1
|
Lovecchio N, Giuseppetti R, Bertuccini L, Columba-Cabezas S, Di Meo V, Figliomeni M, Iosi F, Petrucci G, Sonnessa M, Magurano F, D’Ugo E. Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation. BIOSENSORS 2024; 14:484. [PMID: 39451698 PMCID: PMC11506689 DOI: 10.3390/bios14100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water-oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm's natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system's power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm's electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications.
Collapse
Affiliation(s)
- Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | - Roberto Giuseppetti
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Lucia Bertuccini
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Sandra Columba-Cabezas
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Valentina Di Meo
- Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Mario Figliomeni
- Department of Environment and Health, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Francesca Iosi
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (F.I.)
| | - Giulia Petrucci
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy;
| | | | - Fabio Magurano
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| | - Emilio D’Ugo
- Department of Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy; (R.G.); (F.M.)
| |
Collapse
|
2
|
AbuBakr SM, Najar FZ, Duncan KE. Detection of Nitrate-Reducing/Denitrifying Bacteria from Contaminated and Uncontaminated Tallgrass Prairie Soil: Limitations of PCR Primers. Microorganisms 2024; 12:1981. [PMID: 39458290 PMCID: PMC11509419 DOI: 10.3390/microorganisms12101981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Contamination of soil by spills of crude oil and oilfield brine is known to affect the species composition and functioning of soil microbial communities. However, the effect of such contamination on nitrogen cycling, an important biogeochemical cycle in tallgrass prairie soil, is less well known. Detecting nitrate-reducing (NR) and denitrifying (DN) bacteria via PCR amplification of the genes essential for these processes depends on how well PCR primers match the sequences of these bacteria. In this study, we enriched for NR and DN bacteria from oil/brine tallgrass prairie soil contaminated 5-10 years previously versus those cultured from uncontaminated soil, confirmed the capacity of 75 strains isolated from the enrichments to reduce nitrate and/nitrite, then screened the strains with primers specific to seven nitrogen cycle functional genes. The strains comprised a phylogenetically diverse group of NR and DN bacteria, with proportionately more γ-Proteobacteria in oil-contaminated sites and more Bacilli in brine-contaminated sites, suggesting some residual effect of the contaminants on the NR and DN species distribution. Around 82% of the strains shown to reduce nitrate/nitrite would not be identified as NR and DN bacteria by the battery of NR and DN primers used. Our results indicate an urgent need to expand the NR/DN functional gene primer database by first identifying novel NR/DN strains through their capacity to reduce nitrate/nitrite.
Collapse
Affiliation(s)
- Samer M. AbuBakr
- Biology Program, School of Integrated Sciences, Sustainability, and Public Health, College of Health, Science, and Technology, University of Illinois at Springfield, Springfield, IL 62703, USA
| | - Fares Z. Najar
- High Performance Computing Center, Division of the Vice President for Research, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Kathleen E. Duncan
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
3
|
Harrison SJ, Malkin SY, Joye SB. Dispersant addition, but not nutrients, stimulated blooms of multiple hydrocarbonoclastic genera in nutrient-replete coastal marine surface waters. MARINE POLLUTION BULLETIN 2024; 204:116490. [PMID: 38843703 DOI: 10.1016/j.marpolbul.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.
Collapse
Affiliation(s)
- Sarah J Harrison
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sairah Y Malkin
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
4
|
Eckel F, Sinzinger K, Van Opdenbosch D, Schieder D, Sieber V, Zollfrank C. Influence of microbial biomass content on biodegradation and mechanical properties of poly(3-hydroxybutyrate) composites. Biodegradation 2024; 35:209-224. [PMID: 37402058 PMCID: PMC10881657 DOI: 10.1007/s10532-023-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone. In order to determine the causes for the faster biodegradation, the molecular weight, the crystallinity, the water uptake, the microbial biomass composition and scanning electron microscope images were assessed. The molecular weight of the PHB in the composites was lower than that of pure PHB while the crystallinity and microbial biomass composition were the same for all samples. A direct correlation of water uptake and crystallinity with biodegradation rate could not be observed. While the degradation of molecular weight of PHB during sample preparation contributed to the improvement of biodegradation, the main reason was attributed to biostimulation by the added biomass. The resulting enhancement of the biodegradation rate appears to be unique in the field of polymer biodegradation. The tensile strength was lowered, elongation at break remained constant and Young's modulus was increased compared to pure PHB.
Collapse
Affiliation(s)
- Felix Eckel
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Korbinian Sinzinger
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Daniel Van Opdenbosch
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Doris Schieder
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Volker Sieber
- Chair for Chemistry of Biogenic Resources, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 16, Straubing, 94315, Germany.
| |
Collapse
|
5
|
Li Z, Qi R, Li Y, Miao J, Li Y, He Z, Zhang N, Pan L. The assessment of bioavailability and environmental risk of dissolved and particulate polycyclic aromatic hydrocarbons in the seawater of typical bays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169124. [PMID: 38092200 DOI: 10.1016/j.scitotenv.2023.169124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
The pollution of dissolved and particulate polycyclic aromatic hydrocarbons (PAHs) in coastal waters has been increasing in recent decades. However, limited research has been conducted on the characteristics of dissolved and particulate PAHs in seawater and their associated risk assessment. Here, we focused on the bioavailability and environmental risk of PAHs in four typical bays of Shandong Province, China, and used scallop Chlamys farreri and clam Mactra veneriformis as sentinel species. The results revealed that dissolved PAHs tended to bioaccumulate in scallop C. farreri, and their ecological risk exhibited a significant correlation with the health risk of bioaccumulated PAHs and the bioeffect of screened biomarkers in scallop. Conversely, particulate PAHs demonstrated a higher bioaccumulation potential in the clam M. veneriformis, showing a stronger correlation between their ecological risk, health risk, and bioeffect in clams. This study provides the first elucidation of the connection between the ecological risk, health risk, and bioeffect of PAHs. Furthermore, based on the better correlation of health risk and bioeffect caused by PAHs with total PAHs in seawater, we propose that the clam M. veneriformis is a more suitable sentinel species for assessing environmental risk in typical bays of Shandong Province.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
6
|
Hosseini S, Sharifi R, Habibi A. Simultaneous removal of aliphatic and aromatic crude oil hydrocarbons by Pantoea agglomerans isolated from petroleum-contaminated soil in the west of Iran. Arch Microbiol 2024; 206:98. [PMID: 38351169 DOI: 10.1007/s00203-023-03819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 02/16/2024]
Abstract
Hydrocarbons are considered as one of the most common and harmful environmental pollutants affecting human health and the environment. Bioremediation as an environmentally friendly, highly efficient, and cost-effective method in remediating oil-contaminated environments has been interesting in recent decades. In this study, hydrocarbon degrader bacterial strains were isolated from the highly petroleum-contaminated soils in the Dehloran oil field in the west of Iran. Out of 37 isolates, 15 can grow on M9 agar medium that contains 1.5 g L-1 of crude oil as the sole carbon source. The morphological, biochemical, and 16SrRNA sequencing analyses were performed for the isolates. The choosing of the isolates as the hydrocarbon degrader was examined by evaluating the efficacy of their crude oil removal at a concentration of 10 g L-1 in an aqueous medium. The results showed that five isolates belonging to Pseudomonas sp., Pseudomonas oryzihabitans, Roseomonas aestuarii, Pantoea agglomerans, and Arthrobacter sp. had a hyper hydrocarbon-degrading activity and they could remove more than 85% of the total petroleum hydrocarbon (TPH) after 96 h. The highest TPH removal of about 95.75% and biodegradation rate of 0.0997 g L-1 h-1 was observed for P. agglomerans. The gas chromatography-mass spectroscopy (GC-MS) analysis was performed during the biodegradation process by P. agglomerans to detect the degradation intermediates and final products. The results confirmed the presence of intermediates such as alcohols and fatty acids in the terminal oxidation pathway of alkanes in this biodegradation process. A promising P. agglomerans NB391 strain can remove aliphatic and aromatic hydrocarbons simultaneously.
