1
|
Micic N, Holmelund Rønager A, Sørensen M, Bjarnholt N. Overlooked and misunderstood: can glutathione conjugates be clues to understanding plant glutathione transferases? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230365. [PMID: 39343017 PMCID: PMC11449216 DOI: 10.1098/rstb.2023.0365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
Plant glutathione transferases (GSTs) constitute a large and diverse family of enzymes that are involved in plant stress response, metabolism and defence, yet their physiological functions remain largely elusive. Consistent with the traditional view on GSTs across organisms as detoxification enzymes, in vitro most plant GSTs catalyse glutathionylation, conjugation of the tripeptide glutathione (GSH; γ-Glu-Cys-Gly) onto reactive molecules. However, when it comes to elucidating GST functions, it remains a key challenge that the endogenous plant glutathione conjugates (GS-conjugates) that would result from such glutathionylation reactions are rarely reported. Furthermore, GSTs often display high substrate promiscuity, and their proposed substrates are prone to spontaneous chemical reactions with GSH; hence, single-gene knockouts rarely provide clear chemotypes or phenotypes. In a few cases, GS-conjugates are demonstrated to be biosynthetic intermediates that are rapidly further metabolized towards a pathway end product, explaining their low abundance and rare detection. In this review, we summarize the current knowledge of plant GST functions and how and possibly why evolution has resulted in a broad and extensive expansion of the plant GST family. Finally, we demonstrate that endogenous GS-conjugates are more prevalent in plants than assumed and suggest they are overlooked as clues towards the identification of plant GST functions. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Nikola Micic
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Asta Holmelund Rønager
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| | - Mette Sørensen
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
- Novo Nordisk Pharmatech A/S , Køge 4600, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences, University of Copenhagen , Frederiksberg 1871, Denmark
- Copenhagen Plant Science Center, University of Copenhagen , Frederiksberg 1871, Denmark
| |
Collapse
|
2
|
Gajewska E, Witusińska A, Bernat P. Nickel-induced oxidative stress and phospholipid remodeling in cucumber leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112229. [PMID: 39151803 DOI: 10.1016/j.plantsci.2024.112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Nickel phytotoxicity has been attributed, among others, to oxidative stress. However, little is known about Ni-induced phospholipid modifications, including the oxidative ones. Accumulation of reactive oxygen species (ROS), antioxidative enzyme activities, malondialdehyde and the early lipid oxidation products contents, membrane permeability, phospholipid profile as well as phospholipid unsaturation degree were studied in the 1st and the 2nd leaves of hydroponically grown cucumber seedlings subjected to Ni stress. Compared to the 2nd leaf the 1st one showed stronger visual Ni toxicity symptoms, higher Ni, O2.- and H2O2 accumulation as well as greater enhancement in membrane permeability. Enzyme activities were differently influenced by Ni stress, however most pronounced changes were generally found in the 1st leaf. Ni treatment resulted in oxidation of leaf lipids, which was evidenced by appearance of increased contents of MDA and the early produced oxylipins. Among the latter 9-hydroxyoctadecatrienoic acid (9-HOTrE) and 13-hydroxyoctadecatrienoic acid (13-HOTrE) contents showed the most pronounced increase in response to Ni treatment. Exposure to the metal led to the changes in the leaf phospholipid profile and increased degree of phospholipid unsaturation. The obtained results have been discussed in relation to the difference in Ni stress severity between the 1st and the 2nd leaves.
Collapse
Affiliation(s)
- Ewa Gajewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Aleksandra Witusińska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Banacha 12/16, Lodz 90-237, Poland.
| | - Przemysław Bernat
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Industrial Microbiology and Biotechnology, Banacha 12/16, Lodz 90-237, Poland.
| |
Collapse
|
3
|
Toporkova YY, Gorina SS, Iljina TM, Lantsova NV, Grechkin AN. CYP74B34 Enzyme from Carrot ( Daucus carota) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1519-1530. [PMID: 39245459 DOI: 10.1134/s0006297924080108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the CYP74B34 gene from carrot (Daucus carota L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia.
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Natalia V Lantsova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420111, Russia
| |
Collapse
|
4
|
Toporkova YY, Smirnova EO, Gorina SS. Epoxyalcohol Synthase Branch of Lipoxygenase Cascade. Curr Issues Mol Biol 2024; 46:821-841. [PMID: 38248355 PMCID: PMC10813956 DOI: 10.3390/cimb46010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Oxylipins are one of the most important classes of bioregulators, biosynthesized through the oxidative metabolism of unsaturated fatty acids in various aerobic organisms. Oxylipins are bioregulators that maintain homeostasis at the cellular and organismal levels. The most important oxylipins are mammalian eicosanoids and plant octadecanoids. In plants, the main source of oxylipins is the lipoxygenase cascade, the key enzymes of which are nonclassical cytochromes P450 of the CYP74 family, namely allene oxide synthases (AOSs), hydroperoxide lyases (HPLs), and divinyl ether synthases (DESs). The most well-studied plant oxylipins are jasmonates (AOS products) and traumatin and green leaf volatiles (HPL products), whereas other oxylipins remain outside of the focus of researchers' attention. Among them, there is a large group of epoxy hydroxy fatty acids (epoxyalcohols), whose biosynthesis has remained unclear for a long time. In 2008, the first epoxyalcohol synthase of lancelet Branchiostoma floridae, BfEAS (CYP440A1), was discovered. The present review collects data on EASs discovered after BfEAS and enzymes exhibiting EAS activity along with other catalytic activities. This review also presents the results of a study on the evolutionary processes possibly occurring within the P450 superfamily as a whole.
Collapse
Affiliation(s)
- Yana Y. Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (E.O.S.); (S.S.G.)
| | | | | |
Collapse
|
5
|
Wu Z, Guo Z, Wang K, Wang R, Fang C. Comparative Metabolomic Analysis Reveals the Role of OsHPL1 in the Cold-Induced Metabolic Changes in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2032. [PMID: 37653948 PMCID: PMC10221390 DOI: 10.3390/plants12102032] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
Cytochrome P450 (CYP74) family members participate in the generation of oxylipins and play essential roles in plant adaptation. However, the metabolic reprogramming mediated by CYP74s under cold stress remains largely unexplored. Herein, we report how cold-triggered OsHPL1, a member of the CYP74 family, modulates rice metabolism. Cold stress significantly induced the expression of OsHPL1 and the accumulation of OPDA (12-oxo-phytodienoic acid) and jasmonates in the wild-type (WT) plants. The absence of OsHPL1 attenuates OPDA accumulation to a low temperature. Then, we performed a widely targeted metabolomics study covering 597 structurally annotated compounds. In the WT and hpl1 plants, cold stress remodeled the metabolism of lipids and amino acids. Although the WT and hpl1 mutants shared over one hundred cold-affected differentially accumulated metabolites (DAMs), some displayed distinct cold-responding patterns. Furthermore, we identified 114 and 56 cold-responding DAMs, specifically in the WT and hpl1 mutants. In conclusion, our work characterized cold-triggered metabolic rewiring and the metabolic role of OsHPL1 in rice.
