1
|
Balla N, Kovács F, Tóth Z, Harmath A, Bozó A, Majoros L, Kovács R, Jakab Á. Isolate Specific Transcriptome Changes Exerted by Isavuconazole Treatment in Candida auris. Mycopathologia 2024; 190:5. [PMID: 39729249 DOI: 10.1007/s11046-024-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
The sudden emergence of multidrug- and pan-resistant Candida auris isolates, combined with limited treatment options, poses significant global challenges in healthcare settings. Combination based therapies are promising alternative options to overcome C. auris related infections, where echinocandin and isavuconazole (ISA) combinations may be an interesting and promising approach. Understanding the molecular mechanisms underlying ISA treatment is crucial for developing novel therapeutic recommendations. Therefore, we investigated the gene transcription profiles of non-wild type (non-WT) and wild type (WT) C. auris isolates from the South Asian clade following ISA exposure using total RNA sequencing. The non-WT isolate was classified according to the previously reported tentative epidemiological cut-off value of ≤ 1 mg/L. ISA treatment resulted in the upregulation of 158 and 134 genes and the downregulation of 119 and 96 genes in the non-WT and WT isolates, respectively, compared with untreated samples. In general, ISA-treated isolates exhibited increased transcription of the transcriptional factor UPC2, the drug transporter MDR1, vacuolar calcium-ATPase PMC1, and several ergosterol biosynthesis genes. The WT isolate showed pronounced enrichment of genes involved in sphingolipid biosynthesis, adhesion, and drug transport. These findings suggest that alterations in membrane lipid composition and modulation of drug efflux transporters are critical processes contributing to ISA susceptibility in case of WT isolates.
Collapse
Affiliation(s)
- Noémi Balla
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
| | - Andrea Harmath
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Aliz Bozó
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.
| | - Ágnes Jakab
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.
| |
Collapse
|
2
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Aptekmann A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. mBio 2024; 15:e0274824. [PMID: 39422509 PMCID: PMC11558994 DOI: 10.1128/mbio.02748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Candida auris, a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30%-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase is essential for efficient skin colonization, intradermal persistence as well as systemic virulence. RNA-seq analysis of wild-type parental and hog1Δ mutant strains revealed marked downregulation of genes involved in processes such as cell adhesion, cell wall rearrangement, and pathogenesis in hog1Δ mutant compared to the wild-type parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell wall architecture, as the hog1Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo. Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. IMPORTANCE Candida auris is a World Health Organization fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention. C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris. Therefore, understanding C. auris skin colonization mechanisms is critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay the foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
Affiliation(s)
- Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Diprasom Das
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Adela Karuli
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Ariel Aptekmann
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Sabrina Jenull
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Karl Kuchler
- Department of Medical Biochemistry, Medical University Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Vienna, Austria
| | - Shankar Thangamani
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | - Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jigar V. Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
3
|
Towns KA, Datta A, Thangamani S. Intradermal infection and dissemination of Candida auris in immunocompetent and immunocompromised mouse models. Microbiol Spectr 2024; 12:e0012724. [PMID: 38912805 PMCID: PMC11302725 DOI: 10.1128/spectrum.00127-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 06/25/2024] Open
Abstract
Candida auris, an emerging fungal pathogen, predominately colonizes human skin leading to serious invasive infections in humans. Though it is assumed that skin colonization can lead to invasive infection, dissemination potential of C. auris from skin to internal organs is still unknown. In this study, immunocompetent and immunocompromised mouse models of intradermal skin infection were used to compare the dissemination potential of C. auris to internal organs. Our results suggest that C. auris persists in the skin tissue of both immunocompetent and immunocompromised infected mice even at 30 days post-infection. Furthermore, C. auris can readily disseminate from skin tissue to internal organs such as the spleen and kidney as early as 24 h post-infection and was detected until 30 days post-infection. Taken together, our findings for the first time indicate that murine skin intradermally infected with C. auris can readily disseminate to internal organs and cause invasive infections. IMPORTANCE Candida auris is a multi-drug-resistant emerging fungal pathogen colonizes the human skin and causes life-threatening infections. However, whether C. auris can disseminate from the skin to internal organs is unclear. Understanding the dissemination potential of C. auris in both immunocompetent and immunocompromised hosts is necessary to monitor susceptible individuals and to develop novel approaches to prevent and treat this emerging fungal pathogen. Using mouse models of intradermal C. auris skin infection, our findings report a novel observation that mice skin intradermally infected with C. auris can readily disseminate to internal organs leading to systemic disease. These findings help explain the colonization, persistence, and dissemination potential of C. auris in immunocompetent and immunocompromised hosts and reveal that skin infection is a potential source of invasive infection.
Collapse
Affiliation(s)
- Kristine A. Towns
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abhishek Datta
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Shankar Thangamani
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Immunology, Inflammation, and Infectious Diseases (PI4D), West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Martinez M, Garsin DA, Lorenz MC. Vertebrate and invertebrate animal infection models of Candida auris pathogenicity. Curr Opin Microbiol 2024; 80:102506. [PMID: 38925077 PMCID: PMC11432150 DOI: 10.1016/j.mib.2024.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Candida auris is an emerging fungal pathogen with several concerning qualities. First recognized in 2009, it has arisen in multiple geographically distinct genomic clades nearly simultaneously. C. auris strains are typically multidrug resistant and colonize the skin much better than most other pathogenic fungi; it also persists on abiotic surfaces, enabling outbreaks due to transmission in health care facilities. All these suggest a biology substantially different from the 'model' fungal pathogen, Candida albicans and support intensive investigation of C. auris biology directly. To uncover novel virulence mechanisms in this species requires the development of appropriate animal infection models. Various studies using mice, the definitive model, are inconsistent due to differences in mouse and fungal strains, immunosuppressive regimes, doses, and outcome metrics. At the same time, developing models of skin colonization present a route to new insights into an aspect of fungal pathogenesis that has not been well studied in other species. We also discuss the growing use of nonmammalian model systems, including both vertebrates and invertebrates, such as zebrafish, C. elegans, Drosophila, and Galleria mellonella, that have been productively employed in virulence studies with other fungal species. This review will discuss progress in developing appropriate animal models, outline current challenges, and highlight opportunities in demystifying this curious species.
Collapse
Affiliation(s)
- Melissa Martinez
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School and the University of Texas Graduate School of Biomedical Sciences, USA.
| |
Collapse
|
5
|
Holt AM, Nett JE. Innate immune response to Candida auris. Curr Opin Microbiol 2024; 80:102510. [PMID: 38964276 PMCID: PMC11323126 DOI: 10.1016/j.mib.2024.102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Candida auris, a newly emergent fungal species, has been spreading in health care systems and causing life-threatening infections. Intact innate immunity is essential for protection against many invasive fungal infections, including candidiasis. Here, we highlight recent studies exploring immune interactions with C. auris, including investigations using animal models and ex vivo immune cells. We summarize innate immune studies comparing C. auris and the common fungal pathogen Candida albicans. We also discuss how structures of the C. auris cell wall influence immune recognition, the role of soluble host factors in immune recognition, and areas of future study.