Collapse
Affiliation(s)
- Saman Hosseini
- Department of Plant Protection, Razi University, Kermanshah, Iran
| | | | - Alireza Habibi
- Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran
| |
Collapse
|
7
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
8
|
Li Z, Qi R, Li Y, Miao J, Li Y, He Z, Zhang N, Pan L. Source-specific ecological and health risks of polycyclic aromatic hydrocarbons in the adjacent coastal area of the Yellow River Estuary, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:146-160. [PMID: 38009362 DOI: 10.1039/d3em00419h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Industrialization and urbanization have led to increasing levels of PAH pollution in highly urbanized estuaries and their adjacent coastal areas globally. This study focused on the adjacent coastal area of the Yellow River Estuary (YRE) and collected surface seawater, surface sediment, and clams Ruditapes philippinarum and Mactra veneriformis at four sites (S1 to S4) in May, August, and October 2021 to analyze the source-specific ecological and health risks and bioeffects. The findings revealed that the main sources of PAHs were traffic emission (25.2% to 28.5%), petroleum sources (23.3% to 29.5%), coal combustion (24.7% to 27.5%), and biomass combustion (19.8% to 20.7%). Further, the PMF-RQ and PMF-ILCR analyses indicated that traffic emission was the primary contributor to ecological risks in seawater and health risks in both clam species, while coal combustion was the major contributor in sediment. Taken together, it is recommended to implement control strategies for PAH pollution following the priority order: traffic > coal > petroleum > biomass, to reduce the content and risk of PAHs in the YRE.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, China.
| |
Collapse
|
9
|
Arrington EC, Tarn J, Kittner HE, Kivenson V, Liu RM, Valentine DL. Methylated cycloalkanes fuel a novel genus in the Porticoccaceae family (Ca. Reddybacter gen. nov). Environ Microbiol 2023; 25:2958-2971. [PMID: 37599091 DOI: 10.1111/1462-2920.16474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.
Collapse
Affiliation(s)
- Eleanor C Arrington
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Jonathan Tarn
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Hailie E Kittner
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, USA
| | - Rachel M Liu
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - David L Valentine
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California-Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
10
|
Li Z, Qi R, Li Y, Miao J, Li Y, Zhang M, He Z, Zhang N, Pan L. The ban on the sale of new petrol and diesel cars: Can it help control prospective marine pollution of polycyclic aromatic hydrocarbons (PAHs) in Shandong Province, China? JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132451. [PMID: 37669606 DOI: 10.1016/j.jhazmat.2023.132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The constantly increasing amount of road vehicles causes massive exhaust emissions of pollutants, including polycyclic aromatic hydrocarbons (PAHs), necessitating a global responsibility to implement the policy of the ban on the sale of new petrol and diesel cars. Here, we assessed the policy control efficiency on marine pollution of PAHs in China through scenario modeling and prediction models, based on pollution monitoring, risk assessment, and source apportionment of PAHs in typical bays of Shandong Province. The results showed that in 2021, the pollution risk levels were relatively low (HI: 0.008-0.068, M-ERM-Q: 0.001-0.016, IBR: 1.23-2.69, ILCR: 8.11 ×10-6-1.99 ×10-5), and PAHs were mainly derived from traffic emissions (24.9%-35.2%), coal combustion (25.2%-32.9%), petroleum (17.2%-28.9%), and biomass combustion (17.6%-22.8%). In 2050, the predicted decrease of pollution risk values after the implementation of the policy was significant (12%-26%), and the gap between 2021 and 2050 was also significantly huge (18%-85%) without considering possible substitution of conventional energy. Collectively, this study built systematic approaches for assessing prospective marine pollution of PAHs. However, due to the particularity of Shandong Province, i.e., its national predominance of conventional energy consumption, the policy may be more effective when it comes to other coastal areas worldwide, calling for a larger scale research.
Collapse
Affiliation(s)
- Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ruicheng Qi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Mengyu Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Ortmann AC, Cobanli SE, Wohlgeschaffen G, Poon HY, Ryther C, Greer CW, Wasserscheid J, Elias M, Robinson B, King TL. Factors that affect water column hydrocarbon concentrations have minor impacts on microbial responses following simulated diesel fuel spills. MARINE POLLUTION BULLETIN 2023; 194:115358. [PMID: 37567129 DOI: 10.1016/j.marpolbul.2023.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Effects of season and mixing on hydrocarbon concentrations and the microbial community response was explored in a series of mesocosm experiments simulating surface spills of diesel into coastal waters. Mixing of any amount contributed to hydrocarbons entering the water column, but diesel fuel composition had a significant effect on hydrocarbon concentrations. Higher initial concentrations of aromatic hydrocarbons resulted in higher water column concentrations, with minimal differences among seasons due to high variability. Regardless of the concentrations of hydrocarbons, prokaryotes increased and there were higher relative abundances of hydrocarbon affiliated bacteria with indications of biodegradation within 4 d of exposure. As concentrations decreased over time, the eukaryote community shifted from the initial community to one which appeared to be composed of organisms with some resilience to hydrocarbons. This series of experiments demonstrates the wide range of conditions under which natural attenuation of diesel fuel is an effective response.
Collapse
Affiliation(s)
- Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada.
| | - Susan E Cobanli
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Ho Yin Poon
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Camilla Ryther
- Dalhousie University, 6299 South Street, Halifax, NS B3H 4R2, Canada
| | - Charles W Greer
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Jessica Wasserscheid
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Miria Elias
- National Research Council of Canada, Energy, Mining and Environment Research Centre, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
| | - Brian Robinson
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| | - Thomas L King
- Centre for Offshore Oil, Gas and Energy Research, Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada
| |
Collapse
|
12
|
Yamini V, Rajeswari VD. Metabolic capacity to alter polycyclic aromatic hydrocarbons and its microbe-mediated remediation. CHEMOSPHERE 2023; 329:138707. [PMID: 37068614 DOI: 10.1016/j.chemosphere.2023.138707] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
The elimination of contaminants caused by anthropogenic activities and rapid industrialization can be accomplished using the widely used technology of bioremediation. Recent years have seen significant advancement in our understanding of the bioremediation of coupled polycyclic aromatic hydrocarbon contamination caused by microbial communities including bacteria, algae, fungi, yeast, etc. One of the newest techniques is microbial-based bioremediation because of its greater productivity, high efficiency, and non-toxic approach. Microbes are appealing candidates for bioremediation because they have amazing metabolic capacity to alter most types of organic material and can endure harsh environmental conditions. Microbes have been characterized as extremophiles that can survive in a variety of environmental circumstances, making them the treasure troves for environmental cleanup and the recovery of contaminated soil. In this study, the mechanisms underlying the bioremediation process as well as the current situation of microbial bioremediation of polycyclic aromatic hydrocarbon are briefly described.
Collapse
Affiliation(s)
- V Yamini
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
13
|
Stoyanovich SS, Saunders LJ, Yang Z, Hanson ML, Hollebone BP, Orihel DM, Palace V, Rodriguez-Gil JL, Mirnaghi FS, Shah K, Blais JM. Chemical Weathering Patterns of Diluted Bitumen Spilled into Freshwater Limnocorrals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37267462 DOI: 10.1021/acs.est.2c05468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Due to the sudden nature of oil spills, few controlled studies have documented how oil weathers immediately following accidental release into a natural lake environment. Here, we evaluated the weathering patterns of Cold Lake Winter Blend, a diluted bitumen (dilbit) product, by performing a series of controlled spills into limnocorrals installed in a freshwater lake in Northern Ontario, Canada. Using a regression-based design, we added seven different dilbit volumes, ranging from 1.5 to 180 L, resulting in oil-to-water ratios between 1:71,000 (v/v) and 1:500 (v/v). We monitored changes in the composition of various petroleum hydrocarbons (PHCs), including n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and oil biomarkers in dilbit over time, as it naturally weathered for 70 days. Depletion rate constants (kD) of n-alkanes and PAHs ranged from 0.0009 to 0.41 d-1 and 0.0008 to 0.38 d-1, respectively. There was no significant relationship between kD and spill volume, suggesting that spill size did not influence the depletion of petroleum hydrocarbons from the slick. Diagnostic ratios calculated from concentrations of n-alkanes, isoprenoids, and PAHs indicated that evaporation and photooxidation were major processes contributing to dilbit weathering, whereas dissolution and biodegradation were less important. These results demonstrate the usefulness of large scale field studies carried out under realistic environmental conditions to elucidate the role of different weathering processes following a dilbit spill.
