1
|
Tabana Y, Babu D, Fahlman R, Siraki AG, Barakat K. Target identification of small molecules: an overview of the current applications in drug discovery. BMC Biotechnol 2023; 23:44. [PMID: 37817108 PMCID: PMC10566111 DOI: 10.1186/s12896-023-00815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Target identification is an essential part of the drug discovery and development process, and its efficacy plays a crucial role in the success of any given therapy. Although protein target identification research can be challenging, two main approaches can help researchers make significant discoveries: affinity-based pull-down and label-free methods. Affinity-based pull-down methods use small molecules conjugated with tags to selectively isolate target proteins, while label-free methods utilize small molecules in their natural state to identify targets. Target identification strategy selection is essential to the success of any drug discovery process and must be carefully considered when determining how to best pursue a specific project. This paper provides an overview of the current target identification approaches in drug discovery related to experimental biological assays, focusing primarily on affinity-based pull-down and label-free approaches, and discusses their main limitations and advantages.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Dinesh Babu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Arno G Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Danilkina NA, Andrievskaya EV, Vasileva AV, Lyapunova AG, Rumyantsev AM, Kuzmin AA, Bessonova EA, Balova IA. 4-Azidocinnoline-Cinnoline-4-amine Pair as a New Fluorogenic and Fluorochromic Environment-Sensitive Probe. Molecules 2021; 26:7460. [PMID: 34946541 PMCID: PMC8704291 DOI: 10.3390/molecules26247460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
A new type of fluorogenic and fluorochromic probe based on the reduction of weakly fluorescent 4-azido-6-(4-cyanophenyl)cinnoline to the corresponding fluorescent cinnoline-4-amine was developed. We found that the fluorescence of 6-(4-cyanophenyl)cinnoline-4-amine is strongly affected by the nature of the solvent. The fluorogenic effect for the amine was detected in polar solvents with the strongest fluorescence increase in water. The environment-sensitive fluorogenic properties of cinnoline-4-amine in water were explained as a combination of two types of fluorescence mechanisms: aggregation-induced emission (AIE) and excited state intermolecular proton transfer (ESPT). The suitability of an azide-amine pair as a fluorogenic probe was tested using a HepG2 hepatic cancer cell line with detection by fluorescent microscopy, flow cytometry, and HPLC analysis of cells lysates. The results obtained confirm the possibility of the transformation of the azide to amine in cells and the potential applicability of the discovered fluorogenic and fluorochromic probe for different analytical and biological applications in aqueous medium.
Collapse
Affiliation(s)
- Natalia A. Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | | | - Anna V. Vasileva
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Anna G. Lyapunova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Andrey M. Rumyantsev
- Department of Genetics and Biotechnology, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia;
| | - Andrey A. Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Tikhoretsky Avenue 4, 194064 Saint Petersburg, Russia;
| | - Elena A. Bessonova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| | - Irina A. Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia; (N.A.D.); (A.V.V.); (A.G.L.); (E.A.B.)
| |
Collapse
|
3
|
Podvalnyy NM, Chesnov S, Nanni P, Gut M, Holland JP, Hennet T. Synthesis of photoactivable oligosaccharide derivatives from 1,2-cyclic carbamate building blocks and study of their interaction with carbohydrate-binding proteins. Carbohydr Res 2021; 508:108399. [PMID: 34298358 DOI: 10.1016/j.carres.2021.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Despite the broad occurrence of carbohydrate-protein interactions in biology, the low binding affinities of such interactions hamper the characterization of carbohydrate binding sites in the absence of three-dimensional structural models. To allow the identification of proteins interacting with specific carbohydrate epitopes, we have developed new photoactivable oligosaccharide probes. Oligosaccharides containing the 1,2-cyclic carbamate group were attached to building blocks with a primary amino group to yield the corresponding urea derivatives. Cyclic carbamates of lactose, and 3- and 2'-fucosyl lactose, were used for the conjugation with building blocks containing photoactivable diazirine, benzophenone or aryl azido groups. The resulting oligosaccharide derivatives were tested for binding to Erythrina cristagalli lectin (ECL), Aleuria aurantia lectin (AAL) and Ulex europaeus agglutinin-I (UEA I). We found that ligands containing an aryl azido photoactivable group were successfully attached to lectins. The photoactivation reaction preserved lectin integrity, as no sign of protein degradation was visible. Mass spectrometric analysis confirmed the covalent binding of between one to three oligosaccharide probes, which matched with the expected carbohydrate-binding properties of the lectins tested. The conjugation of cyclic carbamate-derivatized oligosaccharides with photoactivable aryl azido groups thus represents a convenient approach to study protein-carbohydrate interactions.
Collapse
Affiliation(s)
| | - Serge Chesnov
- Functional Genomics Center Zurich, ETH Zurich / University of Zurich, Zurich, Switzerland
| | - Paolo Nanni
- Functional Genomics Center Zurich, ETH Zurich / University of Zurich, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
5
|
Abstract
Cysteine cathepsins are proteases critical in physiopathological processes and show potential as targets or biomarkers for diseases and medical conditions. The 11 members of the cathepsin family are redundant in some cases but remarkably independent of others, demanding the development of both pan-cathepsin targeting tools as well as probes that are selective for specific cathepsins with little off-target activity. This review addresses the diverse design strategies that have been employed to accomplish this tailored selectivity among cysteine cathepsin targets and the imaging modalities incorporated. The power of these diverse tools is contextualized by briefly highlighting the nature of a few prominent cysteine cathepsins, their involvement in select diseases, and the application of cathepsin imaging probes in research spanning basic biochemical studies to clinical applications.
Collapse
Affiliation(s)
- Kelton A Schleyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Hassan MM, Olaoye OO. Recent Advances in Chemical Biology Using Benzophenones and Diazirines as Radical Precursors. Molecules 2020; 25:E2285. [PMID: 32414020 PMCID: PMC7288102 DOI: 10.3390/molecules25102285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
The use of light-activated chemical probes to study biological interactions was first discovered in the 1960s, and has since found many applications in studying diseases and gaining deeper insight into various cellular mechanisms involving protein-protein, protein-nucleic acid, protein-ligand (drug, probe), and protein-co-factor interactions, among others. This technique, often referred to as photoaffinity labelling, uses radical precursors that react almost instantaneously to yield spatial and temporal information about the nature of the interaction and the interacting partner(s). This review focuses on the recent advances in chemical biology in the use of benzophenones and diazirines, two of the most commonly known light-activatable radical precursors, with a focus on the last three years, and is intended to provide a solid understanding of their chemical and biological principles and their applications.