Collapse
Affiliation(s)
- Ziwei Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Zhiyu Guo
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Kemiao Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rui Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| | - Chuanying Fang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
- School of Tropical Crops, Hainan University, Haikou 570288, China
| |
Collapse
|
6
|
Liang Y, Huang Y, Liu C, Chen K, Li M. Functions and interaction of plant lipid signalling under abiotic stresses. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:361-378. [PMID: 36719102 DOI: 10.1111/plb.13507] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Lipids are the primary form of energy storage and a major component of plasma membranes, which form the interface between the cell and the extracellular environment. Several lipids - including phosphoinositide, phosphatidic acid, sphingolipids, lysophospholipids, oxylipins, and free fatty acids - also serve as substrates for the generation of signalling molecules. Abiotic stresses, such as drought and temperature stress, are known to affect plant growth. In addition, abiotic stresses can activate certain lipid-dependent signalling pathways that control the expression of stress-responsive genes and contribute to plant stress adaptation. Many studies have focused either on the enzymatic production and metabolism of lipids, or on the mechanisms of abiotic stress response. However, there is little information regarding the roles of plant lipids in plant responses to abiotic stress. In this review, we describe the metabolism of plant lipids and discuss their involvement in plant responses to abiotic stress. As such, this review provides crucial background for further research on the interactions between plant lipids and abiotic stress.
Collapse
Affiliation(s)
- Y Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - Y Huang
- Guilin University of Electronic Technology, School of Mechanical and Electrical Engineering, Guilin, China
| | - C Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, College of Life Science, Guilin, China
| | - K Chen
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| | - M Li
- Department of Biotechnology, Huazhong University of Science and Technology, College of Life Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Tran AD, Cho K, Han O. Rice peroxygenase catalyzes lipoxygenase-dependent regiospecific epoxidation of lipid peroxides in the response to abiotic stressors. Bioorg Chem 2023; 131:106285. [PMID: 36450198 DOI: 10.1016/j.bioorg.2022.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.
Collapse
Affiliation(s)
- Anh Duc Tran
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyoungwon Cho
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Oksoo Han
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
9
|
Bano N, Fakhrah S, Mohanty CS, Bag SK. Transcriptome Meta-Analysis Associated Targeting Hub Genes and Pathways of Drought and Salt Stress Responses in Cotton ( Gossypium hirsutum): A Network Biology Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:818472. [PMID: 35548277 PMCID: PMC9083274 DOI: 10.3389/fpls.2022.818472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
Abiotic stress tolerance is an intricate feature controlled through several genes and networks in the plant system. In abiotic stress, salt, and drought are well known to limit cotton productivity. Transcriptomics meta-analysis has arisen as a robust method to unravel the stress-responsive molecular network in crops. In order to understand drought and salt stress tolerance mechanisms, a meta-analysis of transcriptome studies is crucial. To confront these issues, here, we have given details of genes and networks associated with significant differential expression in response to salt and drought stress. The key regulatory hub genes of drought and salt stress conditions have notable associations with functional drought and salt stress-responsive (DSSR) genes. In the network study, nodulation signaling pathways 2 (NSP2), Dehydration-responsive element1 D (DRE1D), ethylene response factor (ERF61), cycling DOF factor 1 (CDF1), and tubby like protein 3 (TLP3) genes in drought and tubby like protein 1 (TLP1), thaumatin-like proteins (TLP), ethylene-responsive transcription factor ERF109 (EF109), ETS-Related transcription Factor (ELF4), and Arabidopsis thaliana homeodomain leucine-zipper gene (ATHB7) genes in salt showed the significant putative functions and pathways related to providing tolerance against drought and salt stress conditions along with the significant expression values. These outcomes provide potential candidate genes for further in-depth functional studies in cotton, which could be useful for the selection of an improved genotype of Gossypium hirsutum against drought and salt stress conditions.
Collapse
Affiliation(s)
- Nasreen Bano
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shafquat Fakhrah
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Chandra Sekhar Mohanty
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumit Kumar Bag
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:979. [PMID: 35406959 PMCID: PMC9002551 DOI: 10.3390/plants11070979] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/24/2023]
Abstract
Lipoxygenases (LOXs), naturally occurring enzymes, are widely distributed in plants and animals. LOXs can be non-sulfur iron, non-heme iron, or manganese-containing dioxygenase redox enzymes. LOXs catalyze the oxidation of polyunsaturated fatty acids into fatty acid hydroperoxides. Linolenic acid, a precursor in the jasmonic acid (JA) biosynthesis, is converted to 12-oxo-phytodienoic acid through oxygenation with LOX, allene oxide synthase, and allene oxide cyclase. Moreover, JA participates in seed germination, fruit ripening, senescence, and many other physio-biochemical processes. LOXs also play crucial roles in defense responses against biotic stress, i.e., insects, pests, pathogenic attacks, and abiotic stress, such as wounding, UV-rays, extreme temperature, oxidative stress, and drought.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Edyta Miszczuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| |
Collapse
|
11
|
Hanano A, Perez-Matas E, Shaban M, Cusido RM, Murphy DJ. Characterization of lipid droplets from a Taxus media cell suspension and their potential involvement in trafficking and secretion of paclitaxel. PLANT CELL REPORTS 2022; 41:853-871. [PMID: 34984531 DOI: 10.1007/s00299-021-02823-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Our paper describes the potential roles of lipid droplets of Taxus media cell suspension in the biosynthesis and secretion of paclitaxel and, therefore, highlights their involvement in improving its production. Paclitaxel (PTX) is a highly potent anticancer drug that is mainly produced using Taxus sp. cell suspension cultures. The main purpose of the current study is to characterize cellular LDs from T. media cell suspension with a particular focus on the biological connection of their associated proteins, the caleosins (CLOs), with the biosynthesis and secretion of PTX. A pure LD fraction obtained from T. media cells and characterized in terms of their proteome. Interestingly, the cellular LD in T. media sequester the PTX. This was confirmed in vitro, where about 96% of PTX (C0PTX,aq [mg L-1]) in the aqueous solution was partitioned into the isolated LDs. Furthermore, silencing of CLO-encoding genes in the T. media cells led to a net decrease in the number and size of LDs. This coincided with a significant reduction in expression levels of TXS, DBAT and DBTNBT, key genes in the PTX biosynthesis pathway. Subsequently, the biosynthesis of PTX was declined in cell culture. In contrast, treatment of cells with 13-hydroperoxide C18:3, a substrate of the peroxygenase activity, induced the expression of CLOs, and, therefore, the accumulation of cellular LDs in the T. media cells cultures, thus increasing the PTX secretion. The accumulation of stable LDs is critically important for effective secretion of PTX. This is modulated by the expression of caleosins, a class of LD-associated proteins with a dual role conferring the structural stability of LDs as well as regulating lipidic bioactive metabolites via their enzymatic activity, thus enhancing the biosynthesis of PTX.
