1
|
Khorashadizadeh S, Abbasifar S, Yousefi M, Fayedeh F, Moodi Ghalibaf A. The Role of Microbiome and Probiotics in Chemo-Radiotherapy-Induced Diarrhea: A Narrative Review of the Current Evidence. Cancer Rep (Hoboken) 2024; 7:e70029. [PMID: 39410854 PMCID: PMC11480522 DOI: 10.1002/cnr2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND In this article, we review the most recent research on probiotics effects on diarrhea in both human and animal models of the condition along with the therapeutic potential of these compounds based on their findings. RECENT FINDINGS Nearly 50%-80% of cancer patients experience chemotherapy-induced diarrhea (CID), serious gastrointestinal toxicity of chemotherapeutic and radiation regimens that leads to prolonged hospitalizations, cardiovascular problems, electrolyte imbalances, disruptions in cancer treatment, poor cancer prognosis, and death. CID is typically categorized as osmotic diarrhea. The depletion of colonic crypts and villi by radiotherapy and chemotherapy agents interferes with the absorptive function of the intestine, thereby decreasing the absorption of chloride and releasing water into the intestinal lumen. Probiotic supplements have been found to be able to reverse the intestinal damage caused by chemo-radiation therapy by promoting the growth of crypt and villi and reducing inflammatory pathways. In addition, they support the modulation of immunological and angiogenesis responses in the gut as well as the metabolism of certain digestive enzymes by altering the gut microbiota. CONCLUSION Beyond the benefits of probiotics, additional clinical research is required to clarify the most effective strain combinations and dosages for preventing chemotherapy and radiotherapy diarrhea.
Collapse
Affiliation(s)
| | - Sara Abbasifar
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Mohammad Yousefi
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | - Farzad Fayedeh
- Student Research CommitteeBirjand University of Medical SciencesBirjandIran
| | | |
Collapse
|
2
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
3
|
Sinha AK, Laursen MF, Brinck JE, Rybtke ML, Hjørne AP, Procházková N, Pedersen M, Roager HM, Licht TR. Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nat Microbiol 2024; 9:1964-1978. [PMID: 38918470 PMCID: PMC11306097 DOI: 10.1038/s41564-024-01737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Tryptophan is catabolized by gut microorganisms resulting in a wide range of metabolites implicated in both beneficial and adverse host effects. How gut microbial tryptophan metabolism is directed towards indole, associated with chronic kidney disease, or towards protective indolelactic acid (ILA) and indolepropionic acid (IPA) is unclear. Here we used in vitro culturing and animal experiments to assess gut microbial competition for tryptophan and the resulting metabolites in a controlled three-species defined community and in complex undefined human faecal communities. The generation of specific tryptophan-derived metabolites was not predominantly determined by the abundance of tryptophan-metabolizing bacteria, but rather by substrate-dependent regulation of specific metabolic pathways. Indole-producing Escherichia coli and ILA- and IPA-producing Clostridium sporogenes competed for tryptophan within the three-species community in vitro and in vivo. Importantly, fibre-degrading Bacteroides thetaiotaomicron affected this competition by cross-feeding monosaccharides to E. coli. This inhibited indole production through catabolite repression, thus making more tryptophan available to C. sporogenes, resulting in increased ILA and IPA production. The fibre-dependent reduction in indole was confirmed using human faecal cultures and faecal-microbiota-transplanted gnotobiotic mice. Our findings explain why consumption of fermentable fibres suppresses indole production but promotes the generation of other tryptophan metabolites associated with health benefits.
Collapse
Affiliation(s)
- Anurag K Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Martin F Laursen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julius E Brinck
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Rybtke
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Pii Hjørne
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Pedersen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
5
|
Guo B, Zhang W, Zhou Y, Zhang J, Zeng C, Sun P, Liu B. Fucoxanthin restructures the gut microbiota and metabolic functions of non-obese individuals in an in vitro fermentation model. Food Funct 2024; 15:4805-4817. [PMID: 38563411 DOI: 10.1039/d3fo05671f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.
Collapse
Affiliation(s)
- Bingbing Guo
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Weihao Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Yonghui Zhou
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Jingyi Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Chengchu Zeng
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Innovative Development of Food Industry, Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
7
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
8
|
Nasiri G, Azimirad M, Goudarzi H, Amirkamali S, Yadegar A, Ghalavand Z, Shahrokh S, Asadzadeh Aghdaei H, Zali MR. The inhibitory effects of live and UV-killed Akkermansia muciniphila and its derivatives on cytotoxicity and inflammatory response induced by Clostridioides difficile RT001 in vitro. Int Microbiol 2024; 27:393-409. [PMID: 37479958 DOI: 10.1007/s10123-023-00398-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/23/2023]
Abstract
Clostridioides difficile infection (CDI) is the leading cause of healthcare-acquired infections worldwide. Probiotics are widely recommended to prevent CDI and its recurrences. Akkermansia muciniphila, as a therapeutic symbiont colonizing the intestinal mucosal layer, is considered to be a promising next-generation probiotic. In this work, we assessed the inhibitory effects of A. muciniphila MucT and its derivatives on cytotoxicity and inflammatory response induced by C. difficile RT001 in Caco-2 cells. The results obtained from SEM revealed that the morphology of UV-killed A. muciniphila remained unchanged after UV inactivation. TEM analysis showed that A. muciniphila-isolated extracellular vesicles (EVs) were spherical and ranged from 50 to 200 nm in size. Toxigenic supernatant (Tox-S) of C. difficile RT001 (500 μg/ml) significantly (P <0.01) reduced the cell viability of Caco-2 cells. Caco-2 cells treated with live (MOI 10), UV-killed (MOI 10), cell-free supernatant (CFS, 106 cfu/ml), and EVs (20 μg/ml) of A. muciniphila exhibited over 90% viability in comparison to untreated control. The neutralized CFS preparation using A. muciniphila and its derivatives could notably reduce the expression level of inflammatory markers. Additionally, A. muciniphila and its derivatives modulated the production of IL-1β, TNF-α, and IL-10 in Tox-S stimulated Caco-2 cells. We demonstrated that A. muciniphila and its derivatives can modulate changes in the gut barrier-related genes and inflammatory response caused by C. difficile Tox-S in Caco-2 cells.
Collapse
Affiliation(s)
- Gelareh Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Amirkamali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
He Z, Guo J, Zhang H, Yu J, Zhou Y, Wang Y, Li T, Yan M, Li B, Chen Y, Chen S, Lv G, Su J. Atractylodes macrocephala Koidz polysaccharide improves glycolipid metabolism disorders through activation of aryl hydrocarbon receptor by gut flora-produced tryptophan metabolites. Int J Biol Macromol 2023; 253:126987. [PMID: 37729987 DOI: 10.1016/j.ijbiomac.2023.126987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
Polysaccharides are known to confer protection against glycolipid metabolism disorders (GMD) by regulating intestinal flora. In this study, a heterogeneous acidic heteropolysaccharide with high molecular weight mainly composed of fructose was isolated from Atractylodes macrocephala Koidz (AMP). Supplementation with AMP was shown to improve diet-induced GMD in a rat model, including decreasing the levels of serum triglycerides, total cholesterol, and glucose, and improving hepatic lipidosis and islet cells morphologies. AMP-treated rats also exhibited modified intestinal flora with enrichments of intestinal Lactobacillus and Rothia species, which was accompanied by increased tryptophan metabolites such as indole-3-propionic acid, indole, tryptamine, and tryptophol. These metabolites promote the expression of intestinal aryl hydrocarbon receptor (AhR) in nuclear fractions. AhR activation increased the expression levels of IL-22 and GLP-1 proteins and mRNA. IL-22 reduced systemic LPS by upregulating the expression of tight junction proteins, antimicrobial peptides, and mucin to ameliorate intestinal barrier function, and activated the hepatic IL-22R/Stat3/Acox1 signaling pathway to improve lipid metabolism. GLP-1 activated the pancreatic GLP-1R/p-CREB signaling pathway to ameliorate β-cell injury and improve insulin resistance. Therefore, the intestinal microbial-tryptophan metabolism-AhR pathway was deduced to be a mechanism by which this polysaccharide improves GMD.