Collapse
Affiliation(s)
- Ashley M Holt
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Jeniel E Nett
- Department of Medicine, University of Wisconsin, Madison, WI, USA; Department of Medical Microbiology & Immunology, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
6
|
Huang WC, Eberle K, Colon JR, Lovell JF, Xin H. Liposomal Fba and Met6 peptide vaccination protects mice from disseminated candidiasis. mSphere 2024; 9:e0018924. [PMID: 38904363 PMCID: PMC11287991 DOI: 10.1128/msphere.00189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Epitopes from the Candida cell surface proteins Fba and Met6 are putative vaccine targets for invasive candidiasis. Here, we describe a Candida vaccine approach in which short peptides derived from Fba and Met6 are used in spontaneous nanoliposome antigen particle (SNAP) format. SNAP was enabled by the interaction of cobalt porphyrin phospholipid in liposomes with three histidine residues on the N-terminus of synthetic short peptide immunogens from Fba (F-SNAP), Met6 (M-SNAP), or bivalent Fba and Met6 (FM-SNAP). Liposomes were adjuvanted with synthetic monophosphoryl lipid and QS-21. In mice, immunization with F-SNAP, M-SNAP, or FM-SNAP induced antigen-specific IgG responses and mixed Th1/Th2 immunity. The duplex FM-SNAP vaccine elicited stronger antibody responses against each peptide, even at order-of-magnitude lower peptide dosing than a comparable adjuvanted, conjugate vaccine. Enzyme-linked immunosorbent spot analysis revealed the induction of antigen-specific, cytokine-producing T cells. Compared to F-SNAP or M-SNAP, higher production of TNFα, IL-2, and IFNγ was observed with re-stimulation of splenocytes from bivalent FM-SNAP-immunized mice. When vaccinated BALB/c mice were challenged with Candida auris, analysis of the fungal burden in the kidneys showed that SNAP vaccination protected from disseminated candidiasis. In a lethal fungal exposure model in A/J mice, F-SNAP, M-SNAP, and FM-SNAP vaccination protected mice from candidiasis challenge. Together, these results show that further investigation into the SNAP adjuvant platform is warranted using Fba and Met6 epitopes for a pan-Candida peptide vaccine that provides multifaceted protective immune responses. IMPORTANCE This study introduces a promising vaccine strategy against invasive candidiasis, a severe fungal infection, by targeting specific peptides on the surface of Candida. Using a novel approach called spontaneous nanoliposome antigen particle (SNAP), we combined peptides from two key Candida proteins, Fba and Met6, into a vaccine. This vaccine induced robust immune responses in mice, including the production of protective antibodies and the activation of immune cells. Importantly, mice vaccinated with SNAP were shielded from disseminated candidiasis in experiments. These findings highlight a potential avenue for developing a broad-spectrum vaccine against Candida infections, which could significantly improve outcomes for patients at risk of these often deadly fungal diseases.
Collapse
Affiliation(s)
- Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Karen Eberle
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonothan Rosario Colon
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Hong Xin
- Department of Microbiology, Immunology & Parasitology, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| |
Collapse
|
7
|
Kim JS, Cha H, Bahn YS. Comprehensive Overview of Candida auris: An Emerging Multidrug-Resistant Fungal Pathogen. J Microbiol Biotechnol 2024; 34:1365-1375. [PMID: 38881183 PMCID: PMC11294645 DOI: 10.4014/jmb.2404.04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The rise of Candida auris, a multidrug-resistant fungal pathogen, across more than 40 countries, has signaled an alarming threat to global health due to its significant resistance to existing antifungal therapies. Characterized by its rapid spread and robust drug resistance, C. auris presents a critical challenge in managing infections, particularly in healthcare settings. With research on its biological traits and genetic basis of virulence and resistance still in the early stages, there is a pressing need for a concerted effort to understand and counteract this pathogen. This review synthesizes current knowledge on the epidemiology, biology, genetic manipulation, pathogenicity, diagnostics, and resistance mechanisms of C. auris, and discusses future directions in research and therapeutic development. By exploring the complexities surrounding C. auris, we aim to underscore the importance of advancing research to devise effective control and treatment strategies.
Collapse
Affiliation(s)
- Ji-Seok Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunjin Cha
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Areitio M, Antoran A, Rodriguez-Erenaga O, Aparicio-Fernandez L, Martin-Souto L, Buldain I, Zaldibar B, Ruiz-Gaitan A, Pemán J, Rementeria A, Ramirez-Garcia A. Identification of the Most Immunoreactive Antigens of Candida auris to IgGs from Systemic Infections in Mice. J Proteome Res 2024; 23:1634-1648. [PMID: 38572994 PMCID: PMC11077488 DOI: 10.1021/acs.jproteome.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
The delay in making a correct diagnosis of Candida auris causes concern in the healthcare system setting, and immunoproteomics studies are important to identify immunoreactive proteins for new diagnostic strategies. In this study, immunocompetent murine systemic infections caused by non-aggregative and aggregative phenotypes of C. auris and by Candida albicans and Candida haemulonii were carried out, and the obtained sera were used to study their immunoreactivity against C. auris proteins. The results showed higher virulence, in terms of infection signs, weight loss, and histopathological damage, of the non-aggregative isolate. Moreover, C. auris was less virulent than C. albicans but more than C. haemulonii. Regarding the immunoproteomics study, 13 spots recognized by sera from mice infected with both C. auris phenotypes and analyzed by mass spectrometry corresponded to enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate mutase. These four proteins were also recognized by sera obtained from human patients with disseminated C. auris infection but not by sera obtained from mice infected with C. albicans or Aspergillus fumigatus. Spot identification data are available via ProteomeXchange with the identifier PXD049077. In conclusion, this study showed that the identified proteins could be potential candidates to be studied as new diagnostic or even therapeutic targets for C. auris.
Collapse
Affiliation(s)
- Maialen Areitio
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Aitziber Antoran
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Oier Rodriguez-Erenaga
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Aparicio-Fernandez
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Leire Martin-Souto
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Idoia Buldain
- Department
of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Beñat Zaldibar
- CBET
Research Group, Department of Zoology and Animal Cell Biology, Faculty
of Science and Technology, Research Centre for Experimental Marine
Biology and Biotechnology PIE, University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Alba Ruiz-Gaitan
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Javier Pemán
- Microbiology
Department, University and Polytechnic La
Fe Hospital, 46026 Valencia, Spain
| | - Aitor Rementeria
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| | - Andoni Ramirez-Garcia
- Department
of Immunology, Microbiology and Parasitology, Faculty of Science and
Technology, University of the Basque Country
(UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
9
|
Melinte V, Tudor AD, Bujoi AG, Radu MA, Văcăriou MC, Cismaru IM, Holban TS, Mîrzan CL, Popescu R, Ciupan RC, Baciu A, Moraru OE, Popa-Cherecheanu M, Gheorghiță V. Candida auris Outbreak in a Multidisciplinary Hospital in Romania during the Post-Pandemic Era: Potential Solutions and Challenges in Surveillance and Epidemiological Control. Antibiotics (Basel) 2024; 13:325. [PMID: 38667001 PMCID: PMC11047361 DOI: 10.3390/antibiotics13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Candida auris is a newly emerging yeast, which is raising public health concerns due to its outbreak potential, lack of protocols for decontamination and isolation of patients or contacts, increased resistance to common antifungals, and associated high mortality. This research aimed to describe the challenges related to identifying the outbreak, limiting further contamination, and treating affected individuals. We retrospectively analyzed all cases of C. auris detected between October 2022 and August 2023, but our investigation focused on a three-month-long outbreak in the department of cardio-vascular surgery and the related intensive care unit. Along with isolated cases in different wards, we identified 13 patients who became infected or colonized in the same area and time, even though the epidemiological link could only be traced in 10 patients, according to the epidemiologic investigation. In conclusion, our study emphasizes the substantial challenge encountered in clinical practice when attempting to diagnose and limit the spread of an outbreak. Therefore, it is crucial to promptly apply contact precaution measures and appropriate environmental cleaning, from the first positive case detected.
Collapse
Affiliation(s)
- Violeta Melinte
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alexandra Daniela Tudor
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Adrian Georgian Bujoi
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria-Adelina Radu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Maria Cristina Văcăriou
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ioana Miriana Cismaru
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Tiberiu Sebastian Holban
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Carmen Luminița Mîrzan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Ruxandra Popescu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Robert Cătălin Ciupan
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Alin Baciu
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Oriana Elena Moraru
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Matei Popa-Cherecheanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| | - Valeriu Gheorghiță
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.-A.R.); (O.E.M.); (M.P.-C.); (V.G.)