Collapse
Affiliation(s)
- Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON L5L 1C6, Canada;
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
7
|
N,N-Dimethylaminopyrene as a fluorescent affinity mass tag for ligand-binding mode analysis. Sci Rep 2020; 10:7311. [PMID: 32355254 PMCID: PMC7192892 DOI: 10.1038/s41598-020-64321-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/15/2022] Open
Abstract
Elucidation of the binding mode of protein–ligand interactions provides insights for the design of new pharmacological tools and drug leads. Specific labeling of target proteins with chemical probes, in which the ligands are conjugated with reacting and detecting groups, can establish the binding positions of ligands. Label-assisted laser desorption/ionization mass spectrometry (LA-LDI MS) is a promising detection method to selectively detect labeled molecules. However, previous LDI MS tags, such as nitrogen-substituted pyrenes, had problems with low sensitivity and stability. Here we show 6-N,N-dimethylaminopyrene (dmpy) as a versatile mass tag, which was detected at an amount of 0.1 fmol by LA-LDI MS and applicable for MS/MS analysis. By using ligand-dissociation-type dmpy probes and affinity purification with a polystyrene gel, we demonstrated that dmpy-labeled peptides were predominantly detected by MALDI MS. Our dmpy-probe-labeling method might be highly useful for determining the target biomacromolecules of various ligands and their binding sites.
Collapse
|
8
|
Nie P, Vartak A, Li YM. γ-Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of γ-Secretase. Semin Cell Dev Biol 2020; 105:43-53. [PMID: 32249070 DOI: 10.1016/j.semcdb.2020.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Over two decades, γ-secretase has been the target for extensive therapeutic development due to its pivotal role in pathogenesis of Alzheimer's disease and cancer. However, it has proven to be a challenging task owing to its large set of substrates and our limited understanding of the enzyme's structural and mechanistic features. The scientific community is taking bigger strides towards solving this puzzle with recent advancement in techniques like cryogenic electron microscopy (cryo-EM) and photo-affinity labelling (PAL). This review highlights the significance of the PAL technique with multiple examples of photo-probes developed from γ-secretase inhibitors and modulators. The binding of these probes into active and/or allosteric sites of the enzyme has provided crucial information on the γ-secretase complex and improved our mechanistic understanding of this protease. Combining the knowledge of function and regulation of γ-secretase will be a decisive factor in developing novel γ-secretase modulators and biological therapeutics.
Collapse
Affiliation(s)
- Pengju Nie
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Abhishek Vartak
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
9
|
Synthesis and Properties of 6-Aryl-4-azidocinnolines and 6-Aryl-4-(1,2,3-1 H-triazol-1-yl)cinnolines. Molecules 2019; 24:molecules24132386. [PMID: 31252657 PMCID: PMC6651781 DOI: 10.3390/molecules24132386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
An efficient approach towards the synthesis of 6-aryl-4-azidocinnolines was developed with the aim of exploring the photophysical properties of 6-aryl-4-azidocinnolines and their click reaction products with alkynes, 6-aryl-4-(1,2,3-1H-triazol-1-yl)cinnolines. The synthetic route is based on the Richter-type cyclization of 2-ethynyl-4-aryltriazenes with the formation of 4-bromo-6-arylcinnolines and nucleophilic substitution of a bromine atom with an azide functional group. The developed synthetic approach is tolerant to variations of functional groups on the aryl moiety. The resulting azidocinnolines were found to be reactive in both CuAAC with terminal alkynes and SPAAC with diazacyclononyne, yielding 4-triazolylcinnolines. It was found that 4-azido-6-arylcinnolines possess weak fluorescent properties, while conversion of the azido function into a triazole ring led to complete fluorescence quenching. The lack of fluorescence in triazoles could be explained by the non-planar structure of triazolylcinnolines and a possible photoinduced electron transfer (PET) mechanism. Among the series of 4-triazolylcinnoline derivatives a compound bearing hydroxyalkyl substituent at triazole ring was found to be cytotoxic to HeLa cells.
Collapse
|
10
|
Wang P, Li Z, Jiang L, Zhou L, Ye D. Design and Synthesis of the Diazirine-based Clickable Photo-affinity Probe Targeting Sphingomyelin Synthase 2. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666181106154601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:SMS family plays a very important role in sphingolipids metabolism and is involved in the membrane mobility and signaling transduction.Methods:SMS2 subtype was related to a variety of diseases and could be regarded as a promising potential drug target. However, the uncertainty of the binding sites and the molecular mechanism of action limited the development of SMS2 inhibitors. Herein, we discovered a photo-affinity probe PAL-1 targeting SMS2.Results:The enzyme inhibitory activity and the photo-affinity labeling experiments showed that PAL-1 could be mono-labeled on SMS2.Conclusion:In summary, starting from the N-arylbenzamides core structure and the minimalist terminal alkyne-containing diazirine photo-crosslinker, we designed and synthesized a photoaffinity probe PAL-1 targeting SMS2. The enzymatic inhibitory activity study showed that PAL-1 exhibited superior selectivities for SMS2 with an IC50 of 0.37 µM over SMS1.
Collapse
Affiliation(s)
- Penghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhining Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lulu Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Abstract
Identification of the protein targets of bioactive small molecules is a routine challenge in chemical biology and phenotype-based drug discovery. Recent years have seen an explosion of approaches to meeting this challenge, but the traditional method of affinity pulldowns remains a practical choice in many contexts. This technique can be used as long as an affinity probe can be synthesized, usually with a crosslinking moiety to enable photo-affinity pulldowns. It can be applied to varied tissue types and can be performed with minimal specialized equipment. Here, we provide our protocol for photo-affinity pulldown experiments, with notes on making this method generally applicable to varied target identification challenges.