Collapse
Affiliation(s)
- Ziwen He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingyan Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huiwen Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingjing Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqing Zhou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yajun Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqiu Yan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yigong Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Guiyuan Lv
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
11
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Schriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth. Cell Rep 2023; 42:112680. [PMID: 37384526 PMCID: PMC10530208 DOI: 10.1016/j.celrep.2023.112680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A Schriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Shriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542157. [PMID: 37292732 PMCID: PMC10245909 DOI: 10.1101/2023.05.25.542157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota- associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B 6 precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J. Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lawrence A. Shriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A. Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kelli L. VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
13
|
Blachier F. Amino Acid-Derived Bacterial Metabolites in the Colorectal Luminal Fluid: Effects on Microbial Communication, Metabolism, Physiology, and Growth. Microorganisms 2023; 11:1317. [PMID: 37317289 DOI: 10.3390/microorganisms11051317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Undigested dietary and endogenous proteins, as well as unabsorbed amino acids, can move from the terminal part of the ileum into the large intestine, where they meet a dense microbial population. Exfoliated cells and mucus released from the large intestine epithelium also supply nitrogenous material to this microbial population. The bacteria in the large intestine luminal fluid release amino acids from the available proteins, and amino acids are then used for bacterial protein synthesis, energy production, and in other various catabolic pathways. The resulting metabolic intermediaries and end products can then accumulate in the colorectal fluid, and their concentrations appear to depend on different parameters, including microbiota composition and metabolic activity, substrate availability, and the capacity of absorptive colonocytes to absorb these metabolites. The aim of the present review is to present how amino acid-derived bacterial metabolites can affect microbial communication between both commensal and pathogenic microorganisms, as well as their metabolism, physiology, and growth.
Collapse
Affiliation(s)
- François Blachier
- Université Paris-Saclay, AgroParisTech, INRAe, UMR PNCA, 91120 Palaiseau, France
| |
Collapse
|
14
|
Tumor tissue microorganisms are closely associated with tumor immune subtypes. Comput Biol Med 2023; 157:106774. [PMID: 36931204 DOI: 10.1016/j.compbiomed.2023.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Studies have found that different immune subtypes are present in the same tumor. Different tumor subtypes have different tumor microenvironments (TME). This means that the efficacy of immunotherapy in actual applications will, therefore, have different results. Existing tumor immune subtype studies have mostly focused on immune cells, stromal cells, genes and molecules without considering the presence of microbes. Some studies have shown that microflora can strongly promote many gastrointestinal cancers. The microbiome has, therefore, become an important biomarker and regulatory factor of cancer progression and therapeutic responses. In addition, the presence of microflora can strongly regulate the host immune system, indirectly affecting tumor growth. Taken together, it is important to study the relationships that develop among tumor tissue microorganisms, tumor immune subtype, and the TME. In this study, correlations between microbial abundance, immune cell infiltration, immune gene expression and tumor immune subtype were studied. To accomplish this, tissue microorganisms and immune cell ratios with significant differences between the different cancers were obtained by comparing 203 gastric cancer and intestinal cancer samples. Two immune subtypes of intestinal samples were obtained by K-means clustering algorithm and tissue microorganisms, immune cell ratios and immune-related genes with significant differences between different immune subtypes were screened through Wilcoxon rank sum test. The results showed that Clostridioides difficile, Aspergillus fumigatus, Yarrowia lipolytica, and Fusarium pseudograminearum were all closely associated with the identified tumor immune subtypes. Our open-source software is freely available from GitHub at https://github.com/gutmicrobes/IMM-subtype.git.
Collapse
|
15
|
Study on the interaction between grain polyphenols and intestinal microorganisms: A review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Sarma R, Shakya A, Karmakar A, Ghosh SK, Bhat HR, Ghimire N, Rahman O. A Review of Preclinical Tools to Validate Anti-Diarrheal Agents. Curr Rev Clin Exp Pharmacol 2023; 19:12-25. [PMID: 36411576 DOI: 10.2174/2772432818666221121113622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Since their inception, preclinical experimental models have played an important role in investigating and characterizing disease pathogenesis. These in vivo, ex vivo, and in vitro preclinical tests also aid in identifying targets, evaluating potential therapeutic drugs, and validating treatment protocols. INTRODUCTION Diarrhea is a leading cause of mortality and morbidity, particularly among children in developing countries, and it represents a huge health-care challenge on a global scale. Due to its chronic manifestations, alternative anti-diarrheal medications must be tested and developed because of the undesirable side effects of currently existing anti-diarrheal drugs. METHODS Several online databases, including Science Direct, PubMed, Web of Science, Google Scholar and Scopus, were used in the literature search. The datasets were searched for entries of studies up to May, 2022. RESULTS The exhaustive literature study provides a large number of in vivo, in vitro and ex vivo models, which have been used for evaluating the mechanism of the anti-diarrheal effect of drugs in chemically-, pathogen-, disease-induced animal models of diarrhea. The advances and challenges of each model were also addressed in this review. CONCLUSION This review encompasses diverse strategies for screening drugs with anti-diarrheal effects and covers a wide range of pathophysiological and molecular mechanisms linked to diarrhea, with a particular emphasis on the challenges of evaluating and predictively validating these experimental models in preclinical studies. This could also help researchers find a new medicine to treat diabetes more effectively and with fewer adverse effects.