- “Agrippa Ionescu” Clinical Emergency Hospital, 011356 Bucharest, Romania; (A.D.T.); (A.G.B.); (M.C.V.); (I.M.C.); (T.S.H.); (C.L.M.); (R.P.); (R.C.C.); (A.B.)
| |
Collapse
|
10
|
Shivarathri R, Chauhan M, Datta A, Das D, Karuli A, Jenull S, Kuchler K, Thangamani S, Chowdhary A, Desai JV, Chauhan N. The Candida auris Hog1 MAP kinase is essential for the colonization of murine skin and intradermal persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585572. [PMID: 38562863 PMCID: PMC10983919 DOI: 10.1101/2024.03.18.585572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Candida auris , a multidrug-resistant human fungal pathogen, was first identified in 2009 in Japan. Since then, systemic C. auris infections have now been reported in more than 50 countries, with mortality rates of 30-60%. A major contributing factor to its high inter- and intrahospital clonal transmission is that C. auris, unlike most Candida species, displays unique skin tropism and can stay on human skin for a prolonged period. However, the molecular mechanisms responsible for C. auris skin colonization, intradermal persistence, and systemic virulence are poorly understood. Here, we report that C. auris Hog1 mitogen-activated protein kinase (MAPK) is essential for efficient skin colonization, intradermal persistence, as well as systemic virulence. RNA-seq analysis of wildtype parental and hog1 Δ mutant strains revealed marked down-regulation of genes involved in processes such as cell adhesion, cell-wall rearrangement, and pathogenesis in hog1 Δ mutant compared to the wildtype parent. Consistent with these data, we found a prominent role for Hog1 in maintaining cell-wall architecture, as the hog1 Δ mutant demonstrated a significant increase in cell-surface β-glucan exposure and a concomitant reduction in chitin content. Additionally, we observed that Hog1 was required for biofilm formation in vitro and fungal survival when challenged with primary murine macrophages and neutrophils ex vivo . Collectively, these findings have important implications for understanding the C. auris skin adherence mechanisms and penetration of skin epithelial layers preceding bloodstream infections. Importance Candida auris is a World Health Organization (WHO) fungal priority pathogen and an urgent public health threat recognized by the Centers for Disease Control and Prevention (CDC). C. auris has a unique ability to colonize human skin. It also persists on abiotic surfaces in healthcare environments for an extended period of time. These attributes facilitate the inter- and intrahospital clonal transmission of C. auris . Therefore, understanding C. auris skin colonization mechanisms are critical for infection control, especially in hospitals and nursing homes. However, despite its profound clinical relevance, the molecular and genetic basis of C. auris skin colonization mechanisms are poorly understood. Herein, we present data on the identification of the Hog1 MAP kinase as a key regulator of C. auris skin colonization. These findings lay foundation for further characterization of unique mechanisms that promote fungal persistence on human skin.
Collapse
|
11
|
Seiser S, Arzani H, Ayub T, Phan-Canh T, Staud C, Worda C, Kuchler K, Elbe-Bürger A. Native human and mouse skin infection models to study Candida auris-host interactions. Microbes Infect 2024; 26:105234. [PMID: 37813159 DOI: 10.1016/j.micinf.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The World Health Organization (WHO) declared certain fungal pathogens as global health threats for the next decade. Candida auris (C. auris) is a newly emerging skin-tropic multidrug-resistant fungal pathogen that can cause life-threatening infections of high mortality in hospitals and healthcare settings. Here, we address an unmet need and present novel native ex vivo skin models, thus extending previous C. auris-host interaction studies. We exploit histology and immunofluorescence analysis of ex vivo skin biopsies of human adult and fetal, as well as mouse origin infected with C. auris via distinct routes. We demonstrate that an intact skin barrier efficiently protects from C. auris penetration and invasion. Although C. auris readily grows on native human skin, it can reach deeper layers only upon physical disruption of the barrier by needling or through otherwise damaged skin. By contrast, a barrier disruption is not necessary for C. auris penetration of native mouse skin. Importantly, we show that C. auris undergoes morphogenetic changes upon skin penetration, as it acquires pseudohyphal growth phenotypes in deeper human and mouse dermis. Taken together, this new human and mouse skin model toolset yields new insights into C. auris colonization, adhesion, growth and invasion properties of native versus damaged human skin. The results form a crucial basis for future studies on skin immune defense to colonizing pathogens, and offer new options for testing the action and efficacy of topical antimicrobial compound formulations.
Collapse
Affiliation(s)
- Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Hossein Arzani
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Tanya Ayub
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Trinh Phan-Canh
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Clement Staud
- Medical University of Vienna, Department of Plastic and Reconstructive Surgery, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christof Worda
- Medical University of Vienna, Department of Obstetrics and Gynecology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Karl Kuchler
- Medical University of Vienna, Max Perutz Labs Vienna, Campus Vienna Biocenter, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
12
|
Salama EA, Eldesouky HE, Elgammal Y, Abutaleb NS, Seleem MN. Lopinavir and ritonavir act synergistically with azoles against Candida auris in vitro and in a mouse model of disseminated candidiasis. Int J Antimicrob Agents 2023; 62:106906. [PMID: 37392947 PMCID: PMC10528984 DOI: 10.1016/j.ijantimicag.2023.106906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION AND OBJECTIVES The emergence of Candida auris has created a global health challenge. Azole antifungals are the most affected antifungal class because of the extraordinary capability of C. auris to develop resistance against these drugs. Here, we used a combinatorial therapeutic approach to sensitize C. auris to azole antifungals. METHODS AND RESULTS We have demonstrated the capability of the HIV protease inhibitors lopinavir and ritonavir, at clinically relevant concentrations, to be used with azole antifungals to treat C. auris infections both in vitro and in vivo. Both lopinavir and ritonavir exhibited potent synergistic interactions with the azole antifungals, particularly with itraconazole against 24/24 (100%) and 31/34 (91%) of tested C. auris isolates, respectively. Furthermore, ritonavir significantly interfered with the fungal efflux pump, resulting in a significant increase in Nile red fluorescence by 44%. In a mouse model of C. auris systemic infection, ritonavir boosted the activity of lopinavir to work synergistically with fluconazole and itraconazole and significantly reduced the kidney fungal burden by a 1.2 log (∼94%) and 1.6 log (∼97%) CFU, respectively. CONCLUSION Our results urge further comprehensive assessment of azoles and HIV protease inhibitors as a novel drug regimen for the treatment of serious invasive C. auris infections.
Collapse
Affiliation(s)
- Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Hassan E Eldesouky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia; Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
13
|
Pechacek J, Lionakis MS. Host defense mechanisms against Candida auris. Expert Rev Anti Infect Ther 2023; 21:1087-1096. [PMID: 37753840 DOI: 10.1080/14787210.2023.2264500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Candida auris is a pathogen of growing public health concern given its rapid spread across the globe, its propensity for long-term skin colonization and healthcare-related outbreaks, its resistance to a variety of antifungal medications, and the high morbidity and mortality associated with invasive disease. Despite that, the host immune response mechanisms that operate during C. auris skin colonization and invasive infection remains poorly understood. AREAS COVERED In this manuscript, we review the available literature in the growing research field pertaining to C. auris host defenses and we discuss what is known about the ability of C. auris to thrive on mammalian skin, the role of lymphoid cell-mediated, IL-17-dependent defenses in controlling cutaneous colonization, and the contribution of myeloid phagocytes in curtailing systemic infection. EXPERT OPINION Understanding the mechanisms by which the host immune system responds to and controls colonization and infection with C. auris and developing a deeper knowledge of tissue-specific host-C. auris interactions and of C. auris immune-evading mechanisms may help devise improved strategies for decolonization, prognostication, prevention, vaccination, and/or directed antifungal treatment in vulnerable patient populations.
Collapse
Affiliation(s)
- Joseph Pechacek
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michail S Lionakis
- From the Fungal Pathogenesis Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Elgammal Y, Salama EA, Seleem MN. Atazanavir Resensitizes Candida auris to Azoles. Antimicrob Agents Chemother 2023; 67:e0163122. [PMID: 37092991 PMCID: PMC10190639 DOI: 10.1128/aac.01631-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/07/2023] [Indexed: 04/25/2023] Open
Abstract
Candida auris represents an urgent health threat. Here, we identified atazanavir as a potent drug capable of resensitizing C. auris clinical isolates to the activity of azole antifungals. Atazanavir was able to significantly inhibit the efflux pumps, glucose transport, and ATP synthesis of all tested isolates of C. auris. In addition, the combination of itraconazole with atazanavir-ritonavir significantly reduced the burden of azole-resistant C. auris in murine kidneys by 1.3 log10 (95%), compared to itraconazole alone.
