1
|
Nigro F, Civra A, Porporato D, Costantino M, Francese R, Poli G, Romani A, Lembo D, Marinozzi M. Cholenamide-based, antiviral fluorescent probes targeting oxysterol-binding protein. Bioorg Chem 2024; 153:107922. [PMID: 39486114 DOI: 10.1016/j.bioorg.2024.107922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Oxysterols (OSs) represent a large family of cholesterol-derived molecules, involved in several physiological and pathological processes. Recently, we reported the remarkable antiviral activity against herpes simplex virus 2 (HSV-2) infection of three cholenamide or homocholenamide derivatives, namely PFM067, PFM064, and PFM069, identified by the screening of an in-house library of OS derivatives. With the aim to shed light on the antiviral mechanism of action of this class of molecules, we assumed to exploit the use of cholenamide-based fluorescent probes. Herein, we report that PFM120 and PFM124, two fluorescent tagged version of PFM067 maintain the same antiviral properties against HSV-2 as the parent compound and localize intracellularly inside the endoplasmic reticulum and the cis-Golgi network. Moreover, we also demonstrate that both tagged molecules co-localize with oxysterol-binding protein (OSBP) and are able to induce its re-localization. Finally, we report that PFM120 and PFM124 are endowed with antiviral activity against another OSBP-dependent viral pathogen, i.e. the human rhinovirus (HRV), different in structure and replication strategy from HSV-2. Taken together, these results candidate PFM120 and PFM124 as useful tools to investigate the actual mechanism of action and molecular target(s) of cholenamide-based antivirals and provide a proof of principle to explore them as a promising broad-spectrum class of antiviral agents.
Collapse
Affiliation(s)
- Fatima Nigro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy
| | - Andrea Civra
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Domiziana Porporato
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy; National PhD Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, 27100, Italy
| | - Matteo Costantino
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Rachele Francese
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Giuseppe Poli
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Aldo Romani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 8-06123 Perugia, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Regione Gonzole, 1-10043 Orbassano, Turin, Italy
| | - Maura Marinozzi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 1-06123 Perugia, Italy.
| |
Collapse
|
2
|
Li JQ, Zhang J, Chen Y, Le T, Chang MX. Coordination of oxysterol binding protein 1 and VAP-A/B modulates the generation of cholesterol and viral inclusion bodies to promote grass carp reovirus replication. Front Immunol 2024; 15:1419321. [PMID: 39081319 PMCID: PMC11286474 DOI: 10.3389/fimmu.2024.1419321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Similar to other RNA viruses, grass carp reovirus, the causative agent of the hemorrhagic disease, replicates in cytoplasmic viral inclusion bodies (VIBs), orchestrated by host proteins and lipids. The host pathways that facilitate the formation and function of GCRV VIBs are poorly understood. This work demonstrates that GCRV manipulates grass carp oxysterol binding protein 1 (named as gcOSBP1) and vesicle-associated membrane protein-associated protein A/B (named as gcVAP-A/B), 3 components of cholesterol transport pathway, to generate VIBs. By siRNA-mediated knockdown, we demonstrate that gcOSBP1 is an essential host factor for GCRV replication. We reveal that the nonstructural proteins NS80 and NS38 of GCRV interact with gcOSBP1, and that the gcOSBP1 is recruited by NS38 and NS80 for promoting the generation of VIBs. gcOSBP1 increases the expression of gcVAP-A/B and promotes the accumulation of intracellular cholesterol. gcOSBP1 also interacts with gcVAP-A/B for forming gcOSBP1-gcVAP-A/B complexes, which contribute to enhance the accumulation of intracellular cholesterol and gcOSBP1-mediated generation of VIBs. Inhibiting cholesterol accumulation by lovastatin can completely abolish the effects of gcOSBP1 and/or gcVAP-A/B in promoting GCRV infection, suggesting that cholesterol accumulation is vital for gcOSBP1- and/or gcVAP-A/B-mediated GCRV replication. Thus, our results, which highlight that gcOSBP1 functions in the replication of GCRV via its interaction with essential viral proteins for forming VIBs and with host gcVAP-A/B, provide key molecular targets for obtaining anti-hemorrhagic disease grass carp via gene editing technology.
