1
|
Santos-Marques C, Teixeira C, Pinheiro R, Brück WM, Pereira SG. Multidrug resistance assessment of indoor air in Portuguese long-term and acute healthcare settings. J Hosp Infect 2025:S0195-6701(25)00036-2. [PMID: 39983920 DOI: 10.1016/j.jhin.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Knowledge about air as pool of pathogens and multidrug resistance (MDR) in healthcare units apart from hospitals is scarce. AIM Current study aimed to portray these features in a Portuguese long-term healthcare unit (LTHU) and a central hospital (CH). METHODS Air samples were collected and their microbial load (bacteria and fungi) determined. Bacterial isolates were randomly selected for further characterization, particularly identification by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry, antimicrobial susceptibility testing, and PCR-screening of extended-spectrum beta-lactamases, carbapenemase genes and mecA gene, with RAPD profile assessment of positive results of the latter. FINDINGS A total of 192 samples were collected (LTHU: n=86; CH: n=106). LTHU showed a statistically significant higher bacterial load. CH bacteria and fungi loads in inpatient sites were statistically significantly lower than in outpatients or non-patient sites. A total of 164 bacterial isolates were identified (MALDI-TOF: n=78; presumptively: n=86), the majority belonging to Staphylococcus genus (LTHU: n=42; CH: n=57). The highest antimicrobial resistance rate was to erythromycin and vancomycin the least, in both settings. 18 isolates (11%) were classified as MDR (LTHU: n=9; CH: n=9), with 7 MDR Staphylococcus isolates (LTHU: n=4; CH: n=3) presenting mecA. Of note, 9 non-MDR Staphylococcus (LTHU: n=5; CH: n=4) also presented mecA. CONCLUSION Current study highlights that healthcare unit indoor air can be an important pool of MDR pathogens and antimicrobial resistance genes. Also, LTHU appear to have poorer air quality than hospitals, as well as supportive areas compared to curative care areas. This may suggest possible yet unknown routes of infection that need to be explored.
Collapse
Affiliation(s)
- Catarina Santos-Marques
- ciTechCare - Center for Innovative Care and Health Technology, School of Health Sciences (ESSLei), Polytechnic University of Leiria, Leiria, Portugal; Microbiology Laboratory, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Portugal
| | - Camila Teixeira
- ciTechCare - Center for Innovative Care and Health Technology, School of Health Sciences (ESSLei), Polytechnic University of Leiria, Leiria, Portugal
| | - Rafael Pinheiro
- ciTechCare - Center for Innovative Care and Health Technology, School of Health Sciences (ESSLei), Polytechnic University of Leiria, Leiria, Portugal
| | - Wolfram Manuel Brück
- Institute of Life Technologies Sciences, University of Applied Sciences and Arts of Western Switzerland Western Switzerland Valais-Wallis, 1950 Sion, Switzerland.
| | - Sónia Gonçalves Pereira
- ciTechCare - Center for Innovative Care and Health Technology, School of Health Sciences (ESSLei), Polytechnic University of Leiria, Leiria, Portugal.
| |
Collapse
|
2
|
Lei S, Khan I, Zhang X, Chen T, Xie X, Zheng X, Jianye Z, Li Z. Assessing oral and toothbrush microbial profiles among high-altitude individuals with and without periodontal disease: a case-control study. BMC Oral Health 2024; 24:993. [PMID: 39182077 PMCID: PMC11344349 DOI: 10.1186/s12903-024-04603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Periodontitis is the sixth-most common disease worldwide. The oral microbiome composition and its association with Periodontal disease (PD) have been largely explored; however, limited studies have explored the microbial profiles of both oral and toothbrushes in patients with PD. Thus, this study aimed to ascertain the oral and toothbrushes microbial composition in high-altitude populations, hypothesizing that their correlation with periodontal health would differ from those at lower altitudes, potentially indicating links between environmental factors, microbial colonization patterns, and periodontal health in distinct geographic contexts. METHODS In the present study, we enrolled 35 individuals including 21 healthy and 14 diagnosed with PD from the Lhasa region of Tibet, China. Saliva and toothbrush samples were collected from each participant to assess the association between toothbrush usage and oral microbiome with PD using 16 S rRNA gene-specific V3-V4 regions sequencing. To assess the oral and toothbrush microbiome composition and diversity and its possible link to PD. RESULTS Significantly higher Alpha diversity (Shannon index) was observed between the PD group and PD toothbrushes (p = 0.00021) and between the PD group and Healthy toothbrushes (p = 0.00041). The predominant species were Proteobacteria, Bacteroidota, Firmicutes, Actinobacteria, and Fusobacteria, with genera Pseudomonas, Veillonella, Neisseria, Acinetobacter, and Haemophilus. In addition, PICRUST2 analysis unveiled 44 significant pathways differentiating the disease and healthy groups, along with 29 pathways showing significant differences between their respective toothbrush microbial profiles. The distinct oral and toothbrush microbial composition among high-altitude populations suggests potential adaptations to the challenges of high-altitude environments. CONCLUSION This study emphasizes the importance of tailored dental care strategies, accounting for altitude and racial factors, to effectively manage periodontal health in these communities. Further research is warranted to investigate the specific microbial mechanisms and develop targeted interventions for optimizing oral health in populations across varying altitudes.
Collapse
Affiliation(s)
- Shengnan Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
- Northwest MINZU University, Lanzhou, Gansu, 730030, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China.
| | - Ikram Khan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xu Zhang
- General Hospital of Xizang Military Region, Lhasa, 850007, China
| | - Tuo Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xin Zheng
- Northwest MINZU University, Lanzhou, Gansu, 730030, China
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhou Jianye
- Northwest MINZU University, Lanzhou, Gansu, 730030, China
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhiqiang Li
- Northwest MINZU University, Lanzhou, Gansu, 730030, China.
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Morawska L. The burden of disease due to indoor air pollution and why we need to know about it. Sci Bull (Beijing) 2024; 69:1161-1164. [PMID: 38480021 DOI: 10.1016/j.scib.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Affiliation(s)
- Lidia Morawska
- International Laboratory for Air Quality and Heath (ILAQH), WHO Collaborating Centre for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia; Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
4
|
Vergani L, Patania J, Riva V, Nerva L, Nuzzo F, Gambino G, Borin S, Mapelli F. Deciphering the interaction of bacteria inoculants with the recipient endophytic community in grapevine micropropagated plants. Appl Environ Microbiol 2024; 90:e0207823. [PMID: 38289136 PMCID: PMC10880630 DOI: 10.1128/aem.02078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/03/2024] [Indexed: 02/22/2024] Open
Abstract
Engineering the plant microbiome with beneficial endophytic bacteria can improve the growth, health, and productivity of the holobiont. Here, we administered two beneficial bacterial strains, Kosakonia VR04 sp. and Rhizobium GR12 sp., to micropropagated grapevine cuttings obtained via somatic embryogenesis. While both strains colonized the plant endosphere, only Rhizobium GR12 sp. increased root biomass under nutritional-deficit conditions, as supported by the plant growth promotion traits detected in its genome. Phylogenetic and co-occurrence analyses revealed that the plant native bacterial community, originally dominated by Streptococcaceae and Micrococcaceae, dramatically changed depending on the inoculation treatments, as invading strains differently affected the relative abundance and the interactions of pre-existing taxa. After 30 days of plantlets' growth, Pantoea became a predominant taxon, and considering untreated plantlets as references, Rhizobium sp. GR12 showed a minor impact on the endophytic bacterial community. On the other hand, Kosakonia sp. VR04 caused a major change in community composition, suggesting an opportunistic colonization pattern. Overall, the results corroborate the importance of preserving the native endophytic community structure and functions during plant microbiome engineering.IMPORTANCEA better comprehension of bacterial colonization processes and outcomes could benefit the use of plant probiotics in the field. In this study, we applied two different beneficial bacteria to grapevine micropropagated plantlets and described how the inoculation of these strains impacts endophytic microbiota assembly. We showed that under nutritional deficit conditions, the response of the receiving endophytic bacterial communities to the invasion of the beneficial strains related to the manifestation of plant growth promotion effects by the inoculated invading strains. Rhizobium sp. GR12 was able to preserve the native microbiome structure despite its effective colonization, highlighting the importance of the plant-endophyte associations for the holobiont performance. Moreover, our approach showed that the use of micropropagated plantlets could be a valuable strategy to study the interplay among the plant, its native microbiota, and the invader on a wider portfolio of species besides model plants, facilitating the application of new knowledge in agriculture.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Joa Patania
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
- Italy Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Science (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
5
|
Carrazana E, Ruiz-Gil T, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Potential airborne human pathogens: A relevant inhabitant in built environments but not considered in indoor air quality standards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165879. [PMID: 37517716 DOI: 10.1016/j.scitotenv.2023.165879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Potential airborne human pathogens (PAHPs) may be a relevant component of the air microbiome in built environments. Despite that PAHPs can cause infections, particularly in immunosuppressed patients at medical centers, they are scarcely considered in standards of indoor air quality (IAQ) worldwide. Here, we reviewed the current information on microbial aerosols (bacteria, fungal and viruses) and PAHPs in different types of built environments (e.g., medical center, industrial and non-industrial), including the main factors involved in their dispersion, the methodologies used in their study and their associated biological risks. Our analysis identified the human occupancy and ventilation systems as the primary sources of dispersal of microbial aerosols indoors. We also observed temperature and relative humidity as relevant physicochemical factors regulating the dispersion and viability of some PAHPs. Our analysis revealed that some PAHPs can survive and coexist in different environments while other PAHPs are limited or specific for an environment. In relation to the methodologies (conventional or molecular) the nature of PAHPs and sampling type are pivotal. In this context, indoors air-borne viruses are the less studies because their small size, environmental lability, and absence of efficient sampling techniques and universal molecular markers for their study. Finally, it is noteworthy that PAHPs are not commonly considered and included in IAQ standards worldwide, and when they are included, the total abundance is the single parameter considered and biological risks is excluded. Therefore, we propose a revision, design and establishment of public health policies, regulations and IAQ standards, considering the interactions of diverse factors, such as nature of PAHPs, human occupancy and type of built environments where they develop.
