1
|
RAI14 Promotes Melanoma Progression by Regulating the FBXO32/c-MYC Pathway. Int J Mol Sci 2022; 23:ijms231912036. [PMID: 36233342 PMCID: PMC9569902 DOI: 10.3390/ijms231912036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma originates from the malignant transformation of melanocytes. Compared with other skin cancers, melanoma has a higher fatality rate. The 5-year survival rate of patients with early-stage primary melanoma through surgical resection can reach more than 90%. However, the 5-year survival rate of patients with metastatic melanoma is only 25%. Therefore, accurate assessment of melanoma progression is critical. Previous studies have found that Retinoic Acid Induced 14(RAI14) is critical in tumorigenesis. However, the biological function of RAI14 for the development of melanoma is unclear. In this study, RAI14 is highly expressed in melanoma and correlated with prognosis. The expression of RAI14 can affect the proliferation, migration and invasion of melanoma cells. F-Box Protein 32(FBXO32) is an E3 ubiquitin ligase of c-MYC. We found that RAI14 affects the transcriptional expression of FBXO32 and regulates the stability of c-MYC. These results suggest that RAI14 play an important role in the growth of melanoma and is expected to be a therapeutic target for melanoma.
Collapse
|
2
|
Qazi S, Jit BP, Das A, Karthikeyan M, Saxena A, Ray M, Singh AR, Raza K, Jayaram B, Sharma A. BESFA: bioinformatics based evolutionary, structural & functional analysis of prostrate, Placenta, Ovary, Testis, and Embryo (POTE) paralogs. Heliyon 2022; 8:e10476. [PMID: 36132183 PMCID: PMC9483601 DOI: 10.1016/j.heliyon.2022.e10476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The POTE family comprises 14 paralogues and is primarily expressed in Prostrate, Placenta, Ovary, Testis, Embryo (POTE), and cancerous cells. The prospective function of the POTE protein family under physiological conditions is less understood. We systematically analyzed their cellular localization and molecular docking analysis to elucidate POTE proteins' structure, function, and Adaptive Divergence. Our results suggest that group three POTE paralogs (POTEE, POTEF, POTEI, POTEJ, and POTEKP (a pseudogene)) exhibits significant variation among other members could be because of their Adaptive Divergence. Furthermore, our molecular docking studies on POTE protein revealed the highest binding affinity with NCI-approved anticancer compounds. Additionally, POTEE, POTEF, POTEI, and POTEJ were subject to an explicit molecular dynamic simulation for 50ns. MM-GBSA and other essential electrostatics were calculated that showcased that only POTEE and POTEF have absolute binding affinities with minimum energy exploitation. Thus, this study’s outcomes are expected to drive cancer research to successful utilization of POTE genes family as a new biomarker, which could pave the way for the discovery of new therapies.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Abhishek Das
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Muthukumarasamy Karthikeyan
- National Chemical Laboratory, Council of Scientific and Industrial Research (NCL-CSIR), Pune, Maharashtra, India
| | - Amit Saxena
- Centre for Development of Advanced Computing, Pune, Maharashtra, India
| | - M.D. Ray
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Angel Rajan Singh
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - B. Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Corresponding author.
| |
Collapse
|
3
|
Decroës A, Li JM, Richardson L, Mutasa-Gottgens E, Lima-Mendez G, Mahillon M, Bragard C, Finn RD, Legrève A. Metagenomics approach for Polymyxa betae genome assembly enables comparative analysis towards deciphering the intracellular parasitic lifestyle of the plasmodiophorids. Genomics 2021; 114:9-22. [PMID: 34798282 DOI: 10.1016/j.ygeno.2021.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022]
Abstract
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.