Collapse
Affiliation(s)
- Rajdeep Sarma
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Arka Karmakar
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Neha Ghimire
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Obaidur Rahman
- Department of Pharmaceutical Sciences, School of Science and Engineering, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
17
|
Francisco DMA, Zhang L, Jiang Y, Olvera A, Adachi J, Guevara EY, Aitken SL, Garey KW, Peterson CB, Do KA, Dillon R, Obi EN, Jenq R, Okhuysen PC. Risk Factors Associated with Severe Clostridioides difficile Infection in Patients with Cancer. Infect Dis Ther 2023; 12:209-225. [PMID: 36443547 PMCID: PMC9868205 DOI: 10.1007/s40121-022-00722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Antibiotic use is a risk factor for Clostridioides difficile infection (CDI). Few studies have correlated use of prior antibiotic classes with CDI, microbiome composition, and disease severity in patients with cancer. We hypothesized that previous antibiotic exposure and fecal microbiome composition at time of presentation are risk factors for severe CDI in patients with cancer. METHODS This non-interventional, prospective, cohort study examined 200 patients with cancer who had their first episode or first recurrence of CDI. C. difficile was identified using nucleic acid amplification testing. Univariate analysis was used to determine significant risk factors for severe CDI. Fecal microbiome composition was determined by sequencing the V3/V4 region of 16 s rDNA encoding gene. Differential abundance analyses were used to single out significant microbial features which differed across severity levels. RESULTS On univariate analysis, factors associated with severe CDI included the presence of toxin A/B in stools (odds ratio [OR] 2.14 [1.05-4.36] p = 0.04 and prior 90-day metronidazole use (OR 2.66 [1.09-6.50] p = 0.03). Although alpha and beta diversity was similar between disease severity groups and toxin A/B in stools, increased abundance of Bacteroides uniformis, Ruminococcaceae, and Citrobacter koseri were associated with protection from severe CDI (p < 0.05) and depletion of anaerobes was higher in patients with prior metronidazole exposure. CONCLUSION Use of metronidazole for non-CDI indications within 90 days prior to diagnosis and presence of toxin A/B in stools were associated with severe CDI. Findings provide valuable insights into risk factors for severe CDI in an underserved population with cancer that warrants further exploration.
Collapse
Affiliation(s)
- Denise Marie A. Francisco
- grid.39382.330000 0001 2160 926XSection of Infectious Diseases, Baylor College of Medicine, Houston, TX USA ,grid.430852.80000 0001 0741 4132College of Medicine, University of Illinois, Peoria C/O 530 NE Glen Oak Avenue, Peoria, IL 61637 USA
| | - Liangliang Zhang
- grid.240145.60000 0001 2291 4776Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ying Jiang
- grid.240145.60000 0001 2291 4776Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston, TX 77030 USA
| | - Adilene Olvera
- grid.240145.60000 0001 2291 4776Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston, TX 77030 USA
| | - Javier Adachi
- grid.240145.60000 0001 2291 4776Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston, TX 77030 USA
| | - Eduardo Yepez Guevara
- grid.240145.60000 0001 2291 4776Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston, TX 77030 USA
| | - Samuel L. Aitken
- grid.240145.60000 0001 2291 4776Division of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kevin W. Garey
- grid.266436.30000 0004 1569 9707College of Pharmacy, University of Houston, Houston, TX USA
| | - Christine B. Peterson
- grid.240145.60000 0001 2291 4776Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Kim-Anh Do
- grid.240145.60000 0001 2291 4776Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ryan Dillon
- grid.417993.10000 0001 2260 0793Merck & Co., Inc., Kenilworth, NJ USA
| | - Engels N. Obi
- grid.417993.10000 0001 2260 0793Merck & Co., Inc., Kenilworth, NJ USA
| | - Robert Jenq
- grid.240145.60000 0001 2291 4776Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Pablo C. Okhuysen
- grid.39382.330000 0001 2160 926XSection of Infectious Diseases, Baylor College of Medicine, Houston, TX USA ,grid.240145.60000 0001 2291 4776Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1460, Houston, TX 77030 USA
| |
Collapse
|
18
|
Shi X, Zarkan A. Bacterial survivors: evaluating the mechanisms of antibiotic persistence. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748698 DOI: 10.1099/mic.0.001266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug-free environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persistence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this review, we summarize the putative persister mechanisms, including toxin-antitoxin modules, quorum sensing, indole signalling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining clinically important persister mechanisms.
Collapse
Affiliation(s)
- Xiaoyi Shi
- Cambridge Centre for International Research, Cambridge CB4 0PZ, UK
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
19
|
Biofilms and Benign Colonic Diseases. Int J Mol Sci 2022; 23:ijms232214259. [PMID: 36430737 PMCID: PMC9698058 DOI: 10.3390/ijms232214259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The colon has a very large surface area that is covered by a dense mucus layer. The biomass in the colon includes 500-1000 bacterial species at concentrations of ~1012 colony-forming units per gram of feces. The intestinal epithelial cells and the commensal bacteria in the colon have a symbiotic relationship that results in nutritional support for the epithelial cells by the bacteria and maintenance of the optimal commensal bacterial population by colonic host defenses. Bacteria can form biofilms in the colon, but the exact frequency is uncertain because routine methods to undertake colonoscopy (i.e., bowel preparation) may dislodge these biofilms. Bacteria in biofilms represent a complex community that includes living and dead bacteria and an extracellular matrix composed of polysaccharides, proteins, DNA, and exogenous debris in the colon. The formation of biofilms occurs in benign colonic diseases, such as inflammatory bowel disease and irritable bowel syndrome. The development of a biofilm might serve as a marker for ongoing colonic inflammation. Alternatively, the development of biofilms could contribute to the pathogenesis of these disorders by providing sanctuaries for pathogenic bacteria and reducing the commensal bacterial population. Therapeutic approaches to patients with benign colonic diseases could include the elimination of biofilms and restoration of normal commensal bacteria populations. However, these studies will be extremely difficult unless investigators can develop noninvasive methods for measuring and identifying biofilms. These methods that might include the measurement of quorum sensing molecules, measurement of bile acids, and identification of bacteria uniquely associated with biofilms in the colon.
Collapse
|
20
|
Calatayud M, Duysburgh C, Van den Abbeele P, Franckenstein D, Kuchina-Koch A, Marzorati M. Long-Term Lactulose Administration Improves Dysbiosis Induced by Antibiotic and C. difficile in the PathoGut TM SHIME Model. Antibiotics (Basel) 2022; 11:1464. [PMID: 36358119 PMCID: PMC9686563 DOI: 10.3390/antibiotics11111464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 09/28/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea and an important nosocomial infection with different severity degrees. Disruption of the gut microbiota by broad-spectrum antibiotics creates a proper environment for C. difficile colonization, proliferation, and clinical disease onset. Restoration of the gut microbial ecosystem through prebiotic interventions can constitute an effective complementary treatment of CDI. Using an adapted simulator of the human gut microbial ecosystem, the PathoGutTM SHIME, the effect of different long-term and repeated dose lactulose treatments was tested on C. difficile germination and growth in antibiotic-induced dysbiotic gut microbiota environments. The results showed that lactulose reduced the growth of viable C. difficile cells following clindamycin treatment, shifted the antibiotic-induced dysbiotic microbial community, and stimulated the production of health-promoting metabolites (especially butyrate). Recovery of the gut microenvironment by long-term lactulose administration following CDI was also linked to lactate production, decrease in pH and modulation of bile salt metabolism. At a structural level, lactulose showed a significant bifidogenic potential and restored key commensal members of the gut ecosystem such as Lactobacillaceae, Veillonellaceae and Lachnospiraceae. These results support further human intervention studies aiming to validate the in vitro beneficial effects of lactulose on gut microbiome recovery during antibiotic exposure and CDI.