Collapse
Affiliation(s)
- Elizabeth Carrazana
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Tay Ruiz-Gil
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - So Fujiyoshi
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Daisuke Tanaka
- School of Science Academic Assembly, University of Toyama, Toyama, Japan
| | - Jun Noda
- Graduate School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Microbial Genomics and Ecology, PHIS, The IDEC institute, Hiroshima University, Hiroshima, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
6
|
Chawla H, Anand P, Garg K, Bhagat N, Varmani SG, Bansal T, McBain AJ, Marwah RG. A comprehensive review of microbial contamination in the indoor environment: sources, sampling, health risks, and mitigation strategies. Front Public Health 2023; 11:1285393. [PMID: 38074709 PMCID: PMC10701447 DOI: 10.3389/fpubh.2023.1285393] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
The quality of the indoor environment significantly impacts human health and productivity, especially given the amount of time individuals spend indoors globally. While chemical pollutants have been a focus of indoor air quality research, microbial contaminants also have a significant bearing on indoor air quality. This review provides a comprehensive overview of microbial contamination in built environments, covering sources, sampling strategies, and analysis methods. Microbial contamination has various origins, including human occupants, pets, and the outdoor environment. Sampling strategies for indoor microbial contamination include air, surface, and dust sampling, and various analysis methods are used to assess microbial diversity and complexity in indoor environments. The review also discusses the health risks associated with microbial contaminants, including bacteria, fungi, and viruses, and their products in indoor air, highlighting the need for evidence-based studies that can relate to specific health conditions. The importance of indoor air quality is emphasized from the perspective of the COVID-19 pandemic. A section of the review highlights the knowledge gap related to microbiological burden in indoor environments in developing countries, using India as a representative example. Finally, potential mitigation strategies to improve microbiological indoor air quality are briefly reviewed.
Collapse
Affiliation(s)
- Hitikk Chawla
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt, Germany
| | - Purnima Anand
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Kritika Garg
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Neeru Bhagat
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Shivani G. Varmani
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Ruchi Gulati Marwah
- Department of Microbiology, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| |
Collapse
|
7
|
An XL, Xu JX, Xu MR, Zhao CX, Li H, Zhu YG, Su JQ. Dynamics of Microbial Community and Potential Microbial Pollutants in Shopping Malls. mSystems 2023; 8:e0057622. [PMID: 36602317 PMCID: PMC9948725 DOI: 10.1128/msystems.00576-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Shopping malls offer various niches for microbial populations, potentially serving as sources and reservoirs for the spread of microorganisms of public health concern. However, knowledge about the microbiome and the distribution of human pathogens in malls is largely unknown. Here, we examine the microbial community dynamics and genotypes of potential pathogens from floor and escalator surfaces in shopping malls and adjacent road dusts and greenbelt soils. The distribution pattern of microbial communities is driven primarily by habitats and seasons. A significant enrichment of human-associated microbiota in the indoor environment indicates that human interactions with surfaces might be another strong driver for mall microbiomes. Neutral community models suggest that the microbial community assembly is strongly driven by stochastic processes. Distinct performances of microbial taxonomic signatures for environmental classifications indicate the consistent differences of microbial communities of different seasons/habitats and the strong anthropogenic effect on homogenizing microbial communities of shopping malls. Indoor environments harbored higher concentrations of human pathogens than outdoor samples, also carrying a high proportion of antimicrobial resistance-associated multidrug efflux genes and virulence genes. These findings enhanced the understanding of the microbiome in the built environment and the interactions between humans and the built environment, providing a basis for tracking biothreats and communicable diseases and developing sophisticated early warning systems. IMPORTANCE Shopping malls are distinct microbial environments which can facilitate a constant transmission of microorganisms of public health concern between humans and the built environment or between human and human. Despite extensive investigation of the natural environmental microbiome, no comprehensive profile of microbial ecology has been reported in malls. Characterizing microbial distribution, potential pathogens, and antimicrobial resistance will enhance our understanding of how these microbial communities are formed, maintained, and transferred and help establish a baseline for biosurveillance of potential public health threats in malls.
Collapse
Affiliation(s)
- Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jian-Xin Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mei-Rong Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cai-Xia Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
8
|
Van Bonn W, Oliaro FJ, Pinnell LJ. Ultraviolet light alters experimental aquarium water microbial communities. Zoo Biol 2023; 42:133-141. [PMID: 35532036 DOI: 10.1002/zoo.21701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/10/2022]
Abstract
The effect of ultraviolet (UV) light exposure, alone and in combination with CO2 exposure, on the water microbial community composition was tested in replicate experimental aquaria using source water from an established Amazon-themed exhibit housing mixed species of fishes. Total bacterial abundance, α-diversity metrics, and β-diversity metrics were determined 3 weeks and 1 week before, and weekly during 8 weeks of continuous treatment. The UV treatment significantly lowered the overall bacterial abundance while CO2 treatment had no effect. However, the UV exposure effect was variable across phyla. Some phyla were decreased while others were increased, including some of potential clinical significance. At the genus level, there were no significant differences in the relative abundance of Mycobacteria between treatments and an increase in the relative abundance of Aeromonas spp. with UV light treatment. Further work is needed to determine if the observed effects are dose-dependent or if different exposure doses produce different results.
Collapse
Affiliation(s)
- William Van Bonn
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Francis J Oliaro
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, Illinois, USA
| | - Lee J Pinnell
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, Illinois, USA.,Veterinary Education, Research, and Outreach Program, Texas A&M University, Canyon, Texas, USA
| |
Collapse
|
9
|
Mhuireach GÁ, Fahimipour AK, Vandegrift R, Muscarella ME, Hickey R, Bateman AC, Van Den Wymelenberg KG, Bohannan BJM. Temporary establishment of bacteria from indoor plant leaves and soil on human skin. ENVIRONMENTAL MICROBIOME 2022; 17:61. [PMID: 36572917 PMCID: PMC9793532 DOI: 10.1186/s40793-022-00457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Plants are found in a large percentage of indoor environments, yet the potential for bacteria associated with indoor plant leaves and soil to colonize human skin remains unclear. We report results of experiments in a controlled climate chamber to characterize bacterial communities inhabiting the substrates and leaves of five indoor plant species, and quantify microbial transfer dynamics and residence times on human skin following simulated touch contact events. Controlled bacterial propagule transfer events with soil and leaf donors were applied to the arms of human occupants and repeatedly measured over a 24-h period using 16S rRNA gene amplicon sequencing. RESULTS Substrate samples had greater biomass and alpha diversity compared to leaves and baseline skin bacterial communities, as well as dissimilar taxonomic compositions. Despite these differences in donor community diversity and biomass, we observed repeatable patterns in the dynamics of transfer events. Recipient human skin bacterial communities increased in alpha diversity and became more similar to donor communities, an effect which, for soil contact only, persisted for at least 24 h. Washing with soap and water effectively returned communities to their pre-perturbed state, although some abundant soil taxa resisted removal through washing. CONCLUSIONS This study represents an initial characterization of bacterial relationships between humans and indoor plants, which represent a potentially valuable element of biodiversity in the built environment. Although environmental microbiota are unlikely to permanently colonize skin following a single contact event, repeated or continuous exposures to indoor biodiversity may be increasingly relevant for the functioning and diversity of the human microbiome as urbanization continues.
Collapse
Affiliation(s)
- Gwynne Á Mhuireach
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA.
| | - Ashkaan K Fahimipour
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Roo Vandegrift
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
- United States Department of Agriculture, APHIS, PPQ, Miami, FL, USA
| | - Mario E Muscarella
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Roxana Hickey
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
| | - Ashley C Bateman
- Biology and the Built Environment Center, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
10
|
Li H, Zhou SYD, Neilson R, An XL, Su JQ. Skin microbiota interact with microbes on office surfaces. ENVIRONMENT INTERNATIONAL 2022; 168:107493. [PMID: 36063613 DOI: 10.1016/j.envint.2022.107493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The indoor environment is recognized as a potential contributor to human health impacts through resident microbiomes. Indoor surface microbial communities are formed from several sources, environmental and anthropogenic. In this study, we characterized the bacterial and fungal communities from various sources typical of a working office environment including dust, fingers, and computer keyboards and mice. The composition of the dust bacterial community was significantly different from the other tested surfaces (P < 0.05), whereas the dust fungal community was only significantly different from fingers (P < 0.05). Bacterial and fungal communities were both shaped by deterministic processes, and bacterial communities had a higher migration rate. Results of a network analysis showed that the microbial community interactions of keyboards and mice were mainly competitive. Fast expectation-maximization microbial source tracking (FEAST) identified the sources of > 70 % of the keyboard and mouse microbial communities. Biomarkers for each sample types were identified by LDA Effect Size (LEfSE) analysis, some of which were soil-derived and potential anthropogenic pathogens, indicating the potential for exchange of microbes among outdoor, human and indoor surfaces. The current study shows that the source of microorganisms at the office interface is highly traceable and that their migration is linked to human activity. The migration of potentially pathogenic microbes were identified, emphasising the importance of personal hygiene.
Collapse
Affiliation(s)
- Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Shu-Yi-Dan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Roy Neilson
- Ecological Sciences, The James Hutton Institute, Dundee DD2 5DA, Scotland, UK
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Li X, Liu D, Yao J. Aerosolization of fungal spores in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153003. [PMID: 35031366 DOI: 10.1016/j.scitotenv.2022.153003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Fungi in indoor environments can cause adverse health effects through inhalation and epidermal exposure. The risk of fungal exposure originates from the aerosolization of fungal spores. However, spore aerosolization is still not well understood. This paper provides a review of indoor fungal contamination, especially the aerosolization of fungal spores. We attempted to summarize what is known today and to identify what more information is needed to predict the aerosolization of fungal spores. This paper first reviews fungal contamination in indoor environments and HVAC systems. The detachment of fungal spores from colonies and the spore aerosolization principle are then summarized. Based on the above discussion, prediction methods for spore aerosolization are discussed. This review further clarifies the current situation and future efforts required to accurately predict spore aerosolization. This information is useful for forecasting and controlling the aerosolization of fungal spores.