Collapse
Affiliation(s)
- Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Timothy W Corson
- Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
12
|
Schwarzmann G. Labeled gangliosides: their synthesis and use in biological studies. FEBS Lett 2018; 592:3992-4006. [DOI: 10.1002/1873-3468.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Günter Schwarzmann
- LIMES c/o Kekulé‐Institut f. Organische Chemie und Biochemie Rheinische Friedrich‐Wilhelms‐Universität Bonn Germany
| |
Collapse
|
13
|
Gérard-Hirne T, Thiebaut F, Sachon E, Désert A, Drujon T, Guérineau V, Michel BY, Benhida R, Coulon S, Saintomé C, Guianvarc'h D. Photoactivatable oligonucleotide probes to trap single-stranded DNA binding proteins: Updating the potential of 4-thiothymidine from a comparative study. Biochimie 2018; 154:164-175. [PMID: 30171884 DOI: 10.1016/j.biochi.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Photoaffinity labeling (PAL) in combination with recent developments in mass spectrometry is a powerful tool for studying nucleic acid-protein interactions, enabling crosslinking of both partners through covalent bond formation. Such a strategy requires a preliminary study of the most judicious photoreactive group to crosslink efficiently with the target protein. In this study, we report a survey of three different photoreactive nucleobases (including a guanine functionalized with a benzophenone or a diazirine and the zero-length agent 4-thiothymine) incorporated in 30-mer oligonucleotides (ODN) containing a biotin moiety for selective trapping and enrichment of single-stranded DNA binding proteins (SSB). First, the conditions and efficiency of the photochemical reaction with a purified protein using human replication protein A as the relevant model was studied. Secondly, the ability of the probe as bait to photocrosslink and enrich SSB in cell lysate was addressed. Among the different ODN probes studied, we showed that 4-thiothymine was the most relevant: i) it allows efficient and specific trapping of SSB in whole cell extracts in a similar extent as the widely used diazirine, ii) it features the advantages of a zero-length agent thus retaining the physicochemical properties of the ODN bait; iii) ODN including this photochemical agent are easily accessible. In combination with mass spectrometry, the probes incorporating this nucleobase are powerful tools for PAL strategies and can be added in the toolbox of the traditional photocrosslinkers for studying DNA-protein interactions.
Collapse
Affiliation(s)
- Tom Gérard-Hirne
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Frédéric Thiebaut
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France; MNHN CNRS UMR 7196, INSERM U1154, 43 Rue Cuvier, 75005, Paris, France
| | - Emmanuelle Sachon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France; Plateforme de spectrométrie de masse et protéomique, IBPS, FR3631, UPMC, 4 Place Jussieu, 75005, Paris, France
| | - Alexandre Désert
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Thierry Drujon
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Benoît Y Michel
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France
| | - Rachid Benhida
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR 7272, 06108 Nice, France
| | - Stéphane Coulon
- CRCM, CNRS, Inserm, Aix-Marseille Univ, Institut Paoli-Calmettes, Equipe Labellisée Ligue, Marseille, France
| | - Carole Saintomé
- MNHN CNRS UMR 7196, INSERM U1154, 43 Rue Cuvier, 75005, Paris, France; Sorbonne Université, UFR927, 4, Place Jussieu, F-75005, Paris, France.
| | - Dominique Guianvarc'h
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des biomolécules, LBM, 75005 Paris, France; Institut de Chimie Moléculaire et des Matériaux d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, F-91405, Orsay, France.
| |
Collapse
|
14
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
15
|
Cooper A, Singh S, Hook S, Tyndall JDA, Vernall AJ. Chemical Tools for Studying Lipid-Binding Class A G Protein-Coupled Receptors. Pharmacol Rev 2017; 69:316-353. [PMID: 28655732 DOI: 10.1124/pr.116.013243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid, free fatty acid, lysophosphatidic acid, sphingosine 1-phosphate, prostanoid, leukotriene, bile acid, and platelet-activating factor receptor families are class A G protein-coupled receptors with endogenous lipid ligands. Pharmacological tools are crucial for studying these receptors and addressing the many unanswered questions surrounding expression of these receptors in normal and diseased tissues. An inherent challenge for developing tools for these lipid receptors is balancing the often lipophilic requirements of the receptor-binding pharmacophore with favorable physicochemical properties to optimize highly specific binding. In this study, we review the radioligands, fluorescent ligands, covalent ligands, and antibodies that have been used to study these lipid-binding receptors. For each tool type, the characteristics and design rationale along with in vitro and in vivo applications are detailed.
Collapse
Affiliation(s)
- Anna Cooper
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sameek Singh
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
16
|
Vannecke W, Ampe C, Van Troys M, Beltramo M, Madder A. Cross-Linking Furan-Modified Kisspeptin-10 to the KISS Receptor. ACS Chem Biol 2017; 12:2191-2200. [PMID: 28714670 DOI: 10.1021/acschembio.7b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemical cross-linking is well-established for investigating protein-protein interactions. Traditionally, photo cross-linking is used but is associated with problems of selectivity and UV toxicity in a biological context. We here describe, with live cells and under normal growth conditions, selective cross-linking of a furan-modified peptide ligand to its membrane-presented receptor with zero toxicity, high efficiency, and spatio-specificity. Furan-modified kisspeptin-10 is covalently coupled to its glycosylated membrane receptor, GPR54(KISS1R). This newly expands the applicability of furan-mediated cross-linking not only to protein-protein cross-linking but also to cross-linking in situ. Moreover, in our earlier reports on nucleic acid interstrand cross-linking, furan activation required external triggers of oxidation (via addition of N-bromo succinimide or singlet oxygen). In contrast, we here show, for multiple cell lines, the spontaneous endogenous oxidation of the furan moiety with concurrent selective cross-link formation. We propose that reactive oxygen species produced by NADPH oxidase (NOX) enzymes form the cellular source establishing furan oxidation.
Collapse
Affiliation(s)
- Willem Vannecke
- Organic
and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan
281 S4, B-9000 Ghent, Belgium
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Christophe Ampe
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Marleen Van Troys
- Department
of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Massimiliano Beltramo
- Equipe
Neuroendocrinologie Moleculaire de la Reproduction, Physiologie de
la Reproduction et des Comportements, Centre INRA Val de Loire, 37380 Nouzilly, France
| | - Annemieke Madder
- Organic
and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan
281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
17
|
Guo H, Li Z. Developments of bioorthogonal handle-containing photo-crosslinkers for photoaffinity labeling. MEDCHEMCOMM 2017; 8:1585-1591. [PMID: 30108869 PMCID: PMC6071706 DOI: 10.1039/c7md00217c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/14/2017] [Indexed: 01/14/2023]
Abstract
Photoaffinity labeling (PAL) has been widely applied in various research areas such as medicinal chemistry, chemical biology and structural biology, owing to its capability of investigating non-covalent ligand-protein interactions under native environments and elucidating protein structures, functions etc. One important application of this technique is to use affinity-based proteome profiling (AfBP) coupled with bioimaging for profiling drug-target interactions in situ. In order to accurately report drug-target interactions via these approaches, several considerations as follows need to be made: (1) maximally retaining bioactivities of photoprobes upon functionalization with a photoreactive group and a reporter tag from a parental compound; (2) performing proteome profiling and imaging in situ simultaneously, to monitor drug-target interactions in different manners; and (3) developing excellent photo-crosslinkers capable of photo-crosslinking and fluorescence turn-on at the same time. With these considerations in mind, we have developed three versions of "minimalist" bioorthogonal handle-containing photo-crosslinkers (L3-L6) during the years and successfully applied them in all kinds of small bioactive molecules for protein labeling and cellular imaging studies. In this mini-review, the features and functions of these linkers are specifically highlighted and summarized.