Collapse
Affiliation(s)
- Yehia Elgammal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ehab A. Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
15
|
Novel Intravenous Immunoglobulin Therapy for the Prevention and Treatment of Candida auris and Candida albicans Disseminated Candidiasis. mSphere 2023; 8:e0058422. [PMID: 36688668 PMCID: PMC9942587 DOI: 10.1128/msphere.00584-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Disseminated candidiasis is a life-threatening disease and remains the most common bloodstream infection in hospitalized patients in the United States. Despite the availability of modern antifungal therapy, the crude mortality rate in the last decade has remained unacceptably high. Novel approaches are urgently needed to supplement or replace current antifungal therapies. In our study, we show that human intravenous immunoglobulin (IVIG) can provide protection against Candida auris and Candida albicans disseminated infections in A/J and C57BL/6 mouse models. The protective efficacy of IVIG is evidenced by the prolonged survival of mice with invasive candidiasis that were treated with human IVIG alone or in combination with amphotericin B. Our previous studies have led to the identification of a panel of Candida cell surface peptide and glycan epitopes, which are targeted by protective mouse monoclonal antibodies (mAbs) against invasive candidiasis. Of interest, the peptide- and glycan-specific IgGs could be detected in all 18 human IVIG samples. In particular, the specific IVIG lots with the highest protective peptide- and glycan-related IgGs provided the best protection. The combination of IVIG and amphotericin B had enhanced efficacy in protection compared to monotherapy against both multidrug-resistant (MDR) C. auris and C. albicans, with evidence of significantly prolonged survival and lower fungal burdens in targeted organs. This study provides evidence that the protective effects of IVIG were associated with the protective antibodies found in normal human donor sera against pathogenic Candida, and IVIG can be a novel therapy or adjunctive therapy with modern antifungal drugs against disseminated candidiasis. IMPORTANCE Since current antifungal treatments are ineffective in the immunocompromised population and no vaccine is available for humans, hope remains that antibody preparations selected for specific fungal antigens may make it possible to reduce the incidence and mortality of invasive candidiasis. Intravenous immunoglobulin (IVIG) has long been approved as a standard treatment for patients with immunodeficiency disorders who are also susceptible to fungal infection. IVIG has been widely used as prophylaxis or supplemental treatment for sepsis and septic shock; however, this form of adjunctive therapy lacks convincing data to establish its efficacy. In this study, 18 samples from commercial IVIG preparations were screened and evaluated by enzyme-linked immunosorbent assays (ELISAs); Candida peptide- and glycan-specific IgGs were detected with various titers among all IVIG lots. Importantly, significantly reduced organ fungal burdens and mortality were demonstrated in IVIG-treated mouse models of invasive candidiasis. IVIG lots with higher titers of Candida-specific IgGs provided better protection. These findings are important in (i) selecting Candida-specific IVIG therapy that may overcome several shortcomings of conventional IVIG therapy by targeting specific antigens responsible for disease pathogenesis, (ii) enhancing protective efficacy, and (iii) validating data from our previous studies and those of others showing that antibodies combined with conventional antifungal drugs provided enhanced resistance to disease. To our knowledge, this study is the first to demonstrate that human IVIG samples contain protective IgGs targeting Candida cell surface antigens and can be a novel therapy or adjunctive therapy with modern antifungal drugs against disseminated candidiasis.
Collapse
|
16
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
17
|
Wurster S, Watowich SS, Kontoyiannis DP. Checkpoint inhibitors as immunotherapy for fungal infections: Promises, challenges, and unanswered questions. Front Immunol 2022; 13:1018202. [PMID: 36389687 PMCID: PMC9640966 DOI: 10.3389/fimmu.2022.1018202] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/11/2022] [Indexed: 09/22/2023] Open
Abstract
Opportunistic fungal infections have high mortality in patients with severe immune dysfunction. Growing evidence suggests that the immune environment of invasive fungal infections and cancers share common features of immune cell exhaustion through activation of immune checkpoint pathways. This observation gave rise to several preclinical studies and clinical case reports describing blockade of the Programmed Cell Death Protein 1 and Cytotoxic T-Lymphocyte Antigen 4 immune checkpoint pathways as an adjunct immune enhancement strategy to treat opportunistic fungal infections. The first part of this review summarizes the emerging evidence for contributions of checkpoint pathways to the immunopathology of fungal sepsis, opportunistic mold infections, and dimorphic fungal infections. We then review the potential merits of immune checkpoint inhibitors (ICIs) as an antifungal immunotherapy, including the incomplete knowledge of the mechanisms involved in both immuno-protective effects and toxicities. In the second part of this review, we discuss the limitations of the current evidence and the many unknowns about ICIs as an antifungal immune enhancement strategy. Based on these gaps of knowledge and lessons learned from cancer immunology studies, we outline a research agenda to determine a "sweet spot" for ICIs in medical mycology. We specifically discuss the importance of more nuanced animal models, the need to study ICI-based combination therapy, potential ICI resistance, the role of the immune microenvironment, and the impact of ICIs given as part of oncological therapies on the natural immunity to various pathogenic fungi.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Wang Y, Zou Y, Chen X, Li H, Yin Z, Zhang B, Xu Y, Zhang Y, Zhang R, Huang X, Yang W, Xu C, Jiang T, Tang Q, Zhou Z, Ji Y, Liu Y, Hu L, Zhou J, Zhou Y, Zhao J, Liu N, Huang G, Chang H, Fang W, Chen C, Zhou D. Innate immune responses against the fungal pathogen Candida auris. Nat Commun 2022; 13:3553. [PMID: 35729111 PMCID: PMC9213489 DOI: 10.1038/s41467-022-31201-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Candida auris is a multidrug-resistant human fungal pathogen responsible for nosocomial outbreaks worldwide. Although considerable progress has increased our understanding of the biological and clinical aspects of C. auris, its interaction with the host immune system is only now beginning to be investigated in-depth. Here, we compare the innate immune responses induced by C. auris BJCA001 and Candida albicans SC5314 in vitro and in vivo. Our results indicate that C. auris BJCA001 appears to be less immunoinflammatory than C. albicans SC5314, and this differential response correlates with structural features of the cell wall. Candida auris is a multidrug-resistant human fungal pathogen responsible for nosocomial outbreaks worldwide. Here, the authors identify differential innate immune responses induced by C. auris and Candida albicans in vitro and in vivo, which correlate with structural features of the cell wall.
Collapse
Affiliation(s)
- Yuanyuan Wang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Yun Zou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China
| | - Xiaoqing Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongbin Xu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiquan Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, China
| | - Xinhua Huang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chaoyue Xu
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.,College of Life Science, Shanghai University, Shanghai, China
| | - Tong Jiang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qinyu Tang
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zili Zhou
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Ji
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yingqi Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jia Zhou
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yao Zhou
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Jingjun Zhao
- Department of Dermatology, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Ningning Liu
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanghua Huang
- Department of Infectious Disease, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Haishuang Chang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenxia Fang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China
| | - Changbin Chen
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China. .,Nanjing Advanced Academy of Life and Health, Nanjing, 211135, China.
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
19
|
Forgács L, Borman AM, Kovács R, Balázsi D, Tóth Z, Balázs B, Chun-Ju C, Kardos G, Kovacs I, Majoros L. In Vivo Efficacy of Amphotericin B against Four Candida auris Clades. J Fungi (Basel) 2022; 8:jof8050499. [PMID: 35628754 PMCID: PMC9144575 DOI: 10.3390/jof8050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Candida auris is a multidrug-resistant fungus against which in some clinical situations amphotericin B (AMB) remains the alternative or first line drug. We compared daily 1 mg/kg of AMB efficacy in a neutropenic murine bloodstream infection model against 10 isolates representing four C. auris clades (South Asian n = 2; East Asian n = 2; South African n = 2; South American n = 4; two of which were of environmental origin). Five days of AMB treatment significantly increased the survival rates in mice infected with isolates of the East Asian clade, and 1 isolate each from the South African and South American clades (originated from bloodstream), but not in mice infected with the South Asian and 2 environmental isolates from the South American clades. AMB treatment decreased the fungal burden in mice infected with the 2 isolates each from East Asian and South African, and 1 out of 2 bloodstream isolates from South American clades in the hearts (p < 0.01), kidneys (p < 0.01) and brain (p < 0.05). AMB treatment, regardless of clades, significantly decreased colony forming units in the urine at day 3. However, histopathological examination in AMB-treated mice revealed large aggregates of yeast cells in the kidneys and hearts, and focal lesions in the cerebra and cerebelli, regardless of precise C. auris clade. Our clade-specific data confirm that the efficacy of AMB against C. auris is weak, explaining the therapeutic failures in clinical situations. Our results draw attention to the necessity to maximize the killing at the start of treatment to avoid later complications in the heart and central nervous system.