Collapse
Affiliation(s)
| | | | - Zeyu Yang
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bruce P Hollebone
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Diane M Orihel
- Department of Biology and School of Environmental Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Vince Palace
- International Institute for Sustainable Development, Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba R3N 0T4, Canada
| | - Jose L Rodriguez-Gil
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- International Institute for Sustainable Development, Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba R3N 0T4, Canada
| | - Fatemeh S Mirnaghi
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | - Keval Shah
- Emergencies Science and Technology Section, Environment and Climate Change Canada, Ottawa, Ontario K1V 1C7, Canada
| | | |
Collapse
|
14
|
Cavazzoli S, Squartini A, Sinkkonen A, Romantschuk M, Rantalainen AL, Selonen V, Roslund MI. Nutritional additives dominance in driving the bacterial communities succession and bioremediation of hydrocarbon and heavy metal contaminated soil microcosms. Microbiol Res 2023; 270:127343. [PMID: 36841130 DOI: 10.1016/j.micres.2023.127343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Soil quality and microbial diversity are essential to the health of ecosystems. However, it is unclear how the use of eco-friendly natural additives can improve the quality and microbial diversity of contaminated soils. Herein, we used high-throughput 16 S rDNA amplicon Illumina sequencing to evaluate the stimulation and development of microbial diversity and concomitant bioremediation in hydrocarbon (HC) and heavy metal (HM)-rich waste disposal site soil when treated with meat and bone meal (MBM), cyclodextrin (Cdx), and MBM and cyclodextrin mixture (Cdx MBM) over a period of 3 months. Results showed that natural additive treatments significantly increased the soil bacterial diversity (higher Shannon index, Simpson index and evenness) in a time-dependent manner, with Cdx eliciting the greatest enhancement. The two additives influenced the bacterial community succession patterns differently. MBM, while it enhanced the enrichment of specific genera Chitinophaga and Terrimonas, did not significantly alter the total bacterial community. In contrast, Cdx or Cdx MBM promoted a profound change of the bacteria community over time, with the enrichment of the genera Parvibaculum, Arenimonas and unclassified Actinobacteria. These results provide evidence on the involvement of the two natural additives in coupling HC and HM bioremediation and bacterial community perturbations, and thus illustrates their potential application in ecologically sound bioremediation technologies for contaminated soils.
Collapse
Affiliation(s)
- Simone Cavazzoli
- Department of Civil, Environmental and Mechanical Engineering, DICAM, University of Trento, Via Mesiano 77, 38123 Trento, Italy; Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland.
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Natural Resources Institute Finland, Luke, Horticulture Technologies, Turku, Helsinki, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Ville Selonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Marja I Roslund
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland; Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università 16, Legnaro 35020, Italy
| |
Collapse
|
15
|
Dela Cruz M, Svenningsen NB, Nybroe O, Müller R, Christensen JH. Removal of a complex VOC mixture by potted plants-effects on soil microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55372-55381. [PMID: 36890406 DOI: 10.1007/s11356-023-26137-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Microorganisms in the soil of potted plants are important for removal of volatile organic compounds (VOCs) from indoor air, but little is known about the subject. The aim of this study was therefore to obtain a better understanding of the effect of VOCs on the microbial community in potted plants. Hedera helix was exposed to gasoline vapors under dynamic chamber conditions for 21 days and three main parameters were investigated. These were (1) removal of the target compounds heptane, 3-methylhexane, benzene, toluene, ethylbenzene, m,p-xylene, and naphthalene from the gasoline mixture; (2) toluene mineralization; and (3) bacterial abundance and bacterial community structure. H. helix was able to reduce the concentration of the target compounds in the continuously emitted gasoline by 25-32%, except for naphthalene, which was too low in concentration. The soil microcosm of gasoline exposed plants had for an initial 66 h increased toluene mineralization rate compared to the soil microcosm in the soil of plants exposed to clean air. Bacterial abundance was decreased in response to gasoline exposure while bacterial community structure was changed. The change in bacterial community structure was, however, different between the two experiments indicating that several taxonomic units can degrade gasoline components. Especially the genera Rhodanobacter and Pseudonorcardia significantly increased in abundance in response to gasoline vapors. Bauldia, Devosia, and Bradyrhizobium, on the other hand, decreased.
Collapse
Affiliation(s)
- Majbrit Dela Cruz
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C., Denmark.
| | - Nanna B Svenningsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C., Denmark
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C., Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 30, 2630, Taastrup, Denmark
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C., Denmark
| |
Collapse
|
16
|
Sun J, Wang F, Jia X, Wang X, Xiao X, Dong H. Research progress of bio-slurry remediation technology for organic contaminated soil. RSC Adv 2023; 13:9903-9917. [PMID: 37034448 PMCID: PMC10076817 DOI: 10.1039/d2ra06106f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Bio-slurry remediation technology, as a controllable bioremediation method, has the significant advantage of high remediation efficiency and can effectively solve the problems of high energy consumption and secondary pollution of traditional organic pollution site remediation technology. To further promote the application of this technology in the remediation of organically polluted soil, this paper summarizes the importance and advantages of bio-slurry remediation technology compared with traditional soil remediation technologies (physical, chemical, and biological). It introduces the technical infrastructure and its technological processes. Then, various factors that may affect its remediation performance are discussed. By analyzing the applications of this technology to the remediation of typical organic pollutant-(polycyclic aromatic hydrocarbons(PAHs), polychlorinated biphenyls(PCBs), total petroleum hydrocarbons(TPH), and pesticide) contaminated sites, the following key features of this remediation technology are summarised: (1) the technology has a wide range of applications and can be used in a versatile way in the remediation projects of various types of organic-contaminated soil sites such as in clay, sand, and high organic matter content soil; (2) the technology is highly controllable. Adjusting environmental parameters and operational conditions, such as nutrients, organic carbon sources (bio-stimulation), inoculants (bio-augmentation), water-to-soil ratio, etc., can control the remediation process, thus improving the restoration performance. To sum up, this bio-slurry remediation technology is an efficient, controllable and green soil remediation technology that has broad application prospects.
Collapse
Affiliation(s)
- Jing Sun
- Environmental Science and Engineering, Qilu University of Technology Jinan 250353 China
| | - Fujia Wang
- Environmental Science and Engineering, Qilu University of Technology Jinan 250353 China
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xiaohan Jia
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xiaowei Wang
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Xinxin Xiao
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| | - Huaijin Dong
- Environmental Testing and Experiment Center, Chinese Research Academy of Environmental Sciences Beijing 100012 China
| |
Collapse
|
17
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
18
|
Lawrinenko M, Kurwadkar S, Wilkin RT. Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation - A mechanistic approach. GEOSCIENCE FRONTIERS 2023; 14:1-13. [PMID: 36760680 PMCID: PMC9903902 DOI: 10.1016/j.gsf.2022.101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
Collapse
Affiliation(s)
- Michael Lawrinenko
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| | - Sudarshan Kurwadkar
- Department of Civil and Environmental Engineering, California State University, 800 N. State College Blvd., Fullerton, CA 92831, USA
| | - Richard T. Wilkin
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA
| |
Collapse
|
19
|
Dynamics and prevalence of specific hydrocarbonoclastic bacterial population with respect to nutrient treatment levels in crude oil sludge. Arch Microbiol 2022; 204:708. [DOI: 10.1007/s00203-022-03323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
20
|
Liu H, Huang X, Fan X, Wang Q, Liu Y, Wei H, He J. Phytoremediation of crude oil-contaminated sediment using Suaeda heteroptera enhanced by Nereis succinea and oil-degrading bacteria. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:322-328. [PMID: 36444773 DOI: 10.1080/15226514.2022.2083576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A 150-day experiment was performed to investigate the stimulatory effect of a promising phytoremediation strategy consisting of Suaeda heteroptera (S. heteroptera), Nereis succinea (N. succinea), and oil-degrading bacteria for cleaning up total petroleum hydrocarbons (TPHs) in spiked sediment. Inoculation with oil-degrading bacteria and/or N. succinea increased plant yield and TPH accumulation in S. heteroptera plants. The highest TPH dissipation (40.5%) was obtained in the combination treatment, i.e., S. heteroptera + oil-degrading bacteria + N. succinea, in which the sediment TPH concentration decreased from an initial value of 3955 to 2355 mg/kg in 150 days. BAF, BCF, and TF confirmed the role of N. succinea and oil-degrading bacteria in the amelioration and translocation of TPHs. In addition, TPH toxicity of S. heteroptera was alleviated by N. succinea and oil-degrading bacteria addition through the reduction of oxidative stress. Therefore, S. heteroptera could be used for cleaning up oil-contaminated sediment, particularly in the presence of oil-degrading bacteria + N. succinea. Field studies on oil-degrading bacteria + N. succinea may provide new insights on the rehabilitation and restoration of sediments contaminated by TPHs.