Collapse
Affiliation(s)
- Haijun Guo
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| | - Zhengqiu Li
- College of Pharmacy , Jinan University , Guangzhou , 510632 China .
| |
Collapse
|
18
|
Jayakar SS, Ang G, Chiara DC, Hamouda AK. Photoaffinity Labeling of Pentameric Ligand-Gated Ion Channels: A Proteomic Approach to Identify Allosteric Modulator Binding Sites. Methods Mol Biol 2017; 1598:157-197. [PMID: 28508361 DOI: 10.1007/978-1-4939-6952-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Photoaffinity labeling techniques have been used for decades to identify drug binding sites and to study the structural biology of allosteric transitions in transmembrane proteins including pentameric ligand-gated ion channels (pLGIC). In a typical photoaffinity labeling experiment, to identify drug binding sites, UV light is used to introduce a covalent bond between a photoreactive ligand (which upon irradiation at the appropriate wavelength converts to a reactive intermediate) and amino acid residues that lie within its binding site. Then protein chemistry and peptide microsequencing techniques are used to identify these amino acids within the protein primary sequence. These amino acid residues are located within homology models of the receptor to identify the binding site of the photoreactive probe. Molecular modeling techniques are then used to model the binding of the photoreactive probe within the binding site using docking protocols. Photoaffinity labeling directly identifies amino acids that contribute to drug binding sites regardless of their location within the protein structure and distinguishes them from amino acids that are only involved in the transduction of the conformational changes mediated by the drug, but may not be part of its binding site (such as those identified by mutational studies). Major limitations of photoaffinity labeling include the availability of photoreactive ligands that faithfully mimic the properties of the parent molecule and protein preparations that supply large enough quantities suitable for photoaffinity labeling experiments. When the ligand of interest is not intrinsically photoreactive, chemical modifications to add a photoreactive group to the parent drug, and pharmacological evaluation of these chemical modifications become necessary. With few exceptions, expression and affinity-purification of proteins are required prior to photolabeling. Methods to isolate milligram quantities of highly enriched pLGIC suitable for photoaffinity labeling experiments have been developed. In this chapter, we discuss practical aspects of experimental strategies to identify allosteric modulator binding sites in pLGIC using photoaffinity labeling.
Collapse
Affiliation(s)
- Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Gordon Ang
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA
| | - David C Chiara
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA. .,Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Kingsville, TX, USA.
| |
Collapse
|
19
|
Dormán G, Nakamura H, Pulsipher A, Prestwich GD. The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chem Rev 2016; 116:15284-15398. [PMID: 27983805 DOI: 10.1021/acs.chemrev.6b00342] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The widespread applications of benzophenone (BP) photochemistry in biological chemistry, bioorganic chemistry, and material science have been prominent in both academic and industrial research. BP photophores have unique photochemical properties: upon n-π* excitation at 365 nm, a biradicaloid triplet state is formed reversibly, which can abstract a hydrogen atom from accessible C-H bonds; the radicals subsequently recombine, creating a stable covalent C-C bond. This light-directed covalent attachment process is exploited in many different ways: (i) binding/contact site mapping of ligand (or protein)-protein interactions; (ii) identification of molecular targets and interactome mapping; (iii) proteome profiling; (iv) bioconjugation and site-directed modification of biopolymers; (v) surface grafting and immobilization. BP photochemistry also has many practical advantages, including low reactivity toward water, stability in ambient light, and the convenient excitation at 365 nm. In addition, several BP-containing building blocks and reagents are commercially available. In this review, we explore the "forbidden" (transitions) and excitation-activated world of photoinduced covalent attachment of BP photophores by touring a colorful palette of recent examples. In this exploration, we will see the pros and cons of using BP photophores, and we hope that both novice and expert photolabelers will enjoy and be inspired by the breadth and depth of possibilities.
Collapse
Affiliation(s)
- György Dormán
- Targetex llc , Dunakeszi H-2120, Hungary.,Faculty of Pharmacy, University of Szeged , Szeged H-6720, Hungary
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology , Yokohama 226-8503, Japan
| | - Abigail Pulsipher
- GlycoMira Therapeutics, Inc. , Salt Lake City, Utah 84108, United States.,Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| | - Glenn D Prestwich
- Division of Head and Neck Surgery, Rhinology - Sinus and Skull Base Surgery, Department of Surgery, University of Utah School of Medicine , Salt Lake City, Utah 84108, United States
| |
Collapse
|
20
|
Pošta M, Soós V, Beier P. Design of photoaffinity labeling probes derived from 3,4,5-trimethylfuran-2(5 H )-one for mode of action elucidation. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.03.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Wu Y, Olsen LB, Lau YH, Jensen CH, Rossmann M, Baker YR, Sore HF, Collins S, Spring DR. Development of a Multifunctional Benzophenone Linker for Peptide Stapling and Photoaffinity Labelling. Chembiochem 2016; 17:689-92. [PMID: 26919579 PMCID: PMC4862033 DOI: 10.1002/cbic.201500648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 01/18/2023]
Abstract
Photoaffinity labelling is a useful method for studying how proteins interact with ligands and biomolecules, and can help identify and characterise new targets for the development of new therapeutics. We present the design and synthesis of a novel multifunctional benzophenone linker that serves as both a photo-crosslinking motif and a peptide stapling reagent. Using double-click stapling, we attached the benzophenone to the peptide via the staple linker, rather than by modifying the peptide sequence with a photo-crosslinking amino acid. When applied to a p53-derived peptide, the resulting photoreactive stapled peptide was able to preferentially crosslink with MDM2 in the presence of competing protein. This multifunctional linker also features an extra alkyne handle for downstream applications such as pull-down assays, and can be used to investigate the target selectivity of stapled peptides.