Collapse
Affiliation(s)
- Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, UK Health Security Agency, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK;
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Dávid Balázsi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Bence Balázs
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary
| | - Chiu Chun-Ju
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - Ilona Kovacs
- Department of Pathology, Kenézy Gyula Hospital, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary;
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary; (L.F.); (R.K.); (D.B.); (Z.T.); (B.B.); (C.C.-J.)
- Correspondence: ; Tel.: +36-52-255-425; Fax: +36-52-255-424
| |
Collapse
|
20
|
Wurster S, Albert ND, Kontoyiannis DP. Candida auris Bloodstream Infection Induces Upregulation of the PD-1/PD-L1 Immune Checkpoint Pathway in an Immunocompetent Mouse Model. mSphere 2022; 7:e0081721. [PMID: 35224979 PMCID: PMC9044930 DOI: 10.1128/msphere.00817-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 12/04/2022] Open
Abstract
Candida auris is a globally spreading yeast pathogen causing bloodstream infections with high mortality in critically ill patients. The inherent antifungal drug resistance of most C. auris isolates and threat of multidrug-resistant strains create a need for adjunct immunotherapeutic strategies. While C. albicans candidemia was shown to induce immune paralysis and activation of inhibitory immune checkpoints, in vivo data on host responses to C. auris bloodstream infection are lacking as is an immunocompetent murine infection model to study the immunopathology and immunotherapy of C. auris sepsis. Therefore, herein, we developed an immunocompetent C. auris sepsis model by intravenously infecting C57BL/6 mice with 1.5 × 108 to 8 × 108 yeast cells of aggregate-forming (AR-0384) and nonaggregative (AR-0381) C. auris reference isolates. Both isolates caused reproducible, inoculum-dependent increasing morbidity, mortality, and fungal burden in kidney tissue. Notably, morbidity and mortality outcomes were partially decoupled from fungal burden, suggesting a role of additional modulators of disease severity such as host immune responses. Flow cytometric analyses of splenic immune cells revealed significant upregulation of the programmed cell death protein 1 (PD-1) on T cells and its ligand PD-L1 on macrophages from mice infected with C. auris AR-0384 compared to uninfected mice. PD-L1 expression on macrophages from AR-0384-infected mice strongly correlated with fungal tissue burden (Spearman's rank correlation coefficient [ρ] = 0.95). Altogether, our findings suggest that C. auris sepsis promotes a suppressive immune phenotype through PD-1/PD-L1 induction, supporting further exploration of PD-1/PD-L1 blockade as an immunotherapeutic strategy to mitigate C. auris candidiasis. IMPORTANCE Health authorities consider Candida auris to be one of the most serious emerging nosocomial pathogens due to its transmissibility, resistance to disinfection procedures, and frequent antifungal drug resistance. The frequency of multidrug-resistant C. auris isolates necessitates the development of novel therapeutic platforms, including immunotherapy. However, in vivo data on host interactions with C. auris are scarce, compounded by the lack of reliable immunocompetent mammalian models of C. auris candidemia. Herein, we describe a C. auris sepsis model in immunocompetent C57BL/6 mice and demonstrate reproducible and inoculum-dependent acute infection with both aggregate-forming and nonaggregative reference isolates from different clades. Furthermore, we show that C. auris sepsis induces upregulation of the PD-1/PD-L1 immune checkpoint pathway in infected mice, raising the potential of a therapeutic benefit of immune checkpoint blockade. Our immunocompetent model of C. auris sepsis could provide a facile preclinical platform to thoroughly investigate immune checkpoint blockade and combination therapy with antifungals.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Nathaniel D. Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
21
|
Ivanov M, Ćirić A, Stojković D. Emerging Antifungal Targets and Strategies. Int J Mol Sci 2022; 23:2756. [PMID: 35269898 PMCID: PMC8911111 DOI: 10.3390/ijms23052756] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
Despite abundant research in the field of antifungal drug discovery, fungal infections remain a significant healthcare burden. There is an emerging need for the development of novel antifungals since those currently available are limited and do not completely provide safe and secure protection. Since the current knowledge regarding the physiology of fungal cells and the infection mechanisms is greater than ever, we have the opportunity to use this for the development of novel generations of antifungals. In this review, we selected and summarized recent studies describing agents employing different antifungal mechanisms. These mechanisms include interference with fungal resistance, including impact on the efflux pumps and heat shock protein 90. Additionally, interference with virulence factors, such as biofilms and hyphae; the impact on fungal enzymes, metabolism, mitochondria, and cell wall; and antifungal vaccines are explored. The agents investigated belong to different classes of natural or synthetic molecules with significant attention given also to plant extracts. The efficacy of these antifungals has been studied mainly in vitro with some in vivo, and clinical studies are needed. Nevertheless, there is a large quantity of products employing novel antifungal mechanisms that can be further explored for the development of new generation of antifungals.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia; (A.Ć.); (D.S.)
| | | | | |
Collapse
|
22
|
Herrada J, Roberts K, Gamal A, Long L, Ghannoum MA. An Immunocompromised Mouse Model of Candida auris Systemic Infection. Methods Mol Biol 2022; 2517:317-328. [PMID: 35674965 PMCID: PMC10617627 DOI: 10.1007/978-1-0716-2417-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the recent emergence of multidrug-resistant Candida auris, there is an urgent need for new antifungal compounds with novel pharmacodynamic and pharmacokinetic properties that can treat systemic fungal infections caused by this emerging yeast. Historically, testing the efficacy of treatment for disseminated candidiasis was accomplished using a diverse array of in vivo animal models, including mice which offer an advantage both in their similarities to humans and their lower cost of maintenance. However, in order to create effective in vivo models for testing new antifungal compounds designed to treat systemic infections, it is important that these models also mimic several of the relevant predisposing conditions that can lead to disseminated candidiasis. Here, we describe an immunocompromised mouse model of hematogenously disseminated C. auris infection, which may have utility to test the efficacy of candidate antifungal compounds.
Collapse
Affiliation(s)
- Janet Herrada
- Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Kyle Roberts
- Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Ahmed Gamal
- Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Lisa Long
- Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | - Mahmoud A Ghannoum
- Center for Medical Mycology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
23
|
Wurster S, Albert ND, Kontoyiannis DP. Drosophila melanogaster as a Rapid and Reliable In Vivo Infection Model to Study the Emerging Yeast Pathogen Candida auris. Methods Mol Biol 2022; 2517:299-316. [PMID: 35674964 DOI: 10.1007/978-1-0716-2417-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While mammalian models remain the gold standard to study invasive mycoses, mini-host invertebrate models have provided complementary platforms for explorative investigations of fungal pathogenesis, host-pathogen interplay, and antifungal therapy. Specifically, our group has established Toll-deficient Drosophila melanogaster flies as a facile and cost-effective model organism to study candidiasis, and we have recently expanded these studies to the emerging and frequently multidrug-resistant yeast pathogen Candida auris. Our proof-of-concept data suggest that fruit flies could hold a great promise for large-scale applications in antifungal drug discovery and the screening of C. auris (mutant) libraries with disparate pathogenic capacity. This chapter discusses the advantages and limitations of D. melanogaster to study C. auris candidiasis and provides a step-by-step guide for establishing and troubleshooting C. auris infection and antifungal treatment of Toll-deficient flies along with essential downstream readouts.
Collapse
Affiliation(s)
- Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nathaniel D Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Flores-Maldonado O, González GM, Andrade A, Montoya A, Treviño-Rangel R, Silva-Sánchez A, Becerril-García MA. Dissemination of Candida auris to deep organs in neonatal murine invasive candidiasis. Microb Pathog 2021; 161:105285. [PMID: 34774701 DOI: 10.1016/j.micpath.2021.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Candida auris is an emerging multidrug resistant fungal pathogen, which represents a major challenge for newborns systemic infections worldwide. Management of C. auris infections is complicated due to its intrinsic antifungal resistance and the limited information available on its pathogenesis, particularly during neonatal period. In this study, we developed a murine model of C. auris neonatal invasive infection. C. auris dissemination was evaluated by fungal burden and histopathological analysis of lung, brain, liver, kidney, and spleen at different time intervals. We found fungal cells in all the analyzed tissues, neonatal liver and brain were the most susceptible tissues to fungal invasion. This model will help to better understand pathogenesis mechanisms and facilitate strategies for control and prevention of C. auris infections in newborns.