Collapse
Affiliation(s)
- Alain Decroës
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, 315211 Ningbo, China
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Euphemia Mutasa-Gottgens
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK; University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Mathieu Mahillon
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anne Legrève
- Phytopathology-Applied Microbiology, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
4
|
Erban T, Klimov PB, Harant K, Talacko P, Nesvorna M, Hubert J. Label-free proteomic analysis reveals differentially expressed Wolbachia proteins in Tyrophagus putrescentiae: Mite allergens and markers reflecting population-related proteome differences. J Proteomics 2021; 249:104356. [PMID: 34438106 DOI: 10.1016/j.jprot.2021.104356] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022]
Abstract
Tyrophagus putrescentiae is an astigmatid mite of great economic, medical and veterinary importance. The microbiome, especially intracellular bacteria, may affect allergy/allergen expression. We targeted Wolbachia proteins, allergen comparisons and markers in Wolbachia-mite interactions in three mite populations. A decoy database was constructed by proteogenomics using the T. putrescentiae draft genome, Wolbachia transcriptome assembly and current T. putrescentiae-related sequences in GenBank. Among thousands of mite-derived proteins, 18 Wolbachia proteins were reliably identified. We suggest that peroxiredoxin, bacterioferritin, ankyrin repeat domain-containing protein and DegQ family serine endoprotease indicate a higher-level bacterium-bacterium-host interaction. We produced evidence that the host-Wolbachia interaction is modulated through pattern recognition receptors (PRRs), mannose-binding lectins/mannose receptors, the cholinergic anti-inflammatory pathway with TNF-α, and others. We observed Tyr p 3 suppression in mites with Wolbachia, linking trypsin to PRR modulation. Nine out of the 12 current WHO/IUIS official allergens were reliably identified, but the remaining three allergens, Tyr p 1, 8 and 35, were detected as only trace hits. This study provides numerous markers for further Wolbachia-host interaction research. For accuracy, mite allergens should be considered according to abundance in species, but mite populations/strains, as well as their microbiome structure, may be key factors. SIGNIFICANCE: The astigmatid mites occurring in homes are significant producers of allergens that are highly dangerous to humans and domesticated animals. Mites are tightly associated with microorganisms that affect their biology and consequently allergy signatures. Mite populations were found to be infected with certain intracellular bacteria, but some populations lacked an intracellular bacterium. Our previous research showed that some populations of Tyrophagus putrescentiae are infected with Wolbachia, but some populations host additional bacteria of interest. Thus, there are not only interactions between the mites and Wolbachia but also likely an additional level of interaction that can be found in the interaction between different bacteria in the mites. These "higher-level" signatures and consequences that bacteria affect, including allergen production, are not understood in mites. In this study, we identified Wolbachia-specific proteins in mites for the first time. This study provides Wolbachia- and mite-derived markers that can be clues for describing "higher-level" mite-bacterium-bacterium interactions. Indeed, the microbiome contribution to allergies can potentially be derived directly from bacterial proteins, especially if they are abundant.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-16106, Czechia.
| | - Pavel B Klimov
- School of Natural Sciences, Bangor University, Bangor LL57 2 UW, UK; Institute of Biology, University of Tyumen, Pirogova 3, 625043 Tyumen, Russia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, Prague 2 CZ-128 01, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-16106, Czechia
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne CZ-16106, Czechia
| |
Collapse
|
5
|
Ghashghaeinia M, Mrowietz U. Human erythrocytes, nuclear factor kappaB (NFκB) and hydrogen sulfide (H 2S) - from non-genomic to genomic research. Cell Cycle 2021; 20:2091-2101. [PMID: 34559024 PMCID: PMC8565816 DOI: 10.1080/15384101.2021.1972557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Enucleated mature human erythrocytes possess NFĸBs and their upstream kinases. There is a negative correlation between eryptosis (cell death of erythrocytes) and the amount of NFĸB subunits p50 and Rel A (p65). This finding is based on the fact that young erythrocytes have the highest levels of NFĸBs and the lowest eryptosis rate, while in old erythrocytes the opposite ratio prevails. Human erythrocytes (hRBCs) effectively control the homeostasis of the cell membrane permeable anti-inflammatory signal molecule hydrogen sulfide (H2S). They endogenously produce H2S via both non-enzymic (glutathione-dependent) and enzymic processes (mercaptopyruvate sulfur transferase-dependent). They uptake H2S from diverse tissues and very effectively degrade H2S via methemoglobin (Hb-Fe3+)-catalyzed oxidation. Interestingly, a reciprocal correlation exists between the intensity of inflammatory diseases and endogenous levels of H2S. H2S deficiency has been observed in patients with diabetes, psoriasis, obesity, and chronic kidney disease (CKD). Furthermore, endogenous H2S deficiency results in impaired renal erythropoietin (EPO) production and EPO-dependent erythropoiesis. In general we can say: dynamic reciprocal interaction between tumor suppressor and oncoproteins, orchestrated and sequential activation of pro-inflammatory NFĸB heterodimers (RelA-p50) and the anti-inflammatory NFĸB-p50 homodimers for optimal inflammation response, appropriate generation, subsequent degradation of H2S etc., are prerequisites for a functioning cell and organism. Diseases arise when the fragile balance between different signaling pathways that keep each other in check is permanently disturbed. This work deals with the intact anti-inflammatory hRBCs and their role as guarantors to maintain the redox status in the physiological range, a basis for general health and well-being.