Collapse
Affiliation(s)
- Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Edgar Perez-Matas
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Mouhnad Shaban
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Rosa M Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Av. Joan XXIII Sn., 08028, Barcelona, Spain
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Pontypridd, Wales, UK
| |
Collapse
|
12
|
Gorshkov VY, Toporkova YY, Tsers ID, Smirnova EO, Ogorodnikova AV, Gogoleva NE, Parfirova OI, Petrova OE, Gogolev YV. Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections. ANNALS OF BOTANY 2022; 129:271-286. [PMID: 34417794 PMCID: PMC8835645 DOI: 10.1093/aob/mcab108] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Plant diseases caused by Pectobacterium atrosepticum are often accompanied by extensive rot symptoms. In addition, these bacteria are able to interact with host plants without causing disease for long periods, even throughout several host plant generations. There is, to date, no information on the comparative physiology/biochemistry of symptomatic and asymptomatic plant-P. atrosepticum interactions. Typical (symptomatic) P. atrosepticum infections are associated with the induction of plant responses mediated by jasmonates, which are one of the products of the lipoxygenase cascade that gives origin to many other oxylipins with physiological activities. In this study, we compared the functioning of the lipoxygenase cascade following typical and latent (asymptomatic) infections to gain better insight into the physiological basis of the asymptomatic and antagonistic coexistence of plants and pectobacteria. METHODS Tobacco plants were mock-inoculated (control) or infected with the wild type P. atrosepticum (typical infection) or its coronafacic acid-deficient mutant (latent infection). The expression levels of the target lipoxygenase cascade-related genes were assessed by Illumina RNA sequencing. Oxylipin profiles were analysed by GC-MS. With the aim of revising the incorrect annotation of one of the target genes, its open reading frame was cloned to obtain the recombinant protein, which was further purified and characterized using biochemical approaches. KEY RESULTS The obtained data demonstrate that when compared to the typical infection, latent asymptomatic P. atrosepticum infection is associated with (and possibly maintained due to) decreased levels of 9-lipoxygenase branch products and jasmonic acid and increased level of cis-12-oxo-10,15-phytodienoic acid. The formation of 9-oxononanoic acid and epoxyalcohols in tobacco plants was based on the identification of the first tobacco hydroperoxide lyase (HPL) with additional epoxyalcohol synthase (EAS) activity. CONCLUSIONS Our results contribute to the hypothesis of the oxylipin signature, indicating that different types of plant interactions with a particular pathogen are characterized by the different oxylipin profiles of the host plant. In addition, the tobacco LOC107825278 gene was demonstrated to encode an NtHPL (CYP74C43) enzyme yielding volatile aldehydes and aldoacids (HPL products) as well as oxiranyl carbinols (EAS products).
Collapse
Affiliation(s)
- Vladimir Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Ivan D Tsers
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| | - Olga I Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Olga E Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Laboratory of Plant Infectious Diseases, Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, 420111 Kazan, Russia
- Kazan Federal University, 420111 Kazan, Russia
| |
Collapse
|
13
|
Li H, Qiu Y, Sun G, Ye W. RNA sequencing-based exploration of the effects of blue laser irradiation on mRNAs involved in functional metabolites of D. officinales. PeerJ 2022; 9:e12684. [PMID: 35036158 PMCID: PMC8740519 DOI: 10.7717/peerj.12684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dendrobium officinale Kimura et Migo (D. officinale) has promising lung moisturizing, detoxifying, and immune boosting properties. Light is an important factor influencing functional metabolite synthesis in D. officinale. The mechanisms by which lasers affect plants are different from those of ordinary light sources; lasers can effectively address the shortcomings of ordinary light sources and have significant interactions with plants. Different light treatments (white, blue, blue laser) were applied, and the number of red leaves under blue laser was greater than that under blue and white light. RNA-seq technology was used to analyze differences in D. officinale under different light treatments. The results showed 465, 2,107 and 1,453 differentially expressed genes (DEGs) in LB-B, LB-W and W-B, respectively. GO, KEGG and other analyses of DEGs indicated that D. officinale has multiple blue laser response modes. Among them, the plasma membrane, cutin, suberine and wax biosynthesis, flavone and flavonol biosynthesis, heat shock proteins, etc. play central roles. Physiological and biochemical results verified that blue laser irradiation significantly increases POD, SOD, and PAL activities in D. officinale. The functional metabolite results showed that blue laser had the greatest promoting effect on total flavonoids, polysaccharides, and alkaloids. qPCR verification combined with other results suggested that CRY DASH, SPA1, HY5, and PIF4 in the blue laser signal transduction pathway affect functional metabolite accumulation in D. officinale through positively regulated expression patterns, while CO16 and MYC2 exhibit negatively regulated expression patterns. These findings provide new ideas for the efficient production of metabolites in D. officinale.
Collapse
Affiliation(s)
- Hansheng Li
- College of Architectural Engineering, Sanming University, Sanming, Chian
| | - Yuqiang Qiu
- Xiamen Institute of Technology, Xiamen, China
| | - Gang Sun
- College of Resources and Chemical Engineering, Sanming University, Sanming, China
| | - Wei Ye
- The Institute of Medicinal Plant, Sanming Academy of Agricultural Science, Shaxian, China
| |
Collapse
|
14
|
Erst AS, Chernonosov AA, Petrova NV, Kulikovskiy MS, Maltseva SY, Wang W, Kostikova VA. Investigation of Chemical Constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and Furochromones. Int J Mol Sci 2021; 23:406. [PMID: 35008829 PMCID: PMC8745120 DOI: 10.3390/ijms23010406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Aqueous-ethanol extracts (70%) from the leaves of Eranthis longistipitata Regel. (Ranunculaceae Juss.)-collected from natural populations of Kyrgyzstan-were studied by liquid chromatography with high-resolution mass spectrometry (LC-HRMS). There was no variation of the metabolic profiles among plants that were collected from different populations. More than 160 compounds were found in the leaves, of which 72 were identified to the class level and 58 to the individual-compound level. The class of flavonoids proved to be the most widely represented (19 compounds), including six aglycones [quercetin, kaempferol, aromadendrin, 6-methoxytaxifolin, phloretin, and (+)-catechin] and mono- and diglycosides (the other 13 compounds). In the analyzed samples of E. longistipitata, 14 fatty acid-related compounds were identified, but coumarins and furochromones that were found in E. longistipitata were the most interesting result; furochromones khelloside, khellin, visnagin, and cimifugin were found in E. longistipitata for the first time. Coumarins 5,7-dihydroxy-4-methylcoumarin, scoparone, fraxetin, and luvangetin and furochromones methoxsalen, 5-O-methylvisammioside, and visamminol-3'-O-glucoside were detected for the first time in the genus Eranthis Salisb. For all the above compounds, the structural formulas are given. Furthermore, detailed information (with structural formulas) is provided on the diversity of chromones and furochromones in other representatives of Eranthis. The presence of chromones in plants of the genus Eranthis confirms its closeness to the genus Actaea L. because chromones are synthesized by normal physiological processes only in these members of the Ranunculaceae family.