Collapse
Affiliation(s)
- Huan Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Xin Huang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Xiaoru Fan
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Qingzhi Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Yuan Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Haifeng Wei
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| | - Jie He
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, PR China
- Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, PR China
| |
Collapse
|
21
|
Zając E, Fabiańska MJ, Jędrszczyk E, Skalski T. Hydrocarbon Degradation and Microbial Survival Improvement in Response to γ-Polyglutamic Acid Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15066. [PMID: 36429785 PMCID: PMC9690351 DOI: 10.3390/ijerph192215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
To improve the environmental sustainability of cleanup activities of contaminated sites there is a need to develop technologies that minimize soil and habitat disturbances. Cleanup technologies, such as bioremediation, are based on biological products and processes, and they are important for the future of our planet. We studied the potential of γ-poly glutamic acid (PGA) as a natural component of biofilm produced by Bacillus sp. to be used for the decomposition of petroleum products, such as heavy naphtha (N), lubricating oil (O), and grease (G). The study aimed to assess the impact of the use of different concentrations of PGA on the degradation process of various fractions of petroleum hydrocarbons (PH) and its effect on bacterial population growth in harsh conditions of PH contamination. In laboratory conditions, four treatments of PGA with each of the petroleum products (N, O, and G) were tested: PGA0 (reference), PGA1 (1% PGA), PGA1B (1% PGA with Bacillus licheniformis), and PGA10 (10% PGA). After 7, 28, 56, and 112 days of the experiment, the percentage yield extraction, hydrocarbon mass loss, geochemical ratios, pH, electrical conductivity, and microorganisms survival were determined. We observed an increase in PH removal, reflected as a higher amount of extraction yield (growing with time and reaching about 11% in G) and loss of hydrocarbon mass (about 4% in O and G) in all treatments of the PGA compared to the reference. The positive degradation impact was intensive until around day 60. The PH removal stimulation by PGA was also reflected by changes in the values of geochemical ratios, which indicated that the highest rate of degradation was at the initial stage of the process. In general, for the stimulation of PH removal, using a lower (1%) concentration of PGA resulted in better performance than a higher concentration (10%). The PH removal facilitated by PGA is related to the anionic homopoliamid structure of the molecule and its action as a surfactant, which leads to the formation of micelles and the gradual release of PH absorbed in the zeolite carrier. Moreover, the protective properties of PGA against the extinction of bacteria under high concentrations of PH were identified. Generally, the γ-PGA biopolymer helps to degrade the hydrocarbon pollutants and stabilize the environment suitable for microbial degraders development.
Collapse
Affiliation(s)
- Ewelina Zając
- Department of Land Reclamation and Environmental Development, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland
| | - Monika J. Fabiańska
- Faculty of Earth Sciences, University of Silesia, 60 Będzińska Street, 41-200 Sosnowiec, Poland
| | - Elżbieta Jędrszczyk
- Department of Vegetable and Medicinal Plants, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 45, 31-425 Krakow, Poland
| | - Tomasz Skalski
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| |
Collapse
|
22
|
Gidudu B, Chirwa EMN. The Role of pH, Electrodes, Surfactants, and Electrolytes in Electrokinetic Remediation of Contaminated Soil. Molecules 2022; 27:7381. [PMID: 36364207 PMCID: PMC9657640 DOI: 10.3390/molecules27217381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Electrokinetic remediation has, in recent years, shown great potential in remediating polluted environments. The technology can efficiently remove heavy metals, chlorophenols, polychlorinated biphenyls, phenols, trichloroethane, benzene, toluene, ethylbenzene, and xylene (BTEX) compounds and entire petroleum hydrocarbons. Electrokinetic remediation makes use of electrolysis, electroosmosis, electrophoresis, diffusion, and electromigration as the five fundamental processes in achieving decontamination of polluted environments. These five processes depend on pH swings, voltage, electrodes, and electrolytes used in the electrochemical system. To apply this technology at the field scale, it is necessary to pursue the design of effective processes with low environmental impact to meet global sustainability standards. It is, therefore, imperative to understand the roles of the fundamental processes and their interactions in achieving effective and sustainable electrokinetic remediation in order to identify cleaner alternative solutions. This paper presents an overview of different processes involved in electrokinetic remediation with a focus on the effect of pH, electrodes, surfactants, and electrolytes that are applied in the remediation of contaminated soil and how these can be combined with cleaner technologies or alternative additives to achieve sustainable electrokinetic remediation. The electrokinetic phenomenon is described, followed by an evaluation of the impact of pH, surfactants, voltage, electrodes, and electrolytes in achieving effective and sustainable remediation.
Collapse
|
23
|
Guo S, Toth CRA, Luo F, Chen X, Xiao J, Edwards EA. Transient Oxygen Exposure Causes Profound and Lasting Changes to a Benzene-Degrading Methanogenic Community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13036-13045. [PMID: 36083837 PMCID: PMC9496526 DOI: 10.1021/acs.est.2c02624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
We investigated the impact of oxygen on a strictly anaerobic, methanogenic benzene-degrading enrichment culture derived decades ago from oil-contaminated sediment. The culture includes a benzene fermenter from Deltaproteobacteria candidate clade Sva0485 (referred to as ORM2) and methanogenic archaea. A one-time injection of 0.1 mL air , simulating a small leak into 30 mL batch culture bottle, had no measurable impact on benzene degradation rates, although retrospectively, a tiny enrichment of aerobic taxa was detected. A subsequent 100 times larger injection of air stalled methanogenesis and caused drastic perturbation of the microbial community. A benzene-degrading Pseudomonas became highly enriched and consumed all available oxygen. Anaerobic benzene-degrading ORM2 cell numbers plummeted during this time; re-growth and associated recovery of methanogenic benzene degradation took almost 1 year. These results highlight the oxygen sensitivity of this methanogenic culture and confirm that the mechanism for anaerobic biotransformation of benzene is independent of oxygen, fundamentally different from established aerobic pathways, and is carried out by distinct microbial communities. The study also highlights the importance of including microbial decay in characterizing and modeling mixed microbial communities.
Collapse
Affiliation(s)
| | | | | | - Xu Chen
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Johnny Xiao
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A. Edwards
- Department of Chemical Engineering
and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
24
|
Ganesan M, Mani R, Sai S, Kasivelu G, Awasthi MK, Rajagopal R, Wan Azelee NI, Selvi PK, Chang SW, Ravindran B. Bioremediation by oil degrading marine bacteria: An overview of supplements and pathways in key processes. CHEMOSPHERE 2022; 303:134956. [PMID: 35588873 DOI: 10.1016/j.chemosphere.2022.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Oil spillage is one of the most common pollutants which brings greater economic loss and damage to the environment. The intensity and amount of the damage may vary depending on factors such as the type of oil, the location of the spill, and the climatic parameters in the area. As for any pollution management, the guidelines are Reduce, Re-use, Recover and Disposal. Amongst the other remediation processes, Bioremediation is amongst the most significant environmentally friendly and cost-effective approaches for marine biological restoration because it allows complex petroleum hydrocarbons in spilt oil to decompose completely into harmless compounds. Mainly, the necessity and essence of bioremediation were talked about. This review discussed the bacteria identified which are capable of degrading various oil related pollutants and their components. Also, it covered the various media components used for screening and growing the oil degrading bacteria and the pathways that are associated with oil degradation. This article also reviewed the recent research carried out related to the oil degrading bacteria.
Collapse
Affiliation(s)
- Mirunalini Ganesan
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ravi Mani
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sakthinarenderan Sai
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Col. Dr. Jeppiaar Ocean Research Field Facility, ESTC Cell Marine Biotechnology, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, PR China.
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Nur Izyan Wan Azelee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia
| | - P K Selvi
- Central Pollution Control Board, Nisarga Bhawan, Shivanagar, Bengaluru, India
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India.
| |
Collapse
|
25
|
Carvalho ACB, Moreira VA, Vicente MDC, Bidone ED, Bernardes MC, Sabadini-Santos E. Sterol and PAHs fingerprint analysis of organic matter at Southeast Brazilian Bay. MARINE POLLUTION BULLETIN 2022; 181:113899. [PMID: 35839664 DOI: 10.1016/j.marpolbul.2022.113899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Southeast Brazilian bays have been increasingly degraded by untreated organic loads. Therefore, to assess fecal contamination status, sediment quality regarding polycyclic aromatic hydrocarbons (PAHs), and sources of organic matter (OM), we have determined fine-grained and total organic carbon (TOC) content and concentrations of PAHs and sterols in twenty-six surface sediment samples in Sepetiba Bay. The fine-grained (1-26 %), TOC (0.20-3.45 %), PAHs (<LQ - 78.27 ng g-1) and sterols (0.10-21.58 μg g-1) results showed a decreasing trend from the internal to the external sector of the study area. The diagnostic ratios of selected PAHs and sterols indicated a mixture with significant contribution from continental and pyrolytic OM in all stations. The fecal contamination is significant to the internal sector of Sepetiba Bay. Considering a site-specific sediment quality guidelines (SQGs) the PAHs levels with more restricted benchmark values indicate the harbor and the internal sector as contaminated.
