kumar V, Behl A, Sharma R, Sharma A, Hora R. Plasmodium helical interspersed subtelomeric family-an enigmatic piece of the Plasmodium biology puzzle. Parasitol Res 2019; 118:2753-2766. [PMID: 31418110 DOI: 10.1007/s00436-019-06420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum (Pf) refurbishes the infected erythrocytes by exporting a myriad of parasite proteins to the host cell. A novel exported protein family 'Plasmodium Helical Interspersed Subtelomeric' (PHIST) has gained attention for its significant roles in parasite biology. Here, we have collected and analysed available information on PHIST members to enhance understanding of their functions, varied localization and structure-function correlation. Functional diversity of PHIST proteins is highlighted by their involvement in PfEMP1 (Pf erythrocyte membrane protein 1) expression, trafficking and switching. This family also contributes to cytoadherence, gametocytogenesis, host cell modification and generation of extracellular vesicles. While the PHIST domain forms the hallmark of this family, existence and functions of additional domains (LyMP, TIGR01639) and the MEC motif underscores its diversity further. Since specific PHIST proteins seem to form pairs with PfEMP1 members, we have used in silico tools to predict such potential partners in Pf. This information and our analysis of structural data on a PHIST member provide important insights into their functioning. This review overall enables readers to view the PHIST family comprehensively, while highlighting key knowledge gaps in the field.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachana Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aanchal Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
35
|
Ngotho P, Soares AB, Hentzschel F, Achcar F, Bertuccini L, Marti M. Revisiting gametocyte biology in malaria parasites. FEMS Microbiol Rev 2019; 43:401-414. [PMID: 31220244 PMCID: PMC6606849 DOI: 10.1093/femsre/fuz010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/05/2019] [Indexed: 12/21/2022] Open
Abstract
Gametocytes are the only form of the malaria parasite that is transmissible to the mosquito vector. They are present at low levels in blood circulation and significant knowledge gaps exist in their biology. Recent reductions in the global malaria burden have brought the possibility of elimination and eradication, with renewed focus on malaria transmission biology as a basis for interventions. This review discusses recent insights into gametocyte biology in the major human malaria parasite, Plasmodium falciparum and related species.
Collapse
Affiliation(s)
- Priscilla Ngotho
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Alexandra Blancke Soares
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Franziska Hentzschel
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK
| | - Lucia Bertuccini
- Core Facilities, Microscopy Area, Instituto Superiore di Sanita, Via Regina Elena 299, 00161 Rome, Italy
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Road, Glasgow G12 8TA, UK.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston 02115, MA, USA
| |
Collapse
|
36
|
Soupene E, Kuypers FA. ACBD6 protein controls acyl chain availability and specificity of the N-myristoylation modification of proteins. J Lipid Res 2019; 60:624-635. [PMID: 30642881 DOI: 10.1194/jlr.m091397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Members of the human acyl-CoA binding domain-containing (ACBD) family regulate processes as diverse as viral replication, stem-cell self-renewal, organelle organization, and protein acylation. These functions are defined by nonconserved motifs present downstream of the ACBD. The human ankyrin-repeat-containing ACBD6 protein supports the reaction catalyzed by the human and Plasmodium N-myristoyltransferase (NMT) enzymes. Likewise, the newly identified Plasmodium ACBD6 homologue regulates the activity of the NMT enzymes. The relatively low abundance of myristoyl-CoA in the cell limits myristoylation. Binding of myristoyl-CoA to NMT is competed by more abundant acyl-CoA species such as palmitoyl-CoA. ACBD6 also protects the Plasmodium NMT enzyme from lauryl-CoA and forces the utilization of the myristoyl-CoA substrate. The phosphorylation of two serine residues of the acyl-CoA binding domain of human ACBD6 improves ligand binding capacity, prevents competition by unbound acyl-CoAs, and further enhances the activity of NMT. Thus, ACBD6 proteins promote N-myristoylation in mammalian cells and in one of their intracellular parasites under unfavorable substrate-limiting conditions.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA
| | | |
Collapse
|
37
|
Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2018; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
|
38
|