Collapse
Affiliation(s)
- Andrey S. Erst
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, CSBG SB RUS, 630090 Novosibirsk, Russia
- Laboratory Herbarium (TK), Tomsk State University, 634050 Tomsk, Russia
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, ICBFM SB RAS, 630090 Novosibirsk, Russia;
| | - Natalia V. Petrova
- Komarov Botanical Institute, Russian Academy of Sciences, BIN RAS, 197376 St. Petersburg, Russia;
| | - Maxim S. Kulikovskiy
- K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.S.K.); (S.Y.M.)
| | - Svetlana Yu. Maltseva
- K.A. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 127276 Moscow, Russia; (M.S.K.); (S.Y.M.)
| | - Wei Wang
- Institute of Botany, Chinese Academy of Sciences, IB CAS, Beijing 100093, China;
| | - Vera A. Kostikova
- Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, CSBG SB RUS, 630090 Novosibirsk, Russia
| |
Collapse
|
15
|
Differential impact of the temperature stress and soil drought on lipoxygenase activity in winter rye plants. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.06.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
A Metabolic Choreography of Maize Plants Treated with a Humic Substance-Based Biostimulant under Normal and Starved Conditions. Metabolites 2021; 11:metabo11060403. [PMID: 34202973 PMCID: PMC8235525 DOI: 10.3390/metabo11060403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Humic substance (HS)-based biostimulants show potentials as sustainable strategies for improved crop development and stress resilience. However, cellular and molecular mechanisms governing the agronomically observed effects of HS on plants remain enigmatic. Here, we report a global metabolic reprogramming of maize leaves induced by a humic biostimulant under normal and nutrient starvation conditions. This reconfiguration of the maize metabolism spanned chemical constellations, as revealed by molecular networking approaches. Plant growth and development under normal conditions were characterized by key differential metabolic changes such as increased levels of amino acids, oxylipins and the tricarboxylic acid (TCA) intermediate, isocitric acid. Furthermore, under starvation, the humic biostimulant significantly impacted pathways that are involved in stress-alleviating mechanisms such as redox homeostasis, strengthening of the plant cell wall, osmoregulation, energy production and membrane remodelling. Thus, this study reveals that the humic biostimulant induces a remodelling of inter-compartmental metabolic networks in maize, subsequently readjusting the plant physiology towards growth promotion and stress alleviation. Such insights contribute to ongoing efforts in elucidating modes of action of biostimulants, generating fundamental scientific knowledge that is necessary for development of the biostimulant industry, for sustainable food security.
Collapse
|
19
|
Optimizing the Production of Recombinant Hydroperoxide Lyase in Escherichia coli Using Statistical Design. Catalysts 2021. [DOI: 10.3390/catal11020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hydroperoxide lyase (HPL) catalyzes the synthesis of volatiles C6 or C9 aldehydes from fatty acid hydroperoxides. These short carbon chain aldehydes, known as green leaf volatiles (GLV), are widely used in cosmetic industries and as food additives because of their “fresh green” aroma. To meet the growing demand for natural GLVs, the use of recombinant HPL as a biocatalyst in enzyme-catalyzed processes appears to be an interesting application. Previously, we cloned and expressed a 13-HPL from olive fruit in Escherichia coli and showed high conversion rates (up to 94%) during the synthesis of C6 aldehydes. To consider a scale-up of this process, optimization of the recombinant enzyme production is necessary. In this study, four host-vector combinations were tested. Experimental design and response surface methodology (RSM) were used to optimize the expression conditions. Three factors were considered, i.e., temperature, inducer concentration and induction duration. The Box–Behnken design consisted of 45 assays for each expression system performed in deep-well microplates. The regression models were built and fitted well to the experimental data (R2 coefficient > 97%). The best response (production level of the soluble enzyme) was obtained with E. coli BL21 DE3 cells. Using the optimal conditions, 2277 U L−1of culture of the soluble enzyme was produced in microliter plates and 21,920 U L−1of culture in an Erlenmeyer flask, which represents a 79-fold increase compared to the production levels previously reported.
Collapse
|
20
|
Regulation of Sixth Seminal Root Formation by Jasmonate in Triticum aestivum L. PLANTS 2021; 10:plants10020219. [PMID: 33498738 PMCID: PMC7911905 DOI: 10.3390/plants10020219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
A well-developed root system is an important characteristic of crop plants, which largely determines their productivity, especially under conditions of water and nutrients deficiency. Being Poaceous, wheat has more than one seminal root. The number of grown seminal roots varies in different wheat accessions and is regulated by environmental factors. Currently, the molecular mechanisms determining the number of germinated seminal roots remain poorly understood. The analysis of the root system development in germinating seeds of genetically modified hexaploid wheat plants with altered activity of jasmonate biosynthesis pathway and seeds exogenously treated with methyl jasmonate revealed the role of jasmonates in the regulation of sixth seminal root development. This regulatory effect strongly depends on the jasmonate concentration and the duration of the exposure to this hormone. The maximum stimulatory effect of exogenously applied methyl jasmonate on the formation of the sixth seminal root was achieved at 200 μM concentration after 48 h of treatment. Further increase in concentration and exposure time does not increase the stimulating effect. While 95% of non-transgenic plants under non-stress conditions possess five or fewer seminal roots, the number of plants with developed sixth seminal root reaches up to 100% when selected transgenic lines are treated with methyl jasmonate.
Collapse
|
21
|
Toporkova YY, Smirnova EO, Iljina TM, Mukhtarova LS, Gorina SS, Grechkin AN. The CYP74B and CYP74D divinyl ether synthases possess a side hydroperoxide lyase and epoxyalcohol synthase activities that are enhanced by the site-directed mutagenesis. PHYTOCHEMISTRY 2020; 179:112512. [PMID: 32927248 DOI: 10.1016/j.phytochem.2020.112512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The CYP74 family of cytochromes P450 includes four enzymes of fatty acid hydroperoxide metabolism: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether synthase (DES), and epoxyalcohol synthase (EAS). The present work is concerned with catalytic specificities of three recombinant DESs, namely, the 9-DES (LeDES, CYP74D1) of tomato (Solanum lycopersicum), 9-DES (NtDES, CYP74D3) of tobacco (Nicotiana tabacum), and 13-DES (LuDES, CYP74B16) of flax (Linum usitatissimum), as well as their alterations upon the site-directed mutagenesis. Both LeDES and NtDES converted 9-hydroperoxides of linoleic and α-linolenic acids to divinyl ethers colneleic and colnelenic acids (respectively) with only minorities of HPL and EAS products. In contrast, LeDES and NtDES showed low efficiency towards the linoleate 13-hydroperoxide, affording only the low yield of epoxyalcohols. LuDES exhibited mainly the DES activity towards α-linolenate 13-hydroperoxide (preferred substrate), and HPL activity towards linoleate 13-hydroperoxide, respectively. In contrast, LuDES converted 9-hydroperoxides primarily to the epoxyalcohols. The F291V and A287G mutations within the I-helix groove region (SRS-4) of LuDES resulted in the loss of DES activity and the acquirement of the epoxyalcohol synthase activity. Thus, the studied enzymes exhibited the versatility of catalysis and its qualitative alterations upon the site-directed mutagenesis.