Collapse
Affiliation(s)
- Xian Li
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China.
| | - Dan Liu
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| | - Jian Yao
- School of Civil Engineering and Architecture, Linyi University, Linyi 276000, China
| |
Collapse
|
12
|
Lam T, Chew D, Zhao H, Zhu P, Zhang L, Dai Y, Liu J, Xu J. Species-Resolved Metagenomics of Kindergarten Microbiomes Reveal Microbial Admixture Within Sites and Potential Microbial Hazards. Front Microbiol 2022; 13:871017. [PMID: 35418963 PMCID: PMC8996153 DOI: 10.3389/fmicb.2022.871017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
Microbiomes on surfaces in kindergartens, the intermediate transfer medium for microbial exchange, can exert significant impact on the hygiene and wellbeing of young children, both individually and as a community. Here employing 2bRAD-M, a novel species-resolved metagenomics approach for low-biomass microbiomes, we surveyed over 100 samples from seven frequently contacted surfaces by children, plus individual children’s palms, in two kindergartens. Microbiome compositions, although kindergarten-specific, were grouped closely based on the type of surface within each kindergarten. Extensive microbial admixture were found among the various sampled sites, likely facilitated by contact with children’s hands. Notably, bacterial species with potential human health concerns and potentially antibiotic-resistant, although found across all sampled locations, were predominantly enriched on children’s hands instead of on the environmental sites. This first species-resolved kindergarten microbiome survey underscores the importance of good hand hygiene practices in kindergartens and provides insights into better managing hygiene levels and minimizing spread of harmful microbes in susceptible indoor environments.
Collapse
Affiliation(s)
- TzeHau Lam
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Dillon Chew
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Helen Zhao
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Lili Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yajie Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jiquan Liu
- Global BioScience, Procter & Gamble Singapore Innovation Center, Singapore, Singapore
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
|
14
|
Dong H, Tan R, Chen Z, Wang L, Song Y, Jin M, Yin J, Li H, Li J, Yang D. The Effects of Immunosuppression on the Lung Microbiome and Metabolites in Rats. Front Microbiol 2022; 13:817159. [PMID: 35237248 PMCID: PMC8882871 DOI: 10.3389/fmicb.2022.817159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunosuppressed patients are more likely to suffer from pneumonia, especially Streptococcus and Enterobacter pneumonia. Studies have demonstrated the existence of a complex and dynamic microbiota on the surface of human respiratory epithelial cells, both in healthy and diseased states. However, it is not clear whether the pneumonia in immunosuppressed patients is caused by inhaled oropharyngeal pathogens or abnormal proliferation of pulmonary proteobacteria. In this study, immunosuppressed model was made by intraperitoneal injection of cyclophosphamide and oropharyngeal saliva aspiration was simulated by oral and pharyngeal tracheal instillation of sterilized phosphate buffered saline (PBS). Furthermore, the effects of immunosuppression on the lung microbial community and its metabolism were investigated using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. The 16S rRNA gene sequencing results showed that immunosuppression alone did not change the composition of pulmonary bacteria. Moreover, although the bacteria brought by sterilized PBS from oropharynx to lower respiratory tract changed the composition of the microflora in healthy and immunosuppressed rats, the change in the latter was more obvious. Metabolomic analysis revealed that the levels of pulmonary metabolites were disturbed in the immunosuppressed rats. The altered lung microbiota, including Streptococcaceae and Enterobacteriaceae, showed significant positive correlations with pulmonary metabolites. Our study suggested that the source of the pathogens of pneumonia in immunosuppressed rats was via inhalation and explored the relationship between lung microbiome and metabolites in immunosuppressed rats. Our results provide the basis for the development of prevention and treatment strategies for pneumonia.
Collapse
|
15
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
16
|
D’Accolti M, Soffritti I, Bini F, Mazziga E, Mazzacane S, Caselli E. Pathogen Control in the Built Environment: A Probiotic-Based System as a Remedy for the Spread of Antibiotic Resistance. Microorganisms 2022; 10:microorganisms10020225. [PMID: 35208679 PMCID: PMC8876034 DOI: 10.3390/microorganisms10020225] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The high and sometimes inappropriate use of disinfectants and antibiotics has led to alarming levels of Antimicrobial Resistance (AMR) and to high water and hearth pollution, which today represent major threats for public health. Furthermore, the current SARS-CoV-2 pandemic has deeply influenced our sanitization habits, imposing the massive use of chemical disinfectants potentially exacerbating both concerns. Moreover, super-sanitation can profoundly influence the environmental microbiome, potentially resulting counterproductive when trying to stably eliminate pathogens. Instead, environmentally friendly procedures based on microbiome balance principles, similar to what applied to living organisms, may be more effective, and probiotic-based eco-friendly sanitation has been consistently reported to provide stable reduction of both pathogens and AMR in treated-environments, compared to chemical disinfectants. Here, we summarize the results of the studies performed in healthcare settings, suggesting that such an approach may be applied successfully also to non-healthcare environments, including the domestic ones, based on its effectiveness, safety, and negligible environmental impact.
Collapse
Affiliation(s)
- Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Francesca Bini
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Eleonora Mazziga
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
| | - Sante Mazzacane
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, 44121 Ferrara, Italy; (M.D.); (I.S.); (F.B.); (E.M.)
- CIAS Research Center, University of Ferrara, Via Saragat 13, 44122 Ferrara, Italy;
- Correspondence:
| |
Collapse
|
17
|
Delgado Corrales B, Kaiser R, Nerlich P, Agraviador A, Sherry A. BioMateriOME: To understand microbe-material interactions within sustainable, living architectures. ADVANCES IN APPLIED MICROBIOLOGY 2022; 122:77-126. [PMID: 37085194 DOI: 10.1016/bs.aambs.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BioMateriOME evolved from a prototyping process which was informed from discussions between a team of designers, architects and microbiologists, when considering constructing with biomaterials or human cohabitation with novel living materials in the built environment. The prototype has two elements (i) BioMateriOME-Public (BMP), an interactive public materials library, and (ii) BioMateriOME-eXperimental (BMX), a replicated materials library for rigorous microbiome experimentation. The prototype was installed into the OME, a unique experimental living house, in order to (1) gain insights into society's perceptions of living materials, and (2) perform a comparative analysis of indoor surface microbiome development on novel biomaterials in contrast to conventional indoor surfaces, respectively. This review summarizes the BioMateriOME prototype and its use as a tool in combining microbiology, design, architecture and social science. The use of microbiology and biological components in the fabrication of biomaterials is provided, together with an appreciation of the microbial communities common to conventional indoor surfaces, and how these communities may change in response to the implementation of living materials in our homes. Societal perceptions of microbiomes and biomaterials, are considered within the framework of healthy architecture. Finally, features of architectural design with microbes in mind are introduced, with the possibility of codifying microbial surveillance into design and construction benchmarks, standards and regulations toward healthier buildings and their occupants.
Collapse
Affiliation(s)
- Beatriz Delgado Corrales
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Romy Kaiser
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paula Nerlich
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Armand Agraviador
- Hub for Biotechnology in the Built Environment, School of Architecture, Planning and Landscape, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela Sherry
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
18
|
Zhou Y, Leung MHY, Tong X, Lee JYY, Lee PKH. City-Scale Meta-Analysis of Indoor Airborne Microbiota Reveals that Taxonomic and Functional Compositions Vary with Building Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15051-15062. [PMID: 34738808 DOI: 10.1021/acs.est.1c03941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, there is a lack of understanding on the variations of the indoor airborne microbiotas of different building types within a city, and how operational taxonomic unit (OTU)- and amplicon sequence variant (ASV)-based analyses of the 16S rRNA gene sequences affect interpretation of the indoor airborne microbiota results. Therefore, in this study, the indoor airborne bacterial microbiotas between commercial buildings, residences, and subways within the same city were compared using both OTU- and ASV-based analytic methods. Our findings suggested that indoor airborne bacterial microbiota compositions were significantly different between building types regardless of the bioinformatics method used. The processes of ecological drift and random dispersal consistently played significant roles in the assembly of the indoor microbiota across building types. Abundant taxa tended to be more centralized in the correlation network of each building type, highlighting their importance. Taxonomic changes between the microbiotas of different building types were also linked to changes in their inferred metabolic function capabilities. Overall, the results imply that customized strategies are necessary to manage indoor airborne bacterial microbiotas for each building type or even within each specific building.
Collapse
Affiliation(s)
- You Zhou
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Justin Y Y Lee
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Baudet A, Guillaso M, Grimmer L, Regad M, Florentin A. Microbiological Contamination of the Office Environment in Dental and Medical Practice. Antibiotics (Basel) 2021; 10:antibiotics10111375. [PMID: 34827313 PMCID: PMC8614722 DOI: 10.3390/antibiotics10111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
The microbiological contamination of the environment in independent healthcare facilities such as dental and general practitioner offices was poorly studied. The aims of this study were to describe qualitatively and quantitatively the bacterial and fungal contamination in these healthcare facilities and to analyze the antibiotic resistance of bacterial pathogens identified. Microbiological samples were taken from the surfaces of waiting, consulting, and sterilization rooms and from the air of waiting room of ten dental and general practitioner offices. Six surface samples were collected in each sampled room using agar contact plates and swabs. Indoor air samples were collected in waiting rooms using a single-stage impactor. Bacteria and fungi were cultured, then counted and identified. Antibiograms were performed to test the antibiotic susceptibility of bacterial pathogens. On the surfaces, median concentrations of bacteria and fungi were 126 (range: 0–1280) and 26 (range: 0–188) CFU/100 cm2, respectively. In indoor air, those concentrations were 403 (range: 118–732) and 327 (range: 32–806) CFU/m3, respectively. The main micro-organisms identified were Gram-positive cocci and filamentous fungi, including six ubiquitous genera: Micrococcus, Staphylococcus, Cladosporium, Penicillium, Aspergillus, and Alternaria. Some antibiotic-resistant bacteria were identified in general practitioner offices (penicillin- and erythromycin-resistant Staphylococcus aureus), but none in dental offices. The dental and general practitioner offices present a poor microbiological contamination with rare pathogenic micro-organisms.