Collapse
Affiliation(s)
- Marta Calatayud
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | | | | | | - Massimo Marzorati
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
21
|
Schnizlein MK, Young VB. Capturing the environment of the Clostridioides difficile infection cycle. Nat Rev Gastroenterol Hepatol 2022; 19:508-520. [PMID: 35468953 DOI: 10.1038/s41575-022-00610-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile) infection is a substantial health and economic burden worldwide. Great strides have been made over the past several years in characterizing the physiology of C. difficile infection, particularly regarding how gut microorganisms and their host work together to provide colonization resistance. As mammalian hosts and their indigenous gut microbiota have co-evolved, they have formed a complex yet stable relationship that prevents invading microorganisms from establishing themselves. In this Review, we discuss the latest advances in our understanding of C. difficile physiology that have contributed to its success as a pathogen, including its versatile survival factors and ability to adapt to unique niches. Using discoveries regarding microorganism-host and microorganism-microorganism interactions that constitute colonization resistance, we place C. difficile within the fiercely competitive gut environment. A comprehensive understanding of these relationships is required to continue the development of precision medicine-based treatments for C. difficile infection.
Collapse
Affiliation(s)
- Matthew K Schnizlein
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine/Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
22
|
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations. Anaerobe 2022; 76:102600. [PMID: 35709938 PMCID: PMC9831356 DOI: 10.1016/j.anaerobe.2022.102600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023]
Abstract
Stickland amino acid fermentations occur primarily among species of Clostridia. An ancient form of metabolism, Stickland fermentations use amino acids as electron acceptors in the absence of stronger oxidizing agents and provide metabolic capabilities to support growth when other fermentable substrates, such as carbohydrates, are lacking. The reactions were originally described as paired fermentations of amino acid electron donors, such as the branched-chain amino acids, with recipients that include proline and glycine. We present a redox-focused view of Stickland metabolism following electron flow through metabolically diverse oxidative reactions and the defined-substrate reductase systems, including for proline and glycine, and the role of dual redox pathways for substrates such as leucine and ornithine. Genetic studies and Environment and Gene Regulatory Interaction Network (EGRIN) models for the pathogen Clostridioides difficile have improved our understanding of the regulation and metabolic recruitment of these systems, and their functions in modulating inter-species interactions within host-pathogen-commensal systems and uses in industrial and environmental applications.
Collapse
|
23
|
Therapeutic Effects of Bifidobacterium breve YH68 in Combination with Vancomycin and Metronidazole in a Primary Clostridioides difficile-Infected Mouse Model. Microbiol Spectr 2022; 10:e0067222. [PMID: 35311540 PMCID: PMC9045379 DOI: 10.1128/spectrum.00672-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Probiotics have been widely used to prevent primary Clostridioides difficile infection (pCDI); however, there are fewer studies on their therapeutic aspects for pCDI. In this study, high doses of Bifidobacterium breve YH68 were used alone or in combination with vancomycin (VAN) and metronidazole (MTR) to treat pCDI mice. Mouse feces were collected from preinfection, postinfection, and posttreatment stages. Subsequently, the C. difficile number and toxin level in feces were detected by plate count method and C. difficile toxin enzyme-linked immunosorbent assay (ELISA). Simultaneously, 16S rRNA amplicon sequencing and untargeted metabolomics were employed to explore the changing patterns and characteristic markers of fecal microbiota and metabolome. The results indicated that high doses of YH68 used alone or in combination with VAN and MTR were more effective than the combination of VAN and MTR for pCDI mice and improved their final survival rate. This probiotic strain and its combination with antibiotics reduced C. difficile numbers and toxin levels in the feces, downregulated proinflammatory cytokine levels in colon tissue, and alleviated cecum tissue hyperplasia. Meanwhile, the level of fecal microbiota diversity increased significantly in pCDI mice after treatment, with an increase in the relative abundance of Bifidobacterium, Akkermansia, Oscillospira, unidentified_S24-7, and Ruminococcus, and this process was accompanied by elevated levels of secondary bile acid, butyric acid, and gentamicin C1a and reduced levels of primary bile acid and indoles. Most notably, the combination of YH68 with VAN and MTR diminished the damaging effect of antibiotic treatment alone on the microbiota. Our findings suggested that high doses of YH68 used in combination with VAN and MTR have a better therapeutic effect on pCDI mice than the combination of VAN and MTR alone. IMPORTANCE Many studies have focused on the preventive effects of probiotics against pCDI, but few studies have investigated in depth the therapeutic effects of probiotics, especially at the postinfection stage. We demonstrated that high doses of Bifidobacterium breve YH68 used alone or in combination with vancomycin (VAN) and metronidazole (MTR) exerted outstanding efficacy in the treatment of pCDI mice. This probiotic-antibiotic combination regimen has the potential to be a new option for the clinical treatment of pCDI.
Collapse
|
24
|
Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv 2022; 59:107965. [PMID: 35487393 DOI: 10.1016/j.biotechadv.2022.107965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Quorum sensing (QS), which is a key part of cell/cell communication, is widely distributed in microorganisms, especially in bacteria. Bacteria can produce and detect the presence of QS signal molecule, perceive the composition and density of microorganisms in their complex habitat, and then dynamically regulate their own gene expression to adapt to their environment. Among the many traits controlled by QS in pathogenic bacteria is the expression of virulence factors and antibiotic resistance. Many pathogenic bacteria rely on QS to govern the production of virulence factors and express drug-resistance, especially in zoonotic bacteria. The threat of antibiotic resistant zoonotic bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Targeting QS has proven to be a promising alternative to conventional antibiotic for controlling infections. Here we review the QS systems in common zoonotic pathogenic bacteria and outline how QS may control the virulence and antibiotic resistance of zoonotic bacteria.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
25
|
Ornelas A, Dowdell AS, Lee JS, Colgan SP. Microbial Metabolite Regulation of Epithelial Cell-Cell Interactions and Barrier Function. Cells 2022; 11:cells11060944. [PMID: 35326394 PMCID: PMC8946845 DOI: 10.3390/cells11060944] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Epithelial cells that line tissues such as the intestine serve as the primary barrier to the outside world. Epithelia provide selective permeability in the presence of a large constellation of microbes, termed the microbiota. Recent studies have revealed that the symbiotic relationship between the healthy host and the microbiota includes the regulation of cell–cell interactions at the level of epithelial tight junctions. The most recent findings have identified multiple microbial-derived metabolites that influence intracellular signaling pathways which elicit activities at the epithelial apical junction complex. Here, we review recent findings that place microbiota-derived metabolites as primary regulators of epithelial cell–cell interactions and ultimately mucosal permeability in health and disease.
Collapse
Affiliation(s)
- Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Alexander S. Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - J. Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
| | - Sean P. Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave, Mailstop B146, Aurora, CO 80045, USA; (A.O.); (A.S.D.); (J.S.L.)