Collapse
Affiliation(s)
- Angelo C B Carvalho
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil.
| | - Vanessa A Moreira
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Murilo de C Vicente
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Edison Dausacker Bidone
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Marcelo C Bernardes
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| | - Elisamara Sabadini-Santos
- Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense - UFF, 24.020-141 Niterói, RJ, Brazil
| |
Collapse
|
26
|
Cavazzoli S, Selonen V, Rantalainen AL, Sinkkonen A, Romantschuk M, Squartini A. Dataset on bio-stimulation experiments for the removal of hydrocarbons and the monitoring of certain elements in a contaminated soil. Data Brief 2022; 43:108487. [PMID: 35959162 PMCID: PMC9357847 DOI: 10.1016/j.dib.2022.108487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
Meat and Bone Meal (MBM) and β-cyclodextrin were added to a soil sample co-contaminated by hydrocarbons (diesel fraction C10-C21 and lubricant oil fraction C22-C40) and heavy metals to promote soil remediation. The pilot study was conducted in the laboratory, maintaining optimal conditions (i.e., temperature, pH, water content, soil aeration) to facilitate hydrocarbon biodegradation. Two different experimental tests were prepared: one for the analysis of hydrocarbons in soil, the other to monitor the dynamics of some elements of interest. For the first test, the two hydrocarbon fractions in the soil were quantified separately by GC-FID, following the ISO 16703:2004(E) standard protocol. Sampling and analysis were done every two weeks, for three consecutive months. For the second test (dynamics of certain elements in the soil), soil and leachate samples were analyzed by ICP-MS after appropriate pretreatment steps.
Collapse
Affiliation(s)
- Simone Cavazzoli
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123, Trento, Italy
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
- Corresponding author. @SimoCava91
| | - Ville Selonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Anna-Lea Rantalainen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Aki Sinkkonen
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
- Natural Resources Institute Finland Luke, Itäinen Pitkäkatu 4 A, Turku 20520, Finland
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, Lahti FI-15140, Finland
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università, 16 - 35020 Legnaro, Veneto, Italy (PD)
| |
Collapse
|
27
|
Microbial Communities of Seawater and Coastal Soil of Russian Arctic Region and Their Potential for Bioremediation from Hydrocarbon Pollutants. Microorganisms 2022; 10:microorganisms10081490. [PMID: 35893548 PMCID: PMC9332119 DOI: 10.3390/microorganisms10081490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
The development of Arctic regions leads to pollution of marine and coastal environments with oil and petroleum products. The purpose of this work was to determine the diversity of microbial communities in seawater, as well as in littoral and coastal soil, and the potential ability of their members to degrade hydrocarbons degradation and to isolate oil-degrading bacteria. Using high-throughput sequencing of the V4 region of the 16S rRNA gene, the dominance of bacteria in polar communities was shown, the proportion of archaea did not exceed 2% (of the total number of sequences in the libraries). Archaea inhabiting the seawater belonged to the genera Nitrosopumilus and Nitrosoarchaeum and to the Nitrososphaeraceae family. In the polluted samples, members of the Gammaproteobacteria, Alphaproteobacteria, and Actinomycetes classes predominated; bacteria of the classes Bacteroidia, Clostridia, Acidimicrobiia, Planctomycetia, and Deltaproteobacteria were less represented. Using the iVikodak program and KEGG database, the potential functional characteristics of the studied prokaryotic communities were predicted. Bacteria were potentially involved in nitrogen and sulfur cycles, in degradation of benzoate, terephthalate, fatty acids, and alkanes. A total of 19 strains of bacteria of the genera Pseudomonas, Aeromonas, Oceanisphaera, Shewanella, Paeniglutamicibacter, and Rhodococcus were isolated from the studied samples. Among them were psychrotolerant and psychrophilic bacteria growing in seawater and utilizing crude oil, diesel fuel, and motor oils. The data obtained suggest that the studied microbial communities could participate in the removal of hydrocarbons from arctic seawater and coastal soils and suggested the possibility of the application of the isolates for the bioaugmentation of oil-contaminated polar environments.
Collapse
|
28
|
Apul OG, Arrowsmith S, Hall CA, Miranda EM, Alam F, Dahlen P, Sra K, Kamath R, McMillen SJ, Sihota N, Westerhoff P, Krajmalnik-Brown R, Delgado AG. Biodegradation of petroleum hydrocarbons in a weathered, unsaturated soil is inhibited by peroxide oxidants. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128770. [PMID: 35364529 DOI: 10.1016/j.jhazmat.2022.128770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.
Collapse
Affiliation(s)
- Onur G Apul
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Sarah Arrowsmith
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Caitlyn A Hall
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA
| | - Evelyn M Miranda
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Fabiha Alam
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Paul Dahlen
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Kanwartej Sra
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Roopa Kamath
- Chevron Technical Center (a Chevron USA Inc. division), Houston, TX, USA
| | - Sara J McMillen
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Natasha Sihota
- Chevron Technical Center (a Chevron USA Inc. division), San Ramon, CA, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
29
|
Natural Source Zone Depletion (NSZD) Quantification Techniques: Innovations and Future Directions. SUSTAINABILITY 2022. [DOI: 10.3390/su14127027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural source zone depletion (NSZD) is an emerging technique for sustainable and cost-effective bioremediation of light non-aqueous phase liquid (LNAPL) in oil spill sites. Depending on regulatory objectives, NSZD has the potential to be used as either the primary or sole LNAPL management technique. To achieve this goal, NSZD rate (i.e., rate of bulk LNAPL mass depletion) should be quantified accurately and precisely. NSZD has certain characteristic features that have been used as surrogates to quantify the NSZD rates. This review highlights the most recent trends in technology development for NSZD data collection and rate estimation, with a focus on the operational and technical advantages and limitations of the associated techniques. So far, four principal techniques are developed, including concentration gradient (CG), dynamic closed chamber (DCC), CO2 trap and thermal monitoring. Discussions revolving around two techniques, “CO2 trap” and “thermal monitoring”, are expanded due to the particular attention to them in the current industry. The gaps of knowledge relevant to the NSZD monitoring techniques are identified and the issues which merit further research are outlined. It is hoped that this review can provide researchers and practitioners with sufficient information to opt the best practice for the research and application of NSZD for the management of LNAPL impacted sites.
Collapse
|
30
|
|
31
|
Kalia A, Sharma S, Semor N, Babele PK, Sagar S, Bhatia RK, Walia A. Recent advancements in hydrocarbon bioremediation and future challenges: a review. 3 Biotech 2022; 12:135. [PMID: 35620568 PMCID: PMC9127022 DOI: 10.1007/s13205-022-03199-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/04/2022] [Indexed: 11/01/2022] Open
Abstract
Petrochemicals are important hydrocarbons, which are one of the major concerns when accidently escaped into the environment. On one hand, these cause soil and fresh water pollution on land due to their seepage and leakage from automobile and petrochemical industries. On the other hand, oil spills occur during the transport of crude oil or refined petroleum products in the oceans around the world. These hydrocarbon and petrochemical spills have not only posed a hazard to the environment and marine life, but also linked to numerous ailments like cancers and neural disorders. Therefore, it is very important to remove or degrade these pollutants before their hazardous effects deteriorate the environment. There are varieties of mechanical and chemical methods for removing hydrocarbons from polluted areas, but they are all ineffective and expensive. Bioremediation techniques provide an economical and eco-friendly mechanism for removing petrochemical and hydrocarbon residues from the affected sites. Bioremediation refers to the complete mineralization or transformation of complex organic pollutants into the simplest compounds by biological agents such as bacteria, fungi, etc. Many indigenous microbes present in nature are capable of detoxification of various hydrocarbons and their contaminants. This review presents an updated overview of recent advancements in various technologies used in the degradation and bioremediation of petroleum hydrocarbons, providing useful insights to manage such problems in an eco-friendly manner.
Collapse
Affiliation(s)
- Arun Kalia
- Center for Environmental Science and Technology, Central University of Punjab, Bhatinda, 151001 India
| | - Samriti Sharma
- Department of Biotechnology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, India
| | - Nisha Semor
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
| | - Piyoosh Kumar Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003 Uttar Pradesh India
| | - Shweta Sagar
- Department of Microbiology, College of Basic Sciences, CSKHPKV, Palampur, 176062 Himachal Pradesh India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005 India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSKHPKV, Palampur, 176062 Himachal Pradesh India
| |
Collapse
|
32
|
Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128201. [PMID: 34999399 DOI: 10.1016/j.jhazmat.2021.128201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.