Collapse
Affiliation(s)
- Mehrdad Ghashghaeinia
- Physiological Institute I, Department of Vegetative and Clinical Physiology, University of Tübingen, Tübingen, Germany
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrich Mrowietz
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
6
|
Gazengel K, Aigu Y, Lariagon C, Humeau M, Gravot A, Manzanares-Dauleux MJ, Daval S. Nitrogen Supply and Host-Plant Genotype Modulate the Transcriptomic Profile of Plasmodiophora brassicae. Front Microbiol 2021; 12:701067. [PMID: 34305867 PMCID: PMC8298192 DOI: 10.3389/fmicb.2021.701067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université Rennes 1, Le Rheu, France
| |
Collapse
|
7
|
Zhao JY, Lu ZW, Sun Y, Fang ZW, Chen J, Zhou YB, Chen M, Ma YZ, Xu ZS, Min DH. The Ankyrin-Repeat Gene GmANK114 Confers Drought and Salt Tolerance in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2020; 11:584167. [PMID: 33193533 PMCID: PMC7658197 DOI: 10.3389/fpls.2020.584167] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/06/2020] [Indexed: 05/20/2023]
Abstract
Ankyrin repeat (ANK) proteins are essential in cell growth, development, and response to hormones and environmental stresses. In the present study, 226 ANK genes were identified and classified into nine subfamilies according to conserved domains in the soybean genome (Glycine max L.). Among them, the GmANK114 was highly induced by drought, salt, and abscisic acid. The GmANK114 encodes a protein that belongs to the ANK-RF subfamily containing a RING finger (RF) domain in addition to the ankyrin repeats. Heterologous overexpression of GmANK114 in transgenic Arabidopsis improved the germination rate under drought and salt treatments compared to wild-type. Homologous overexpression of GmANK114 improved the survival rate under drought and salt stresses in transgenic soybean hairy roots. In response to drought or salt stress, GmANK114 overexpression in soybean hairy root showed higher proline and lower malondialdehyde contents, and lower H2O2 and O2- contents compared control plants. Besides, GmANK114 activated transcription of several abiotic stress-related genes, including WRKY13, NAC11, DREB2, MYB84, and bZIP44 under drought and salt stresses in soybean. These results provide new insights for functional analysis of soybean ANK proteins and will be helpful for further understanding how ANK proteins in plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Juan-Ying Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhi-Wei Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yue Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Zheng-Wu Fang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| |
Collapse
|
8
|
Camargo de Lima J, Floriani MA, Debarba JA, Paludo GP, Monteiro KM, Moura H, Barr JR, Zaha A, Ferreira HB. Dynamics of protein synthesis in the initial steps of strobilation in the model cestode parasite Mesocestoides corti (syn. vogae). J Proteomics 2020; 228:103939. [PMID: 32798775 PMCID: PMC10491476 DOI: 10.1016/j.jprot.2020.103939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/24/2023]
Abstract
Mesocestoides corti (syn. vogae) is a useful model for developmental studies of platyhelminth parasites of the Cestoda class, such as Taenia spp. or Echinococcus spp. It has been used in studies to characterize cestode strobilation, i.e. the development of larvae into adult worms. So far, little is known about the initial molecular events involved in cestode strobilation and, therefore, we carried out a study to characterize newly synthesized (NS) proteins upon strobilation induction. An approach based on bioorthogonal noncanonical amino acid tagging and mass spectrometry was used to label, isolate, identify, and quantify NS proteins in the initial steps of M. corti strobilation. Overall, 121 NS proteins were detected exclusively after induction of strobilation, including proteins related to development pathways, such as insulin and notch signaling. Metabolic changes that take place in the transition from the larval stage to adult worm were noted in special NS protein subsets related to developmental processes, such as focal adhesion, cell leading edge, and maintenance of location. The data shed light on mechanisms underlying early steps of cestode strobilation and enabled identification of possible developmental markers. We also consider the use of developmental responsive proteins as potential drug targets for developing novel anthelmintics. BIOLOGICAL SIGNIFICANCE: Larval cestodiases are life-threatening parasitic diseases that affect both man and domestic animals worldwide. Cestode parasites present complex life cycles, in which they undergo major morphological and physiological changes in the transition from one life-stage to the next. One of these transitions occurs during cestode strobilation, when the mostly undifferentiated and non-segmented larval or pre-adult form develops into a fully segmented and sexually differentiated (strobilated) adult worm. Although the proteomes of bona fide larvae and strobialted adults have been previously characterized for a few cestode species, little is still known about the dynamic of protein synthesis during the early steps of cestode strobilation. Now, the assessment of newly synthesized (NS) proteins within the first 48 h of strobilation the model cestode M. corti allowed to shed light on molecular mechanisms that are triggered by strobilation induction. The functional analyses of this repertoire of over a hundred NS proteins pointed out to changes in metabolism and activation of classical developmental signaling pathways in early strobilation. Many of the identified NS proteins may become valuable cestode developmental markers and their involvement in vital processes make them also good candidate targets for novel anthelmintic drugs.