Collapse
Affiliation(s)
- Yuteng Wu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lasse B Olsen
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yu Heng Lau
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Claus Hatt Jensen
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Ysobel R Baker
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hannah F Sore
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Súil Collins
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David R Spring
- University Chemical Laboratory, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
22
|
Hamouda AK, Deba F, Wang ZJ, Cohen JB. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator. Mol Pharmacol 2016; 89:575-84. [PMID: 26976945 DOI: 10.1124/mol.116.103341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/09/2016] [Indexed: 01/25/2023] Open
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing theα4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [(3)H]CMPI upon photolysis at 312 nm to identify its binding sites inTorpedonAChRs. Recording fromXenopusoocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2nAChR to 10μM ACh (EC10) by 400% and with anEC50of ∼1µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10µM) ACh responses of (α4)2(β2)3nAChRs and fully inhibited human muscle andTorpedonAChRs with IC50values of ∼0.5µM. Upon irradiation at 312 nm, [(3)H]CMPI photoincorporated into eachTorpedo[(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [(3)H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr(190),αTyr(198),γTrp(55),γTyr(111),γTyr(117),δTrp(57)) that was fully inhibitable by agonist and lower-efficiency, state-dependent [(3)H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing anα4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2nAChR.
Collapse
Affiliation(s)
- Ayman K Hamouda
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Farah Deba
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Ze-Jun Wang
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| | - Jonathan B Cohen
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M Health Sciences Center, Kingsville, Texas (A.K.H., F.D., Z.-J.W.); and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts (A.K.H., J.B.C.)
| |
Collapse
|
23
|
Harris PA, King BW, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, Finger JN, Grady LC, Hoffman SJ, Jeong JU, Kang J, Kasparcova V, Lakdawala AS, Lehr R, McNulty DE, Nagilla R, Ouellette MT, Pao CS, Rendina AR, Schaeffer MC, Summerfield JD, Swift BA, Totoritis RD, Ward P, Zhang A, Zhang D, Marquis RW, Bertin J, Gough PJ. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. J Med Chem 2016; 59:2163-78. [DOI: 10.1021/acs.jmedchem.5b01898] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - LaShadric C. Grady
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer D. Summerfield
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | - Aming Zhang
- Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, United States
| | | | | | | | | |
Collapse
|
24
|
Admas TH, Bernat V, Heinrich MR, Tschammer N. Development of Photoactivatable Allosteric Modulators for the Chemokine Receptor CXCR3. ChemMedChem 2016; 11:575-84. [PMID: 26880380 DOI: 10.1002/cmdc.201500573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/05/2022]
Abstract
The CXCR3 receptor, a class A G protein-coupled receptor (GPCR), is involved in the regulation and trafficking of various immune cells. CXCR3 antagonists have been proposed to be beneficial for the treatment of a wide range of disorders including but not limited to inflammatory and autoimmune diseases. The structure-based design of CXCR3 ligands remains, however, hampered by a lack of structural information describing in detail the interactions between an allosteric ligand and the receptor. We designed and synthesized photoactivatable probes for the structural and functional characterization, using photoaffinity labeling followed by mass spectrometry, of the CXCR3 allosteric binding pocket of AMG 487 and RAMX3, two potent and selective CXCR3 negative allosteric modulators. Photoaffinity labeling is a common approach to elucidate binding modes of small-molecule ligands of GPCRs through the aid of photoactivatable probes that convert to extremely reactive intermediates upon photolysis. The photolabile probe N-[({1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-2-[4-fluoro-3-(trifluoromethyl)phenyl]-N-{1-[4-(3-(trifluoromethyl)-3H-diazirin-3-yl]benzyl}piperidin-4-yl)methyl]acetamide (10) showed significant labeling of the CXCR3 receptor (80%) in a [(3) H]RAMX3 radioligand displacement assay. Compound 10 will serve as an important tool compound for the detailed investigation of the binding pocket of CXCR3 by mass spectrometry.
Collapse
Affiliation(s)
- Tizita Haimanot Admas
- Department of Chemistry & Pharmacy, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg, Schuhstr. 19, 91052, Erlangen, Germany
| | - Viachaslau Bernat
- Department of Chemistry & Pharmacy, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg, Schuhstr. 19, 91052, Erlangen, Germany.,Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 3A1, 33458, Jupiter, FL, USA
| | - Markus R Heinrich
- Department of Chemistry & Pharmacy, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg, Schuhstr. 19, 91052, Erlangen, Germany
| | - Nuska Tschammer
- Department of Chemistry & Pharmacy, Emil Fischer Center, Friedrich Alexander University Erlangen-Nürnberg, Schuhstr. 19, 91052, Erlangen, Germany. .,NanoTemper Technologies GmbH, Flößergasse 4, 81369, München, Germany.
| |
Collapse
|
25
|
Yoneda K, Hu Y, Kita M, Kigoshi H. 6-Amidopyrene as a label-assisted laser desorption/ionization (LA-LDI) enhancing tag: development of photoaffinity pyrene derivative. Sci Rep 2015; 5:17853. [PMID: 26667050 PMCID: PMC4678867 DOI: 10.1038/srep17853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023] Open
Abstract
Pyrene-conjugated compounds are detected by label-assisted laser desorption/ionization mass spectrometry (LA-LDI MS) without matrixes. We found that 6-amidopyrene derivatives were highly detectable by the LDI MS instrument equipped with a 355 nm laser. In a certain case of a 6-amidopyrene derivative, a molecular ion peak [M]+• and a characteristic fragment ion peak [M–42]+• were detected in an amount of only 10 fmol. The latter peak, corresponding to the 6-aminopyrene fragment, might be generated in situ by the removal of ketene (CH2=C=O) from the parent molecule. A photoaffinity amidopyrene derivative of an antitumor macrolide aplyronine A (ApA–PaP) was synthesized, which showed potent cytotoxicity and actin-depolymerizing activity. In an LDI MS analysis of the MeOH- and water-adducts of ApA–PaP, oxime N–O bonds as well as amidopyrene N-acetyl moieties were preferentially cleaved, and their internal structures were confirmed by MS/MS analysis. Amidopyrene moiety might enhance fragmentation and stabilize the cleaved fragments by intramolecular or intermolecular weak interactions including hydrogen bonding. Our chemical probe methods might contribute to a detailed analysis of binding modes between various ligands and target biomacromolecules that include multiple and weak interactions.