- Rocky Mountain Regional Veterans Affairs Medical Center, 1700 N. Wheeling St., Aurora, CO 80045, USA
- Correspondence:
| |
Collapse
|
26
|
Chandra H, Sharma KK, Tuovinen OH, Sun X, Shukla P. Pathobionts: mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes 2022; 13:1979882. [PMID: 34724858 PMCID: PMC8565823 DOI: 10.1080/19490976.2021.1979882] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pathobionts are opportunistic microbes that emerge as a result of perturbations in the healthy microbiome due to complex interactions of various genetic, exposomal, microbial, and host factors that lead to their selection and expansion. Their proliferations can aggravate inflammatory manifestations, trigger autoimmune diseases, and lead to severe life-threatening conditions. Current surge in microbiome research is unwinding these complex interplays between disease development and protection against pathobionts. This review summarizes the current knowledge of pathobiont emergence with a focus on Clostridioides difficile and the recent findings on the roles of immune cells such as iTreg cells, Th17 cells, innate lymphoid cells, and cytokines in protection against pathobionts. The review calls for adoption of innovative tools and cutting-edge technologies in clinical diagnostics and therapeutics to provide insights in identification and quantification of pathobionts.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India,Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Olli H. Tuovinen
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA,Xingmin Sun Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India,CONTACT Pratyoosh Shukla School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
27
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
28
|
Vasilescu IM, Chifiriuc MC, Pircalabioru GG, Filip R, Bolocan A, Lazăr V, Diţu LM, Bleotu C. Gut Dysbiosis and Clostridioides difficile Infection in Neonates and Adults. Front Microbiol 2022; 12:651081. [PMID: 35126320 PMCID: PMC8810811 DOI: 10.3389/fmicb.2021.651081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we focus on gut microbiota profiles in infants and adults colonized (CDC) or infected (CDI) with Clostridioides difficile. After a short update on CDI epidemiology and pathology, we present the gut dysbiosis profiles associated with CDI in adults and infants, as well as the role of dysbiosis in C. difficile spores germination and multiplication. Both molecular and culturomic studies agree on a significant decrease of gut microbiota diversity and resilience in CDI, depletion of Firmicutes, Bacteroidetes, and Actinobacteria phyla and a high abundance of Proteobacteria, associated with low butyrogenic and high lactic acid-bacteria levels. In symptomatic cases, microbiota deviations are associated with high levels of inflammatory markers, such as calprotectin. In infants, colonization with Bifidobacteria that trigger a local anti-inflammatory response and abundance of Ruminococcus, together with lack of receptors for clostridial toxins and immunological factors (e.g., C. difficile toxins neutralizing antibodies) might explain the lack of clinical symptoms. Gut dysbiosis amelioration through administration of “biotics” or non-toxigenic C. difficile preparations and fecal microbiota transplantation proved to be very useful for the management of CDI.
Collapse
Affiliation(s)
- Iulia-Magdalena Vasilescu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- INBI “Prof. Dr. Matei Balş” – National Institute for Infectious Diseases, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
- *Correspondence: Mariana-Carmen Chifiriuc,
| | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Regional County Emergency Hospital, Suceava, Romania
| | - Alexandra Bolocan
- Department of General Surgery, University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Diţu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Department of Microbiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of the University of Bucharest, Bucharest, Romania
- Ştefan S. Nicolau Institute of Virology, Romanian Academy, Bucharest, Romania
| |
Collapse
|
29
|
Bassotti G, Fruganti A, Maconi G, Marconi P, Fettucciari K. Clostridioides difficile Infection in Patients with Inflammatory Bowel Disease May be Favoured by the Effects of Proinflammatory Cytokines on the Enteroglial Network. J Inflamm Res 2022; 14:7443-7453. [PMID: 35002278 PMCID: PMC8722535 DOI: 10.2147/jir.s328628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/02/2021] [Indexed: 11/23/2022] Open
Abstract
Clostridioides difficile infection is widespread throughout countries and represents an important cause of nosocomial diarrhoea, with relatively high morbidity. This infection often occurs in patients with inflammatory bowel diseases and may complicate their clinical picture. Here, we propose, on the basis of evidence from basic science studies, that in patients affected by inflammatory bowel diseases, this infection might be facilitated by a derangement of the enteric glial cell (EGC) network caused by the effects of proinflammatory cytokines, such as tumour necrosis factor alpha and interferon gamma, which enhance the cytotoxic effects of C. difficile toxin B on EGCs. This hypothesis, if confirmed, could open the door to alternative treatment approaches to fight C. difficile infection.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section, University of Perugia, Perugia, Italy.,Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Giovanni Maconi
- Department of Biomedical and Clinical Sciences, Gastroenterology Unit, "L. Sacco" Hospital, University of Milano, Milano, Italy
| | - Pierfrancesco Marconi
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia, Italy
| | - Katia Fettucciari
- Department of Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia, Italy
| |
Collapse
|
30
|
Cai Y, Chen L, Zhang S, Zeng L, Zeng G. The role of gut microbiota in infectious diseases. WIREs Mech Dis 2022; 14:e1551. [PMID: 34974642 DOI: 10.1002/wsbm.1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022]
Abstract
The intestine, the largest immune organ in the human body, harbors approximately 1013 microorganisms, including bacteria, fungi, viruses, and other unknown microbes. The intestine is a most important crosstalk anatomic structure between the first (the host) and second (the microorganisms) genomes. The imbalance of the intestinal microecology, especially dysbiosis of the composition, structure, and function of gut microbiota, is linked to human diseases. In this review, we investigated the roles and underlying mechanisms of gut microecology in the development, progression, and prognosis of infectious diseases. Furthermore, we discussed potential new strategies of prevention and treatment for infectious diseases based on manipulating the composition, structure, and function of intestinal microorganisms in the future. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Yongjie Cai
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Lingming Chen
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sien Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Lingchan Zeng
- Clinical Research Center, Department of Medical Records Management, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gucheng Zeng
- Department of Microbiology, Zhongshan School of Medicine, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Aguirre AM, Sorg JA. Gut associated metabolites and their roles in Clostridioides difficile pathogenesis. Gut Microbes 2022; 14:2094672. [PMID: 35793402 PMCID: PMC9450991 DOI: 10.1080/19490976.2022.2094672] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The nosocomial pathogen Clostridioides difficile is a burden to the healthcare system. Gut microbiome disruption, most commonly by broad-spectrum antibiotic treatment, is well established to generate a state that is susceptible to CDI. A variety of metabolites produced by the host and/or gut microbiota have been shown to interact with C. difficile. Certain bile acids promote/inhibit germination while other cholesterol-derived compounds and amino acids used in the Stickland metabolic pathway affect growth and CDI colonization. Short chain fatty acids maintain intestinal barrier integrity and a myriad of other metabolic compounds are used as nutritional sources or used by C. difficile to inhibit or outcompete other bacteria in the gut. As the move toward non-antibiotic CDI treatment takes place, a deeper understanding of interactions between C. difficile and the host's gut microbiome and metabolites becomes more relevant.
Collapse
Affiliation(s)
| | - Joseph A. Sorg
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
32
|
Strati F, Lattanzi G, Amoroso C, Facciotti F. Microbiota-targeted therapies in inflammation resolution. Semin Immunol 2022; 59:101599. [PMID: 35304068 DOI: 10.1016/j.smim.2022.101599] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023]
Abstract
Gut microbiota has been shown to systemically shape the immunological landscape, modulate homeostasis and play a role in both health and disease. Dysbiosis of gut microbiota promotes inflammation and contributes to the pathogenesis of several major disorders in gastrointestinal tract, metabolic, neurological and respiratory diseases. Much effort is now focused on understanding host-microbes interactions and new microbiota-targeted therapies are deeply investigated as a means to restore health or prevent disease. This review details the immunoregulatory role of the gut microbiota in health and disease and discusses the most recent strategies in manipulating individual patient's microbiota for the management and prevention of inflammatory conditions.