Collapse
Affiliation(s)
- Orlando Flores-Maldonado
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Alexandra Montoya
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio Treviño-Rangel
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico
| | - Aarón Silva-Sánchez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Miguel A Becerril-García
- Departamento de Microbiología, Universidad Autónoma de Nuevo León, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González", Av. Francisco I. Madero, Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
25
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
26
|
The δ subunit of F 1F o-ATP synthase is required for pathogenicity of Candida albicans. Nat Commun 2021; 12:6041. [PMID: 34654833 PMCID: PMC8519961 DOI: 10.1038/s41467-021-26313-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022] Open
Abstract
Fungal infections, especially candidiasis and aspergillosis, claim a high fatality rate. Fungal cell growth and function requires ATP, which is synthesized mainly through oxidative phosphorylation, with the key enzyme being F1Fo-ATP synthase. Here, we show that deletion of the Candida albicans gene encoding the δ subunit of the F1Fo-ATP synthase (ATP16) abrogates lethal infection in a mouse model of systemic candidiasis. The deletion does not substantially affect in vitro fungal growth or intracellular ATP concentrations, because the decrease in oxidative phosphorylation-derived ATP synthesis is compensated by enhanced glycolysis. However, the ATP16-deleted mutant displays decreased phosphofructokinase activity, leading to low fructose 1,6-bisphosphate levels, reduced activity of Ras1-dependent and -independent cAMP-PKA pathways, downregulation of virulence factors, and reduced pathogenicity. A structure-based virtual screening of small molecules leads to identification of a compound potentially targeting the δ subunit of fungal F1Fo-ATP synthases. The compound induces in vitro phenotypes similar to those observed in the ATP16-deleted mutant, and protects mice from succumbing to invasive candidiasis. Our findings indicate that F1Fo-ATP synthase δ subunit is required for C. albicans lethal infection and represents a potential therapeutic target.
Collapse
|
27
|
Candida Cell-Surface-Specific Monoclonal Antibodies Protect Mice against Candida auris Invasive Infection. Int J Mol Sci 2021; 22:ijms22116162. [PMID: 34200478 PMCID: PMC8201314 DOI: 10.3390/ijms22116162] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/14/2023] Open
Abstract
Candida auris is a multidrug-resistant fungal pathogen that can cause disseminated bloodstream infections with up to 60% mortality in susceptible populations. Of the three major classes of antifungal drugs, most C. auris isolates show high resistance to azoles and polyenes, with some clinical isolates showing resistance to all three drug classes. We reported in this study a novel approach to treating C. auris disseminated infections through passive transfer of monoclonal antibodies (mAbs) targeting cell surface antigens with high homology in medically important Candida species. Using an established A/J mouse model of disseminated infection that mimics human candidiasis, we showed that C3.1, a mAb that targets β-1,2-mannotriose (β-Man3), significantly extended survival and reduced fungal burdens in target organs, compared to control mice. We also demonstrated that two peptide-specific mAbs, 6H1 and 9F2, which target hyphal wall protein 1 (Hwp1) and phosphoglycerate kinase 1 (Pgk1), respectively, also provided significantly enhanced survival and reduction of fungal burdens. Finally, we showed that passive transfer of a 6H1+9F2 cocktail induced significantly enhanced protection, compared to treatment with either mAb individually. Our data demonstrate the utility of β-Man3- and peptide-specific mAbs as an effective alternative to antifungals against medically important Candida species including multidrug-resistant C. auris.
Collapse
|
28
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
29
|
Abstract
Candida auris colonizes human skin and causes life-threatening fungal bloodstream infections. In this issue of Cell Host & Microbe, Huang et al. introduce a murine model of C. auris skin colonization to explore the role of distinct clades, immune signaling pathways, antibiotics, and disinfectants on fungal persistence in or clearance from its habitat.
Collapse
Affiliation(s)
- Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thierry Rolling
- Infectious Disease Service, Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Huang X, Hurabielle C, Drummond RA, Bouladoux N, Desai JV, Sim CK, Belkaid Y, Lionakis MS, Segre JA. Murine model of colonization with fungal pathogen Candida auris to explore skin tropism, host risk factors and therapeutic strategies. Cell Host Microbe 2021; 29:210-221.e6. [PMID: 33385336 PMCID: PMC7878403 DOI: 10.1016/j.chom.2020.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/28/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Candida auris is an emerging multi-drug-resistant human fungal pathogen. C. auris skin colonization results in environmental shedding, which underlies hospital transmissions, and predisposes patients to subsequent infections. We developed a murine skin topical exposure model for C. auris to dissect risk factors for colonization and to test interventions that might protect patients. We demonstrate that C. auris establishes long-term residence within the skin tissue compartment, which would elude clinical surveillance. The four clades of C. auris, with geographically distinct origins, differ in their abilities to colonize murine skin, mirroring epidemiologic findings. The IL-17 receptor signaling and specific arms of immunity protect mice from long-term C. auris skin colonization. We further determine that commonly used chlorhexidine antiseptic serves as a protective and decolonizing agent against C. auris. This translational model facilitates an integrated approach to develop strategies to combat the unfolding global outbreaks of C. auris and other skin-associated microbial pathogens.
Collapse
Affiliation(s)
- Xin Huang
- Microbial Genomics Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Charlotte Hurabielle
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Choon K Sim
- Microbial Genomics Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Julia A Segre
- Microbial Genomics Section, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
31
|
Forgács L, Borman AM, Prépost E, Tóth Z, Kardos G, Kovács R, Szekely A, Nagy F, Kovacs I, Majoros L. Comparison of in vivo pathogenicity of four Candida auris clades in a neutropenic bloodstream infection murine model. Emerg Microbes Infect 2021; 9:1160-1169. [PMID: 32486923 PMCID: PMC7448943 DOI: 10.1080/22221751.2020.1771218] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida auris is an emerging worldwide concern, but comparative data about the virulence of different C. auris lineages in mammalian hosts is lacking. Different isolates of the four prevalent C. auris clades (South Asian n = 5, East Asian n = 4, South African n = 5, and South American n = 5) were compared to assess their virulence in a neutropenic murine bloodstream infection model with C. albicans as reference. C. auris, regardless of clade, proved to be less virulent than C. albicans. Highest overall mortality at day 21 was observed for the South American clade (96%), followed by the South Asian (80%), South African (45%) and East Asian (44%) clades. Fungal burden results showed close correlation with lethality. Histopathological examination revealed large aggregates of blastoconidia and budding yeast cells in the hearts, kidneys and livers but not in the spleens. The myocardium of apparently healthy sacrificed mice as well as of mice found moribund showed contraction band necrosis in case of all lineages. Regardless of clade, the heart and kidneys were the most heavily affected organs. Isolates of the same clade showed differences in virulence in mice, but a markedly higher virulence of the South American clade was clearly demonstrated.
Collapse
Affiliation(s)
- Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, UK
| | - Eszter Prépost
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Gábor Kardos
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Adrien Szekely
- UK National Mycology Reference Laboratory (MRL), Public Health England South-West, Bristol, UK
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Ilona Kovacs
- Department of Pathology, Kenézy Gyula Hospital, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
32
|
Sanches JM, Rossato L, Lice I, Alves de Piloto Fernandes AM, Bueno Duarte GH, Rosini Silva AA, de Melo Porcari A, de Oliveira Carvalho P, Gil CD. The role of annexin A1 in Candida albicans and Candida auris infections in murine neutrophils. Microb Pathog 2020; 150:104689. [PMID: 33307121 DOI: 10.1016/j.micpath.2020.104689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Annexin A1 (AnxA1) is an anti-inflammatory protein expressed in various cell types, especially macrophages and neutrophils. Because neutrophils play important roles in infections and inflammatory processes and the relationship between AnxA1 and Candida spp. infections is not well-understood, our study examined whether AnxA1 can serve as a target protein for the regulation of the immune response during fungal infections. C57BL/6 wild-type (WT) and AnxA1 knockout (AnxA1-/-) peritoneal neutrophils were coinfected with Candida albicans or Candida auris for 4 h. AnxA1-/- neutrophils exhibited a marked increase in cyclooxygenase 2 (COX-2), phosphorylated extracellular signal-related kinase (ERK), p-38, and c-Jun N-terminal kinase (JNK) levels after coinfection with both Candida spp. A lipidomics approach showed that AnxA1 deficiency produced marked differences in the supernatant lipid profiles of both control neutrophils and neutrophils coinfected with Candida spp. compared with WT cells, especially the levels of glycerophospholipids and glycerolipids. Our results showed that endogenous AnxA1 regulates the neutrophil response under fungal infection conditions, altering lipid membrane organization and metabolism.