Collapse
Affiliation(s)
- Alexandre Baudet
- Faculté d’Odontologie, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France
- Service d’Odontologie, CHRU-Nancy, F-54000 Nancy, France
- APEMAC, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France;
- Correspondence:
| | - Monique Guillaso
- Département d’Hygiène, des Risques Environnementaux et Associés aux Soins, Faculté de Médecine, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France; (M.G.); (L.G.); (M.R.)
| | - Léonie Grimmer
- Département d’Hygiène, des Risques Environnementaux et Associés aux Soins, Faculté de Médecine, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France; (M.G.); (L.G.); (M.R.)
| | | | - Marie Regad
- Département d’Hygiène, des Risques Environnementaux et Associés aux Soins, Faculté de Médecine, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France; (M.G.); (L.G.); (M.R.)
- Département Territorial d’Hygiène et de Prévention du Risque Infectieux, CHRU-Nancy, F-54505 Vandœuvre-lès-Nancy, France
| | - Arnaud Florentin
- APEMAC, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France;
- Département d’Hygiène, des Risques Environnementaux et Associés aux Soins, Faculté de Médecine, Université de Lorraine, F-54505 Vandœuvre-lès-Nancy, France; (M.G.); (L.G.); (M.R.)
- Département Territorial d’Hygiène et de Prévention du Risque Infectieux, CHRU-Nancy, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
20
|
Indoor Air Quality in Healthcare and Care Facilities: Chemical Pollutants and Microbiological Contaminants. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The indoor air quality of healthcare and care facilities is poorly studied. The aim of this study was to qualitatively and quantitatively describe the chemical pollution and the microbiological contaminations of the indoor environment of these facilities. Methods: A wide range of chemical compounds (39 volatile and 13 semi-volatile organic compounds, carbon dioxide, fine particulate matter) and microorganisms (fungi and bacteria) were studied. Sampling campaigns were conducted in two French cities in summer 2018 and winter 2019 in six private healthcare facilities (general practitioner’s offices, dental offices, pharmacies) and four care facilities (nursing homes). Results: The highest median concentrations of chemical compounds (μg/m3) were measured for alcohols (ethanol: 378.9 and isopropanol: 23.6), ketones (acetone: 18.8), aldehydes (formaldehyde: 11.4 and acetaldehyde: 6.5) and terpenes (limonene: 4.3). The median concentration of PM2.5 was 9.0 µg/m3. The main bacteria of these indoor environments were Staphylococcus, Micrococcus and Bacillus genera, with median bacterial concentrations in the indoor air of 14 cfu/m3. The two major fungal genera were Cladosporium and Penicillium, with median fungal concentrations of 7 cfu/m3. Conclusions: Indoor air in healthcare and care facilities contains a complex mixture of many pollutants found in higher concentrations compared to the indoor air in French hospitals in a previous study.
Collapse
|
21
|
Chen See J, Ly T, Shope A, Bess J, Wall A, Komanduri S, Goldman J, Anderson S, McLimans CJ, Brislawn CJ, Tokarev V, Wright JR, Lamendella R. A Metatranscriptomics Survey of Microbial Diversity on Surfaces Post-Intervention of cleanSURFACES® Technology in an Intensive Care Unit. Front Cell Infect Microbiol 2021; 11:705593. [PMID: 34354962 PMCID: PMC8330600 DOI: 10.3389/fcimb.2021.705593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Hospital-acquired infections (HAIs) pose a serious threat to patients, and hospitals spend billions of dollars each year to reduce and treat these infections. Many HAIs are due to contamination from workers’ hands and contact with high-touch surfaces. Therefore, we set out to test the efficacy of a new preventative technology, AIONX® Antimicrobial Technologies, Inc’s cleanSURFACES®, which is designed to complement daily chemical cleaning events by continuously preventing re-colonization of surfaces. To that end, we swabbed surfaces before (Baseline) and after (Post) application of the cleanSURFACES® at various time points (Day 1, Day 7, Day 14, and Day 28). To circumvent limitations associated with culture-based and 16S rRNA gene amplicon sequencing methodologies, these surface swabs were processed using metatranscriptomic (RNA) analysis to allow for comprehensive taxonomic resolution and the detection of active microorganisms. Overall, there was a significant (P < 0.05) global reduction of microbial diversity in Post-intervention samples. Additionally, Post sample microbial communities clustered together much more closely than Baseline samples based on pairwise distances calculated with the weighted Jaccard distance metric, suggesting a defined shift after product application. This shift was characterized by a general depletion of several microbes among Post samples, with multiple phyla also being reduced over the duration of the study. Notably, specific clinically relevant microbes, including Staphylococcus aureus, Clostridioides difficile and Streptococcus spp., were depleted Post-intervention. Taken together, these findings suggest that chemical cleaning events used jointly with cleanSURFACES® have the potential to reduce colonization of surfaces by a wide variety of microbes, including many clinically relevant pathogens.
Collapse
Affiliation(s)
- Jeremy Chen See
- Contamination Source Identification, Huntingdon, PA, United States
| | - Truc Ly
- Contamination Source Identification, Huntingdon, PA, United States
| | - Alexander Shope
- Contamination Source Identification, Huntingdon, PA, United States.,AIONX, Hershey, PA, United States
| | | | - Art Wall
- Nextflex, San Jose, CA, United States
| | | | | | - Samantha Anderson
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Christopher J McLimans
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Colin J Brislawn
- Contamination Source Identification, Huntingdon, PA, United States
| | - Vasily Tokarev
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| | - Justin R Wright
- Contamination Source Identification, Huntingdon, PA, United States
| | - Regina Lamendella
- Contamination Source Identification, Huntingdon, PA, United States.,Department of Biology, Juniata College, Huntingdon, PA, United States
| |
Collapse
|
22
|
Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. Combining culturing and 16S rDNA sequencing to reveal seasonal and room variations of household airborne bacteria and correlative environmental factors in nanjing, southeast china. INDOOR AIR 2021; 31:1095-1108. [PMID: 33655612 DOI: 10.1111/ina.12807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Exposure to bioaerosols poses important health effects on occupants. To elucidate seasonal and room variations of household airborne bacteria, this study investigated 30 residential homes during summer and winter throughout Nanjing, Southeast China, with a humid subtropical climate. Culturing and 16S rDNA sequencing methods were combined in this study. Results showed that the community structure and composition in the same season but different homes show similarity, however, they in the same home but in different seasons show a huge difference, with Sphingomonas (25.3%), Clostridium (14.8%), and Pseudomonas (7.6%) being the dominant bacteria in summer, and Pseudomonas (57.1%) was dominant bacteria in winter. Culturable concentrations of bacteria were also significantly higher in summer (854 ± 425 CFU/m3 ) than in winter (231 ± 175 CFU/m3 ), but difference by home or room was relatively minor. More than 80% of culturable bacteria (<4.7 μm) could penetrate into lower respiratory tract. The seasonal variations of bacterial community and concentrations were closely associated with seasonal variations of temperature, humidity, and PM2.5 . Higher concentrations and larger sizes were observed in the bathroom and kitchen, typically with higher humidity than other rooms.
Collapse
Affiliation(s)
- Jin Ye
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, USA
| | - Fan Sun
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Yang Zhuge
- School of Energy and Environment, Southeast University, Nanjing, China
- Engineering Research Center for Building Energy Environment & Equipments, Ministry of Education, China
| | - Xiaohong Zheng
- School of Energy and Environment, Southeast University, Nanjing, China
- Jiangsu Provincial Key Laboratory of Solar Energy Science and Technology, School of Energy and Environment, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Chatoutsidou SE, Saridaki A, Raisi L, Katsivela E, Tsiamis G, Zografakis M, Lazaridis M. Airborne particles and microorganisms in a dental clinic: Variability of indoor concentrations, impact of dental procedures, and personal exposure during everyday practice. INDOOR AIR 2021; 31:1164-1177. [PMID: 34080742 DOI: 10.1111/ina.12820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
This study presents for the first time comprehensive measurements of the particle number size distribution (10 nm to 10 μm) together with next-generation sequencing analysis of airborne bacteria inside a dental clinic. A substantial enrichment of the indoor environment with new particles in all size classes was identified by both activities to background and indoor/outdoor (I/O) ratios. Grinding and drilling were the principal dental activities to produce new particles in the air, closely followed by polishing. Illumina MiSeq sequencing of 16S rRNA of bioaerosol collected indoors revealed the presence of 86 bacterial genera, 26 of them previously characterized as potential human pathogens. Bacterial species richness and concentration determined both by qPCR, and culture-dependent analysis were significantly higher in the treatment room. Bacterial load of the treatment room impacted in the nearby waiting room where no dental procedures took place. I/O ratio of bacterial concentration in the treatment room followed the fluctuation of I/O ratio of airborne particles in the biology-relevant size classes of 1-2.5, 2.5-5, and 5-10 μm. Exposure analysis revealed increased inhaled number of particles and microorganisms during dental procedures. These findings provide a detailed insight on airborne particles of both biotic and abiotic origin in a dental clinic.
Collapse
Affiliation(s)
| | - Aggeliki Saridaki
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | - Louiza Raisi
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - Eleftheria Katsivela
- Department of Electronic Engineering, Hellenic Mediterranean University, Chania, Greece
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | | | - Mihalis Lazaridis
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| |
Collapse
|
24
|
Martin-Sanchez PM, Estensmo ELF, Morgado LN, Maurice S, Engh IB, Skrede I, Kauserud H. Analysing indoor mycobiomes through a large-scale citizen science study in Norway. Mol Ecol 2021; 30:2689-2705. [PMID: 33830574 DOI: 10.1111/mec.15916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/04/2023]
Abstract
In the built environment, fungi can cause important deterioration of building materials and have adverse health effects on occupants. Increased knowledge about indoor mycobiomes from different regions of the world, and their main environmental determinants, will enable improved indoor air quality management and identification of health risks. This is the first citizen science study of indoor mycobiomes at a large geographical scale in Europe, including 271 houses from Norway and 807 dust samples from three house compartments: outside of the building, living room and bathroom. The fungal community composition determined by DNA metabarcoding was clearly different between indoor and outdoor samples, but there were no significant differences between the two indoor compartments. The 32 selected variables, related to the outdoor environment, building features and occupant characteristics, accounted for 15% of the overall variation in community composition, with the house compartment as the key factor (7.6%). Next, climate was the main driver of the dust mycobiomes (4.2%), while building and occupant variables had significant but minor influences (1.4% and 1.1%, respectively). The house-dust mycobiomes were dominated by ascomycetes (⁓70%) with Capnodiales and Eurotiales as the most abundant orders. Compared to the outdoor samples, the indoor mycobiomes showed higher species richness, which is probably due to the mixture of fungi from outdoor and indoor sources. The main indoor indicator fungi belonged to two ecological groups with allergenic potential: xerophilic moulds and skin-associated yeasts. Our results suggest that citizen science is a successful approach for unravelling the built microbiome at large geographical scales.