Collapse
Affiliation(s)
- Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
33
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
34
|
Li X, Zhang B, Hu Y, Zhao Y. New Insights Into Gut-Bacteria-Derived Indole and Its Derivatives in Intestinal and Liver Diseases. Front Pharmacol 2021; 12:769501. [PMID: 34966278 PMCID: PMC8710772 DOI: 10.3389/fphar.2021.769501] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
The interaction between host and microorganism widely affects the immune and metabolic status. Indole and its derivatives are metabolites produced by the metabolism of tryptophan catalyzed by intestinal microorganisms. By activating nuclear receptors, regulating intestinal hormones, and affecting the biological effects of bacteria as signaling molecules, indole and its derivatives maintain intestinal homeostasis and impact liver metabolism and the immune response, which shows good therapeutic prospects. We reviewed recent studies on indole and its derivatives, including related metabolism, the influence of diets and intestinal commensal bacteria, and the targets and mechanisms in pathological conditions, especially progress in therapeutic strategies. New research insights into indoles will facilitate a better understanding of their druggability and application in intestinal and liver diseases.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
35
|
Dai Z, Wu Z, Zhu W, Wu G. Amino Acids in Microbial Metabolism and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:127-143. [PMID: 34807440 DOI: 10.1007/978-3-030-85686-1_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids (AAs) not only serve as building blocks for protein synthesis in microorganisms but also play important roles in their metabolism, survival, inter-species crosstalk, and virulence. Different AAs have their distinct functions in microbes of the digestive tract and this in turn has important impacts on host nutrition and physiology. Deconjugation and re-conjugation of glycine- or taurine- conjugated bile acids in the process of their enterohepatic recycling is a good example of the bacterial adaptation to harsh gut niches, inter-kingdom cross-talk with AA metabolism, and cell signaling as the critical control point. It is also a big challenge for scientists to modulate the homeostasis of the pools of AAs and their metabolites in the digestive tract with the aim to improve nutrition and regulate AA metabolism related to anti-virulence reactions. Diversity of the metabolic pathways of AAs and their multi-functions in modulating bacterial growth and survival in the digestive tract should be taken into consideration in recommending nutrient requirements for animals. Thus, the concept of functional amino acids can guide not only microbiological studies but also nutritional and physiological investigations. Cutting edge discoveries in this research area will help to better understand the mechanisms responsible for host-microbe interactions and develop new strategies for improving the nutrition, health, and well-being of both animals and humans.
Collapse
Affiliation(s)
- Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Weiyun Zhu
- National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
36
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
37
|
Alexeev EE, Dowdell AS, Henen MA, Lanis JM, Lee JS, Cartwright IM, Schaefer REM, Ornelas A, Onyiah JC, Vögeli B, Colgan SP. Microbial-derived indoles inhibit neutrophil myeloperoxidase to diminish bystander tissue damage. FASEB J 2021; 35:e21552. [PMID: 33826788 DOI: 10.1096/fj.202100027r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
During episodes of acute inflammation, polymorphonuclear leukocytes (PMNs) are actively recruited to sites of inflammation or injury where they provide anti-microbial and wound-healing functions. One enzyme crucial for fulfilling these functions is myeloperoxidase (MPO), which generates hypochlorous acid from Cl- and hydrogen peroxide. The potential exists, however, that uncontrolled the extracellular generation of hypochlorous acid by MPO can cause bystander tissue damage and inhibit the healing response. Previous work suggests that the microbiota-derived tryptophan metabolites 1H-indole and related molecules ("indoles") are protective during intestinal inflammation, although their precise mechanism of action is unclear. In the present work, we serendipitously discovered that indoles are potent and selective inhibitors of MPO. Using both primary human PMNs and recombinant human MPO in a cell-free system, we revealed that indoles inhibit MPO at physiologic concentrations. Particularly, indoles block the chlorinating activity of MPO, a reliable marker for MPO-associated tissue damage, as measured by coulometric-coupled HPLC. Further, we observed direct interaction between indoles and MPO using the established biochemical techniques microscale thermophoresis and STD-NMR. Utilizing a murine colitis model, we demonstrate that indoles inhibit bystander tissue damage, reflected in decreased colon 3-chlorotyrosine and pro-inflammatory chemokine expression in vivo. Taken together, these results identify microbiota-derived indoles that acts as endogenous immunomodulatory compounds through their actions on MPO, suggesting a symbiotic association between the gut microbiota and host innate immune system. Such findings offer exciting new targets for future pharmacological intervention.
Collapse
Affiliation(s)
- Erica E Alexeev
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander S Dowdell
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Morkos A Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Pharmaceutical Organic Chemistry, Mansoura University, Mansoura, Egypt
| | - Jordi M Lanis
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Scott Lee
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ian M Cartwright
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel E M Schaefer
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alfredo Ornelas
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph C Onyiah
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
38
|
Krasulova K, Illes P. Intestinal interplay of quorum sensing molecules and human receptors. Biochimie 2021; 189:108-119. [PMID: 34186126 DOI: 10.1016/j.biochi.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Human gut is in permanent contact with microorganisms that play an important role in many physiological processes including metabolism and immunologic activity. These microorganisms communicate and manage themself by the quorum sensing system (QS) that helps to coordinate optimal growth and subsistence by activating signaling pathways that regulate bacterial gene expression. Diverse QS molecules produced by pathogenic as well as resident microbiota have been found throughout the human gut. However, even a host can by affected by these molecules. Intestinal and immune cells possess a range of molecular targets for QS. Our present knowledge on bacteria-cell communication encompasses G-protein-coupled receptors, nuclear receptors and receptors for bacterial cell-wall components. The QS of commensal bacteria has been approved as a protective factor with favourable effects on intestinal homeostasis and immunity. Signaling molecules of QS interacting with above-mentioned receptors thus parcipitate on maintaining of barrier functions, control of inflammation processes and increase of resistance to pathogen colonization in host organisms. Pathogens QS molecules can have a dual function. Host cells are able to detect the ongoing infection by monitoring the presence and changes in concentrations of QS molecules. Such information can help to set the most effective immune defence to prevent or overcome the infection. Contrary, pathogens QS signals can target the host receptors to deceive the immune system to get the best conditions for growth. However, our knowledge about communication mediated by QS is still limited and detailed understanding of molecular mechanisms of QS signaling is desired.
Collapse
Affiliation(s)
- Kristyna Krasulova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic.