Collapse
Affiliation(s)
- José Marcos Sanches
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | - Luana Rossato
- Laboratório Especial de Micologia, Departamento de Medicina, UNIFESP, São Paulo, 04038-032, Brazil
| | - Izabella Lice
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil
| | | | | | - Alex Aparecido Rosini Silva
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Andreia de Melo Porcari
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Patrícia de Oliveira Carvalho
- Laboratório de Pesquisa Multidisciplinar, Universidade São Francisco, Bragança Paulista, 12916-900, São Paulo, Brazil
| | - Cristiane Damas Gil
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo - UNIFESP, São Paulo, 04023-900, Brazil.
| |
Collapse
|
33
|
Abe M, Katano H, Nagi M, Higashi Y, Sato Y, Kikuchi K, Hasegawa H, Miyazaki Y. Potency of gastrointestinal colonization and virulence of Candida auris in a murine endogenous candidiasis. PLoS One 2020; 15:e0243223. [PMID: 33264362 PMCID: PMC7710084 DOI: 10.1371/journal.pone.0243223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Candida auris infections have recently emerged worldwide, and this species is highly capable of colonization and is associated with high levels of mortality. However, strain-dependent differences in colonization capabilities and virulence have not yet been reported. OBJECTIVES In the present study, we aimed to clarify the differences between clinically isolated invasive and non-invasive strains of C. auris. METHODS We evaluated colonization, dissemination, and survival rates in wild C57BL/6J mice inoculated with invasive or non-invasive strains of C. auris under cortisone acetate immunosuppression, comparing with those of Candida albicans and Candida glabrata infections. We also evaluated the potency of biofilm formation. RESULTS Stool fungal burdens were significantly higher in mice inoculated with the invasive strains than in those infected with the non-invasive strain. Along with intestinal colonization, liver and kidney fungal burdens were also significantly higher in mice inoculated with the invasive strains. In addition, histopathological findings revealed greater dissemination and colonization of the invasive strains. Regarding biofilm-forming capability, the invasive strain of C. auris exhibited a significantly higher capacity of producing biofilms. Moreover, inoculation with the invasive strains resulted in significantly greater loss of body weight than that noted following infection with the non-invasive strain. CONCLUSIONS Invasive strains showed higher colonization capability and rates of dissemination from gastrointestinal tracts under cortisone acetate immunosuppression than non-invasive strains, although the mortality rates caused by C. auris were lower than those caused by C. albicans.
Collapse
Affiliation(s)
- Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Nagi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Higashi
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infectious Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan.,Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
34
|
Chaturvedi V, Linhardt RJ, Papon N. Candida auris Mannans and Pathogen-Host Interplay. Trends Microbiol 2020; 28:954-956. [PMID: 33190684 DOI: 10.1016/j.tim.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
Candida auris, a multidrug-resistant fungal pathogen, is responsible for the recent global outbreaks in hospitalized and long-term care patients with significant mortality. A new study by Bruno et al. delineates innate host immune responses against C. auris and identifies critical roles for fungal mannans and mannoproteins.
Collapse
Affiliation(s)
- Vishnu Chaturvedi
- Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, New York, NY, USA.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, NY, USA
| | - Nicolas Papon
- Host-Pathogen Interaction Study Group (GEIHP, EA 3142), UNIV Angers, UNIV Brest, Angers, France; Federative Structure of Research 'Cellular Interactions and Therapeutic Applications', SFR 4208 ICAT, Univ Angers, Angers, France
| |
Collapse
|
35
|
What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res 2020; 242:126621. [PMID: 33096325 DOI: 10.1016/j.micres.2020.126621] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Candida auris is a worrisome fungal pathogen of humans which emerged merely about a decade ago. Ever since then the scientific community worked hard to understand clinically relevant traits, such as virulence factors, antifungal resistance mechanisms, and its ability to adhere to human skin and medical devices. Whole-genome sequencing of clinical isolates and epidemiological studies outlining the path of nosocomial outbreaks have been the focus of research into this pathogenic and multidrug-resistant yeast since its first description in 2009. More recently, work was started by several laboratories to explore the biology of C. auris. Here, we review the insights of studies characterizing the mechanisms underpinning antifungal drug resistance, biofilm formation, morphogenetic switching, cell aggregation, virulence, and pathogenicity of C. auris. We conclude that, although some progress has been made, there is still a long journey ahead of us, before we fully understand this novel pathogen. Critically important is the development of molecular tools for C. auris to make this fungus genetically tractable and traceable. This will allow an in-depth molecular dissection of the life cycle of C. auris, of its characteristics while interacting with the human host, and the mechanisms it employs to avoid being killed by antifungals and the immune system.
Collapse
|
36
|
Rottmann BG, Singh PK, Singh S, Revankar SG, Chandrasekar PH, Kumar A. Evaluation of Susceptibility and Innate Immune Response in C57BL/6 and BALB/c Mice During Candida albicans Endophthalmitis. Invest Ophthalmol Vis Sci 2020; 61:31. [PMID: 32940660 PMCID: PMC7500134 DOI: 10.1167/iovs.61.11.31] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Candida remains the leading cause of fungal endophthalmitis. However, the pathobiology and innate immune responses in this disease are not well characterized. Here, we developed two murine models of candida endophthalmitis and evaluated their disease susceptibility and differential immune response. Methods Endophthalmitis was induced in C57BL/6 (B6) and BALB/c mice by intravitreal injection of Candida albicans (CA). Disease progression was monitored by slit-lamp examination and clinical scoring, followed by retinal function assessment using electroretinography (ERG). Enucleated eyes were used to estimate fungal burden and retinal tissue damage by hematoxylin and eosin and TUNEL staining. The level of inflammatory mediators were determined by quantitative Polymerase Chain Reaction (qPCR) and enzyme-linked immunosorbent assay, whereas neutrophil infiltration was assessed by flow cytometry and immunostaining. Results Intravitreal injection of CA at 6500 colony-forming units resulted in sustained (non-resolving) ocular inflammation in both B6 and BALB/c mice as evidenced by increased levels of inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and chemokine (CXCL2/MIP-2). In both mouse strains, fungal burden peaked at 24 to 48 hours post-infection (hpi) and decreased by 72 to 96 hpi. CA-infected eyes exhibited increased polymorphonuclear neutrophils (PMN) infiltration and retinal tissue damage. Overall retinal function declined rapidly, with a significant reduction in ERG response at 12 hpi and near-total loss by 24 hpi. Differential analyses revealed increased pathology in BALB/c versus B6 mice. Conclusions C. albicans was able to cause endophthalmitis in mice. Although BALB/c mice were found to be more susceptible to CA endophthalmitis, both BALB/c and B6 models could be used to study fungal endophthalmitis and test therapeutic modalities.