Collapse
Affiliation(s)
- Yana Y Toporkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| | - Elena O Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Tatiana M Iljina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Lucia S Mukhtarova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Svetlana S Gorina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
22
|
Vallet M, Meziane T, Thiney N, Prado S, Hubas C. Laminariales Host Does Impact Lipid Temperature Trajectories of the Fungal Endophyte Paradendryphiella salina (Sutherland.). Mar Drugs 2020; 18:E379. [PMID: 32708010 PMCID: PMC7460085 DOI: 10.3390/md18080379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Kelps are colonized by a wide range of microbial symbionts. Among them, endophytic fungi remain poorly studied, but recent studies evidenced yet their high diversity and their central role in algal defense against various pathogens. Thus, studying the metabolic expressions of kelp endophytes under different conditions is important to have a better understanding of their impacts on host performance. In this context, fatty acid composition is essential to a given algae fitness and of interest to food web studies either to measure its nutritional quality or to infer about its contribution to consumers diets. In the present study, Paradendryphiella salina, a fungal endophyte was isolated from Saccharina latissima (L.) and Laminaria digitata (Hudson.) and its fatty acid composition was assessed at increasing salinity and temperature conditions. Results showed that fungal composition in terms of fatty acids displayed algal-dependent trajectories in response to temperature increase. This highlights that C18 unsaturated fatty acids are key components in the host-dependant acclimation of P. salina to salinity and temperature changes.
Collapse
Affiliation(s)
- Marine Vallet
- Molécules de Comunications et Adaptation des Microorganismes (MCAM) Muséum National d'Histoire Naturelle, CNRS, 63 Rue Buffon, FR-75005 Paris, France
| | - Tarik Meziane
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, 61 Rue Buffon, FR-75005 Paris, France
| | - Najet Thiney
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, 61 Rue Buffon, FR-75005 Paris, France
| | - Soizic Prado
- Molécules de Comunications et Adaptation des Microorganismes (MCAM) Muséum National d'Histoire Naturelle, CNRS, 63 Rue Buffon, FR-75005 Paris, France
| | - Cédric Hubas
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, IRD, SU, CNRS, UA, UCN, Station Marine de Concarneau, FR-29900 Concarneau, France
| |
Collapse
|
23
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
24
|
Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2017.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
25
|
Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts 2019. [DOI: 10.3390/catal9100873] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In higher plants, the lipoxygenase enzymatic pathway combined actions of several enzymes to convert lipid substrates into signaling and defense molecules called phytooxylipins including short chain volatile aldehydes, alcohols, and esters, known as green leaf volatiles (GLVs). GLVs are synthesized from C18:2 and C18:3 fatty acids that are oxygenated by lipoxygenase (LOX) to form corresponding hydroperoxides, then the action of hydroperoxide lyase (HPL) produces C6 or C9 aldehydes that can undergo isomerization, dehydrogenation, and esterification. GLVs are commonly used as flavors to confer a fresh green odor of vegetable to perfumes, cosmetics, and food products. Given the increasing demand in these natural flavors, biocatalytic processes using the LOX pathway reactions constitute an interesting application. Vegetable oils, chosen for their lipid profile are converted in natural GLVs with high added value. This review describes the enzymatic reactions of GLVs biosynthesis in the plant, as well as the structural and functional properties of the enzymes involved. The various stages of the biocatalytic production processes are approached from the lipid substrate to the corresponding aldehyde or alcoholic aromas, as well as the biotechnological improvements to enhance the production potential of the enzymatic catalysts.
Collapse
|
26
|
Gonzalez Ibarra AA, Wrobel K, Yanez Barrientos E, Corrales Escobosa AR, Gutierrez Corona JF, Enciso Donis I, Wrobel K. Impact of Cr(VI) on the oxidation of polyunsaturated fatty acids in Helianthus annuus roots studied by metabolomic tools. CHEMOSPHERE 2019; 220:442-451. [PMID: 30594795 DOI: 10.1016/j.chemosphere.2018.12.145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 05/28/2023]
Abstract
The impact of Cr(VI) in sunflower roots has been studied, focusing on the oxidation of polyunsaturated fatty acids. Plants were grown hydroponically in the presence of 0, 1.0, 5.0 and 25 mgCr L-1. Methanolic root extracts were analyzed by capillary liquid chromatography coupled through negative electrospray ionization to a quadrupole-time of flight mass spectrometry (capHPLC-ESI-QTOF-MS). Using partial least squares algorithm, eighteen features strongly affected by Cr(VI) were detected and annotated as linoleic acid (LA), alpha-linolenic acid (ALA) and sixteen oxidation products containing hydroperoxy-, epoxy-, keto-, epoxyketo- or hydroxy-functionalities, all of them classified as oxylipins. Inspection of the MS/MS spectra acquired for features eluting at different retention times but assigned as a sole compound, confirmed isomers formation: three hydroperoxy-octadecadienoic acids (HpODE), two oxo-octadecadienoic acids (OxoODE) and four epoxyketo-octadecenoic acids (EKODE). Around 70% of metabolites in sunflower LA metabolic pathway were affected by Cr(VI) stress and additionally, four EKODE isomers not included in this pathway were found in the exposed roots. Among ALA-derived oxylipins, 13-epi-12-oxo-phytodienoic acid (OPDA) is of relevance, because of its participation in the activation of secondary metabolism. The abundances of all oxylipins were directly dependent on the Cr(VI) concentration in medium; furthermore, autooxidation of LA to HpODE isomers was observed after incubation with Cr(VI). These results point to the direct involvement of Cr(VI) in non-enzymatic oxidation of fatty acids; since oxylipins are signaling molecules important in plant defensive response, their synthesis under Cr(VI) exposure sustains the ability of sunflower to grow in Cr(VI)-contaminated environments.