Collapse
Affiliation(s)
- Jia Qi Li
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Chen
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Ming Xian Chang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Li G, Wu Y, Zhang Y, Wang H, Li M, He D, Guan W, Yao H. Research progress on phosphatidylinositol 4-kinase inhibitors. Biochem Pharmacol 2024; 220:115993. [PMID: 38151075 DOI: 10.1016/j.bcp.2023.115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Phosphatidylinositol 4-kinases (PI4Ks) could phosphorylate phosphatidylinositol (PI) to produce phosphatidylinositol 4-phosphate (PI4P) and maintain its metabolic balance and location. PI4P, the most abundant monophosphate inositol in eukaryotic cells, is a precursor of higher phosphoinositols and an essential substrate for the PLC/PKC and PI3K/Akt signaling pathways. PI4Ks regulate vesicle transport, signal transduction, cytokinesis, and cell unity, and are involved in various physiological and pathological processes, including infection and growth of parasites such as Plasmodium and Cryptosporidium, replication and survival of RNA viruses, and the development of tumors and nervous system diseases. The development of novel drugs targeting PI4Ks and PI4P has been the focus of the research and clinical application of drugs, especially in recent years. In particular, PI4K inhibitors have made great progress in the treatment of malaria and cryptosporidiosis. We describe the biological characteristics of PI4Ks; summarize the physiological functions and effector proteins of PI4P; and analyze the structural basis of selective PI4K inhibitors for the treatment of human diseases in this review. Herein, this review mainly summarizes the developments in the structure and enzyme activity of PI4K inhibitors.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yanting Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China; Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, 999077, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Huamin Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Mengjie Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Science, Wuyi University, 22 Dongchengcun, Jiangmen, Guangdong, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
4
|
Severance ZC, Nuñez JI, Le-McClain AT, Malinky CA, Bensen RC, Fogle RS, Manginelli GW, Sakers SH, Falcon EC, Bui RH, Snead KJ, Bourne CR, Burgett AWG. Structure-Activity Relationships of Ligand Binding to Oxysterol-Binding Protein (OSBP) and OSBP-Related Protein 4. J Med Chem 2023; 66:3866-3875. [PMID: 36916802 PMCID: PMC10786236 DOI: 10.1021/acs.jmedchem.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4) have emerged as potentially druggable targets in antiviral and precision cancer drug development. Multiple structurally diverse small molecules function through targeting the OSBP/ORP family of proteins, including the antiviral steroidal compounds OSW-1 and T-00127-HEV2. Here, the structure-activity relationships of oxysterols and related compound binding to human OSBP and ORP4 are characterized. Oxysterols with hydroxylation at various side chain positions (i.e., C-20, C-24, C-25, and C-27)─but not C-22─confer high affinity interactions with OSBP and ORP4. A library of 20(S)-hydroxycholesterol analogues with varying sterol side chains reveal that side chain length modifications are not well tolerated for OSBP and ORP4 interactions. This side chain requirement is contradicted by the high affinity binding of T-00127-HEV2, a steroidal compound lacking the side chain. The binding results, in combination with docking studies using homology models of OSBP and ORP4, suggest multiple modes of steroidal ligand binding to OSBP and ORP4.
Collapse
Affiliation(s)
- Zachary C Severance
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Juan I Nuñez
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anh T Le-McClain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Cori A Malinky
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert S Fogle
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Gianni W Manginelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sophia H Sakers
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Emily C Falcon
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Richard Hoang Bui
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Kevin J Snead
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anthony W G Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
5
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Insights from structural studies of the Cardiovirus 2A protein. Biosci Rep 2022; 42:230648. [PMID: 35022657 PMCID: PMC8777194 DOI: 10.1042/bsr20210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site (IRES) utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.