Collapse
Affiliation(s)
- Kozo Yoneda
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Yaping Hu
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| | - Masaki Kita
- Graduate School of Pure and Applied Sciences, University of Tsukuba.,PRESTO, JST, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Hideo Kigoshi
- Graduate School of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
26
|
Konziase B. Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins. Anal Biochem 2015; 482:25-31. [DOI: 10.1016/j.ab.2015.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/18/2015] [Accepted: 04/08/2015] [Indexed: 12/01/2022]
|
27
|
Bartuschat AL, Schellhorn T, Hübner H, Gmeiner P, Heinrich MR. Fluoro-substituted phenylazocarboxamides: Dopaminergic behavior and N-arylating properties for irreversible binding. Bioorg Med Chem 2015; 23:3938-47. [DOI: 10.1016/j.bmc.2014.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
28
|
Kuramochi K, Matsushita T, Tsubaki K. Catch and release of concanavalin A by a mannose-immobilized photoaffinity PEGA resin coupled with a cleavable disulfide linker. Biosci Biotechnol Biochem 2015; 79:1946-53. [PMID: 26115105 DOI: 10.1080/09168451.2015.1060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A photoaffinity PEGA resin containing mannose as a ligand and disulfide as a cleavable linker was prepared. The resin was crosslinked to concanavalin A, a binding protein of mannose, by UV irradiation, and the protein was subsequently released by cleavage of the disulfide linker.
Collapse
Affiliation(s)
- Kouji Kuramochi
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | - Tomohisa Matsushita
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| | - Kazunori Tsubaki
- a Graduate School of Life and Environmental Sciences , Kyoto Prefectural University , Kyoto , Japan
| |
Collapse
|
29
|
Molecular Tattoo: Subcellular Confinement of Drug Effects. ACTA ACUST UNITED AC 2015; 22:548-558. [DOI: 10.1016/j.chembiol.2015.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 01/23/2023]
|
30
|
Takeuchi T, Schumacker PT, Kozmin SA. Identification of fumarate hydratase inhibitors with nutrient-dependent cytotoxicity. J Am Chem Soc 2015; 137:564-7. [PMID: 25469852 PMCID: PMC4308746 DOI: 10.1021/ja5101257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 01/09/2023]
Abstract
Development of cell-permeable small molecules that target enzymes involved in energy metabolism remains important yet challenging. We describe here the discovery of a new class of compounds with a nutrient-dependent cytotoxicity profile that arises from pharmacological inhibition of fumarate hydratase (also known as fumarase). This finding was enabled by a high-throughput screen of a diverse chemical library in a panel of human cancer cell lines cultured under different growth conditions, followed by subsequent structure-activity optimization and target identification. While the highest cytotoxicity was observed under low glucose concentrations, the antiproliferative activities and inhibition of oxygen consumption rates in cells were distinctly different from those displayed by typical inhibitors of mitochondrial oxidative phosphorylation. The use of a photoaffinity labeling strategy identified fumarate hydratase as the principal pharmacological target. Final biochemical studies confirmed dose-dependent, competitive inhibition of this enzyme in vitro, which was fully consistent with the initially observed growth inhibitory activity. Our work demonstrates how the phenotypic observations combined with a successful target identification strategy can yield a useful class of pharmacological inhibitors of an enzyme involved in the operation of tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Toshifumi Takeuchi
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Paul T. Schumacker
- Department
of Pediatrics, Division of Neonatology, Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Sergey A. Kozmin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
31
|
Adachi M, Nakajima M, Isobe M. Asymmetric synthesis of 3-azide-4-fluoro-l-phenylalanine. Biosci Biotechnol Biochem 2015; 79:707-9. [PMID: 25559241 DOI: 10.1080/09168451.2014.997185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The asymmetric synthesis of N-Fmoc-protected 3-azide-4-fluoro-l-phenylalanine as a photoactive phenylalanine analog has been achieved by Schöllkopf's alkylation.
Collapse
Affiliation(s)
- Masaatsu Adachi
- a Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences , Nagoya University , Nagoya , Japan
| | | | | |
Collapse
|
32
|
Lee S, Braun CR, Bird GH, Walensky LD. Photoreactive Stapled Peptides to Identify and Characterize BCL-2 Family Interaction Sites by Mass Spectrometry. Methods Enzymol 2014; 544:25-48. [DOI: 10.1016/b978-0-12-417158-9.00002-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chiara DC, Gill JF, Chen Q, Tillman T, Dailey WP, Eckenhoff RG, Xu Y, Tang P, Cohen JB. Photoaffinity labeling the propofol binding site in GLIC. Biochemistry 2013; 53:135-42. [PMID: 24341978 DOI: 10.1021/bi401492k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Propofol, an intravenous general anesthetic, produces many of its anesthetic effects in vivo by potentiating the responses of GABA type A receptors (GABAAR), members of the superfamily of pentameric ligand-gated ion channels (pLGICs) that contain anion-selective channels. Propofol also inhibits pLGICs containing cation-selective channels, including nicotinic acetylcholine receptors and GLIC, a prokaryotic proton-gated homologue from Gloeobacter violaceus . In the structure of GLIC cocrystallized with propofol at pH 4 (presumed open/desensitized states), propofol was localized to an intrasubunit pocket at the extracellular end of the transmembrane domain within the bundle of transmembrane α-helices (Nury, H, et al. (2011) Nature 469, 428-431). To identify propofol binding sites in GLIC in solution, we used a recently developed photoreactive propofol analogue (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol or AziPm) that acts as an anesthetic in vivo and potentiates GABAAR in vitro. For GLIC expressed in Xenopus oocytes, propofol and AziPm inhibited current responses at pH 5.5 (EC20) with IC50 values of 20 and 50 μM, respectively. When [(3)H]AziPm (7 μM) was used to photolabel detergent-solubilized, affinity-purified GLIC at pH 4.4, protein microsequencing identified propofol-inhibitable photolabeling of three residues in the GLIC transmembrane domain: Met-205, Tyr-254, and Asn-307 in the M1, M3, and M4 transmembrane helices, respectively. Thus, for GLIC in solution, propofol and AziPm bind competitively to a site in proximity to these residues, which, in the GLIC crystal structure, are in contact with the propofol bound in the intrasubunit pocket.