Collapse
Affiliation(s)
- Bruce G. Rottmann
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sneha Singh
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Sanjay G. Revankar
- Division of Infectious Disease, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Pranatharthi H. Chandrasekar
- Division of Infectious Disease, Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Ashok Kumar
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
37
|
De Paula DCC, Leite EA, Araujo CM, Branquinho RT, Guimarães HN, Grabe-Guimarães A. Caspofungin Effects on Electrocardiogram of Mice: An Evaluation of Cardiac Safety. Cardiovasc Toxicol 2020; 21:93-105. [PMID: 32845461 DOI: 10.1007/s12012-020-09599-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023]
Abstract
Caspofungin is an echinocandin, exhibiting efficacy against most Candida species invasive infection. Its cardiotoxicity was reported in isolated rat heart and ventricular myocytes, but in vivo and clinical studies are insufficient. Our objective was to evaluate caspofungin in vivo cardiac effects using an efficacious dose against Candida albicans. Female Swiss mice were infected with C. albicans, and treated with caspofungin, 5 or 10 mg/kg, intraperitoneal along 5 days. Survival rate and colony-forming units (CFU) into vital organs were determined. For cardiac effects study, mice were treated with caspofungin 10 mg/kg, and electrocardiogram (ECG) signal was obtained on C. albicans-infected mice, single dose-treated, and uninfected mice treated along 5 days, both groups to measure ECG intervals. Besides, ECG was also obtained by telemetry on uninfected mice to evaluate heart rate variability (HRV) parameters. The MIC for caspofungin on the wild-type C. albicans SC5314 strain was 0.3 μg/ml, indicating the susceptible. Survival rate increased significantly in infected mice treated with caspofungin compared to mice treated with vehicle. None of the survived infected mice presented positive CFU after treatment with 10 mg/kg. C. albicans infection induced prolongation of QRS, QT, and QTc intervals; caspofungin did not alter this effect. Caspofungin induced increase of PR and an additional increase of QRS after 24 h of a single dose in infected mice. No significant alterations occurred in ECG intervals and HRV parameters of uninfected mice, after caspofungin treatment. Caspofungin showed in vivo cardiac relative safety maintaining its antifungal efficacy against C. albicans.
Collapse
Affiliation(s)
- Danielle Cristiane Correa De Paula
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Morais Araujo
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Renata Tupinambá Branquinho
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Homero Nogueira Guimarães
- Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andrea Grabe-Guimarães
- Pharmaceutical Science Program (CiPharma), School of Pharmacy, Federal University of Ouro Preto, Campus Morro do Cruzeiro, s/n, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
38
|
Harpf V, Rambach G, Würzner R, Lass-Flörl C, Speth C. Candida and Complement: New Aspects in an Old Battle. Front Immunol 2020; 11:1471. [PMID: 32765510 PMCID: PMC7381207 DOI: 10.3389/fimmu.2020.01471] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/05/2020] [Indexed: 01/13/2023] Open
Abstract
Candida is a dominant fungal pathogen in immunocompromised hosts, leading to opportunistic infections. Complement with its multifaceted functions is involved in the immune defense against this yeast, and recently several novel aspects have emerged in this old battle. It is clear that Candida can adopt both roles as a colonizer or as a pathogen. In our article, we focus on the molecular mechanisms of the Candida-complement interplay, which occur in disseminated disease as well as locally on skin or on mucous membranes in mouth and vagina; the mechanisms can be supposed to be the same. Activation of the complement system by Candida is facilitated by directly triggering the three dominant pathways, but also indirectly via the coagulation and fibrinolysis systems. The complement-mediated anti-Candida effects induced thereby clearly extend chemotaxis, opsonization, and phagocytosis, and even the membrane attack complex formed on the fungal surface plays a modulatory role, although lysis of the yeast per se cannot be induced due to the thick fungal cell wall. In order to avoid the hostile action of complement, several evasion mechanisms have evolved during co-evolution, comprising the avoidance of recognition, and destruction. The latter comes in many flavors, in particular the cleavage of complement proteins by yeast enzymes and the exploitation of regulatory proteins by recruiting them on the cell wall, such as factor H. The rationale behind that is that the fluid phase regulators on the fungal cell surface down-regulate complement locally. Interestingly, however, evasion protein knockout strains do not necessarily lead to an attenuated disease, so it is likely more complex in vivo than initially thought. The interactions between complement and non-albicans species also deserve attention, especially Candida auris, a recently identified drug-resistant species of medical importance. This is in particular worth investigating, as deciphering of these interactions may lead to alternative anti-fungal therapies directly targeting the molecular mechanisms.
Collapse
Affiliation(s)
- Verena Harpf
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Abstract
Candida auris is an enigmatic yeast that provides substantial global risk in health care facilities and intensive care units. A unique phenotype exhibited by certain isolates of C. auris is their ability to form small clusters of cells known as aggregates, which have been to a limited extent described in the context of pathogenic traits. In this study, we screened several nonaggregative and aggregative C. auris isolates for biofilm formation, where we observed a level of heterogeneity among the different phenotypes. Next, we utilized an RNA sequencing approach to investigate the transcriptional responses during biofilm formation of a nonaggregative and aggregative isolate of the initial pool. Observations from these analyses indicate unique transcriptional profiles in the two isolates, with several genes identified relating to proteins involved in adhesion and invasion of the host in other fungal species. From these findings, we investigated for the first time the fungal recognition and inflammatory responses of a three-dimensional skin epithelial model to these isolates. In these models, a wound was induced to mimic a portal of entry for C. auris We show that both phenotypes elicited minimal response in the model minus induction of the wound, yet in the wounded tissue, both phenotypes induced a greater response, with the aggregative isolate more proinflammatory. This capacity of aggregative C. auris biofilms to generate such responses in the wounded skin highlights how this opportunistic yeast is a high risk within the intensive care environment where susceptible patients have multiple indwelling lines.IMPORTANCE Candida auris has recently emerged as an important cause of concern within health care environments due to its ability to persist and tolerate commonly used antiseptics and disinfectants, particularly when attached to a surface (biofilms). This yeast is able to colonize and subsequently infect patients, particularly those that are critically ill or immunosuppressed, which may result in death. We have undertaken analysis on two different phenotypic types of this yeast, using molecular and immunological tools to determine whether either of these has a greater ability to cause serious infections. We describe that both isolates exhibit largely different transcriptional profiles during biofilm development. Finally, we show that the inability to form small aggregates (or clusters) of cells has an adverse effect on the organism's immunostimulatory properties, suggesting that the nonaggregative phenotype may exhibit a certain level of immune evasion.
Collapse
|
40
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
41
|
Kean R, Brown J, Gulmez D, Ware A, Ramage G. Candida auris: A Decade of Understanding of an Enigmatic Pathogenic Yeast. J Fungi (Basel) 2020; 6:jof6010030. [PMID: 32110970 PMCID: PMC7150997 DOI: 10.3390/jof6010030] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an enigmatic yeast that continues to stimulate interest within the mycology community due its rapid and simultaneous emergence of distinct clades. In the last decade, almost 400 manuscripts have contributed to our understanding of this pathogenic yeast. With dynamic epidemiology, elevated resistance levels and an indication of conserved and unique pathogenic traits, it is unsurprising that it continues to cause clinical concern. This mini-review aims to summarise some of the key attributes of his remarkable pathogenic yeast.
Collapse
Affiliation(s)
- Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Jason Brown
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G2 3JZ, UK
| | - Dolunay Gulmez
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G2 3JZ, UK
- Medical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey
| | - Alicia Ware
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow G2 3JZ, UK
- Correspondence: ; Tel.: +44(0)141 211 9752
| |
Collapse
|
42
|
Sabino R, Veríssimo C, Pereira ÁA, Antunes F. Candida auris, an Agent of Hospital-Associated Outbreaks: Which Challenging Issues Do We Need to Have in Mind? Microorganisms 2020; 8:E181. [PMID: 32012865 PMCID: PMC7074697 DOI: 10.3390/microorganisms8020181] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence of Candida auris is considered as one of the most serious problems associated with nosocomial transmission and with infection control practices in hospital environment. This multidrug resistant species is rapidly spreading worldwide, with several described outbreaks. Until now, this species has been isolated from different hospital surfaces, where it can survive for long periods. There are multiple unanswered questions regarding C. auris, such as prevalence in population, environmental contamination, effectiveness of infection prevention and control, and impact on patient mortality. In order to understand how it spreads and discover possible reservoirs, it is essential to know the ecology, natural environment, and distribution of this species. It is also important to explore possible reasons to this recent emergence, namely the environmental presence of azoles or the possible effect of climate change on this sudden emergence. This review aims to discuss some of the most challenging issues that we need to have in mind in the management of C. auris and to raise the awareness to its presence in specific indoor environments as hospital settings.
Collapse
Affiliation(s)
- Raquel Sabino
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge. Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| | - Cristina Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Infectious Diseases Department, National Institute of Health Dr. Ricardo Jorge. Avenida Padre Cruz, 1649-016 Lisbon, Portugal;
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| | - Álvaro Ayres Pereira
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte/Hospital de Santa Maria, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Francisco Antunes
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, 1649-028 Lisboa, Portugal; (Á.A.P.); (F.A.)
| |
Collapse
|