Sironi M, Forni D, Clerici M, Cagliani R. Genetic conflicts with Plasmodium parasites and functional constraints shape the evolution of erythrocyte cytoskeletal proteins. Sci Rep 2018; 8:14682. [PMID: 30279439 PMCID: PMC6168477 DOI: 10.1038/s41598-018-33049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites exerted a strong selective pressure on primate genomes and mutations in genes encoding erythrocyte cytoskeleton proteins (ECP) determine protective effects against Plasmodium infection/pathogenesis. We thus hypothesized that ECP-encoding genes have evolved in response to Plasmodium-driven selection. We analyzed the evolutionary history of 15 ECP-encoding genes in primates, as well as of their Plasmodium-encoded ligands (KAHRP, MESA and EMP3). Results indicated that EPB42, SLC4A1, and SPTA1 evolved under pervasive positive selection and that episodes of positive selection tended to occur more frequently in primate species that host a larger number of Plasmodium parasites. Conversely, several genes, including ANK1 and SPTB, displayed extensive signatures of purifying selection in primate phylogenies, Homininae lineages, and human populations, suggesting strong functional constraints. Analysis of Plasmodium genes indicated adaptive evolution in MESA and KAHRP; in the latter, different positively selected sites were located in the spectrin-binding domains. Because most of the positively selected sites in alpha-spectrin localized to the domains involved in the interaction with KAHRP, we suggest that the two proteins are engaged in an arms-race scenario. This observation is relevant because KAHRP is essential for the formation of “knobs”, which represent a major virulence determinant for P. falciparum.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
39
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
40
|
Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY, Brancucci NMB, Mohring F, Mushunje AT, Huang X, Christensen PR, Nosten F, Bozdech Z, Russell B, Moon RW, Marti M, Preiser PR, Bártfai R, Voss TS. Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host Microbe 2018; 23:407-420.e8. [PMID: 29503181 PMCID: PMC5853956 DOI: 10.1016/j.chom.2018.01.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite's adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage parasites, substantial heterochromatin reorganization occurs in differentiating gametocytes and appears crucial for the activation of key gametocyte-specific genes and adaptation of erythrocyte remodeling machinery. Collectively, these findings provide a catalog of heterochromatic genes and reveal conserved and specialized features of epigenetic control across the genus Plasmodium.
Collapse
Affiliation(s)
- Sabine A Fraschka
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Regina Hoo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Igor Niederwieser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Xue Yan Yam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Nicolas M B Brancucci
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Franziska Mohring
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Annals T Mushunje
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ximei Huang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R Christensen
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford OX3 7FZ, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Robert W Moon
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Matthias Marti
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA 02155, USA
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Richárd Bártfai
- Department of Molecular Biology, Faculty of Science, Radboud University, 6525 GA Nijmegen, the Netherlands.
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
41
|
Kumar V, Kaur J, Singh AP, Singh V, Bisht A, Panda JJ, Mishra PC, Hora R. PHIST
c protein family members localize to different subcellular organelles and bind
Plasmodium falciparum
major virulence factor
Pf
EMP
‐1. FEBS J 2017; 285:294-312. [DOI: 10.1111/febs.14340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/15/2017] [Accepted: 11/15/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| | - Jasweer Kaur
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| | - Amrit P. Singh
- Department of Pharmaceutical Sciences Guru Nanak Dev University Amritsar India
| | - Vineeta Singh
- National Institute of Malaria Research New Delhi India
| | - Anjali Bisht
- Institute of Nano Science and Technology Mohali India
| | | | - Prakash C. Mishra
- Department of Biotechnology Guru Nanak Dev University Amritsar India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry Guru Nanak Dev University Amritsar India
| |
Collapse
|
42
|
PFI1785w: A highly conserved protein associated with pregnancy associated malaria. PLoS One 2017; 12:e0187817. [PMID: 29121643 PMCID: PMC5679621 DOI: 10.1371/journal.pone.0187817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
Pregnancy-associated malaria (PAM) is one of the severe forms of Plasmodium falciparum infection. The main antigen VAR2CSA is the target of vaccine development. However, the large size of VAR2CSA protein and its high degree of variability limit to the efficiency of the vaccination. Using quantitative mass spectrometry method, we detected and quantified proteotypic peptides from 5 predicted PAM associated proteins. Our results confirmed that PFI1785w is over-expressed in PAM samples. Then, we investigated PFI1785w variability among a set of parasite samples from various endemic areas. PFI1785w appear to be more conserved than VAR2CSA. PFB0115w, another PAM associated protein, seems also associated with the pathology. Further vaccination strategies could integrate other proteins in addition to the major VAR2CSA antigen to improve immune response to vaccination.