Collapse
|
33
|
Sattar S, Siddiqui S, Shahzad A, Bano A, Naeem M, Hussain R, Khan N, Jan BL, Yasmin H. Comparative Analysis of Microbial Consortiums and Nanoparticles for Rehabilitating Petroleum Waste Contaminated Soils. Molecules 2022; 27:molecules27061945. [PMID: 35335306 PMCID: PMC8951462 DOI: 10.3390/molecules27061945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
Nano-bioremediation application is an ecologically and environmentally friendly technique to overcome the catastrophic situation in soil because of petroleum waste contamination. We evaluated the efficiency of oil-degrading bacterial consortium and silver nanoparticles (AgNPs) with or without fertilizer to remediate soils collected from petroleum waste contaminated oil fields. Physicochemical characteristics of control soil and petroleum contaminated soils were assessed. Four oil-degrading strains, namely Bacillus pumilus (KY010576), Exiguobacteriaum aurantiacum (KY010578), Lysinibacillus fusiformis (KY010586), and Pseudomonas putida (KX580766), were selected based on their in vitrohydrocarbon-degrading efficiency. In a lab experiment, contaminated soils were treated alone and with combined amendments of the bacterial consortium, AgNPs, and fertilizers (ammonium nitrate and diammonium phosphate). We detected the degradation rate of total petroleum hydrocarbons (TPHs) of the soil samples with GC-FID at different intervals of the incubation period (0, 5, 20, 60, 240 days). The bacterial population (CFU/g) was also monitored during the entire period of incubation. The results showed that 70% more TPH was degraded with a consortium with their sole application in 20 days of incubation. There was a positive correlation between TPH degradation and the 100-fold increase in bacterial population in contaminated soils. This study revealed that bacterial consortiums alone showed the maximum increase in the degradation of TPHs at 20 days. The application of nanoparticles and fertilizer has non-significant effects on the consortium degradation potential. Moreover, fertilizer alone or in combination with AgNPs and consortium slows the rate of degradation of TPHs over a short period. Still, it subsequently accelerates the rate of degradation of TPHs, and a negligible amount remains at the end of the incubation period.
Collapse
Affiliation(s)
- Shehla Sattar
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan; (S.S.); (R.H.)
- Department of Environmental Sciences, University of Swabi, Swabi 23561, Pakistan
- Correspondence: (S.S.); (H.Y.)
| | - Samina Siddiqui
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan; (S.S.); (R.H.)
| | - Asim Shahzad
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif 12080, Pakistan;
- College of Geography and Environment, Henan University, Jinming Ave, Kaifeng 475004, China
| | - Asghari Bano
- Department of Bio-Sciences, Quaid Avenue University of Wah, Wah 47000, Pakistan;
| | - Muhammad Naeem
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, Pakistan;
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Rahib Hussain
- National Centre of Excellence in Geology, University of Peshawar, Peshawar 25130, Pakistan; (S.S.); (R.H.)
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Correspondence: (S.S.); (H.Y.)
| |
Collapse
|
34
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Romo-Enríquez NP, Ignacio de la Cruz JL, Villegas-Moreno J, Sánchez-Yáñez JM. Saccharomyces exiguus utiliza queroseno como fuente de carbono y energía. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Field Test of In Situ Groundwater Treatment Applying Oxygen Diffusion and Bioaugmentation Methods in an Area with Sustained Total Petroleum Hydrocarbon (TPH) Contaminant Flow. WATER 2022. [DOI: 10.3390/w14020192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contamination of groundwater by petroleum hydrocarbons is a widespread environmental problem in many regions. Contamination of unsaturated and saturated zones could also pose a significant risk to human health. The main purpose of the study was to assess the efficiency of biodegradation of total petroleum hydrocarbon (TPH) in situ, in an area with loam and sandy loam soils, and to identify features and characteristics related to groundwater treatment in an area with a persistent flow of pollutants. We used methods of biostimulation (oxygen as stimulatory supplement) and bioaugmentation to improve water quality. Oxygen was added to the groundwater by diffusion through silicone tubing. The efficiency of groundwater treatment was determined by detailed monitoring. Implementation of the applied measure resulted in an average reduction in TPH concentration of 73.1% compared with the initial average concentration (4.33 mg/L), and in the local area, TPH content was reduced by 95.5%. The authors hope that this paper will contribute to a better understanding of the topic of groundwater treatment by in situ biodegradation of TPH. Further studies on this topic are particularly needed to provide more data and details on the efficiency of groundwater treatment under adverse geological conditions.
Collapse
|
37
|
Ellis M, Altshuler I, Schreiber L, Chen YJ, Okshevsky M, Lee K, Greer CW, Whyte LG. Hydrocarbon biodegradation potential of microbial communities from high Arctic beaches in Canada's Northwest Passage. MARINE POLLUTION BULLETIN 2022; 174:113288. [PMID: 35090274 DOI: 10.1016/j.marpolbul.2021.113288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Sea ice loss is opening shipping routes in Canada's Northwest Passage, increasing the risk of an oil spill. Harnessing the capabilities of endemic microorganisms to degrade oil may be an effective remediation strategy for contaminated shorelines; however, limited data exists along Canada's Northwest Passage. In this study, hydrocarbon biodegradation potential of microbial communities from eight high Arctic beaches was assessed. Across high Arctic beaches, community composition was distinct, potential hydrocarbon-degrading genera were detected and microbial communities were able to degrade hydrocarbons (hexadecane, naphthalene, and alkanes) at low temperature (4 °C). Hexadecane and naphthalene biodegradation were stimulated by nutrients, but nutrients had little effect on Ultra Low Sulfur Fuel Oil biodegradation. Oiled microcosms showed a significant enrichment of Pseudomonas and Rhodococcus. Nutrient-amended microcosms showed increased abundances of key hydrocarbon biodegradation genes (alkB and CYP153). Ultimately, this work provides insight into hydrocarbon biodegradation on Arctic shorelines and oil-spill remediation in Canada's Northwest Passage.
Collapse
Affiliation(s)
- Madison Ellis
- Department of Natural Resource Sciences, McGill University, Quebec, Canada.
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Faculty of Biosciences, Norwegian University of Life Sciences NMBU, Ås, Norway
| | - Lars Schreiber
- Energy, Mining and Environment Research Centre, National Research Council of Canada, Quebec, Canada
| | - Ya-Jou Chen
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| | - Mira Okshevsky
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Department of Human Health Therapeutics Research Centre, National Research Council of Canada, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill University, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council of Canada, Quebec, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Quebec, Canada
| |
Collapse
|
38
|
Shapiro TN, Lobakova ES, Dolnikova GA, Ivanova EA, Sandzhieva DA, Burova AA, Dzhabrailova KS, Dedov AG. Community of Hydrocarbon-Oxidizing Bacteria in Petroleum Products on the Example of TS-1 Jet Fuel and AI-95 Gasoline. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821090076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Manucharova NA, Bolshakova MA, Babich TL, Tourova TP, Semenova EM, Yanovich AS, Poltaraus AB, Stepanov AL, Nazina TN. Microbial Degraders of Petroleum and Polycyclic Aromatic Hydrocarbons from Sod-Podzolic Soil. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721060096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Bioremediation of Polycyclic Aromatic Hydrocarbons from Industry Contaminated Soil Using Indigenous Bacillus spp. Processes (Basel) 2021. [DOI: 10.3390/pr9091606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are reportedly toxic, ubiquitous and organic compounds that can persist in the environment and are released largely due to the incomplete combustion of fossil fuel. There is a range of microorganisms that are capable of degrading low molecular weight PAHs, such as naphthalene; however, fewer were reported to degrade higher molecular weight PAHs. Bacillus spp. has shown to be effective in neutralizing polluted streams containing hydrocarbons. Following the growing regulatory requirement to meet the PAH specification upon disposal of contaminated soil, the following study aimed to identify potential Bacillus strains that could effectively remediate low and high molecular weight PAHs from the soil. Six potential hydrocarbon-degrading strains were formulated into two prototypes and tested for the ability to remove PAHs from industry-contaminated soil. Following the dosing of each respective soil system with prototypes 1 and 2, the samples were analyzed for PAH concentration over 11 weeks against an un-augmented control system. After 11 weeks, the control system indicated the presence of naphthalene (3.11 µg·kg−1), phenanthrene (24.47 µg·kg−1), fluoranthene (17.80 µg·kg−1) and pyrene (28.92 µg·kg−1), which illustrated the recalcitrant nature of aromatic hydrocarbons. The soil system dosed with prototype 2 was capable of completely degrading (100%) naphthalene, phenanthrene and pyrene over the experimental period. However, the accumulation of PAHs, namely phenanthrene, fluoranthene and pyrene, were observed using prototype 1. The results showed that prototype 2, consisting of a combination of Bacillus cereus and Bacillus subtilis strains, was more effective in the biodegradation of PAHs and intermediate products. Furthermore, the bio-augmented system dosed with prototype 2 showed an improvement in the overall degradation (10–50%) of PAHs, naphthalene, phenanthrene and pyrene, over the un-augmented control system. The following study demonstrates the potential of using Bacillus spp. in a bioremediation solution for sites contaminated with PAHs and informs the use of biological additives for large-scale environmental remediation.