Collapse
Affiliation(s)
- Pedro M Martin-Sanchez
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Eva-Lena F Estensmo
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Luis N Morgado
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway.,Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Inger Skrede
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology (Evogene), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
|
26
|
Blaustein RA, Michelitsch LM, Glawe AJ, Lee H, Huttelmaier S, Hellgeth N, Ben Maamar S, Hartmann EM. Toothbrush microbiomes feature a meeting ground for human oral and environmental microbiota. MICROBIOME 2021; 9:32. [PMID: 33517907 PMCID: PMC7849112 DOI: 10.1186/s40168-020-00983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND While indoor microbiomes impact our health and well-being, much remains unknown about taxonomic and functional transitions that occur in human-derived microbial communities once they are transferred away from human hosts. Toothbrushes are a model to investigate the potential response of oral-derived microbiota to conditions of the built environment. Here, we characterize metagenomes of toothbrushes from 34 subjects to define the toothbrush microbiome and resistome and possible influential factors. RESULTS Toothbrush microbiomes often comprised a dominant subset of human oral taxa and less abundant or site-specific environmental strains. Although toothbrushes contained lower taxonomic diversity than oral-associated counterparts (determined by comparison with the Human Microbiome Project), they had relatively broader antimicrobial resistance gene (ARG) profiles. Toothbrush resistomes were enriched with a variety of ARGs, notably those conferring multidrug efflux and putative resistance to triclosan, which were primarily attributable to versatile environmental taxa. Toothbrush microbial communities and resistomes correlated with a variety of factors linked to personal health, dental hygiene, and bathroom features. CONCLUSIONS Selective pressures in the built environment may shape the dynamic mixture of human (primarily oral-associated) and environmental microbiota that encounter each other on toothbrushes. Harboring a microbial diversity and resistome distinct from human-associated counterparts suggests toothbrushes could potentially serve as a reservoir that may enable the transfer of ARGs. Video abstract.
Collapse
Affiliation(s)
- Ryan A. Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Adam J. Glawe
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Hansung Lee
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Nancy Hellgeth
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| |
Collapse
|
27
|
Mahnert A, Verseux C, Schwendner P, Koskinen K, Kumpitsch C, Blohs M, Wink L, Brunner D, Goessler T, Billi D, Moissl-Eichinger C. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. MICROBIOME 2021; 9:27. [PMID: 33487169 PMCID: PMC7831191 DOI: 10.1186/s40168-020-00959-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.
Collapse
Affiliation(s)
- Alexander Mahnert
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Cyprien Verseux
- Laboratory of Applied Space Microbiology, Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Petra Schwendner
- University of Florida, Space Life Sciences Lab, 505 Odyssey Way, Exploration Park, N. Merritt Island, FL 32953 USA
| | - Kaisa Koskinen
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christina Kumpitsch
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marcus Blohs
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lisa Wink
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Brunner
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Theodora Goessler
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica s.n.c, 00133 Rome, Italy
| | - Christine Moissl-Eichinger
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
28
|
Pyzik A, Ciuchcinski K, Dziurzynski M, Dziewit L. The Bad and the Good-Microorganisms in Cultural Heritage Environments-An Update on Biodeterioration and Biotreatment Approaches. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E177. [PMID: 33401448 PMCID: PMC7795576 DOI: 10.3390/ma14010177] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Cultural heritage objects constitute a very diverse environment, inhabited by various bacteria and fungi. The impact of these microorganisms on the degradation of artworks is undeniable, but at the same time, some of them may be applied for the efficient biotreatment of cultural heritage assets. Interventions with microorganisms have been proven to be useful in restoration of artworks, when classical chemical and mechanical methods fail or produce poor or short-term effects. The path to understanding the impact of microbes on historical objects relies mostly on multidisciplinary approaches, combining novel meta-omic technologies with classical cultivation experiments, and physico-chemical characterization of artworks. In particular, the development of metabolomic- and metatranscriptomic-based analyses associated with metagenomic studies may significantly increase our understanding of the microbial processes occurring on different materials and under various environmental conditions. Moreover, the progress in environmental microbiology and biotechnology may enable more effective application of microorganisms in the biotreatment of historical objects, creating an alternative to highly invasive chemical and mechanical methods.
Collapse
Affiliation(s)
- Adam Pyzik
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (K.C.); (M.D.); (L.D.)
| | | | | | | |
Collapse
|
29
|
Xu Y, Tandon R, Ancheta C, Arroyo P, Gilbert JA, Stephens B, Kelley ST. Quantitative profiling of built environment bacterial and fungal communities reveals dynamic material dependent growth patterns and microbial interactions. INDOOR AIR 2021; 31:188-205. [PMID: 32757488 DOI: 10.1111/ina.12727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/01/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.
Collapse
Affiliation(s)
- Ying Xu
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
| | - Ruby Tandon
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Chrislyn Ancheta
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Pablo Arroyo
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Scott T Kelley
- Graduate Program in Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA, USA
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
30
|
Li S, Xu Y, Cai J, Hu D, He Q. Integrated environment-occupant-pathogen information modeling to assess and communicate room-level outbreak risks of infectious diseases. BUILDING AND ENVIRONMENT 2021; 187:107394. [PMID: 33132484 PMCID: PMC7584519 DOI: 10.1016/j.buildenv.2020.107394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/20/2020] [Accepted: 10/21/2020] [Indexed: 06/02/2023]
Abstract
Microbial pathogen transmission within built environments is a main public health concern. The pandemic of coronavirus disease 2019 (COVID-19) adds to the urgency of developing effective means to reduce pathogen transmission in mass-gathering public buildings such as schools, hospitals, and airports. To inform occupants and guide facility managers to prevent and respond to infectious disease outbreaks, this study proposed a framework to assess room-level outbreak risks in buildings by modeling built environment characteristics, occupancy information, and pathogen transmission. Building information modeling (BIM) is exploited to automatically retrieve building parameters and possible occupant interactions that are relevant to pathogen transmission. The extracted information is fed into an environment pathogen transmission model to derive the basic reproduction numbers for different pathogens, which serve as proxies of outbreak potentials in rooms. A web-based system is developed to provide timely information regarding outbreak risks to occupants and facility managers. The efficacy of the proposed method was demonstrated by a case study, in which building characteristics, occupancy schedules, pathogen parameters, as well as hygiene and cleaning practices are considered for outbreak risk assessment. This study contributes to the body of knowledge by computationally integrating building, occupant, and pathogen information modeling for infectious disease outbreak assessment, and communicating actionable information for built environment management.
Collapse
Affiliation(s)
- Shuai Li
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, USA
| | - Yifang Xu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, USA
| | - Jiannan Cai
- Department of Construction Science, University of Texas at San Antonio, USA
| | - Da Hu
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, USA
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, USA
| |
Collapse
|
31
|
Kakumanu ML, DeVries ZC, Barbarin AM, Santangelo RG, Schal C. Bed bugs shape the indoor microbial community composition of infested homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140704. [PMID: 32927527 DOI: 10.1016/j.scitotenv.2020.140704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 05/12/2023]
Abstract
Indoor pests, and the allergens they produce, adversely affect human health. Surprisingly, however, their effects on indoor microbial communities have not been assessed. Bed bug (Cimex lectularius) infestations pose severe challenges in elderly and low-income housing. They void large amounts of liquid feces into the home environment, which might alter the indoor microbial community composition. In this study, using bed bug-infested and uninfested homes, we showed a strong impact of bed bug infestations on the indoor microbial diversity. Floor dust samples were collected from uninfested and bed bug-infested homes and their microbiomes were analyzed before and after heat interventions that eliminated bed bugs. The microbial communities of bed bug-infested homes were radically different from those of uninfested homes, and the bed bug endosymbiont Wolbachia was the major driver of this difference. After bed bugs were eliminated, the microbial community gradually shifted toward the community composition of uninfested homes, strongly implicating bed bugs in shaping the dust-associated environmental microbiome. Further studies are needed to understand the viability of these microbial communities and the potential risks that bed bug-associated microbes and their metabolites pose to human health.
Collapse
Affiliation(s)
- Madhavi L Kakumanu
- Department of Entomology and Plant Pathology and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| | - Zachary C DeVries
- Department of Entomology and Plant Pathology and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Alexis M Barbarin
- Department of Entomology and Plant Pathology and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States; Division of Public Health, Communicable Disease Branch, Raleigh, NC, United States
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Coby Schal
- Department of Entomology and Plant Pathology and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
32
|
Zhou Y, Lai Y, Tong X, Leung MHY, Tong JCK, Ridley IA, Lee PKH. Airborne Bacteria in Outdoor Air and Air of Mechanically Ventilated Buildings at City Scale in Hong Kong across Seasons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11732-11743. [PMID: 32852192 DOI: 10.1021/acs.est.9b07623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Studies of the indoor airborne microbiome have mostly been confined to a single location and time point. Here, we characterized, over the course of a year, the geographic variation, building-function dependence, and dispersal characteristics of indoor and outdoor airborne microbiomes (bacterial members only) of eight mechanically ventilated commercial buildings. Based on the Sloan neutral model, airborne microbiomes were randomly dispersed in the respective indoor and outdoor environments and between the two environments during each season. The dominant taxa in the indoor and outdoor environments showed minor variations at each location among seasons. The airborne microbiomes displayed weak seasonality for both indoor and outdoor environments, while a weak geographic variation was found only for the indoor environments. Source tracking results show that outdoor air and occupant skin were major contributors to the indoor airborne microbiomes, but the extent of the contribution from each source varied within and among buildings over the seasons, which suggests variations in local building use. Based on 32 cases of indoor airborne microbiome data, we determined that the indoor/outdoor (I/O) ratio of PM2.5 was not a robust indicator of the sources found indoors. Alternatively, the indoor concentration of carbon dioxide was more closely correlated with the major sources of the indoor airborne microbiome in mechanically ventilated environments.