Collapse
Affiliation(s)
- Jeferson Camargo de Lima
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Maiara Anschau Floriani
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - João Antônio Debarba
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Gabriela Prado Paludo
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil
| | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Molecular e Celular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Yang Q, Liu H, Li Z, Wang Y, Liu W. Purification and mutagenesis studies of TANC1 ankyrin repeats domain provide clues to understand mis-sense variants from diseases. Biochem Biophys Res Commun 2019; 514:358-364. [PMID: 31040020 DOI: 10.1016/j.bbrc.2019.04.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/26/2022]
Abstract
TANC1 and its close relative TANC2 are two important synaptic scaffold proteins which play critical roles in regulating densities of synaptic spines and excitatory synapse strength. Recent studies indicated TANC1 and TANC2 are candidate genes of several neurodevelopmental disorders (NDD). So far, the biochemical properties of TANC1/2 proteins remain largely unknown. In this study, Ankyrin-repeats (AR) domain of TANC1 was expressed and purified using Escherichia coli. (E. coli.) cells, which showed low solubility and stability after removing the maltose binding protein (MBP) tag. Sequence analysis revealed that the TANC1 AR domain is lack of canonical N, C-capping units. By introducing two point mutations in the C-capping unit and replacing the N-capping unit, monomeric and well-folded TANC1 AR domain was purified and characterized by size exclusion chromatography coupled with multi-angle static light scattering (SEC-MALS) and circular dichroism spectroscopy (CD). In addition, mutations from intellectual disability (ID) patients and cancer patients were imported into the TANC1 AR domain. The ID mutant exhibited marginal effects in terms of conformation and protein folding stability changes. By contrast, the cancer mutants dramatically decreased protein solubility. Combined with structural prediction, we speculated that mis-sense variants tested in this study may either affect protein folding or disrupt the interaction between TANC1/2 AR domains and their binding partners.
Collapse
Affiliation(s)
- Qingqing Yang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Haiyang Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwei Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong province, China.
| |
Collapse
|
10
|
Dhaygude K, Nair A, Johansson H, Wurm Y, Sundström L. The first draft genomes of the ant Formica exsecta, and its Wolbachia endosymbiont reveal extensive gene transfer from endosymbiont to host. BMC Genomics 2019; 20:301. [PMID: 30991952 PMCID: PMC6469114 DOI: 10.1186/s12864-019-5665-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/02/2019] [Indexed: 02/05/2023] Open
Abstract
Background Adapting to changes in the environment is the foundation of species survival, and is usually thought to be a gradual process. However, transposable elements (TEs), epigenetic modifications, and/or genetic material acquired from other organisms by means of horizontal gene transfer (HGTs), can also lead to novel adaptive traits. Social insects form dense societies, which attract and maintain extra- and intracellular accessory inhabitants, which may facilitate gene transfer between species. The wood ant Formica exsecta (Formicidae; Hymenoptera), is a common ant species throughout the Palearctic region. The species is a well-established model for studies of ecological characteristics and evolutionary conflict. Results In this study, we sequenced and assembled draft genomes for F. exsecta and its endosymbiont Wolbachia. The F. exsecta draft genome is 277.7 Mb long; we identify 13,767 protein coding genes, for which we provide gene ontology and protein domain annotations. This is also the first report of a Wolbachia genome from ants, and provides insights into the phylogenetic position of this endosymbiont. We also identified multiple horizontal gene transfer events (HGTs) from Wolbachia to F. exsecta. Some of these HGTs have also occurred in parallel in multiple other insect genomes, highlighting the extent of HGTs in eukaryotes. Conclusion We present the first draft genome of ant F. exsecta, and its endosymbiont Wolbachia (wFex), and show considerable rates of gene transfer from the symbiont to the host. We expect that especially the F. exsecta genome will be valuable resource in further exploration of the molecular basis of the evolution of social organization. Electronic supplementary material The online version of this article (10.1186/s12864-019-5665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.