Collapse
|
41
|
Li J, Lu Q, Odey EA, Lok KS, Pan B, Zhang Y, Shim H. Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1446-1453. [PMID: 33411164 DOI: 10.1007/s10646-020-02323-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The bioremoval potential of Pseudomonas plecoglossicida toward mixed contaminants was explored through the coupled biostimulation and bioaugmentation in soil microcosm. Response surface methodology was employed to optimize nutrients and innoculum size for the cometabolic removal of two representative chloroethylenes, trichloroethylene (TCE) and cis-1,2-dichloroethylene (cis-DCE), mixed with benzene, toluene, ethylbenzene, and xylenes (BTEX). The interactive effects of nutrients [nitrogen (N) and phosphorus (P)] and inoculum size toward the bioremoval of mixture of BTEX (600 mg kg-1), cis-DCE (10 mg kg-1), and TCE (10 mg kg-1) were estimated using principal component analysis and two-dimensional hierarchical cluster analysis. The optimal condition was confirmed with C:N:P ratio of 100:26.7:1.8-4.8 and higher inoculum size (≥25%), where 97.7% of benzene, 98.3% of toluene, 91.2% of ethylbenzene, 45.6% of m,p-xylene, 31.2% of o-xylene, 26.9% of cis-DCE, and 33.5% of TCE were bioremoved.
Collapse
Affiliation(s)
- Junhui Li
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Qihong Lu
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Emmanuel Alepu Odey
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
| | - Keng Seng Lok
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China
| | - Bingcai Pan
- Department of Environmental Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanyang Zhang
- Department of Environmental Engineering, Nanjing University, Nanjing, 210023, China
| | - Hojae Shim
- Faculty of Science and Technology, Department of Civil and Environmental Engineering, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
42
|
Mindubaev AZ, Babynin EV, Bedeeva EK, Minzanova ST, Mironova LG, Akosah YA. Biological Degradation of Yellow (White) Phosphorus, a Compound of First Class Hazard. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621080155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges. SUSTAINABILITY 2021. [DOI: 10.3390/su13169267] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The petroleum industry’s development has been supported by the demand for petroleum and its by-products. During extraction and transportation, however, oil will leak into the soil, destroying the structure and quality of the soil and even harming the health of plants and humans. Scientists are researching and developing remediation techniques to repair and re-control the afflicted environment due to the health risks and social implications of petroleum hydrocarbon contamination. Remediation of soil contamination produced by petroleum hydrocarbons, on the other hand, is a difficult and time-consuming job. Microbial remediation is a focus for soil remediation because of its convenience of use, lack of secondary contamination, and low cost. This review lists the types and capacities of microorganisms that have been investigated to degrade petroleum hydrocarbons. However, investigations have revealed that a single microbial remediation faces difficulties, such as inconsistent remediation effects and substantial environmental consequences. It is necessary to understand the composition and source of pollutants, the metabolic genes and pathways of microbial degradation of petroleum pollutants, and the internal and external aspects that influence remediation in order to select the optimal remediation treatment strategy. This review compares the degradation abilities of microbial–physical, chemical, and other combination remediation methods, and highlights the degradation capabilities and processes of the greatest microbe-biochar, microbe–nutrition, and microbe–plant technologies. This helps in evaluating and forecasting the chemical behavior of contaminants with both short- and long-term consequences. Although there are integrated remediation strategies for the removal of petroleum hydrocarbons, practical remediation remains difficult. The sources and quantities of petroleum pollutants, as well as their impacts on soil, plants, and humans, are discussed in this article. Following that, the focus shifted to the microbiological technique of degrading petroleum pollutants and the mechanism of the combined microbial method. Finally, the limitations of existing integrated microbiological techniques are highlighted.
Collapse
|
44
|
The Effectiveness of Biostimulation, Bioaugmentation and Sorption-Biological Treatment of Soil Contaminated with Petroleum Products in the Russian Subarctic. Microorganisms 2021; 9:microorganisms9081722. [PMID: 34442801 PMCID: PMC8400976 DOI: 10.3390/microorganisms9081722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
The effectiveness of different bioremediation methods (biostimulation, bioaugmentation, the sorption-biological method) for the restoration of soil contaminated with petroleum products in the Russian Subarctic has been studied. The object of the study includes soil contaminated for 20 years with petroleum products. By laboratory experiment, we established five types of microfungi that most intensively decompose petroleum hydrocarbons: Penicillium canescens st. 1, Penicillium simplicissimum st. 1, Penicillum commune, Penicillium ochrochloron, and Penicillium restrictum. One day after the start of the experiment, 6 to 18% of the hydrocarbons decomposed: at 3 days, this was 16 to 49%; at 7 days, 40 to 73%; and at 10 days, 71 to 87%. Penicillium commune exhibited the greatest degrading activity throughout the experiment. For soils of light granulometric composition with a low content of organic matter, a more effective method of bioremediation is sorption-biological treatment using peat or granulated activated carbon: the content of hydrocarbons decreased by an average of 65%, which is 2.5 times more effective than without treatment. The sorbent not only binds hydrocarbons and their toxic metabolites but is also a carrier for hydrocarbon-oxidizing microorganisms and prevents nutrient leaching from the soil. High efficiency was noted due to the biostimulation of the native hydrocarbon-oxidizing microfungi and bacteria by mineral fertilizers and liming. An increase in the number of microfungi, bacteria and dehydrogenase activity indicate the presence of a certain microbial potential of the soil and the ability of the hydrocarbons to produce biochemical oxidation. The use of the considered methods of bioremediation will improve the ecological state of the contaminated area and further the gradual restoration of biodiversity.
Collapse
|
45
|
Christian WC, Butler TM, Ghannam RB, Webb PN, Techtmann SM. Phylogeny and diversity of alkane-degrading enzyme gene variants in the laurentian great lakes and western atlantic. FEMS Microbiol Lett 2021; 367:5974522. [PMID: 33354724 DOI: 10.1093/femsle/fnaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 11/14/2022] Open
Abstract
Many aquatic environments are at risk for oil contamination and alkanes are one of the primary constituents of oil. The alkane hydroxylase (AlkB) is a common enzyme used by microorganisms to initiate the process of alkane-degradation. While many aspects of alkane bioremediation have been studied, the diversity and evolution of genes involved in hydrocarbon degradation from environmental settings is relatively understudied. The majority of work done to-date has focused on the marine environment. Here we sought to better understand the phylogenetic diversity of alkB genes across marine and freshwater settings using culture-independent methods. We hypothesized that there would be distinct phylogenetic diversity of alkB genes in freshwater relative to the marine environment. Our results confirm that alkB has distinct variants based on environment while our diversity analyses demonstrate that freshwater and marine alkB communities have unique responses to oil amendments. Our results also demonstrate that in the marine environment, depth is a key factor impacting diversity of alkB genes.
Collapse
Affiliation(s)
- William C Christian
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Timothy M Butler
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Ryan B Ghannam
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Paige N Webb
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive Houghton MI 49931 USA
| |
Collapse
|
46
|
Wang DT, Meurer WP, Nguyen TN, Shipman GW, Koenig D. Preservation of oil slick samples on adsorbent Teflon fabric: Potential for deployment aboard autonomous surface vessels. MARINE POLLUTION BULLETIN 2021; 169:112460. [PMID: 34051520 DOI: 10.1016/j.marpolbul.2021.112460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
In this communication, we report results of an experiment in which crude oil adsorbed on Teflon fabric is exposed to conditions expected in natural ocean-surface collection vehicle containers over a period of 3 months. Samples were recovered at designated time points and analyzed to determine degree of preservation of molecular signatures. Ratios of saturate hydrocarbons were preferentially preserved compared to those of aromatic compounds. Unsubstituted aromatic compounds such as naphthalene and dibenzothiophene were removed at higher rates relative to methyl-substituted homologues owing to differences in biodegradability and solubility. Ratios of important marker compounds persist over several months with sufficient fidelity for accurate determination of source-rock facies and thermal maturity. Collection and storage of oil samples on small pieces of adsorbent Teflon mesh broadens the opportunity space for collection of organic geochemistry data. Deployment of automated samplers equipped with such Teflon meshes aboard autonomous surface vehicles and human-operated vessels promises cheaper, better coverage of geochemical data in seep, slick, and spill surveys conducted for research, exploration, monitoring, and emergency response efforts.