Collapse
Affiliation(s)
- David C Chiara
- Department of Neurobiology, Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang TC, Lai CH, Chien CW, Liang CF, Adak AK, Chuang YJ, Chen YJ, Lin CC. Synthesis and Evaluation of a Photoactive Probe with a Multivalent Carbohydrate for Capturing Carbohydrate–Lectin Interactions. Bioconjug Chem 2013; 24:1895-906. [DOI: 10.1021/bc400306g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
| | | | - Chih-Wei Chien
- Department
of Chemistry and
- Institute
of Chemistry, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang Taipei 115, Taiwan
| | | | | | - Yung-Jen Chuang
- Institute
of Bioinformatics and Structural Biology, National Tsing Hua University, 101 Sec. 2, Kuang Fu Rd., Hsinchu 30013, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, 128 Sec. 2, Academia Rd, Nankang Taipei 115, Taiwan
| | | |
Collapse
|
35
|
Hamouda AK, Jayakar SS, Chiara DC, Cohen JB. Photoaffinity Labeling of Nicotinic Receptors: Diversity of Drug Binding Sites! J Mol Neurosci 2013; 53:480-6. [DOI: 10.1007/s12031-013-0150-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
|
36
|
Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013; 18:10425-51. [PMID: 23994969 PMCID: PMC6270116 DOI: 10.3390/molecules180910425] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022] Open
Abstract
Target identification of biologically active molecules such as natural products, synthetic small molecules, peptides, and oligonucleotides mainly relies on affinity chromatography, activity-based probes, or photoaffinity labeling (PAL). Amongst them, activity-based probes and PAL have offered great advantages in target identification technology due to their ability to form covalent bonds with the corresponding targets. Activity-based probe technology mainly relies on the chemical reactivity of the target proteins, thereby limiting the majority of the biological targets to enzymes or proteins which display reactive residues at the probe-binding site. In general, the probes should bear a reactive moiety such as an epoxide, a Michael acceptor, or a reactive alkyl halide in their structures. On the other hand, photoaffinity probes (PAPs) are composed of a target-specific ligand and a photoactivatable functional group. When bound to the corresponding target proteins and activated with wavelength-specific light, PAPs generate highly reactive chemical species that covalently cross-link proximal amino acid residues. This process is better known as PAL and is widely employed to identify cellular targets of biologically active molecules. This review highlights recent advances in target identification by PAL, with a focus on the structure and chemistry of the photoaffinity probes developed in the recent decade, coupled to the target proteins identified using these probes.
Collapse
|
37
|
Xia Y, Peng L. Photoactivatable Lipid Probes for Studying Biomembranes by Photoaffinity Labeling. Chem Rev 2013; 113:7880-929. [DOI: 10.1021/cr300419p] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi Xia
- Aix-Marseille Université, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, Campus de Luminy, 13288 Marseille, France
| | - Ling Peng
- Aix-Marseille Université, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, Campus de Luminy, 13288 Marseille, France
| |
Collapse
|
38
|
Xia Y, Sengupta K, Maggiani A, Qu F, Peng L. A bola-phospholipid bearing tetrafluorophenylazido chromophore as a promising lipid probe for biomembrane photolabeling studies. Org Biomol Chem 2013; 11:5000-5. [PMID: 23783551 DOI: 10.1039/c3ob40659h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bola-phospholipid probe, carrying a tetrafluorophenylazido chromophore in the middle of the transmembrane diacyl chain, was synthesized and characterized with a view to studying biomembranes by a photolabeling approach. This probe shows the advantageous stability of bola-lipids in giant vesicle formation alongside excellent photochemical properties conferred by the tetrafluorophenylazido chromophore, and thus constitutes a promising probe for biomembrane photolabeling studies.
Collapse
Affiliation(s)
- Yi Xia
- Aix-Marseille University, Centre Interdisciplinaire de Nanoscience de Marseille, CNRS UMR 7325, 163, avenue de Luminy, 13288 Marseille, France
| | | | | | | | | |
Collapse
|
39
|
Stocker BL, Timmer MSM. Chemical Tools for Studying the Biological Function of Glycolipids. Chembiochem 2013; 14:1164-84. [DOI: 10.1002/cbic.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Indexed: 01/04/2023]
|
40
|
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University , Koganei, Tokyo 184-8501, Japan
| | | | | |
Collapse
|
41
|
Yang P, Yang W. Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chem Rev 2013; 113:5547-94. [PMID: 23614481 DOI: 10.1021/cr300246p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory
of Applied Surface
and Colloid Chemistry, Ministry of Education, College of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wantai Yang
- The State Key Laboratory of
Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
42
|
Uchida N, Okuro K, Niitani Y, Ling X, Ariga T, Tomishige M, Aida T. Photoclickable Dendritic Molecular Glue: Noncovalent-to-Covalent Photochemical Transformation of Protein Hybrids. J Am Chem Soc 2013; 135:4684-7. [DOI: 10.1021/ja401059w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Noriyuki Uchida
- Department of Chemistry and
Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kou Okuro
- Department of Chemistry and
Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yamato Niitani
- Department of Applied Physics,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Xiao Ling
- Department of Applied Physics,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ariga
- Department of Applied Physics,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Michio Tomishige
- Department of Applied Physics,
School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and
Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Physostigmine and galanthamine bind in the presence of agonist at the canonical and noncanonical subunit interfaces of a nicotinic acetylcholine receptor. J Neurosci 2013; 33:485-94. [PMID: 23303929 DOI: 10.1523/jneurosci.3483-12.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Galanthamine and physostigmine are clinically used cholinomimetics that both inhibit acetylcholinesterase and also interact directly with and potentiate nAChRs. As with most nAChR-positive allosteric modulators, the location and number of their binding site(s) within nAChRs are unknown. In this study, we use the intrinsic photoreactivities of [(3)H]physostigmine and [(3)H]galanthamine upon irradiation at 312 nm to directly identify amino acids contributing to their binding sites in the Torpedo californica nAChR. Protein sequencing of fragments isolated from proteolytic digests of [(3)H]physostigmine- or [(3)H]galanthamine-photolabeled nAChR establish that, in the presence of agonist (carbamylcholine), both drugs photolabeled amino acids on the complementary (non-α) surface of the transmitter binding sites (γTyr-111/γTyr-117/δTyr172). They also photolabeled δTyr-212 at the δ-β subunit interface and γTyr-105 in the vestibule of the ion channel, with photolabeling of both residues enhanced in the presence of agonist. Furthermore, [(3)H]physostigmine photolabeling of γTyr-111, γTyr-117, δTyr-212, and γTyr-105 was inhibited in the presence of nonradioactive galanthamine. The locations of the photolabeled amino acids in the nAChR structure and the results of computational docking studies provide evidence that, in the presence of agonist, physostigmine and galanthamine bind to at least three distinct sites in the nAChR extracellular domain: at the α-γ interface (1) in the entry to the transmitter binding site and (2) in the vestibule of the ion channel near the level of the transmitter binding site, and at the δ-β interface (3) in a location equivalent to the benzodiazepine binding site in GABA(A) receptors.