| | - Peter Illes
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
39
|
Kumar P, Lee JH, Lee J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc 2021; 96:2522-2545. [PMID: 34137156 PMCID: PMC9290978 DOI: 10.1111/brv.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Indole and its derivatives are widespread across different life forms, functioning as signalling molecules in prokaryotes and with more diverse roles in eukaryotes. A majority of indoles found in the environment are attributed to bacterial enzymes converting tryptophan into indole and its derivatives. The involvement of indoles among lower organisms as an interspecies and intraspecies signal is well known, with many reports showing that inter‐kingdom interactions involving microbial indole compounds are equally important as they influence defence systems and even the behaviour of higher organisms. This review summarizes recent advances in our understanding of the functional properties of indole and indole derivatives in diverse eukaryotes. Furthermore, we discuss current perspectives on the role of microbial indoles in human diseases such as diabetes, obesity, atherosclerosis, and cancers. Deciphering the function of indoles as biomarkers of metabolic state will facilitate the formulation of diet‐based treatments and open unique therapeutic opportunities.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
40
|
Wu S, Xu C, Liu J, Liu C, Qiao J. Vertical and horizontal quorum-sensing-based multicellular communications. Trends Microbiol 2021; 29:1130-1142. [PMID: 34020859 DOI: 10.1016/j.tim.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Quorum sensing (QS) plays an important role in both natural and synthetic microbial systems. The complexity of QS entails multilayer controls, biomolecular crosstalk, and population-based interactions. In this review, we divide complex QS-based interactions into vertical and horizontal interactions. With respect to the former, we discuss QS-based interactions among phages, bacteria, and hosts in natural microbial systems, which are based on various QS signals and hormones. With regard to the latter, we highlight manipulations of QS-based interactions for multicomponent synthetic microbial consortia. We further present the recent and emerging applications of manipulating these interactions (collectively referred to as 'QS communication networks') in natural and synthetic microbiota. Finally, we identify key challenges in engineering diverse QS communication networks for various future applications.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chengyang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Jiaheng Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China
| | - Chunjiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
| |
Collapse
|
41
|
Hassall J, Cheng JKJ, Unnikrishnan M. Dissecting Individual Interactions between Pathogenic and Commensal Bacteria within a Multispecies Gut Microbial Community. mSphere 2021; 6:e00013-21. [PMID: 33762315 PMCID: PMC8546675 DOI: 10.1128/msphere.00013-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Interactions of commensal bacteria within the gut microbiota and with invading pathogens are critical in determining the outcome of an infection. While murine studies have been valuable, we lack in vitro models to monitor community responses to pathogens at a single-species level. We have developed a multispecies community of nine representative gut species cultured together as a mixed biofilm and tracked numbers of individual species over time using a quantitative PCR (qPCR)-based approach. Introduction of the major nosocomial gut pathogen, Clostridioides difficile, to this community resulted in increased adhesion of commensals and inhibition of C. difficile multiplication. Interestingly, we observed an increase in individual Bacteroides species accompanying the inhibition of C. difficile Furthermore, Bacteroides dorei reduced C. difficile growth within biofilms, suggesting a role for Bacteroides spp. in prevention of C. difficile colonization. We report here an in vitro tool with excellent applications for investigating bacterial interactions within a complex community.IMPORTANCE Studying interactions between bacterial species that reside in the human gut is crucial for gaining a better insight into how they provide protection from pathogen colonization. In vitro models of multispecies bacterial communities wherein behaviors of single species can be accurately tracked are key to such studies. Here, we have developed a synthetic, trackable, gut microbiota community which reduces growth of the human gut pathogen Clostridioides difficile We report that Bacteroides spp. within this community respond by multiplying in the presence of this pathogen, resulting in reduction of C. difficile growth. Defined in vitro communities that can be tailored to include different species are well suited to functional genomic approaches and are valuable tools for understanding interbacterial interactions.
Collapse
Affiliation(s)
- Jack Hassall
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jeffrey K J Cheng
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
42
|
García-Montero C, Fraile-Martínez O, Gómez-Lahoz AM, Pekarek L, Castellanos AJ, Noguerales-Fraguas F, Coca S, Guijarro LG, García-Honduvilla N, Asúnsolo A, Sanchez-Trujillo L, Lahera G, Bujan J, Monserrat J, Álvarez-Mon M, Álvarez-Mon MA, Ortega MA. Nutritional Components in Western Diet Versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients 2021; 13:699. [PMID: 33671569 PMCID: PMC7927055 DOI: 10.3390/nu13020699] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an "inflammatory disorder", with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system-microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Alejandro J. Castellanos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
| | - Fernando Noguerales-Fraguas
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Department of General Surgery, Príncipe de Asturias Hospital, 28806 Alcalá de Henares, Spain
| | - Santiago Coca
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Angel Asúnsolo
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (F.N.-F.); (A.A.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
| | - Lara Sanchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Service of Pediatric, Hospital Universitario Principe de Asturias, Alcalá de Henares,28806 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain;
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain;
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Department of Psychiatry and Medical Psychology, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (A.M.G.-L.); (L.P.); (A.J.C.); (N.G.-H.); (J.B.); (J.M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.C.); (L.S.-T.)
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain;
| |
Collapse
|
43
|
Qi C, Wang P, Fu T, Lu M, Cai Y, Chen X, Cheng L. A comprehensive review for gut microbes: technologies, interventions, metabolites and diseases. Brief Funct Genomics 2021; 20:42-60. [PMID: 33554248 DOI: 10.1093/bfgp/elaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Gut microbes have attracted much more attentions in the recent decade since their essential roles in the development of metabolic diseases, cancer and neurological diseases. Considerable evidence indicates that the metabolism of gut microbes exert influences on intestinal homeostasis and human diseases. Here, we first reviewed two mainstream sequencing technologies involving 16s rRNA sequencing and metagenomic sequencing for gut microbes, and data analysis methods assessing alpha and beta diversity. Next, we introduced some observational studies reflecting that many factors, such as lifestyle and intake of diets, drugs, contribute to gut microbes' quantity and diversity. Then, metabolites produced by gut microbes were presented to understand that gut microbes exert on host homeostasis in the intestinal epithelium and immune system. Finally, we focused on the molecular mechanism of gut microbes on the occurrence and development of several common diseases. In-depth knowledge of the relationship among interventions, gut microbes and diseases might provide new insights in to disease prevention and treatment.
Collapse
|
44
|
Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol 2021; 12:611413. [PMID: 33584614 PMCID: PMC7876071 DOI: 10.3389/fmicb.2021.611413] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Quorum-sensing (QS) system is a rapidly developing field in which we are gradually expanding our understanding about how bacteria communicate with each other and regulate their activities in bacterial sociality. In addition to collectively modifying bacterial behavior, QS-related autoinducers may also be embedded in the crosstalk between host and parasitic microbes. In this review, we summarize current studies on QS in the intestinal microbiome field and its potential role in maintaining homeostasis under physiological conditions. Additionally, we outline the canonical autoinducers and their related QS signal-response systems by which several pathogens interact with the host under pathological conditions, with the goal of better understanding intestinal bacterial sociality and facilitating novel antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Liang Wu
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Institute of Immunology and Inflammation, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Li Y, Xia S, Jiang X, Feng C, Gong S, Ma J, Fang Z, Yin J, Yin Y. Gut Microbiota and Diarrhea: An Updated Review. Front Cell Infect Microbiol 2021; 11:625210. [PMID: 33937093 PMCID: PMC8082445 DOI: 10.3389/fcimb.2021.625210] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diarrhea is a common problem to the whole world and the occurrence of diarrhea is highly associated with gut microbiota, such as bacteria, fungi, and viruses. Generally, diarrheal patients or animals are characterized by gut microbiota dysbiosis and pathogen infections may lead to diarrheal phenotypes. Of relevance, reprograming gut microbiota communities by dietary probiotics or fecal bacteria transplantation are widely introduced to treat or prevent diarrhea. In this review, we discussed the influence of the gut microbiota in the infection of diarrhea pathogens, and updated the research of reshaping the gut microbiota to prevent or treat diarrhea for the past few years. Together, gut microbiota manipulation is of great significance to the prevention and treatment of diarrhea, and further insight into the function of the gut microbiota will help to discover more anti-diarrhea probiotics.