Collapse
Affiliation(s)
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | | | | | | | - Israel Enciso Donis
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
27
|
|
28
|
Chechetkin IR, Blufard AS, Yarin AY, Fedina EO, Khairutdinov BI, Grechkin AN. Detection and identification of complex oxylipins in meadow buttercup (Ranunculus acris) leaves. PHYTOCHEMISTRY 2019; 157:92-102. [PMID: 30390606 DOI: 10.1016/j.phytochem.2018.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/05/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Screening of linolipins, i.e. galactolipids containing esterified residues of divinyl ether oxylipins, in the leaves of several higher plants revealed the presence of these complex oxylipins in the meadow buttercup leaves. The rapid accumulation of linolipins occurred in the injured leaves of meadow buttercup, while intact leaves possessed no linolipins. These oxylipins were isolated from the injured leaves, separated and purified by HPLC. The structural analyses of linolipins by UV, mass-spectroscopy and NMR spectroscopy resulted in the identification of eight molecular species. Three of them were identical to linolipins B-D found earlier in the leaves of flax (Linum usitatissimum L.). Other molecular species were identified as 1-O-(ω5Z)-etherolenoyl-2-O-dinor-(ω5Z)-etherolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-(7Z,10Z,13Z)-hexadecatrienoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-(7Z,10Z)-hexadecadienoyl-3-O-β-D-galactopyranosyl-sn-glycerol, 1-O-(ω5Z)-etherolenoyl-2-O-α-linolenoyl-3-O-β-D-galactopyranosyl-sn-glycerol, and 1-O-(ω5Z)-etherolenoyl-2-O-palmitoyl-3-O-(α-galactopyranosyl-1-6-β-D-galactopyranosyl)-sn-glycerol. The trivial names "linolipins E, F, G, H and I," respectively, have been ascribed to these novel complex oxylipins.
Collapse
Affiliation(s)
- Ivan R Chechetkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia.
| | - Alexander S Blufard
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Andrey Y Yarin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Evgenia O Fedina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Bulat I Khairutdinov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 30, 420111, Kazan, Russia
| |
Collapse
|
29
|
He M, He CQ, Ding NZ. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1771. [PMID: 30581446 PMCID: PMC6292871 DOI: 10.3389/fpls.2018.01771] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, such as low or high temperature, deficient or excessive water, high salinity, heavy metals, and ultraviolet radiation, are hostile to plant growth and development, leading to great crop yield penalty worldwide. It is getting imperative to equip crops with multistress tolerance to relieve the pressure of environmental changes and to meet the demand of population growth, as different abiotic stresses usually arise together in the field. The feasibility is raised as land plants actually have established more generalized defenses against abiotic stresses, including the cuticle outside plants, together with unsaturated fatty acids, reactive species scavengers, molecular chaperones, and compatible solutes inside cells. In stress response, they are orchestrated by a complex regulatory network involving upstream signaling molecules including stress hormones, reactive oxygen species, gasotransmitters, polyamines, phytochromes, and calcium, as well as downstream gene regulation factors, particularly transcription factors. In this review, we aimed at presenting an overview of these defensive systems and the regulatory network, with an eye to their practical potential via genetic engineering and/or exogenous application.
Collapse
Affiliation(s)
| | | | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
30
|
Kumari A, Pandey-Rai S. Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:590-602. [PMID: 30326438 DOI: 10.1016/j.plaphy.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 05/19/2023]
Abstract
This study was designed to investigate the effect of exogenous application of salicylic acid (SA) on proteins pattern and secondary metabolites in arsenic (As) stressed Artemisia annua. A. annua was treated by As 100 μM, SA 100 μM and combined treatment of SA 100 μM + As 100 μM upto 3 days. Significant accumulation of As was observed in roots than shoots at As 100 μM treatment. Under As treatment, oxidative stress was induced as indicated by increased TBARS content. Biomass, carotenoid, flavonoids were enhanced whereas total chlorophyll pigment was reduced under As treatment. Combined treatment of SA 100 μM + As 100 μM was more effective for increment of biomass, total chlorophyll content, and flavonoids as compared to As 100 μM treatment. Protein profiling revealed 20 differentially abundant proteins by 2-DE PAGE and MALDI-TOF-MS analysis. Identified proteins were related to photosynthesis, energy metabolism, transcriptional regulators, secondary metabolism, lipid metabolism, transport proteins and unknown/hypothetical proteins. All identified proteins were significantly increased in abundance under combined treatments of SA 100 μM + As 100 μM. The expression analysis of key genes involved in biosynthesis of lipid metabolism, signal molecule, transcriptional regulators, artemisinin biosynthetic genes, isoprenoids pathway, terpenes and flavonoids pathway were significantly upregulated under combined treatments of SA 100 μM + As 100 μM, suggesting a fine linkage in regulation of primary and secondary metabolism to modulate tolerance capacity and to improve phytoremediation property of A. annua against arsenic toxicity.
Collapse
Affiliation(s)
- Anjana Kumari
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Pandey-Rai
- Laboratory of Morphogenesis, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
31
|
Bernat P, Nykiel-Szymańska J, Gajewska E, Różalska S, Stolarek P, Dackowa J, Słaba M. Trichoderma harzianum diminished oxidative stress caused by 2,4- dichlorophenoxyacetic acid (2,4-D) in wheat, with insights from lipidomics. JOURNAL OF PLANT PHYSIOLOGY 2018; 229:158-163. [PMID: 30096586 DOI: 10.1016/j.jplph.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/26/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is among the most commonly used herbicides applied for weed control during wheat cultivation. However, its application could affect wheat growth. The present study investigates the effect of the ascomycetous fungus Trichoderma harzianum on lipid peroxidation, phospholipids, signaling lipids and phospholipase D in the seedlings of wheat (Triticum aestivum L.) treated with 2,4-D (2.5 mg L-1). In the group of 4-day-old seedlings exposed to the herbicide, increased lipid peroxidation and inhibition of growth were observed in shoots and roots. Moreover, elevated levels of oxylipins were noted. Among them, the amount of 13-HOTrE oxygenated from linolenic acid (18:3) increased the most significantly. Concurrently, in the seedlings inoculated with T. harzianum, growth was stimulated when the level of phosphatidylcholine (PC) increased. Moreover, in wheat seedlings treated with 2,4-D and T. harzianum, the level of lipid peroxidation was similar to that in the control and there was no increase observed in oxylipins and phospholipase D activity. T. harzianum might have partly alleviated the toxic effect of 2,4-D on wheat seedlings.