| | - Abhilash Nair
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Helena Johansson
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Yannick Wurm
- Organismal Biology Department, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and environmental sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland.,Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900, Hanko, Finland
| |
Collapse
|
11
|
Smith AR, Smith RG, Pishva E, Hannon E, Roubroeks JAY, Burrage J, Troakes C, Al-Sarraj S, Sloan C, Mill J, van den Hove DL, Lunnon K. Parallel profiling of DNA methylation and hydroxymethylation highlights neuropathology-associated epigenetic variation in Alzheimer's disease. Clin Epigenetics 2019; 11:52. [PMID: 30898171 PMCID: PMC6429761 DOI: 10.1186/s13148-019-0636-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a progressive neurodegenerative disorder that is hypothesized to involve epigenetic dysfunction. Previous studies of DNA modifications in Alzheimer's disease have been unable to distinguish between DNA methylation and DNA hydroxymethylation. DNA hydroxymethylation has been shown to be enriched in the human brain, although its role in Alzheimer's disease has not yet been fully explored. Here, we utilize oxidative bisulfite conversion, in conjunction with the Illumina Infinium Human Methylation 450K microarray, to identify neuropathology-associated differential DNA methylation and DNA hydroxymethylation in the entorhinal cortex. RESULTS We identified one experiment-wide significant differentially methylated position residing in the WNT5B gene. Next, we investigated pathology-associated regions consisting of multiple adjacent loci. We identified one significant differentially hydroxymethylated region consisting of four probes spanning 104 bases in the FBXL16 gene. We also identified two significant differentially methylated regions: one consisting of two probes in a 93 base-pair region in the ANK1 gene and the other consisting of six probes in a 99-base pair region in the ARID5B gene. We also highlighted three regions that show alterations in unmodified cytosine: two probes in a 39-base pair region of ALLC, two probes in a 69-base pair region in JAG2, and the same six probes in ARID5B that were differentially methylated. Finally, we replicated significant ANK1 disease-associated hypermethylation and hypohydroxymethylation patterns across eight CpG sites in an extended 118-base pair region in an independent cohort using oxidative-bisulfite pyrosequencing. CONCLUSIONS Our study represents the first epigenome-wide association study of both DNA methylation and hydroxymethylation in Alzheimer's disease entorhinal cortex. We demonstrate that previous estimates of DNA hypermethylation in ANK1 in Alzheimer's disease were underestimates as it is confounded by hypohydroxymethylation.
Collapse
Affiliation(s)
- Adam R Smith
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Rebecca G Smith
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Ehsan Pishva
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Eilis Hannon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Janou A Y Roubroeks
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Joe Burrage
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Claire Troakes
- Institute of Psychiatry, King's College London, London, UK
| | - Safa Al-Sarraj
- Institute of Psychiatry, King's College London, London, UK
| | - Carolyn Sloan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan Mill
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Laboratory of Translational Neuroscience, Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Katie Lunnon
- College of Medicine and Health, University of Exeter Medical School, Exeter University, RILD Building Level 4, Royal Devon and Exeter Hospital, Barrack Rd, Exeter, EX2 5DW, UK.