Collapse
Affiliation(s)
- You Zhou
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yonghang Lai
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xinzhao Tong
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Marcus H Y Leung
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jimmy C K Tong
- Building Sustainability Group, Arup, Kowloon, Hong Kong SAR, China
| | - Ian A Ridley
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Kumari H, Chakraborti T, Singh M, Chakrawarti MK, Mukhopadhyay K. Prevalence and antibiogram of coagulase negative Staphylococci in bioaerosols from different indoors of a university in India. BMC Microbiol 2020; 20:211. [PMID: 32677881 PMCID: PMC7364608 DOI: 10.1186/s12866-020-01875-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Staphylococci species are the major constituents of infectious bioaerosols, particularly methicillin-resistant Staphylococci (MRS) have serious health impacts. Here, the bacterial burden was quantified, especially prevalence of MRS in bioaerosols collected from indoors of Dr. B.R. Ambedkar Central Library (DBRACL) and Central Laboratory Animal Resources (CLAR) of Jawaharlal Nehru University, New Delhi, India. Air samplings from DBRACL and CLAR were done using the settle plate method and SKC biosampler, respectively. RESULTS This study showed a maximum 6757 CFU/m2/hr of bacterial load in the DBRACL reading room, while unacceptable bacterial loads (> 1000 CFU/m3 of air) at different sites of CLAR. Further, at both the sampling sites the predominance of coagulase negative Staphylococci (CNS) was observed. A total 22 and 35 Staphylococci isolates were isolated from DBRACL and CLAR bioaerosols, respectively. Majority (16/22) of the Staphylococcal isolates from DBRACL belonged to human-associated Staphylococci where S. haemolyticus (5/22) was the most dominating species. However, in CLAR facility centre, animal-associated Staphylococci (19/35) were dominating, where S. xylosus (12/35) was the most dominating species. Further, antibiotic sensitivity tests revealed 41% MRS and 73% multidrug resistant (MDR) among airborne Staphylococci from DBRACL indoor bioaerosols. Similarly, in CLAR facility, approximately, 66% Staphylococci isolates were methicillin resistant, out of which 2 isolates showed high MIC value ≥ 16 μg/mL. Further, we confirmed the presence of 49% multidrug resistant Staphylococci in the indoor air of CLAR facility. CONCLUSIONS This study suggested that the exposure of workers and students in CLAR to such a high concentration of drug-resistant Staphylococci should not be undermined, as these bacterial concentrations are the direct representative of inhalable particulate matter (PM2.5) as per collection procedure. Simultaneously, passive sampling from DBRACL assessed the risks due to microbial contamination in particle agglomerates, which may deposit on the crucial surfaces such as wounds/ cuts or on the frequently used items.
Collapse
Affiliation(s)
- Himani Kumari
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Trina Chakraborti
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Madhuri Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | | | - Kasturi Mukhopadhyay
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Lee MK, Wyss AB, Carnes MU, Richards M, Parks CG, Beane Freeman LE, Thorne PS, Umbach DM, Azcarate-Peril MA, Peddada SD, London SJ. House dust microbiota in relation to adult asthma and atopy in a US farming population. J Allergy Clin Immunol 2020; 147:910-920. [PMID: 32615170 DOI: 10.1016/j.jaci.2020.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Bacterial exposure from house dust has been associated with asthma and atopy in children but whether these relationships are present in adults remains unclear. OBJECTIVE We sought to examine associations of house dust microbiota with adult asthma, atopy, and hay fever. METHODS Vacuumed bedroom dust samples from the homes of 879 participants (average age, 62 years) in the Agricultural Lung Health Study, a case-control study of asthma nested within a farming cohort, were subjected to 16S rRNA amplicon sequencing to characterize bacterial communities. We defined current asthma and hay fever using questionnaires and current atopy by blood specific IgE level > 0.70 IU/mL to 1 or more of 10 common allergens. We used linear regression to examine whether overall within-sample bacterial diversity differed by outcome, microbiome regression-based kernel association test to evaluate whether between-sample bacterial community compositions differed by outcome, and analysis of composition of microbiomes to identify differentially abundant bacterial taxa. RESULTS Overall diversity of bacterial communities in house dust was similar by asthma status but was lower (P < .05) with atopy or hay fever. Many individual bacterial taxa were differentially abundant (false-discovery rate, <0.05) by asthma, atopy, or hay fever. Several taxa from Cyanobacteria, Bacteroidetes, and Fusobacteria were more abundant with asthma, atopy, or hay fever. In contrast, several taxa from Firmicutes were more abundant in homes of individuals with adequately controlled asthma (vs inadequately controlled asthma), individuals without atopy, or individuals without hay fever. CONCLUSIONS Microbial composition of house dust may influence allergic outcomes in adults.
Collapse
Affiliation(s)
- Mi Kyeong Lee
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Annah B Wyss
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Megan U Carnes
- Genomics in Public Health and Medicine Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC
| | | | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Md
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa
| | - David M Umbach
- Biostatistics and Computational Biology Branch, NIEHS, NIH, DHHS, Research Triangle Park, NC
| | - M Andrea Azcarate-Peril
- Department of Medicine and Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shyamal D Peddada
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pa
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, NC.
| |
Collapse
|
35
|
Qureshi SS, Kedo M, Berthrong ST. Gender-neutral bathroom surfaces recolonized by microbes more quickly than single-gender bathrooms. Lett Appl Microbiol 2020; 71:134-137. [PMID: 32410293 DOI: 10.1111/lam.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/30/2022]
Abstract
As humans become increasingly urban and spend more time inside the built environment, there will be increased interactions between humans and shared public surface microbiomes. Recent cultural changes in the United States have led to increased numbers of gender-neutral bathrooms. Given that bathroom surfaces are frequently sanitized, we used this increased availability of gender-neutral bathrooms to examine how single-gender or gender-neutral surfaces are recolonized with microbes. Given that male and female microbiomes vary, we hypothesized that rates of recolonization would differ between male, female and gender-neutral bathroom surfaces. We collected swabs from common hand-contacted surfaces in bathrooms and cultured microbes on selective and rich media to determine microbial abundance after cleaning. Recolonization was dominated by Gram-positive bacteria and was slowest on male, intermediate on female and fastest on gender-neutral surfaces. These results imply that gender-neutral surfaces approach normal climax microbial communities more quickly than single-gender bathrooms. SIGNIFICANCE OF IMPACT OF THE STUDY: Humans now spend substantial amount of time within the built environment, and as a consequence the human microbiome interacts frequently with indoor surfaces. Social changes are making gender-neutral public bathrooms more common, so it is important to study how humans and microbiomes interact with these bathroom surfaces. We found that the gender-neutral bathroom surfaces recolonize more quickly than single-gender, which suggests that there are more potential human-surface microbiome connections in these public spaces. These results will potentially add a new layer to our understanding of the interactions of humans, our microbiomes and how we design our built environment.
Collapse
Affiliation(s)
- S S Qureshi
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - M Kedo
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - S T Berthrong
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA.,Center for Urban Ecology and Sustainability, Butler University, Indianapolis, IN, USA
| |
Collapse
|
36
|
Sbihi H, Boutin RCT, Cutler C, Suen M, Finlay BB, Turvey SE. Thinking bigger: How early-life environmental exposures shape the gut microbiome and influence the development of asthma and allergic disease. Allergy 2019; 74:2103-2115. [PMID: 30964945 DOI: 10.1111/all.13812] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/27/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023]
Abstract
Imbalance, or dysbiosis, of the gut microbiome of infants has been linked to an increased risk of asthma and allergic diseases. Most studies to date have provided a wealth of data showing correlations between early-life risk factors for disease and changes in the structure of the gut microbiome that disrupt normal immunoregulation. These studies have typically focused on one specific risk factor, such as mode of delivery or early-life antibiotic use. Such "micro-level" exposures have a considerable impact on affected individuals but not necessarily the whole population. In this review, we place these mechanisms under a larger lens that takes into account the influence of upstream "macro-level" environmental factors such as air pollution and the built environment. While these exposures likely have a smaller impact on the microbiome at an individual level, their ubiquitous nature confers them with a large influence at the population level. We focus on features of the indoor and outdoor human-made environment, their microbiomes and the research challenges inherent in integrating the built environment microbiomes with the early-life gut microbiome. We argue that an exposome perspective integrating internal and external microbiomes with macro-level environmental factors can provide a more comprehensive framework to define how environmental exposures can shape the gut microbiome and influence the development of allergic disease.
Collapse
Affiliation(s)
- Hind Sbihi
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - Rozlyn CT. Boutin
- Department of Microbiology and Immunology, Michael Smith Laboratories The University of British Columbia Vancouver British Columbia Canada
| | - Chelsea Cutler
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - Mandy Suen
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, Michael Smith Laboratories The University of British Columbia Vancouver British Columbia Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital The University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
37
|
Gupta M, Lee S, Bisesi M, Lee J. Indoor Microbiome and Antibiotic Resistance on Floor Surfaces: An Exploratory Study in Three Different Building Types. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214160. [PMID: 31661921 PMCID: PMC6862025 DOI: 10.3390/ijerph16214160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Floor materials in indoor environments are known to be reservoirs of microbes. We focused on examining bacterial community composition, antibiotic resistance (AR) and microbial source tracking (MST) of fecal bacteria on the floor surfaces. Swab samples were collected from carpet and vinyl floors in three different buildings (medical, veterinary, and office buildings) from high and low traffic areas. Bacterial communities were determined with 16S rRNA sequencing, and AR (tetracycline (tetQ), sulfonamide, and carbapenem (KPC)) and MST (human-, canine-, avian-, and ruminant-specific fecal bacteria) were examined with quantitative polymerase chain reaction (PCR). The results show that Proteobacteria and Actinobacteria were the most abundant phyla. Traffic level significantly affected the number of operational taxonomic units. Traffic level was a key factor for distinctive bacterial community in the medical center. Targeted ARGs were detected from all buildings and tetQ concentration was related with traffic level, and KPC was only detected from the medical center. Most of the floor surfaces showed the presence of dog-specific fecal bacteria (83%) followed by bird-specific fecal bacteria (75%). The results suggest that traffic levels affected the bacterial levels and fecal contamination is prevalent on the floor surfaces. This is the first study that reports KPC presence on the floor surfaces.