Collapse
Affiliation(s)
- Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland.
| | - Justyna Nykiel-Szymańska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Ewa Gajewska
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Paulina Stolarek
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Julia Dackowa
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| | - Mirosława Słaba
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland
| |
Collapse
|
32
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Basu P, Kruse CPS, Luesse DR, Wyatt SE. Growth in spaceflight hardware results in alterations to the transcriptome and proteome. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:88-96. [PMID: 29198318 DOI: 10.1016/j.lssr.2017.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 05/21/2023]
Abstract
The Biological Research in Canisters (BRIC) hardware has been used to house many biology experiments on both the Space Transport System (STS, commonly known as the space shuttle) and the International Space Station (ISS). However, microscopic examination of Arabidopsis seedlings by Johnson et al. (2015) indicated the hardware itself may affect cell morphology. The experiment herein was designed to assess the effects of the BRIC-Petri Dish Fixation Units (BRIC-PDFU) hardware on the transcriptome and proteome of Arabidopsis seedlings. To our knowledge, this is the first transcriptomic and proteomic comparison of Arabidopsis seedlings grown with and without hardware. Arabidopsis thaliana wild-type Columbia (Col-0) seeds were sterilized and bulk plated on forty-four 60 mm Petri plates, of which 22 were integrated into the BRIC-PDFU hardware and 22 were maintained in closed containers at Ohio University. Seedlings were grown for approximately 3 days, fixed with RNAlater® and stored at -80 °C prior to RNA and protein extraction, with proteins separated into membrane and soluble fractions prior to analysis. The RNAseq analysis identified 1651 differentially expressed genes; MS/MS analysis identified 598 soluble and 589 membrane proteins differentially abundant both at p < .05. Fold enrichment analysis of gene ontology terms related to differentially expressed transcripts and proteins highlighted a variety of stress responses. Some of these genes and proteins have been previously identified in spaceflight experiments, indicating that these genes and proteins may be perturbed by both conditions.
Collapse
Affiliation(s)
- Proma Basu
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
| | - Colin P S Kruse
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States
| | - Darron R Luesse
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, United States; Interdisciplinary Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
34
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo A. Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem 2017; 229:1-8. [DOI: 10.1016/j.foodchem.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
|
35
|
Savchenko T, Yanykin D, Khorobrykh A, Terentyev V, Klimov V, Dehesh K. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis. PLANTA 2017; 245:1179-1192. [PMID: 28303390 DOI: 10.1007/s00425-017-2674-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
This study describes a new role for hydroperoxide lyase branch of oxylipin biosynthesis pathway in protecting photosynthetic apparatus under high light conditions. Lipid-derived signaling molecules, oxylipins, produced by a multi-branch pathway are central in regulation of a wide range of functions. The two most known branches, allene oxide synthase (AOS) and 13-hydroperoxide lyase (HPL) pathways, are best recognized as producers of defense compounds against biotic challenges. In the present work, we examine the role of these two oxylipin branches in plant tolerance to the abiotic stress, namely excessive light. Towards this goal, we have analyzed variable chlorophyll fluorescence parameters of intact leaves of Arabidopsis thaliana genotypes with altered oxylipin profile, followed by examining the impact of exogenous application of selected oxylipins on functional activity of photosynthetic apparatus in intact leaves and isolated thylakoid membranes. Our findings unequivocally bridge the function of oxylipins to photosynthetic processes. Specifically, HPL overexpressing lines display enhanced adaptability in response to high light treatment as evidenced by lower rate constant of photosystem 2 (PS2) photoinhibition and higher rate constant of PS2 recovery after photoinhibition. In addition, exogenous application of linolenic acid, 13-hydroperoxy linolenic acid, 12-oxophytodienoic acid, and methyl jasmonate individually, suppresses photochemical activity of PS2 in intact plants and isolated thylakoid membranes, while application of HPL-branch metabolites-does not. Collectively these data implicate function of HPL branch of oxylipin biosynthesis pathway in guarding PS2 under high light conditions, potentially exerted through tight regulation of free linolenic acid and 13-hydroperoxy linolenic acid levels, as well as competition with production of metabolites by AOS-branch of the oxylipin pathway.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia.
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia.
| | - Denis Yanykin
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
- All-Russian Research Institute of Phytopathology, Institute st., 5, Odintsovo District, B. Vyazyomy, 143050, Moscow Region, Russia
| | - Andrew Khorobrykh
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vasily Terentyev
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Vyacheslav Klimov
- Institute of Basic Biological Problems, RAS, Institutskaya st., 2, Pushchino, 142290, Moscow Region, Russia
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
36
|
Carrasco-Del Amor AM, Aguayo E, Collado-González J, Guy A, Galano JM, Durand T, Gil-Izquierdo Á. Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radic Res 2017; 51:141-147. [DOI: 10.1080/10715762.2017.1288909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana María Carrasco-Del Amor
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Alexandre Guy
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
37
|
Arnold MD, Gruber C, Floková K, Miersch O, Strnad M, Novák O, Wasternack C, Hause B. The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana. PLoS One 2016; 11:e0162829. [PMID: 27611078 PMCID: PMC5017875 DOI: 10.1371/journal.pone.0162829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/29/2016] [Indexed: 11/28/2022] Open
Abstract
Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile.
Collapse
Affiliation(s)
- Monika D. Arnold
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Cornelia Gruber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Kristýna Floková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Otto Miersch
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
| | - Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, Czech Republic
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
38
|
Comparative shotgun proteomic analysis of wild and domesticated Opuntia spp. species shows a metabolic adaptation through domestication. J Proteomics 2016; 143:353-364. [PMID: 27072113 DOI: 10.1016/j.jprot.2016.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023]
Abstract
UNLABELLED The Opuntia genus is widely distributed in America, but the highest richness of wild species are found in Mexico, as well as the most domesticated Opuntia ficus-indica, which is the most domesticated species and an important crop in agricultural economies of arid and semiarid areas worldwide. During domestication process, the Opuntia morphological characteristics were favored, such as less and smaller spines in cladodes and less seeds in fruits, but changes at molecular level are almost unknown. To obtain more insights about the Opuntia molecular changes through domestication, a shotgun proteomic analysis and database-dependent searches by homology was carried out. >1000 protein species were identified and by using a label-free quantitation method, the Opuntia proteomes were compared in order to identify differentially accumulated proteins among wild and domesticated species. Most of the changes were observed in glucose, secondary, and 1C metabolism, which correlate with the observed protein, fiber and phenolic compounds accumulation in Opuntia cladodes. Regulatory proteins, ribosomal proteins, and proteins related with response to stress were also observed in differential accumulation. These results provide new valuable data that will help to the understanding of the molecular changes of Opuntia species through domestication. BIOLOGICAL SIGNIFICANCE Opuntia species are well adapted to dry and warm conditions in arid and semiarid regions worldwide, and they are highly productive plants showing considerable promises as an alternative food source. However, there is a gap regarding Opuntia molecular mechanisms that enable them to grow in extreme environmental conditions and how the domestication processes has changed them. In the present study, a shotgun analysis was carried out to characterize the proteomes of five Opuntia species selected by its domestication degree. Our results will help to a better understanding of proteomic features underlying the selection and specialization under evolution and domestication of Opuntia and will provide a platform for basic biology research and gene discovery.