Collapse
|
44
|
Photocrosslinking approaches to interactome mapping. Curr Opin Chem Biol 2012; 17:90-101. [PMID: 23149092 DOI: 10.1016/j.cbpa.2012.10.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/22/2012] [Indexed: 11/21/2022]
Abstract
Photocrosslinking approaches can be used to map interactome networks within the context of living cells. Photocrosslinking methods rely on use of metabolic engineering or genetic code expansion to incorporate photocrosslinking analogs of amino acids or sugars into cellular biomolecules. Immunological and mass spectrometry techniques are used to analyze crosslinked complexes, thereby defining specific interactomes. Because photocrosslinking can be conducted in native, cellular settings, it can be used to define context-dependent interactions. Photocrosslinking methods are also ideally suited for determining interactome dynamics, mapping interaction interfaces, and identifying transient interactions in which intrinsically disordered proteins and glycoproteins engage. Here we discuss the application of cell-based photocrosslinking to the study of specific problems in immune cell signaling, transcription, membrane protein dynamics, nucleocytoplasmic transport, and chaperone-assisted protein folding.
Collapse
|
45
|
Torkar A, Bregant S, Devel L, Novinec M, Lenarčič B, Lah T, Dive V. A novel photoaffinity-based probe for selective detection of cathepsin L active form. Chembiochem 2012; 13:2616-21. [PMID: 23125066 DOI: 10.1002/cbic.201200389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Indexed: 01/04/2023]
Abstract
Detecting the active forms of proteases by using activity-based probes in complex proteomes has become an intensively investigated field of research over the past years because many pathogenic conditions involve alterations in protease activities. The detection of lysosomal cysteine proteases, the cathepsins, has mostly relied on the use of probes that incorporate reactive electrophilic moieties to modify a cysteine in the active site covalently. Here we report the first example of an activity-based probe that targets the cathepsins and incorporates a photoactivatable benzophenone group for covalent labelling. When tested on a set of five cathepsins (B, K, L, S and V), this probe selectively labelled the active site of cathepsin L. Furthermore, when tested on crude cell extracts, the probe specifically detected cathepsin L quantities as low as a few picomoles. This study suggests that photoaffinity labelling is a promising approach for developing highly selective and useful cathepsin L probes. In particular, this probe might allow the detection of small amounts of the secreted active cathepsin L form in the cellular microenvironment in vitro and ex vivo.
Collapse
Affiliation(s)
- Ana Torkar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
46
|
Tandem photoaffinity labeling-bioorthogonal conjugation in medicinal chemistry. Bioorg Med Chem 2012; 20:6237-47. [PMID: 23026086 DOI: 10.1016/j.bmc.2012.09.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 12/24/2022]
Abstract
Photoaffinity labeling has a longstanding history as a powerful biochemical technique. However, photoaffinity labeling has significantly evolved over the past decade principally due to its coupling with bioorthogonal/click chemistry reactions. This review aims to highlight tandem photoaffinity labeling-bioorthogonal conjugation as a chemical approach in medicinal chemistry and chemical biology. In particular, recent examples of using this strategy for affinity-based protein profiling (AfBPP), drug target identification, binding ensemble profiling, studying endogenous biological molecules, and imaging applications will be presented. Additionally, recent advances in the development of 'all-in-one' compact moieties possessing a photoreactive group and clickable handle will be discussed.
Collapse
|
47
|
Abstract
Photoreactive compounds are important tools in life sciences that allow precisely timed covalent crosslinking of ligands and targets. Using a unique technique we have synthesized azidoblebbistatin, which is a derivative of blebbistatin, the most widely used myosin inhibitor. Without UV irradiation azidoblebbistatin exhibits identical inhibitory properties to those of blebbistatin. Using UV irradiation, azidoblebbistatin can be covalently crosslinked to myosin, which greatly enhances its in vitro and in vivo effectiveness. Photo-crosslinking also eliminates limitations associated with the relatively low myosin affinity and water solubility of blebbistatin. The wavelength used for photo-crosslinking is not toxic for cells and tissues, which confers a great advantage in in vivo tests. Because the crosslink results in an irreversible association of the inhibitor to myosin and the irradiation eliminates the residual activity of unbound inhibitor molecules, azidoblebbistatin has a great potential to become a highly effective tool in both structural studies of actomyosin contractility and the investigation of cellular and physiological functions of myosin II. We used azidoblebbistatin to identify previously unknown low-affinity targets of the inhibitor (EC(50) ≥ 50 μM) in Dictyostelium discoideum, while the strongest interactant was found to be myosin II (EC(50) = 5 μM). Our results demonstrate that azidoblebbistatin, and potentially other azidated drugs, can become highly useful tools for the identification of strong- and weak-binding cellular targets and the determination of the apparent binding affinities in in vivo conditions.
Collapse
|
48
|
Wang R, Yan F, Qiu D, Jeong JS, Jin Q, Kim TY, Chen L. Traceless cross-linker for photocleavable bioconjugation. Bioconjug Chem 2012; 23:705-13. [PMID: 22432929 DOI: 10.1021/bc200343u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoresponsive bioconjugation empowers the development of novel methods for drug discovery, disease diagnosis, and high-throughput screening, among others. In this paper, we report on the characteristics of a traceless photocleavable cross-linker, di-6-(3-succinimidyl carbonyloxymethyl-4-nitro-phenoxy)-hexanoic acid disulfide diethanol ester (SCNE). The traceless feature and the biocompatibility of this photocleavable cross-linking reagent were corroborated. Consequently, we demonstrated its application in reversible phage particle immobilization that could provide a platform for direct single-phage screening. We also applied it in protein-photoprinting, where SCNE acts as a "photo-eraser" to remove the cross-linked protein molecules at a desired region in a simple, clean, and light-controllable fashion. We further demonstrated the two-tier atomic force microscopic (AFM) method that uses SCNE to carry out two subsequent AFM tasks in situ. The approach allows guided protein delivery and subsequent high-resolution imaging at the same local area, thus opening up the possibility of monitoring protein functions in live cells. The results imply that SCNE is a versatile cross-linker that can be used for a wide range of applications where photocleavage ensures clean and remote-controllable release of biological molecules from a substrate.
Collapse
Affiliation(s)
- Rong Wang
- Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Studying protein–peptide interactions using benzophenone units: A case study of protein kinase B/Akt and its inhibitor PTR6154. Anal Biochem 2012; 421:750-4. [DOI: 10.1016/j.ab.2011.11.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 11/20/2022]
|
50
|
PEG MODIFICATION AND PROTEIN CONJUGATION BY VIRTUE OF 4-AZIDOBENZOIC ACID AS A PHOTOAFFINITY MOLECULE. ACTA POLYM SIN 2011. [DOI: 10.3724/sp.j.1105.2011.11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|