Collapse
|
7
|
Li YP, Mikrani R, Hu YF, Faran Ashraf Baig MM, Abbas M, Akhtar F, Xu M. Research progress of phosphatidylinositol 4-kinase and its inhibitors in inflammatory diseases. Eur J Pharmacol 2021; 907:174300. [PMID: 34217706 DOI: 10.1016/j.ejphar.2021.174300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023]
Abstract
Phosphatidylinositol 4-kinase (PI4K) is a lipid kinase that can catalyze the transfer of phosphate group from ATP to the inositol ring of phosphatidylinositol (PtdIns) resulting in the phosphorylation of PtdIns at 4-OH sites, to generate phosphatidylinositol 4-phosphate (PI4P). Studies on biological functions reveal that PI4K is closely related to the occurrence and development of various inflammatory diseases such as obesity, cancer, viral infections, malaria, Alzheimer's disease, etc. PI4K-related inhibitors have been found to have the effects of inhibiting virus replication, anti-cancer, treating malaria and reducing rejection in organ transplants, among which MMV390048, an anti-malaria drug, has entered phase II clinical trial. This review discusses the classification, structure, distribution and related inhibitors of PI4K and their role in the progression of cancer, viral replication, and other inflammation induced diseases to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yan-Ping Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Reyaj Mikrani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yi-Fan Hu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mirza Muhammad Faran Ashraf Baig
- Laboratory of Biomedical Engineering for Novel Bio-functional and Pharmaceutical Nano-materials, Prince Philip Dental Hospital, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Fahad Akhtar
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
8
|
Jackson T, Belsham GJ. Picornaviruses: A View from 3A. Viruses 2021; 13:v13030456. [PMID: 33799649 PMCID: PMC7999760 DOI: 10.3390/v13030456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses are comprised of a positive-sense RNA genome surrounded by a protein shell (or capsid). They are ubiquitous in vertebrates and cause a wide range of important human and animal diseases. The genome encodes a single large polyprotein that is processed to structural (capsid) and non-structural proteins. The non-structural proteins have key functions within the viral replication complex. Some, such as 3Dpol (the RNA dependent RNA polymerase) have conserved functions and participate directly in replicating the viral genome, whereas others, such as 3A, have accessory roles. The 3A proteins are highly divergent across the Picornaviridae and have specific roles both within and outside of the replication complex, which differ between the different genera. These roles include subverting host proteins to generate replication organelles and inhibition of cellular functions (such as protein secretion) to influence virus replication efficiency and the host response to infection. In addition, 3A proteins are associated with the determination of host range. However, recent observations have challenged some of the roles assigned to 3A and suggest that other viral proteins may carry them out. In this review, we revisit the roles of 3A in the picornavirus life cycle. The 3AB precursor and mature 3A have distinct functions during viral replication and, therefore, we have also included discussion of some of the roles assigned to 3AB.
Collapse
Affiliation(s)
- Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK;
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Correspondence:
| |
Collapse
|
9
|
Belsham GJ, Kristensen T, Jackson T. Foot-and-mouth disease virus: Prospects for using knowledge of virus biology to improve control of this continuing global threat. Virus Res 2020; 281:197909. [PMID: 32126297 DOI: 10.1016/j.virusres.2020.197909] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Understanding of the biology of foot-and-mouth disease virus (FMDV) has grown considerably since the nucleotide sequence of the viral RNA was determined. The ability to manipulate the intact genome and also to express specific parts of the genome individually has enabled detailed analyses of viral components, both RNA and protein. Such studies have identified the requirements for specific functional elements for virus replication and pathogenicity. Furthermore, information about the functions of individual virus proteins has enabled the rational design of cDNA cassettes to express non-infectious empty capsid particles that can induce protective immunity in the natural host animals and thus represent new vaccine candidates. Similarly, attempts to block specific virus activities using antiviral agents have also been performed. However, currently, only the well-established, chemically inactivated FMDV vaccines are commercially available and suitable for use to combat this important disease of livestock animals. These vaccines, despite certain shortcomings, have been used very successfully (e.g. in Europe) to control the disease but it still remains endemic in much of Africa, southern Asia and the Middle East. Hence there remains a significant risk of reintroduction of the disease into highly susceptible animal populations with enormous economic consequences.
Collapse
Affiliation(s)
- Graham J Belsham
- University of Copenhagen, Department of Veterinary and Animal Sciences, Grønnegårdsvej 15, 1870, Frederiksberg C, Denmark.