Collapse
|
39
|
Synthesis of Oxylipin Mimics and Their Antifungal Activity against the Citrus Postharvest Pathogens. Molecules 2016; 21:254. [PMID: 26907241 PMCID: PMC6273781 DOI: 10.3390/molecules21020254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Nine oxylipin mimics were designed and synthesized starting from d-mannose. Their antifungal activity against three citrus postharvest pathogens was evaluated by spore germination assay. The results indicated that all the compounds significantly inhibited the growth of Penicillium digitatum, Penicillium italicum and Aspergillus niger. The compound (3Z,6Z,8S,9R,10R)-octadeca-3,6-diene-8,9,10-triol (3) exhibited excellent inhibitory effect on both Penicillium digitatum (IC50 = 34 ppm) and Penicillium italicum (IC50 = 94 ppm). Their in vivo antifungal activities against citrus postharvest blue mold were tested with fruit inoculated with the pathogen Penicillium italicum. The compound (3R,4S)-methyl 3,4-dihydroxy-5-octyltetrahydrofuran-2-carboxylate (9) demonstrated significant efficacy by reducing the disease severity to 60%. The antifungal mechanism of these oxylipin mimics was postulated in which both inhibition of pathogenic mycelium and stimuli of the host oxylipin-mediated defense response played important roles.
Collapse
|
40
|
Barbosa M, Valentão P, Andrade PB. Biologically Active Oxylipins from Enzymatic and Nonenzymatic Routes in Macroalgae. Mar Drugs 2016; 14:23. [PMID: 26805855 PMCID: PMC4728519 DOI: 10.3390/md14010023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine algae are rich and heterogeneous sources of great chemical diversity, among which oxylipins are a well-recognized class of natural products. Algal oxylipins comprise an assortment of oxygenated, halogenated, and unsaturated functional groups and also several carbocycles, varying in ring size and position in lipid chain. Besides the discovery of structurally diverse oxylipins in macroalgae, research has recently deciphered the role of some of these metabolites in the defense and innate immunity of photosynthetic marine organisms. This review is an attempt to comprehensively cover the available literature on the chemistry, biosynthesis, ecology, and potential bioactivity of oxylipins from marine macroalgae. For a better understanding, enzymatic and nonenzymatic routes were separated; however, both processes often occur concomitantly and may influence each other, even producing structurally related molecules.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira No. 228, Porto 4050-313, Portugal.
| |
Collapse
|
41
|
Marhuenda J, Medina S, Díaz-Castro A, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F, Gil-Izquierdo A. Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9022-9028. [PMID: 26422255 DOI: 10.1021/acs.jafc.5b03365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wine is one of the most consumed alcoholic beverages around the world. Red wine has demonstrated several benefits for health maintenance. One group of potential anti-inflammatory compounds is the phytoprostanes, oxidative degradation products of linolenic acid. The aim of the present study was to measure, for the first time, the phytoprostane content in wine and must by an UHPLC-QqQ-MS/MS method after solid-phase extraction. The data showed two predominant classes of phytoprostanes: F1- and D1-phytoprostane series. In wines, the total phytoprostane concentration ranged from 134.1 ± 2.3 to 216.2 ± 3.06 ng/mL. Musts showed concentrations between 21.4 ± 0.8 and 447.1 ± 15.8 ng/mL. The vinification and aging procedures for the production of wine seem to influence the final phytoprostane levels in red wine and to modify the phytoprostane profile. The high concentrations observed and previous reports on anti-inflammatory effects of phytoprostanes make further research on the benefits of phytoprostanes more important.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Alexandra Díaz-Castro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | | | - Simón Arina
- Bodegas Baigorri S.L., Samaniego, Paı́s Vasco, Spain
| | - Pilar Zafrilla
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Juana Mulero
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| |
Collapse
|
42
|
Barbosa M, Collado-González J, Andrade PB, Ferreres F, Valentão P, Galano JM, Durand T, Gil-Izquierdo Á. Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6466-74. [PMID: 26125601 DOI: 10.1021/acs.jafc.5b01904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoprostanes, autoxidation products of α-linolenic acid, have been studied in several plant species, but information regarding the natural occurrence of this large family of biologically active oxidized lipids in macroalgae is still scarce. In this work, the free phytoprostane composition of 24 macroalgae species belonging to Chlorophyta, Phaeophyta, and Rhodophyta was determined through a recently validated UHPLC-QqQ-MS/MS method. The phytoprostane profiles varied greatly among all samples, F1t-phytoprostanes and L1-phytoprostanes being the predominant and minor classes, respectively. No correlation between the amounts of α-linolenic acid in alga material and phytoprostane content was found. Therefore, it was hypothesized that the observed variability could be species-specific or result from interspecific interactions. This study provides new insight about the occurrence of phytoprostanes in macroalgae and opens doors for future exploitation of these marine photosynthetic organisms as sources of potentially bioactive oxylipins, encouraging their incorporation in food products and nutraceutical and pharmaceutical preparations for human health.
Collapse
Affiliation(s)
- Mariana Barbosa
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jacinta Collado-González
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Paula B Andrade
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Patrícia Valentão
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jean-Marie Galano
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Ángel Gil-Izquierdo
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| |
Collapse
|
43
|
Zemanová V, Pavlík M, Kyjaková P, Pavlíková D. Fatty acid profiles of ecotypes of hyperaccumulator Noccaea caerulescens growing under cadmium stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 180:27-34. [PMID: 25886397 DOI: 10.1016/j.jplph.2015.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 05/29/2023]
Abstract
Changes in the fatty acid (FAs) composition in response to the extent of Cd contamination of soils (0, 30, 60 and 90 mg Cd kg(-1)) differed between ecotypes of Noccaea caerulescens originating from France - Ganges, Slovenia - Mežica and Austria - Redlschlag. Mežica ecotype accumulated more Cd in aboveground biomass compared to Ganges and Redlschlag ecotypes. Hyperaccumulators contained saturated fatty acids (SFAs) rarely occurring in plants, as are cerotic (26:0), montanic (28:0), melissic (30:0) acids, and unusual unsaturated fatty acids (USFAs), as are 16:2, 16:3, 20:2 and 20:3. Typical USFAs occurring in the family Brassicaceae, such as erucic, oleic and arachidonic acids, were missing in tested plants. Our results clearly indicate a relationship between Cd accumulation and the FAs composition. The content of SFAs decreased and the content of USFAs increased in aboveground biomass of Ganges and Mežica ecotypes with increasing Cd concentration. Opposite trend of FAs content was determined in Redlschlag ecotype. Linoleic (18:2n-6), α-linolenic (18:3n-3) and palmitic (16:0) acids were found in all ecotypes. The results observed in N. caerulescens ecotypes, showed that mainly Mežica ecotype has an efficient defense strategies which can be related on changes in FAs composition, mainly in VLCFAs synthesis. The most significant effect of ecotype on FAs composition was confirmed using multivariate analysis of variance.
Collapse
Affiliation(s)
- Veronika Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Milan Pavlík
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Pavlína Kyjaková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 16610 Prague, Czech Republic
| | - Daniela Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic.
| |
Collapse
|