Collapse
Affiliation(s)
- Yunxia Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Siting Xia
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiaohan Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Can Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Saiming Gong
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhengfeng Fang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jie Yin, ; Zhengfeng Fang,
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Jie Yin, ; Zhengfeng Fang,
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
46
|
Herrera G, Paredes-Sabja D, Patarroyo MA, Ramírez JD, Muñoz M. Updating changes in human gut microbial communities associated with Clostridioides difficile infection. Gut Microbes 2021; 13:1966277. [PMID: 34486488 PMCID: PMC8425690 DOI: 10.1080/19490976.2021.1966277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the causative agent of antibiotic-associated diarrhea, a worldwide public health problem. Different factors can promote the progression of C. difficile infection (CDI), mainly altered intestinal microbiota composition. Microbial species belonging to different domains (i.e., bacteria, archaea, eukaryotes, and even viruses) are synergistically and antagonistically associated with CDI. This review was aimed at updating changes regarding CDI-related human microbiota composition using recent data and an integral approach that included the different microorganism domains. The three domains of life contribute to intestinal microbiota homeostasis at different levels in which relationships among microorganisms could explain the wide range of clinical manifestations. A holistic understanding of intestinal ecosystem functioning will facilitate identifying new predictive factors for infection and developing better treatment and new diagnostic tools, thereby reducing this disease's morbidity and mortality.
Collapse
Affiliation(s)
- Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Daniel Paredes-Sabja
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá D.C. 110231, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología – UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad Del Rosario, Bogotá, Colombia
- ANID – Millennium Science Initiative Program – Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
47
|
Faecal microbiota transplantation for Clostridioides difficile: mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18:67-80. [PMID: 32843743 DOI: 10.1038/s41575-020-0350-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Faecal microbiota transplantation (FMT) has emerged as a remarkably successful treatment for recurrent Clostridioides difficile infection that cannot be cured with antibiotics alone. Understanding the complex biology and pathogenesis of C. difficile infection, which we discuss in this Perspective, is essential for understanding the potential mechanisms by which FMT cures this disease. Although FMT has already entered clinical practice, different microbiota-based products are currently in clinical trials and are vying for regulatory approval. However, all these therapeutics belong to an entirely new class of agents that require the development of a new branch of pharmacology. Characterization of microbiota therapeutics uses novel and rapidly evolving technologies and requires incorporation of microbial ecology concepts. Here, we consider FMT within a pharmacological framework, including its essential elements: formulation, pharmacokinetics and pharmacodynamics. From this viewpoint, multiple gaps in knowledge become apparent, identifying areas that require systematic research. This knowledge is needed to help clinical providers use microbiota therapeutics appropriately and to facilitate development of next-generation microbiota products with improved safety and efficacy. The discussion here is limited to FMT as a representative of microbiota therapeutics and recurrent C. difficile as the indication; however, consideration of the intrinsic basic principles is relevant to this entire class of microbiota-based therapeutics.
Collapse
|
48
|
Jaskiw GE, Obrenovich ME, Kundrapu S, Donskey CJ. Changes in the Serum Metabolome of Patients Treated With Broad-Spectrum Antibiotics. Pathog Immun 2020; 5:382-418. [PMID: 33474520 PMCID: PMC7810407 DOI: 10.20411/pai.v5i1.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background: The gut microbiome (GMB) generates numerous small chemicals that can be absorbed by the host and variously biotransformed, incorporated, or excreted. The resulting metabolome can provide information about the state of the GMB, of the host, and of their relationship. Exploiting this information in the service of biomarker development is contingent on knowing the GMB-sensitivity of the individual chemicals comprising the metabolome. In this regard, human studies have lagged far behind animal studies. Accordingly, we tested the hypothesis that serum levels of chemicals unequivocally demonstrated to be GMB-sensitive in rodent models would also be affected in a clinical patient sample treated with broad spectrum antibiotics. Methods: We collected serum samples from 20 hospitalized patients before, during, and after treatment with broad-spectrum antibiotics. We also collected samples from 5 control patients admitted to the hospital but not prescribed antibiotics. We submitted the samples for a non-targeted metabolomic analysis and then focused on chemicals known to be affected both by germ-free status and by antibiotic treatment in the mouse and/or rat. Results: Putative identification was obtained for 499 chemicals in human serum. An aggregate analysis did not show any time x treatment interactions. However, our literature search identified 10 serum chemicals affected both by germ-free status and antibiotic treatment in the mouse or rat. Six of those chemicals were measured in our patient samples and additionally met criteria for inclusion in a focused analysis. Serum levels of 5 chemicals (p-cresol sulfate, phenol sulfate, hippurate, indole propionate, and indoxyl sulfate) declined significantly in our group of antibiotic-treated patients but did not change in our patient control group. Conclusions: Broad-spectrum antibiotic treatment in patients lowered serum levels of selected chemicals previously demonstrated to be GMB-sensitive in rodent models. Interestingly, all those chemicals are known to be uremic solutes that can be derived from aromatic amino acids (L-phenylalanine, L-tyrosine, or L-tryptophan) by anaerobic bacteria, particularly Clostridial species. We conclude that judiciously selected serum chemicals can reliably detect antibiotic-induced suppression of the GMB in man and thus facilitate further metabolome-based biomarker development.
Collapse
Affiliation(s)
- George E Jaskiw
- Psychiatry Service, Veterans Affairs Northeast Ohio Healthcare System (VANEOHS), Cleveland, Ohio.,School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mark E Obrenovich
- Pathology and Laboratory Medicine Service, VANEOHS, Cleveland, Ohio.,Research Service, VANEOHS, Cleveland, Ohio.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Sirisha Kundrapu
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Curtis J Donskey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Geriatric Research, Education and Clinical Center, VANEOHS, Cleveland, Ohio
| |
Collapse
|
49
|
Phour M, Sehrawat A, Sindhu SS, Glick BR. Interkingdom signaling in plant-rhizomicrobiome interactions for sustainable agriculture. Microbiol Res 2020; 241:126589. [DOI: 10.1016/j.micres.2020.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
|
50
|
Lobel L, Cao YG, Fenn K, Glickman JN, Garrett WS. Diet posttranslationally modifies the mouse gut microbial proteome to modulate renal function. Science 2020; 369:1518-1524. [PMID: 32943527 PMCID: PMC8178816 DOI: 10.1126/science.abb3763] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Associations between chronic kidney disease (CKD) and the gut microbiota have been postulated, yet questions remain about the underlying mechanisms. In humans, dietary protein increases gut bacterial production of hydrogen sulfide (H2S), indole, and indoxyl sulfate. The latter are uremic toxins, and H2S has diverse physiological functions, some of which are mediated by posttranslational modification. In a mouse model of CKD, we found that a high sulfur amino acid-containing diet resulted in posttranslationally modified microbial tryptophanase activity. This reduced uremic toxin-producing activity and ameliorated progression to CKD in the mice. Thus, diet can tune microbiota function to support healthy host physiology through posttranslational modification without altering microbial community composition.
Collapse
Affiliation(s)
- Lior Lobel
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Y Grace Cao
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathrin Fenn
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jonathan N Glickman
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02215, USA
| | - Wendy S Garrett
- Departments of Immunology and Infectious Diseases and Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|