| | - Thea Kristensen
- University of Copenhagen, Department of Veterinary and Animal Sciences, Grønnegårdsvej 15, 1870, Frederiksberg C, Denmark
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Woking, Surrey, GU24 0NF. UK
| |
Collapse
|
10
|
Roberts BL, Severance ZC, Bensen RC, Le-McClain AT, Malinky CA, Mettenbrink EM, Nuñez JI, Reddig WJ, Blewett EL, Burgett AWG. Differing activities of oxysterol-binding protein (OSBP) targeting anti-viral compounds. Antiviral Res 2019; 170:104548. [PMID: 31271764 PMCID: PMC10786240 DOI: 10.1016/j.antiviral.2019.104548] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/27/2022]
Abstract
Oxysterol-binding Protein (OSBP) is a human lipid-transport protein required for the cellular replication of many types of viruses, including several human pathogens. The structurally-diverse small molecule compounds OSW-1, itraconazole (ITZ), T-00127-HEV2 (THEV) and TTP-8307 (TTP) inhibit viral replication through interaction with the OSBP protein. The OSW-1 compound reduces intracellular OSBP, and the reduction of OSBP protein levels persists multiple days after the OSW-1-compound treatment is stopped. The OSW-1-induced reduction of OSBP levels inhibited Enterovirus replication prophylactically in cells. In this report, the OSBP-interacting compounds ITZ, THEV, and TTP are shown not to reduce OSBP levels in cells, unlike the OSW-1-compound, and the OSW-1 compound is determined to be the only compound capable of providing prophylactic antiviral activity in cells. Furthermore, OSW-1 and THEV inhibit the binding of 25-hydroxycholesterol (25-OHC) to OSBP indicating that these compounds bind at the conserved sterol ligand binding site. The ITZ and TTP compounds do not inhibit 25-hydroxycholesterol binding to OSBP, and therefore ITZ and TTP interact with OSBP through other, unidentified binding sites. Co-administration of the THEV compound partially blocks the cellular activity of OSW-1, including the reduction of cellular OSBP protein levels; co-administration of the ITZ and TTP compounds have minimal effect on OSW-1 cellular activity further supporting different modes of interaction with these compounds to OSBP. OSW-1, ITZ, THEV, and TTP treatment alter OSBP cellular localization and levels, but in four distinct ways. Co-administration of OSW-1 and ITZ induced OSBP cellular localization patterns with features similar to the effects of ITZ and OSW-1 treatment alone. Based on these results, OSBP is capable of interacting with multiple structural classes of antiviral small molecule compounds at different binding sites, and the different compounds have distinct effects on OSBP cellular activity.
Collapse
Affiliation(s)
- Brett L Roberts
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Zachary C Severance
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Anh T Le-McClain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Cori A Malinky
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Evan M Mettenbrink
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Juan I Nuñez
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - William J Reddig
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Earl L Blewett
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Anthony W G Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
11
|
Roberts BL, Severance ZC, Bensen RC, Le AT, Kothapalli NR, Nuñez JI, Ma H, Wu S, Standke SJ, Yang Z, Reddig WJ, Blewett EL, Burgett AWG. Transient Compound Treatment Induces a Multigenerational Reduction of Oxysterol-Binding Protein (OSBP) Levels and Prophylactic Antiviral Activity. ACS Chem Biol 2019; 14:276-287. [PMID: 30576108 PMCID: PMC6379863 DOI: 10.1021/acschembio.8b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Oxysterol-binding
protein (OSBP) is a lipid transport and regulatory
protein required for the replication of Enterovirus genus viruses, which includes many significant human pathogens.
Short-term exposure (i.e., 1–6 h) to a low dose (i.e., 1 nM)
of the natural product compound OSW-1 induces a reduction of cellular
OSBP levels by ∼90% in multiple different cell lines with no
measurable cytotoxicity, defect in cellular proliferation, or global
proteome reduction. Interestingly, the reduction of OSBP levels persists
multiple days after the low-dose, transient OSW-1 compound treatment
is ended and the intracellular OSW-1 compound levels drop to undetectable
levels. The reduction in OSBP levels is inherited in multiple generations
of cells that are propagated after the OSW-1 compound treatment is
stopped. The enduring multiday, multigenerational reduction of OSBP
levels triggered by the OSW-1 compound is not due to proteasome degradation
of OSBP or due to a reduction in OSBP mRNA levels. OSW-1 compound
treatment induces transient autophagy in cells, but blocking autophagy
does not rescue OSBP levels. Although the specific cellular mechanism
of long-term OSBP repression is not yet identified, these results
clearly show the existence of an OSBP specific cellular regulation
process that is triggered upon treatment with an OSBP-binding compound.
The stable reduction of OSBP levels upon short-term, transient OSW-1
compound treatment will be a powerful tool to understand OSBP regulation
and cellular function. Additionally, the persistent reduction in OSBP
levels triggered by the transient OSW-1 compound treatment substantially
reduces viral replication in treated cells. Therefore, the long-term,
compound-induced reduction of OSBP in cells presents a new route to
broad spectrum anti-Enterovirus activity, including
as a novel route to antiviral prophylactic treatment through small
molecule targeting a human host protein.