Collapse
Affiliation(s)
- Mridula Gupta
- College of public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Seungjun Lee
- College of public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Michael Bisesi
- College of public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiyoung Lee
- College of public Health, Division of Environmental Health Sciences, The Ohio State University, Columbus, OH 43210, USA.
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
38
|
Hu J, Ben Maamar S, Glawe AJ, Gottel N, Gilbert JA, Hartmann EM. Impacts of indoor surface finishes on bacterial viability. INDOOR AIR 2019; 29:551-562. [PMID: 30980566 PMCID: PMC6851865 DOI: 10.1111/ina.12558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
Microbes in indoor environments are constantly being exposed to antimicrobial surface finishes. Many are rendered non-viable after spending extended periods of time under low-moisture, low-nutrient surface conditions, regardless of whether those surfaces have been amended with antimicrobial chemicals. However, some microorganisms remain viable even after prolonged exposure to these hostile conditions. Work with specific model pathogens makes it difficult to draw general conclusions about how chemical and physical properties of surfaces affect microbes. Here, we explore the survival of a synthetic community of non-model microorganisms isolated from built environments following exposure to three chemically and physically distinct surface finishes. Our findings demonstrated the differences in bacterial survival associated with three chemically and physically distinct materials. Alkaline clay surfaces select for an alkaliphilic bacterium, Kocuria rosea, whereas acidic mold-resistant paint favors Bacillus timonensis, a Gram-negative spore-forming bacterium that also survives on antimicrobial surfaces after 24 hours of exposure. Additionally, antibiotic-resistant Pantoea allii did not exhibit prolonged retention on antimicrobial surfaces. Our controlled microcosm experiment integrates measurement of indoor chemistry and microbiology to elucidate the complex biochemical interactions that influence the indoor microbiome.
Collapse
Affiliation(s)
- Jinglin Hu
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Sarah Ben Maamar
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Adam J. Glawe
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| | - Neil Gottel
- Department of SurgeryThe University of ChicagoChicagoIllinois
| | - Jack A. Gilbert
- Department of SurgeryThe University of ChicagoChicagoIllinois
| | - Erica M. Hartmann
- Department of Civil and Environmental EngineeringNorthwestern UniversityEvanstonIllinois
| |
Collapse
|
39
|
Microbial and metabolic succession on common building materials under high humidity conditions. Nat Commun 2019; 10:1767. [PMID: 30992445 PMCID: PMC6467912 DOI: 10.1038/s41467-019-09764-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Despite considerable efforts to characterize the microbial ecology of the built environment, the metabolic mechanisms underpinning microbial colonization and successional dynamics remain unclear, particularly at high moisture conditions. Here, we applied bacterial/viral particle counting, qPCR, amplicon sequencing of the genes encoding 16S and ITS rRNA, and metabolomics to longitudinally characterize the ecological dynamics of four common building materials maintained at high humidity. We varied the natural inoculum provided to each material and wet half of the samples to simulate a potable water leak. Wetted materials had higher growth rates and lower alpha diversity compared to non-wetted materials, and wetting described the majority of the variance in bacterial, fungal, and metabolite structure. Inoculation location was weakly associated with bacterial and fungal beta diversity. Material type influenced bacterial and viral particle abundance and bacterial and metabolic (but not fungal) diversity. Metabolites indicative of microbial activity were identified, and they too differed by material. Microbes inhabit built environments and could contribute to degradation of surfaces especially in damp conditions. Here the authors explore how communities of microbes and their metabolites affect four types of built surfaces under varying environmental conditions.
Collapse
|
40
|
Abstract
IMPACT STATEMENT This review describes a growing body of research on relationships between the microbiome and eye disease. Several groups have investigated the microbiota of the ocular surface; dysregulation of this delicate ecosystem has been associated with a variety of pro-inflammatory states. Other research has explored the effects of the gastrointestinal microbiota on ophthalmic diseases. Characterizing the ways these microbiotas influence ophthalmic homeostasis and pathogenesis may lead to research on new techniques for managing ophthalmic disease.
Collapse
Affiliation(s)
- Adam D Baim
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asadolah Movahedan
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Asim V Farooq
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
41
|
Prussin AJ, Torres PJ, Shimashita J, Head SR, Bibby KJ, Kelley ST, Marr LC. Seasonal dynamics of DNA and RNA viral bioaerosol communities in a daycare center. MICROBIOME 2019; 7:53. [PMID: 30935423 PMCID: PMC6444849 DOI: 10.1186/s40168-019-0672-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/22/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Viruses play an important role in ecosystems, including the built environment (BE). While numerous studies have characterized bacterial and fungal microbiomes in the BE, few have focused on the viral microbiome (virome). Longitudinal microbiome studies provide insight into the stability and dynamics of microbial communities; however, few such studies exist for the microbiome of the BE, and most have focused on bacteria. Here, we present a longitudinal, metagenomic-based analysis of the airborne DNA and RNA virome of a children's daycare center. Specifically, we investigate how the airborne virome varies as a function of season and human occupancy, and we identify possible sources of the viruses and their hosts, mainly humans, animals, plants, and insects. RESULTS Season strongly influenced the airborne viral community composition, and a single sample collected when the daycare center was unoccupied suggested that occupancy also influenced the community. The pattern of influence differed between DNA and RNA viromes. Human-associated viruses were much more diverse and dominant in the winter, while the summertime virome contained a high relative proportion and diversity of plant-associated viruses. CONCLUSIONS This airborne microbiome in this building exhibited seasonality in its viral community but not its bacterial community. Human occupancy influenced both types of communities. By adding new data about the viral microbiome to complement burgeoning information about the bacterial and fungal microbiomes, this study contributes to a more complete understanding of the airborne microbiome.
Collapse
Affiliation(s)
- Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Pedro J. Torres
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - John Shimashita
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Kyle J. Bibby
- Department of Civil and Environmental Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Scott T. Kelley
- Department of Biology, San Diego State University, San Diego, CA 92182 USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
42
|
Sylvain IA, Adams RI, Taylor JW. A different suite: The assemblage of distinct fungal communities in water-damaged units of a poorly-maintained public housing building. PLoS One 2019; 14:e0213355. [PMID: 30883565 PMCID: PMC6422403 DOI: 10.1371/journal.pone.0213355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
Water-damaged housing has been associated with a number of negative health outcomes, principally respiratory disease and asthma. Much of what we know about fungi associated with water-damaged buildings has come from culture-based and immunochemical methods. Few studies have used high-throughput sequencing technologies to assess the impact of water-damage on microbial communities in residential buildings. In this study we used amplicon sequencing and quantitative-PCR to evaluate fungal communities on surfaces and in airborne dust in multiple units of a condemned public housing project located in the San Francisco Bay Area. We recruited 21 households to participate in this study and characterized their apartments as either a unit with visible mold or no visible mold. We sampled airborne fungi from dust settled over a month-long time period from the outdoors, in units with no visible mold, and units with visible mold. In units with visible mold we additionally sampled the visible fungal colonies from bathrooms, kitchens, bedrooms, and living rooms. We found that fungal biomass in settled dust was greater outdoors compared to indoors, but there was no significant difference of fungal biomass in units with visible mold and no visible mold. Interestingly, we found that fungal diversity was reduced in units with visible mold compared to units with no visible mold and the outdoors. Units with visible mold harbored fungal communities distinct from units with no visible mold and the outdoors. Units with visible mold had a greater abundance of taxa within the classes Eurotiomycetes, Saccharomycetes, and Wallemiomycetes. Colonies of fungi collected from units with visible mold were dominated by two Cladosporium species, C. sphaerospermum and C halotolerans. This study demonstrates that high-throughput sequencing of fungi indoors can be a useful strategy for distinguishing distinct microbial exposures in water-damaged homes with visible and nonvisible mold growth, and may provide a microbial means for identifying water damaged housing.
Collapse
Affiliation(s)
- Iman A. Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Rachel I. Adams
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
43
|
Mahnert A, Moissl-Eichinger C, Zojer M, Bogumil D, Mizrahi I, Rattei T, Martinez JL, Berg G. Man-made microbial resistances in built environments. Nat Commun 2019; 10:968. [PMID: 30814504 PMCID: PMC6393488 DOI: 10.1038/s41467-019-08864-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/01/2019] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.
Collapse
Affiliation(s)
- Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, Graz, 8010, Austria.