Collapse
Affiliation(s)
- David T Wang
- ExxonMobil Upstream Integrated Solutions, 22777 Springwoods Village Parkway, Spring, TX 77389, USA.
| | - William P Meurer
- ExxonMobil Upstream Research Company, 22777 Springwoods Village Parkway, Spring, TX 77389, USA.
| | - Thao N Nguyen
- ExxonMobil Upstream Research Company, 22777 Springwoods Village Parkway, Spring, TX 77389, USA
| | - Gregory W Shipman
- ExxonMobil Upstream Business Development, 22777 Springwoods Village Parkway, Spring, TX 77389, USA
| | - David Koenig
- ExxonMobil Upstream Research Company, 22777 Springwoods Village Parkway, Spring, TX 77389, USA
| |
Collapse
|
47
|
Mamet SD, Jimmo A, Conway A, Teymurazyan A, Talebitaher A, Papandreou Z, Chang YF, Shannon W, Peak D, Siciliano SD. Soil Buffering Capacity Can Be Used To Optimize Biostimulation of Psychrotrophic Hydrocarbon Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9864-9875. [PMID: 34170682 DOI: 10.1021/acs.est.1c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective bioremediation of hydrocarbons requires innovative approaches to minimize phosphate precipitation in soils of different buffering capacities. Understanding the mechanisms underlying sustained stimulation of bacterial activity remains a key challenge for optimizing bioremediation-particularly in northern regions. Positron emission tomography (PET) can trace microbial activity within the naturally occurring soil structure of intact soils. Here, we use PET to test two hypotheses: (1) optimizing phosphate bioavailability in soil will outperform a generic biostimulatory solution in promoting hydrocarbon remediation and (2) oligotrophic biostimulation will be more effective than eutrophic approaches. In so doing, we highlight the key bacterial taxa that underlie aerobic and anaerobic hydrocarbon degradation in subarctic soils. In particular, we showed that (i) optimized phosphate bioavailability outperformed generic biostimulatory solutions in promoting hydrocarbon degradation, (ii) oligotrophic biostimulation is more effective than eutrophic approaches, and (iii) optimized biostimulatory solutions stimulated specific soil regions and bacterial consortia. The knowledge gleaned from this study will be crucial in developing field-scale biodegradation treatments for sustained stimulation of bacterial activity in northern regions.
Collapse
Affiliation(s)
- Steven D Mamet
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Amy Jimmo
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Alexandra Conway
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Aram Teymurazyan
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Alizera Talebitaher
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zisis Papandreou
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Yu-Fen Chang
- Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Department of Mechanical and Marine Engineering, Western Norway University of Applied Sciences, Bergen 5063, Norway
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Whitney Shannon
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Derek Peak
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- College of Agriculture and Bioresources, Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
48
|
Rahmeh R, Akbar A, Kumar V, Al-Mansour H, Kishk M, Ahmed N, Al-Shamali M, Boota A, Al-Ballam Z, Shajan A, Al-Okla N. Insights into Bacterial Community Involved in Bioremediation of Aged Oil-Contaminated Soil in Arid Environment. Evol Bioinform Online 2021; 17:11769343211016887. [PMID: 34163126 PMCID: PMC8191072 DOI: 10.1177/11769343211016887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/16/2021] [Indexed: 11/15/2022] Open
Abstract
Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.
Collapse
Affiliation(s)
- Rita Rahmeh
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Abrar Akbar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Vinod Kumar
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Hamad Al-Mansour
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mohamed Kishk
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Nisar Ahmed
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Mustafa Al-Shamali
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anwar Boota
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Zainab Al-Ballam
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Anisha Shajan
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Naser Al-Okla
- Biotechnology Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
49
|
Watzinger A, Hager M, Reichenauer T, Soja G, Kinner P. Unravelling the process of petroleum hydrocarbon biodegradation in different filter materials of constructed wetlands by stable isotope fractionation and labelling studies. Biodegradation 2021; 32:343-359. [PMID: 33860902 PMCID: PMC8134294 DOI: 10.1007/s10532-021-09942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
Maintaining and supporting complete biodegradation during remediation of petroleum hydrocarbon contaminated groundwater in constructed wetlands is vital for the final destruction and removal of contaminants. We aimed to compare and gain insight into biodegradation and explore possible limitations in different filter materials (sand, sand amended with biochar, expanded clay). These filters were collected from constructed wetlands after two years of operation and batch experiments were conducted using two stable isotope techniques; (i) carbon isotope labelling of hexadecane and (ii) hydrogen isotope fractionation of decane. Both hydrocarbon compounds hexadecane and decane were biodegraded. The mineralization rate of hexadecane was higher in the sandy filter material (3.6 µg CO2 g-1 day-1) than in the expanded clay (1.0 µg CO2 g-1 day-1). The microbial community of the constructed wetland microcosms was dominated by Gram negative bacteria and fungi and was specific for the different filter materials while hexadecane was primarily anabolized by bacteria. Adsorption / desorption of petroleum hydrocarbons in expanded clay was observed, which might not hinder but delay biodegradation. Very few cases of hydrogen isotope fractionation were recorded in expanded clay and sand & biochar filters during decane biodegradation. In sand filters, decane was biodegraded more slowly and hydrogen isotope fractionation was visible. Still, the range of observed apparent kinetic hydrogen isotope effects (AKIEH = 1.072-1.500) and apparent decane biodegradation rates (k = - 0.017 to - 0.067 day-1) of the sand filter were low. To conclude, low biodegradation rates, small hydrogen isotope fractionation, zero order mineralization kinetics and lack of microbial biomass growth indicated that mass transfer controlled biodegradation.
Collapse
Affiliation(s)
- Andrea Watzinger
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria.
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria.
| | - Melanie Hager
- Institute of Soil Research, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Thomas Reichenauer
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Bioresources, Center of Health & Bioresources, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| | - Gerhard Soja
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
- Institute for Chemical and Energy Engineering, Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 107, 1190, Vienna, Austria
| | - Paul Kinner
- Environmental Resources & Technologies, Energy Department, AIT - Austrian Institute of Technology GmbH, Konrad Lorenz-Strasse 24, 3430, Tulln, Austria
| |
Collapse
|
50
|
Ramdass AC, Rampersad SN. Diversity and Oil Degradation Potential of Culturable Microbes Isolated from Chronically Contaminated Soils in Trinidad. Microorganisms 2021; 9:1167. [PMID: 34071489 PMCID: PMC8230346 DOI: 10.3390/microorganisms9061167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022] Open
Abstract
Trinidad and Tobago is the largest producer of oil and natural gas in Central America and the Caribbean. Natural crude oil seeps, in addition to leaking petroleum pipelines, have resulted in chronic contamination of the surrounding terrestrial environments since the time of petroleum discovery, production, and refinement in Trinidad. In this study, we isolated microbes from soils chronically contaminated with crude oil using a culture-dependent approach with enrichment. The sampling of eight such sites located in the southern peninsula of Trinidad revealed a diverse microbial composition and novel oil-degrading filamentous fungi and yeast as single-isolate degraders and naturally occurring consortia, with specific bacterial species not previously reported in the literature. Multiple sequence comparisons and phylogenetic analyses confirmed the identity of the top degraders. The filamentous fungal community based on culturable species was dominated by Ascomycota, and the recovered yeast isolates were affiliated with Basidiomycota (65.23%) and Ascomycota (34.78%) phyla. Enhanced biodegradation of petroleum hydrocarbons is maintained by biocatalysts such as lipases. Five out of seven species demonstrated extracellular lipase activity in vitro. Our findings could provide new insights into microbial resources from chronically contaminated terrestrial environments, and this information will be beneficial to the bioremediation of petroleum contamination and other industrial applications.
Collapse
Affiliation(s)
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, Trinidad and Tobago, West Indies;
| |
Collapse
|