Collapse
Affiliation(s)
- Brett L. Roberts
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zachary C. Severance
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Ryan C. Bensen
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Anh T. Le
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Naga Rama Kothapalli
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Juan I. Nuñez
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Hongyan Ma
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Shawna J. Standke
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - William J. Reddig
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, Oklahoma 74107, United States
| | - Earl L. Blewett
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, Oklahoma 74107, United States
| | - Anthony W. G. Burgett
- Department of Chemistry and Biochemistry, The University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
12
|
Structural Basis for Regulation of Phosphoinositide Kinases and Their Involvement in Human Disease. Mol Cell 2018; 71:653-673. [DOI: 10.1016/j.molcel.2018.08.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023]
|
13
|
Dornan GL, Dalwadi U, Hamelin DJ, Hoffmann RM, Yip CK, Burke JE. Probing the Architecture, Dynamics, and Inhibition of the PI4KIIIα/TTC7/FAM126 Complex. J Mol Biol 2018; 430:3129-3142. [PMID: 30031006 DOI: 10.1016/j.jmb.2018.07.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 11/16/2022]
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the lipid kinase primarily responsible for generating the lipid phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, which acts as the substrate for generation of the signaling lipids PIP2 and PIP3. PI4KIIIα forms a large heterotrimeric complex with two regulatory partners, TTC7 and FAM126. We describe using an integrated electron microscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) approach to probe the architecture and dynamics of the complex of PI4KIIIα/TTC7/FAM126. HDX-MS reveals that the majority of the PI4KIIIα sequence was protected from exchange in short deuterium pulse experiments, suggesting presence of secondary structure, even in putative unstructured regions. Negative stain electron microscopy reveals the shape and architecture of the full-length complex, revealing an overall dimer of PI4KIIIα/TTC7/FAM126 trimers. HDX-MS reveals conformational changes in the TTC7/FAM126 complex upon binding PI4KIIIα, including both at the direct TTC7-PI4KIIIα interface and at the putative membrane binding surface. Finally, HDX-MS experiments of PI4KIIIα bound to the highly potent and selective inhibitor GSK-A1 compared to that bound to the non-specific inhibitor PIK93 revealed substantial conformational changes throughout an extended region of the kinase domain. Many of these changes were distant from the putative inhibitor binding site, showing a large degree of allosteric conformational changes that occur upon inhibitor binding. Overall, our results reveal novel insight into the regulation of PI4KIIIα by its regulatory proteins TTC7/FAM126, as well as additional dynamic information on how selective inhibition of PI4KIIIα is achieved.
Collapse
Affiliation(s)
- Gillian L Dornan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2.
| |
Collapse
|
14
|
Melia CE, van der Schaar HM, Lyoo H, Limpens RWAL, Feng Q, Wahedi M, Overheul GJ, van Rij RP, Snijder EJ, Koster AJ, Bárcena M, van Kuppeveld FJM. Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Rep 2018; 21:587-599. [PMID: 29045829 PMCID: PMC5656745 DOI: 10.1016/j.celrep.2017.09.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/25/2017] [Accepted: 09/20/2017] [Indexed: 01/15/2023] Open
Abstract
Enteroviruses reorganize cellular endomembranes into replication organelles (ROs) for genome replication. Although enterovirus replication depends on phosphatidylinositol 4-kinase type IIIβ (PI4KB), its role, and that of its product, phosphatidylinositol 4-phosphate (PI4P), is only partially understood. Exploiting a mutant coxsackievirus resistant to PI4KB inhibition, we show that PI4KB activity has distinct functions both in proteolytic processing of the viral polyprotein and in RO biogenesis. The escape mutation rectifies a proteolytic processing defect imposed by PI4KB inhibition, pointing to a possible escape mechanism. Remarkably, under PI4KB inhibition, the mutant virus could replicate its genome in the absence of ROs, using instead the Golgi apparatus. This impaired RO biogenesis provided an opportunity to investigate the proposed role of ROs in shielding enteroviral RNA from cellular sensors. Neither accelerated sensing of viral RNA nor enhanced innate immune responses was observed. Together, our findings challenge the notion that ROs are indispensable for enterovirus genome replication and immune evasion. PI4KB activity expedites the formation of coxsackievirus replication organelles (ROs) PI4KB inhibition impairs polyprotein processing, which is rescued by a 3A mutation Upon PI4KB inhibition, this mutant replicates at the Golgi in the absence of ROs Innate immune responses are not enhanced when RO biogenesis is delayed
Collapse
Affiliation(s)
- Charlotte E Melia
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Hilde M van der Schaar
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Heyrhyoung Lyoo
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Ronald W A L Limpens
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Qian Feng
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Maryam Wahedi
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, the Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Nijmegen 6525 GA, the Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Abraham J Koster
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands.