Collapse
|
43
|
Shakya B, Penn WD, Nakayasu ES, LaCount DJ. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1. Mol Biochem Parasitol 2017; 216:5-13. [PMID: 28627360 PMCID: PMC5738903 DOI: 10.1016/j.molbiopara.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/24/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.
Collapse
Affiliation(s)
- Bikash Shakya
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Wesley D Penn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ernesto S Nakayasu
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
44
|
Structural analysis of P. falciparum KAHRP and PfEMP1 complexes with host erythrocyte spectrin suggests a model for cytoadherent knob protrusions. PLoS Pathog 2017; 13:e1006552. [PMID: 28806784 PMCID: PMC5570508 DOI: 10.1371/journal.ppat.1006552] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10–14 of β spectrin, proximal to the spectrin–ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture. Formation of cytoadherent knobs on the surface of P. falciparum infected erythrocytes correlates with malaria pathology. Two parasite proteins central for knob formation and cytoadherence, KAHRP and PfEMP1, have previously been shown to bind the erythrocyte cytoskeleton. Both KAHRP and PfEMP1 include large segments of protein disorder, which have previously hampered their analysis. In this study we use biophysics and structural biology tools to analyze the interactions between these proteins and host spectrin. We devise a novel computational tool to help us towards this goal that may be broadly applicable to characterizing other complexes of widespread, disordered Plasmodial proteins and host components. We derive atomistic models of KAHRP–spectrin and PfEMP1 –spectrin complexes, and integrate these into an emerging model of knob architecture.
Collapse
|
45
|
Ngwa CJ, Kiesow MJ, Papst O, Orchard LM, Filarsky M, Rosinski AN, Voss TS, Llinás M, Pradel G. Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum. Front Cell Infect Microbiol 2017; 7:320. [PMID: 28791254 PMCID: PMC5522858 DOI: 10.3389/fcimb.2017.00320] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Transmission of the malaria parasite Plasmodium falciparum from the human to the mosquito is mediated by the intraerythrocytic gametocytes, which, once taken up during a blood meal, become activated to initiate sexual reproduction. Because gametocytes are the only parasite stages able to establish an infection in the mosquito, they are crucial for spreading the tropical disease. During gametocyte maturation, different repertoires of genes are switched on and off in a well-coordinated sequence, pointing to regulatory mechanisms of gene expression. While epigenetic gene control has been studied during erythrocytic schizogony of P. falciparum, little is known about this process during human-to-mosquito transmission of the parasite. To unveil the potential role of histone acetylation during gene expression in gametocytes, we carried out a microarray-based transcriptome analysis on gametocytes treated with the histone deacetylase inhibitor trichostatin A (TSA). TSA-treatment impaired gametocyte maturation and lead to histone hyper-acetylation in these stages. Comparative transcriptomics identified 294 transcripts, which were more than 2-fold up-regulated during gametocytogenesis following TSA-treatment. In activated gametocytes, which were less sensitive to TSA, the transcript levels of 48 genes were increased. TSA-treatment further led to repression of ~145 genes in immature and mature gametocytes and 7 genes in activated gametocytes. Up-regulated genes are mainly associated with functions in invasion, cytoadherence, and protein export, while down-regulated genes could particularly be assigned to transcription and translation. Chromatin immunoprecipitation demonstrated a link between gene activation and histone acetylation for selected genes. Among the genes up-regulated in TSA-treated mature gametocytes was a gene encoding the ring finger (RING)-domain protein PfRNF1, a putative E3 ligase of the ubiquitin-mediated signaling pathway. Immunochemistry demonstrated PfRNF1 expression mainly in the sexual stages of P. falciparum with peak expression in stage II gametocytes, where the protein localized to the nucleus and cytoplasm. Pfrnf1 promoter and coding regions associated with acetylated histones, and TSA-treatment resulted in increased PfRNF1 levels. Our combined data point to an essential role of histone acetylation for gene regulation in gametocytes, which can be exploited for malaria transmission-blocking interventions.
Collapse
Affiliation(s)
- Che J Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Meike J Kiesow
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Olga Papst
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Lindsey M Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, United States
| | - Michael Filarsky
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteBasel, Switzerland
| | - Alina N Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| | - Till S Voss
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health InstituteBasel, Switzerland
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, United States.,Department of Chemistry and Huck Center for Malaria Research, The Pennsylvania State UniversityUniversity Park, PA, United States
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
46
|
|