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University Graz, Auenbruggerplatz 2, Graz, 8036, Austria
- BioTechMed Graz, Mozartgasse 12/II, Graz, 8010, Austria
| | - Markus Zojer
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - David Bogumil
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Box 653, Beer-Sheva, 84105, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Box 653, Beer-Sheva, 84105, Israel
| | - Thomas Rattei
- Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstrasse 14, Vienna, 1090, Austria
| | - José Luis Martinez
- Centro Nacional de Biotecnologia, CSIC, Calle Darwin 3, Madrid, 28049, Spain
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, Graz, 8010, Austria
- BioTechMed Graz, Mozartgasse 12/II, Graz, 8010, Austria
| |
Collapse
|
44
|
Farmer DK. Analytical Challenges and Opportunities For Indoor Air Chemistry Field Studies. Anal Chem 2019; 91:3761-3767. [DOI: 10.1021/acs.analchem.9b00277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Delphine K. Farmer
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
45
|
Merino N, Zhang S, Tomita M, Suzuki H. Comparative genomics of Bacteria commonly identified in the built environment. BMC Genomics 2019; 20:92. [PMID: 30691394 PMCID: PMC6350394 DOI: 10.1186/s12864-018-5389-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The microbial community of the built environment (BE) can impact the lives of people and has been studied for a variety of indoor, outdoor, underground, and extreme locations. Thus far, these microorganisms have mainly been investigated by culture-based methods or amplicon sequencing. However, both methods have limitations, complicating multi-study comparisons and limiting the knowledge gained regarding in-situ microbial lifestyles. A greater understanding of BE microorganisms can be achieved through basic information derived from the complete genome. Here, we investigate the level of diversity and genomic features (genome size, GC content, replication strand skew, and codon usage bias) from complete genomes of bacteria commonly identified in the BE, providing a first step towards understanding these bacterial lifestyles. RESULTS Here, we selected bacterial genera commonly identified in the BE (or "Common BE genomes") and compared them against other prokaryotic genera ("Other genomes"). The "Common BE genomes" were identified in various climates and in indoor, outdoor, underground, or extreme built environments. The diversity level of the 16S rRNA varied greatly between genera. The genome size, GC content and GC skew strength of the "Common BE genomes" were statistically larger than those of the "Other genomes" but were not practically significant. In contrast, the strength of selected codon usage bias (S value) was statistically higher with a large effect size in the "Common BE genomes" compared to the "Other genomes." CONCLUSION Of the four genomic features tested, the S value could play a more important role in understanding the lifestyles of bacteria living in the BE. This parameter could be indicative of bacterial growth rates, gene expression, and other factors, potentially affected by BE growth conditions (e.g., temperature, humidity, and nutrients). However, further experimental evidence, species-level BE studies, and classification by BE location is needed to define the relationship between genomic features and the lifestyles of BE bacteria more robustly.
Collapse
Affiliation(s)
- Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Department of Earth Sciences, University of Southern California, Stauffer Hall of Science, Los Angeles, CA, 90089, USA
| | - Shu Zhang
- Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Material Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, 90089-0641, USA
| | - Masaru Tomita
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan
| | - Haruo Suzuki
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Kanagawa, 252-0882, Japan. .,Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0035, Japan.
| |
Collapse
|
46
|
Horsley A, Thaler DS. Microwave detection and quantification of water hidden in and on building materials: implications for healthy buildings and microbiome studies. BMC Infect Dis 2019; 19:67. [PMID: 30658591 PMCID: PMC6339348 DOI: 10.1186/s12879-019-3720-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/11/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Excess water in all its forms (moisture, dampness, hidden water) in buildings negatively impacts occupant health but is hard to reliably detect and quantify. Recent advances in through-wall imaging recommend microwaves as a tool with a high potential to noninvasively detect and quantify water throughout buildings. METHODS Microwaves in both transmission and reflection (radar) modes were used to perform a simple demonstration of the detection of water both on and hidden within building materials. RESULTS We used both transmission and reflection modes to detect as little as 1 mL of water between two 7 cm thicknesses of concrete. The reflection mode was also used to detect 1 mL of water on a metal surface. We observed oscillations in transmitted and reflected microwave amplitude as a function of microwave wavelength and water layer thickness, which we attribute to thin-film interference effects. CONCLUSIONS Improving the detection of water in buildings could help design, maintenance, and remediation become more efficient and effective and perhaps increase the value of microbiome sequence data. Microwave characterization of all forms of water throughout buildings is possible; its practical development would require new collaborations among microwave physicists or engineers, architects, building engineers, remediation practitioners, epidemiologists, and microbiologists.
Collapse
Affiliation(s)
- Andrew Horsley
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland. .,Research School of Physics and Engineering, The Australian National University, Mills Rd., ACT 2601, Canberra, Australia.
| | - David S Thaler
- Research School of Physics and Engineering, The Australian National University, Mills Rd., ACT 2601, Canberra, Australia.,Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| |
Collapse
|
47
|
|
48
|
Stephens B, Azimi P, Thoemmes MS, Heidarinejad M, Allen JG, Gilbert JA. Microbial Exchange via Fomites and Implications for Human Health. CURRENT POLLUTION REPORTS 2019; 5:198-213. [PMID: 34171005 PMCID: PMC7149182 DOI: 10.1007/s40726-019-00123-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PURPOSE OF REVIEW Fomites are inanimate objects that become colonized with microbes and serve as potential intermediaries for transmission to/from humans. This review summarizes recent literature on fomite contamination and microbial survival in the built environment, transmission between fomites and humans, and implications for human health. RECENT FINDINGS Applications of molecular sequencing techniques to analyze microbial samples have increased our understanding of the microbial diversity that exists in the built environment. This growing body of research has established that microbial communities on surfaces include substantial diversity, with considerable dynamics. While many microbial taxa likely die or lay dormant, some organisms survive, including those that are potentially beneficial, benign, or pathogenic. Surface characteristics also influence microbial survival and rates of transfer to and from humans. Recent research has combined experimental data, mechanistic modeling, and epidemiological approaches to shed light on the likely contributors to microbial exchange between fomites and humans and their contributions to adverse (and even potentially beneficial) human health outcomes. SUMMARY In addition to concerns for fomite transmission of potential pathogens, new analytical tools have uncovered other microbial matters that can be transmitted indirectly via fomites, including entire microbial communities and antibiotic-resistant bacteria. Mathematical models and epidemiological approaches can provide insight on human health implications. However, both are subject to limitations associated with study design, and there is a need to better understand appropriate input model parameters. Fomites remain an important mechanism of transmission of many microbes, along with direct contact and short- and long-range aerosols.
Collapse
Affiliation(s)
- Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Parham Azimi
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Megan S. Thoemmes
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| | - Mohammad Heidarinejad
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Alumni Memorial Hall 228E, 3201 South Dearborn Street, Chicago, IL 60616 USA
| | - Joseph G. Allen
- Environmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jack A. Gilbert
- Department of Pediatrics, University of California San Diego School of Medicine, San Diego, CA USA
| |
Collapse
|
49
|
Blaustein RA, McFarland AG, Ben Maamar S, Lopez A, Castro-Wallace S, Hartmann EM. Pangenomic Approach To Understanding Microbial Adaptations within a Model Built Environment, the International Space Station, Relative to Human Hosts and Soil. mSystems 2019; 4:e00281-18. [PMID: 30637341 PMCID: PMC6325168 DOI: 10.1128/msystems.00281-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022] Open
Abstract
Understanding underlying mechanisms involved in microbial persistence in the built environment (BE) is essential for strategically mitigating potential health risks. To test the hypothesis that BEs impose selective pressures resulting in characteristic adaptive responses, we performed a pangenomics meta-analysis leveraging 189 genomes (accessed from GenBank) of two epidemiologically important taxa, Bacillus cereus and Staphylococcus aureus, isolated from various origins: the International Space Station (ISS; a model BE), Earth-based BEs, soil, and humans. Our objectives were to (i) identify differences in the pangenomic composition of generalist and host-associated organisms, (ii) characterize genes and functions involved in BE-associated selection, and (iii) identify genomic signatures of ISS-derived strains of potential relevance for astronaut health. The pangenome of B. cereus was more expansive than that of S. aureus, which had a dominant core component. Genomic contents of both taxa significantly correlated with isolate origin, demonstrating an importance for biogeography and potential niche adaptations. ISS/BE-enriched functions were often involved in biosynthesis, catabolism, materials transport, metabolism, and stress response. Multiple origin-enriched functions also overlapped across taxa, suggesting conserved adaptive processes. We further characterized two mobile genetic elements with local neighborhood genes encoding biosynthesis and stress response functions that distinctively associated with B. cereus from the ISS. Although antibiotic resistance genes were present in ISS/BE isolates, they were also common in counterparts elsewhere. Overall, despite differences in microbial lifestyle, some functions appear common to remaining viable in the BE, and those functions are not typically associated with direct impacts on human health. IMPORTANCE The built environment contains a variety of microorganisms, some of which pose critical human health risks (e.g., hospital-acquired infection, antibiotic resistance dissemination). We uncovered a combination of complex biological functions that may play a role in bacterial survival under the presumed selective pressures in a model built environment-the International Space Station-by using an approach to compare pangenomes of bacterial strains from two clinically relevant species (B. cereus and S. aureus) isolated from both built environments and humans. Our findings suggest that the most crucial bacterial functions involved in this potential adaptive response are specific to bacterial lifestyle and do not appear to have direct impacts on human health.
Collapse
Affiliation(s)
- Ryan A. Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Alexander G. McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Alberto Lopez
- Department of Microbiology-Immunology, Northwestern University, Evanston, Illinois, USA
| | - Sarah Castro-Wallace
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, Texas, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
50
|
Poh TY, Ali NABM, Mac Aogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part Fibre Toxicol 2018; 15:46. [PMID: 30458822 PMCID: PMC6245551 DOI: 10.1186/s12989-018-0282-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Our development and usage of engineered nanomaterials has grown exponentially despite concerns about their unfavourable cardiorespiratory consequence, one that parallels ambient ultrafine particle exposure from vehicle emissions. Most research in the field has so far focused on airway inflammation in response to nanoparticle inhalation, however, little is known about nanoparticle-microbiome interaction in the human airway and the environment. Emerging evidence illustrates that the airway, even in its healthy state, is not sterile. The resident human airway microbiome is further altered in chronic inflammatory respiratory disease however little is known about the impact of nanoparticle inhalation on this airway microbiome. The composition of the airway microbiome, which is involved in the development and progression of respiratory disease is dynamic, adding further complexity to understanding microbiota-host interaction in the lung, particularly in the context of nanoparticle exposure. This article reviews the size-dependent properties of nanomaterials, their body deposition after inhalation and factors that influence their fate. We evaluate what is currently known about nanoparticle-microbiome interactions in the human airway and summarise the known clinical, immunological and toxicological consequences of this relationship. While associations between inhaled ambient ultrafine particles and host immune-inflammatory response are known, the airway and environmental microbiomes likely act as intermediaries and facilitate individual susceptibility to inhaled nanoparticles and toxicants. Characterising the precise interaction between the environment and airway microbiomes, inhaled nanoparticles and the host immune system is therefore critical and will provide insight into mechanisms promoting nanoparticle induced airway damage.
Collapse
Affiliation(s)
- Tuang Yeow Poh
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Nur A'tikah Binte Mohamed Ali
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Micheál Mac Aogáin
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Mustafa Hussain Kathawala
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Block N4.1, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sanjay Haresh Chotirmall
- Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Level 12, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|