| | - Frank J M van Kuppeveld
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht 3584 CL, the Netherlands.
| |
Collapse
|
15
|
The Origin, Dynamic Morphology, and PI4P-Independent Formation of Encephalomyocarditis Virus Replication Organelles. mBio 2018; 9:mBio.00420-18. [PMID: 29666283 PMCID: PMC5904412 DOI: 10.1128/mbio.00420-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Picornaviruses induce dramatic rearrangements of endomembranes in the cells that they infect to produce dedicated platforms for viral replication. These structures, termed replication organelles (ROs), have been well characterized for the Enterovirus genus of the Picornaviridae However, it is unknown whether the diverse RO morphologies associated with enterovirus infection are conserved among other picornaviruses. Here, we use serial electron tomography at different stages of infection to assess the three-dimensional architecture of ROs induced by encephalomyocarditis virus (EMCV), a member of the Cardiovirus genus of the family of picornaviruses that is distantly related. Ultrastructural analyses revealed connections between early single-membrane EMCV ROs and the endoplasmic reticulum (ER), establishing the ER as a likely donor organelle for their formation. These early single-membrane ROs appear to transform into double-membrane vesicles (DMVs) as infection progresses. Both single- and double-membrane structures were found to support viral RNA synthesis, and progeny viruses accumulated in close proximity, suggesting a spatial association between RNA synthesis and virus assembly. Further, we explored the role of phosphatidylinositol 4-phosphate (PI4P), a critical host factor for both enterovirus and cardiovirus replication that has been recently found to expedite enterovirus RO formation rather than being strictly required. By exploiting an EMCV escape mutant, we found that low-PI4P conditions could also be overcome for the formation of cardiovirus ROs. Collectively, our data show that despite differences in the membrane source, there are striking similarities in the biogenesis, morphology, and transformation of cardiovirus and enterovirus ROs, which may well extend to other picornaviruses.IMPORTANCE Like all positive-sense RNA viruses, picornaviruses induce the rearrangement of host cell membranes to form unique structures, or replication organelles (ROs), that support viral RNA synthesis. Here, we investigate the architecture and biogenesis of cardiovirus ROs and compare them with those induced by enteroviruses, members of the well-characterized picornavirus genus Enterovirus The origins and dynamic morphologies of cardiovirus ROs are revealed using electron tomography, which points to the endoplasmic reticulum as the donor organelle usurped to produce single-membrane tubules and vesicles that transform into double-membrane vesicles. We show that PI4P, a critical lipid for cardiovirus and enterovirus replication, is not strictly required for the formation of cardiovirus ROs, as functional ROs with typical morphologies are formed under phosphatidylinositol 4-kinase type III alpha (PI4KA) inhibition in cells infected with an escape mutant. Our data show that the transformation from single-membrane structures to double-membrane vesicles is a conserved feature of cardiovirus and enterovirus infections that likely extends to other picornavirus genera.