| |
Collapse
|
12
|
Zeng Z, Wu J, Kovalchuk A, Raffaello T, Wen Z, Liu M, Asiegbu FO. Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen Heterobasidion parviporum. Epigenetics 2019; 14:16-40. [PMID: 30633603 PMCID: PMC6380393 DOI: 10.1080/15592294.2018.1564426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Heterobasidion parviporum is the most devastating fungal pathogen of conifer forests in Northern Europe. The fungus has dual life strategies, necrotrophy on living trees and saprotrophy on dead woods. DNA cytosine methylation is an important epigenetic modification in eukaryotic organisms. Our presumption is that the lifestyle transition and asexual development in H. parviporum could be driven by epigenetic effects. Involvements of DNA methylation in the regulation of aforementioned processes have never been studied thus far. RNA-seq identified lists of highly induced genes enriched in carbohydrate-active enzymes during necrotrophic interaction with host trees and saprotrophic sawdust growth. It also highlighted signaling- and transcription factor-related genes potentially associated with the transition of saprotrophic to necrotrophic lifestyle and groups of primary cellular activities throughout asexual development. Whole-genome bisulfite sequencing revealed that DNA methylation displayed pronounced preference in CpG dinucleotide context across the genome and mostly targeted transposable element (TE)-rich regions. TE methylation level demonstrated a strong negative correlation with TE expression, reinforcing the protective function of DNA methylation in fungal genome stability. Small groups of genes putatively subject to methylation transcriptional regulation in response to saprotrophic and necrotrophic growth in comparison with free-living mycelia were also explored. Our study reported on the first methylome map of a forest pathogen. Analysis of transcriptome and methylome variations associated with asexual development and different lifestyle strategies provided further understanding of basic biological processes in H. parviporum. More importantly, our work raised additional potential roles of DNA methylation in fungi apart from controlling the proliferation of TEs.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jiayao Wu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Andriy Kovalchuk
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Tommaso Raffaello
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Zilan Wen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Mengxia Liu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Cortés AJ, Blair MW. Genotyping by Sequencing and Genome-Environment Associations in Wild Common Bean Predict Widespread Divergent Adaptation to Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:128. [PMID: 29515597 PMCID: PMC5826387 DOI: 10.3389/fpls.2018.00128] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/23/2018] [Indexed: 05/18/2023]
Abstract
Drought will reduce global crop production by >10% in 2050 substantially worsening global malnutrition. Breeding for resistance to drought will require accessing crop genetic diversity found in the wild accessions from the driest high stress ecosystems. Genome-environment associations (GEA) in crop wild relatives reveal natural adaptation, and therefore can be used to identify adaptive variation. We explored this approach in the food crop Phaseolus vulgaris L., characterizing 86 geo-referenced wild accessions using genotyping by sequencing (GBS) to discover single nucleotide polymorphisms (SNPs). The wild beans represented Mesoamerica, Guatemala, Colombia, Ecuador/Northern Peru and Andean groupings. We found high polymorphism with a total of 22,845 SNPs across the 86 accessions that confirmed genetic relationships for the groups. As a second objective, we quantified allelic associations with a bioclimatic-based drought index using 10 different statistical models that accounted for population structure. Based on the optimum model, 115 SNPs in 90 regions, widespread in all 11 common bean chromosomes, were associated with the bioclimatic-based drought index. A gene coding for an ankyrin repeat-containing protein and a phototropic-responsive NPH3 gene were identified as potential candidates. Genomic windows of 1 Mb containing associated SNPs had more positive Tajima's D scores than windows without associated markers. This indicates that adaptation to drought, as estimated by bioclimatic variables, has been under natural divergent selection, suggesting that drought tolerance may be favorable under dry conditions but harmful in humid conditions. Our work exemplifies that genomic signatures of adaptation are useful for germplasm characterization, potentially enhancing future marker-assisted selection and crop improvement.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Matthew W. Blair
- Department of Agricultural and Environmental Science, Tennessee State University, Nashville, TN, United States
| |
Collapse
|
14
|
Kang SW, Patnaik BB, Park SY, Hwang HJ, Chung JM, Sang MK, Min HR, Park JE, Seong J, Jo YH, Noh MY, Lee JD, Jung KY, Park HS, Han YS, Lee JS, Lee YS. Transcriptome analysis of the threatened snail Ellobium chinense reveals candidate genes for adaptation and identifies SSRs for conservation genetics. Genes Genomics 2017; 40:333-347. [PMID: 29892840 DOI: 10.1007/s13258-017-0620-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Ellobium chinense (Pfeiffer, 1854) is a brackish pulmonate species that inhabits the bases of mangrove trees and is most commonly found in salt grass meadows. Threats to mangrove ecosystems due to habitat degradation and overexploitation have threatened the species with extinction. In South Korea, E. chinense has been assessed as vulnerable, but there are limited data on its population structure and distribution. The nucleotide and protein sequences for this species are not available in databases, which limits the understanding of adaptation-related traits. We sequenced an E. chinense cDNA library using the Illumina platform, and the subsequent bioinformatics analysis yielded 227,032 unigenes. Of these unigenes, 69,088 were annotated to matched protein and nucleotide sequences in databases, for an annotation rate of 30.42%. Among the predominant gene ontology terms, cellular and metabolic processes (under the biological process category), membrane and cell (under the cellular component category), and binding and catalytic activity (under the molecular function category) were noteworthy. In addition, 4850 unigenes were distributed to 15 Kyoto Encyclopaedia of Genes and Genomes based enrichment categories. Among the candidate genes related to adaptation, angiotensin I converting enzyme, adenylate cyclase activating polypeptide, and AMP-activated protein kinase were the most prominent. A total of 15,952 simple sequence repeats (SSRs) were identified in sequences of > 1 kb in length. The di- and trinucleotide repeat motifs were the most common. Among the repeat motif types, AG/CT, AC/GT, and AAC/GTT dominated. Our study provides the first comprehensive genomics dataset for E. chinense, which favors conservation programs for the restoration of the species and provides sufficient evidence for genetic variability among the wild populations.
Collapse
Affiliation(s)
- Se Won Kang
- Biological Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - Bharat Bhusan Patnaik
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Climate Change Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Jiyeon Seong
- Genomic Informatics Center, Hankyong National University, 327 Chungang-ro, Anseong-si, Kyonggi-do, 17579, South Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Mi Young Noh
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jong Dae Lee
- Department of Environmental Health Science, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Ki Yoon Jung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, South Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly (IEFA), College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 243341, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, South Korea.
| |
Collapse
|
15
|
Shiel BP, Hall NE, Cooke IR, Robinson NA, Strugnell JM. Epipodial Tentacle Gene Expression and Predetermined Resilience to Summer Mortality in the Commercially Important Greenlip Abalone, Haliotis laevigata. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:191-205. [PMID: 28349286 PMCID: PMC5405107 DOI: 10.1007/s10126-017-9742-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/06/2017] [Indexed: 05/05/2023]
Abstract
"Summer mortality" is a phenomenon that occurs during warm water temperature spikes that results in the mass mortality of many ecologically and economically important mollusks such as abalone. This study aimed to determine whether the baseline gene expression of abalone before a laboratory-induced summer mortality event was associated with resilience to summer mortality. Tentacle transcriptomes of 35 greenlip abalone (Haliotis laevigata) were sequenced prior to the animals being exposed to an increase in water temperature-simulating conditions which have previously resulted in summer mortality. Abalone derived from three source locations with different environmental conditions were categorized as susceptible or resistant to summer mortality depending on whether they died or survived after the water temperature was increased. We detected two genes showing significantly higher expression in resilient abalone relative to susceptible abalone prior to the laboratory-induced summer mortality event. One of these genes was annotated through the NCBI non-redundant protein database using BLASTX to an anemone (Exaiptasia pallida) Transposon Ty3-G Gag Pol polyprotein. Distinct gene expression signatures were also found between resilient and susceptible abalone depending on the population origin, which may suggest divergence in local adaptation mechanisms for resilience. Many of these genes have been suggested to be involved in antioxidant and immune-related functions. The identification of these genes and their functional roles have enhanced our understanding of processes that may contribute to summer mortality in abalone. Our study supports the hypothesis that prestress gene expression signatures are indicative of the likelihood of summer mortality.
Collapse
Affiliation(s)
- Brett P Shiel
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia.
| | - Nathan E Hall
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
- Life Sciences Computation Centre, VLSCI, Parkville, VIC, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, Australia
| | - Ira R Cooke
- Life Sciences Computation Centre, VLSCI, Parkville, VIC, Australia
- Department of Molecular and Cell Biology, James Cook University, Townsville, Australia
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
| | - Nicholas A Robinson
- Nofima, P.O. Box 210, 1431, Ås, Norway
- Sustainable Aquaculture Laboratory-Temperate and Tropical (SALTT), School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jan M Strugnell
- Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Kingsbury Drive, Melbourne, VIC, 3086, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
16
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
17
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Han YS, Lee JS, Lee YS. Transcriptome sequencing and de novo characterization of Korean endemic land snail, Koreanohadra kurodana for functional transcripts and SSR markers. Mol Genet Genomics 2016; 291:1999-2014. [PMID: 27507702 DOI: 10.1007/s00438-016-1233-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/25/2016] [Indexed: 02/03/2023]
Abstract
The Korean endemic land snail Koreanohadra kurodana (Gastropoda: Bradybaenidae) found in humid areas of broadleaf forests and shrubs have been considered vulnerable as the number of individuals are declining in recent years. The species is poorly characterized at the genomic level that limits the understanding of functions at the molecular and genetics level. In the present study, we performed de novo transcriptome sequencing to produce a comprehensive transcript dataset of visceral mass tissue of K. kurodana by the Illumina paired-end sequencing technology. Over 234 million quality reads were assembled to a total of 315,924 contigs and 191,071 unigenes, with an average and N50 length of 585.6 and 715 bp and 678 and 927 bp, respectively. Overall, 36.32 % of the unigenes found matches to known protein/nucleotide sequences in the public databases. The direction of the unigenes to functional categories was determined using COG, GO, KEGG, and InterProScan protein domain search. The GO analysis search resulted in 22,967 unigenes (12.02 %) being categorized into 40 functional groups. The KEGG annotation revealed that metabolism pathway genes were enriched. The most prominent protein motifs include the zinc finger, ribonuclease H, reverse transcriptase, and ankyrin repeat domains. The simple sequence repeats (SSRs) identified from >1 kb length of unigenes show a dominancy of dinucleotide repeat motifs followed with tri- and tetranucleotide motifs. A number of unigenes were putatively assessed to belong to adaptation and defense mechanisms including heat shock proteins 70, Toll-like receptor 4, AMP-activated protein kinase, aquaporin-2, etc. Our data provide a rich source for the identification and functional characterization of new genes and candidate polymorphic SSR markers in K. kurodana. The availability of transcriptome information ( http://bioinfo.sch.ac.kr/submission/ ) would promote the utilization of the resources for phylogenetics study and genetic diversity assessment.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.,Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do, 54528, Korea
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon, 22689, Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD., 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 243341, Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do, 31538, Korea.