Collapse
|
16
|
Mejdrová I, Chalupská D, Plačková P, Müller C, Šála M, Klíma M, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Strunin D, Weber J, Lee G, Matoušová M, Mertlíková-Kaiserová H, Ziebuhr J, Birkus G, Boura E, Nencka R. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. J Med Chem 2016; 60:100-118. [PMID: 28004945 DOI: 10.1021/acs.jmedchem.6b01465] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is indispensable for the replication of various positive-sense single stranded RNA viruses, which hijack this cellular enzyme to remodel intracellular membranes of infected cells to set up the functional replication machinery. Therefore, the inhibition of this PI4K isoform leads to the arrest of viral replication. Here, we report on the synthesis of novel PI4KB inhibitors, which were rationally designed based on two distinct structural types of inhibitors that bind in the ATP binding side of PI4KB. These "hybrids" not only excel in outstanding inhibitory activity but also show high selectivity to PI4KB compared to other kinases. Thus, these compounds exert selective nanomolar or even subnanomolar activity against PI4KB as well as profound antiviral effect against hepatitis C virus, human rhinovirus, and coxsackievirus B3. Our crystallographic analysis unveiled the exact position of the side chains and explains their extensive contribution to the inhibitory activity.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.,Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Dominika Chalupská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Pavla Plačková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Adriana Baumlová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hubert Hřebabecký
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dmytro Strunin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Gary Lee
- Department of Chemistry of Natural Compounds, Institute of Chemical Technology Prague , Technická 5, Prague 166 28, Czech Republic
| | - Marika Matoušová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen , Schubertstrasse 81, D-35392 Giessen, Germany
| | - Gabriel Birkus
- Gilead Sciences, Inc. , 333 Lakeside Drive, Foster City, California 94404, United States
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Gilead Sciences & IOCB Research Centre , Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
17
|
McPhail JA, Ottosen EH, Jenkins ML, Burke JE. The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIβ, PI4KB, through ACBD3. Structure 2016; 25:121-131. [PMID: 27989622 DOI: 10.1016/j.str.2016.11.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/19/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023]
Abstract
Phosphatidylinositol 4-kinase III beta (PI4KIIIβ) is an essential enzyme in mediating membrane transport, and plays key roles in facilitating viral infection. Many pathogenic positive-sense single-stranded RNA viruses activate PI4KIIIβ to generate phosphatidylinositol 4-phosphate (PI4P)-enriched organelles for viral replication. The molecular basis for PI4KIIIβ activation during viral infection has remained largely unclear. We describe the biochemical reconstitution and characterization of the complex of PI4KIIIβ with the Golgi protein Acyl-coenzyme A binding domain containing protein 3 (ACBD3) and Aichi virus 3A protein on membranes. We find that 3A directly activates PI4KIIIβ, and this activation is sensitized by ACBD3. The interfaces between PI4KIIIβ-ACBD3 and ACBD3-3A were mapped with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Determination of the crystal structure of the ACBD3 GOLD domain revealed a unique N terminus that mediates the interaction with 3A. Rationally designed complex-disrupting mutations in both ACBD3 and PI4KIIIβ completely abrogated the sensitization of 3A activation by ACBD3.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik H Ottosen
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
18
|
Bochkov YA, Watters K, Basnet S, Sijapati S, Hill M, Palmenberg AC, Gern JE. Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells. Virology 2016; 499:350-360. [PMID: 27743961 PMCID: PMC5110265 DOI: 10.1016/j.virol.2016.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 11/21/2022]
Abstract
Viruses in the rhinovirus C species (RV-C) can cause severe respiratory illnesses in children including pneumonia and asthma exacerbations. A transduced cell line (HeLa-E8) stably expressing the CDHR3-Y529 receptor variant, supports propagation of RV-C after infection. C15 clinical or recombinant isolates replicate in HeLa-E8, however progeny yields are lower than those of related strains of RV-A and RV-B. Serial passaging of C15 in HeLa-E8 resulted in stronger cytopathic effects and increased (≥10-fold) virus binding to cells and progeny yields. The adaptation was acquired by two mutations which increased binding (VP1 T125K) and replication (3A E41K), respectively. A similar 3A mutation engineered into C2 and C41 cDNAs also improved viral replication (2-8 fold) in HeLa but the heparan sulfate mediated cell-binding enhancement by the VP1 change was C15-specific. The findings now enable large-scale cost-effective C15 production by infection and the testing of RV-C infectivity by plaque assay.
Collapse
Affiliation(s)
- Yury A Bochkov
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| | - Kelly Watters
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarmila Basnet
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Shakher Sijapati
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Marchel Hill
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - Ann C Palmenberg
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, USA
| | - James E Gern
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα. Antimicrob Agents Chemother 2016; 60:6402-6. [PMID: 27480860 DOI: 10.1128/aac.01331-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Encephalomyocarditis virus (EMCV), like hepatitis C virus (HCV), requires phosphatidylinositol 4-kinase IIIα (PI4KA) for genome replication. Here, we demonstrate that tyrphostin AG1478, a known epidermal growth factor receptor (EGFR) inhibitor, also inhibits PI4KA activity, both in vitro and in cells. AG1478 impaired replication of EMCV and HCV but not that of an EMCV mutant previously shown to escape PI4KA inhibition. This work uncovers novel cellular and antiviral properties of AG1478, a compound previously regarded only as a cancer chemotherapy agent.
Collapse
|