| |
Collapse
|
18
|
Lopez de Lapuente A, Feliú A, Ugidos N, Mecha M, Mena J, Astobiza I, Riera J, Carillo-Salinas F, Comabella M, Montalban X, Alloza I, Guaza C, Vandenbroeck K. Novel Insights into the Multiple Sclerosis Risk Gene ANKRD55. THE JOURNAL OF IMMUNOLOGY 2016; 196:4553-65. [DOI: 10.4049/jimmunol.1501205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 03/26/2016] [Indexed: 01/05/2023]
|
19
|
Lucini L, Bernardo L. Comparison of proteome response to saline and zinc stress in lettuce. FRONTIERS IN PLANT SCIENCE 2015; 6:240. [PMID: 25932029 PMCID: PMC4399213 DOI: 10.3389/fpls.2015.00240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/25/2015] [Indexed: 05/05/2023]
Abstract
Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress related effects, from those changes specifically related to zinc. The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances), revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I) as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation [through formation of glutamine synthetase (GS)] were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level), heat shock proteins, and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one. Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e., proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones, and terpenoids biosynthesis. Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case of zinc.
Collapse
Affiliation(s)
- Luigi Lucini
- Institute of Environmental and Agricultural Chemistry, Università Cattolica del Sacro CuorePiacenza, Italy
| | | |
Collapse
|
20
|
Kesanakurti D, Sareddy GR, Babu PP, Kirti PB. Mustard NPR1, a mammalian IkappaB homologue inhibits NF-kappaB activation in human GBM cell lines. Biochem Biophys Res Commun 2009; 390:427-33. [PMID: 19766095 DOI: 10.1016/j.bbrc.2009.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/13/2009] [Indexed: 12/27/2022]
Abstract
NF-kappaB activity is tightly regulated by IkappaB class of proteins. IkappaB proteins possess ankyrin repeats for binding to and inhibiting NF-kappaB. The regulatory protein, NPR1 from Brassica juncea possesses ankyrin repeats with sequence similarity to IkappaBalpha subgroup. Therefore, we examined whether stably expressed BjNPR1 could function as IkappaB in inhibiting NF-kappaB in human glioblastoma cell lines. We observed that BjNPR1 bound to NF-kappaB and inhibited its nuclear translocation. Further, BjNPR1 expression down-regulated the NF-kappaB target genes iNOS, Cox-2, c-Myc and cyclin D1 and reduced the proliferation rate of U373 cells. Finally, BjNPR1 decreased the levels of pERK, pJNK and PKCalpha and increased the Caspase-3 and Caspase-8 activities. These results suggested that inhibition of NF-kappaB activation by BjNPR1 can be a promising therapy in NF-kappaB dependent pathologies.
Collapse
Affiliation(s)
- Divya Kesanakurti
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | | | | | | |
Collapse
|
21
|
Identification, mRNA expression and characterization of a novel ANK-like gene from Chinese mitten crab Eriocheir japonica sinensis. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:332-9. [DOI: 10.1016/j.cbpb.2009.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 04/14/2009] [Accepted: 04/15/2009] [Indexed: 12/26/2022]
|