1
|
Jasim SA, Altalbawy FMA, Abohassan M, Oghenemaro EF, Bishoyi AK, Singh RP, Kaur P, Sivaprasad GV, Mohammed JS, Hulail HM. Histone Deacetylases (HDACs) Roles in Inflammation-mediated Diseases; Current Knowledge. Cell Biochem Biophys 2024:10.1007/s12013-024-01587-0. [PMID: 39419931 DOI: 10.1007/s12013-024-01587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The histone acetyl transferases (HATs) and histone deacetylases (HDACs), which are mostly recognized for their involvement in regulating chromatin remodeling via histone acetylation/deacetylation, have been shown to also change several non-histone proteins to regulate other cellular processes. Acetylation affects the activity or function of cytokine receptors, nuclear hormone receptors, intracellular signaling molecules, and transcription factors in connection to inflammation. Some small-molecule HDAC inhibitors are utilized as anticancer medications in clinical settings due to their capability to regulate cellular growth arrest, differentiation, and death. Here, we summarize our present knowledge of the innate and adaptive immunological pathways that classical HDAC enzymes control. The aim is to justify the targeted (or non-targeted) use of inhibitors against certain HDAC enzymes in inflammatory diseases such as arthritis, inflammatory bowel diseases (IBD), airways inflammation and neurological diseases.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia.
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Ravindra Pal Singh
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Pai P, Vijeev A, Phadke S, Shetty MG, Sundara BK. Epi-revolution in rheumatology: the potential of histone deacetylase inhibitors for targeted rheumatoid arthritis intervention. Inflammopharmacology 2024; 32:2109-2123. [PMID: 38714604 PMCID: PMC11300544 DOI: 10.1007/s10787-024-01486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 05/10/2024]
Abstract
Autoimmune diseases hold significant importance in the realm of medical research, prompting a thorough exploration of potential therapeutic interventions. One crucial aspect of this exploration involves understanding the intricate processes of histone acetylation and deacetylation. Histone acetylation, facilitated by histone acetyl transferases (HATs), is instrumental in rendering DNA transcriptionally active. Conversely, histone deacetylases (HDACs) are responsible for the removal of acetyl groups, influencing gene expression regulation. The upregulation of HDACs, observed in various cancers, has steered attention towards histone deacetylase inhibitors (HDACi) as promising anti-cancer agents. Beyond cancer, HDACi has demonstrated anti-inflammatory properties, prompting interest in their potential therapeutic applications for inflammatory diseases such as rheumatoid arthritis (RA). RA, characterized by the immune system erroneously attacking healthy cells, leads to joint inflammation. Recent studies suggest that HDACi could offer a viable therapeutic strategy for RA, with potential mechanisms including the inhibition of synovial tissue growth and suppression of pro-inflammatory cytokines. Furthermore, HDACi may exert protective effects on bone and cartilage, common targets in RA pathology. In-depth investigations through in vivo and histopathology studies contribute to the ongoing discourse on the therapeutic benefits of HDACis in the context of RA treatment.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Aradhika Vijeev
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sharada Phadke
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Husain S, Obert E, Singh S, Schnabolk G. Inhibition of HDAC1 and 3 in the Presence of Systemic Inflammation Reduces Retinal Degeneration in a Model of Dry Age-Related Macular Degeneration. J Ocul Pharmacol Ther 2024; 40:397-406. [PMID: 38608232 DOI: 10.1089/jop.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Purpose: Previously, we identified increased retinal degeneration and cytokine response in a mouse model of dry age-related macular degeneration (AMD) in the presence of systemic inflammation from rheumatoid arthritis (RA). Histone deacetylases (HDACs) regulate cytokine production by reducing acetylation and are found to be dysregulated in inflammatory diseases, including RA and AMD. Therefore, this current study investigates the effect of HDAC inhibition on AMD progression in the presence of systemic inflammation. Methods: Collagen induced arthritis (CIA) was induced in C57BL6J mice, followed by sodium iodate (NaIO3)-induced retinal degeneration. Mice were treated with a selective HDAC class I inhibitor, MS-275, and retinal structure [optical coherence tomography (OCT)], function (electroretinography), and molecular changes quantitative real-time polymerase chain reaction (RT-qPCR, Western Blot) were assessed. Results: NaIO3 retinal damage was diminished in CIA mice treated with MS-275 (P ≤ 0.05). While no significant difference was observed in retinal pigment epithelium (RPE) function, a trend in increased c-wave amplitude was detected in CIA + NaIO3 mice treated with MS-275. Finally, we identified decreased Hdac1, Hdac3, and Cxcl9 expression in CIA + NaIO3 mouse RPE/choroid when treated with MS-275 (P ≤ 0.05). Conclusions: Our data demonstrate that HDAC inhibition can reduce the additive effect of NaIO3-induced retinal degeneration in the presence of systemic inflammation by CIA as measured by OCT analysis. In addition, HDAC inhibition in CIA + NaIO3 treated mice resulted in reduced cytokine production. These findings are highly innovative and provide additional support to the therapeutic potential of HDAC inhibitors for dry AMD treatment.
Collapse
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Elisabeth Obert
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sudha Singh
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gloriane Schnabolk
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Zhou L, Roth M, Papakonstantinou E, Tamm M, Stolz D. Expression of glucocorticoid receptor and HDACs in airway smooth muscle cells is associated with response to steroids in COPD. Respir Res 2024; 25:227. [PMID: 38812021 PMCID: PMC11137987 DOI: 10.1186/s12931-024-02769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/12/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Steroid insensitivity in Chronic Obstructive Pulmonary Disease (COPD) presents a problem for controlling the chronic inflammation of the airways. The glucocorticoid receptor (GR) mediates the intracellular signaling of inhaled corticosteroids (ICS) by interacting with transcription factors and histone deacetylases (HDACs). The aim of this study was to assess if COPD patients' response to ICS in vivo, may be associated with the expression of GR, the complex of GR with transcription factors, and the expression of various HDACs in vitro. METHODS Primary airway smooth muscle cells (ASMC) were established from endobronchial biopsies obtained from patients with asthma (n = 10), patients with COPD (n = 10) and subjects that underwent diagnostic bronchoscopy without pathological findings and served as controls (n = 6). ASMC were also established from 18 COPD patients, 10 responders and 8 non-responders to ICS, who participated in the HISTORIC study, an investigator-initiated and driven clinical trial that proved the hypothesis that COPD patients with high ASMC in their endobronchial biopsies respond better to ICS than patients with low ASMC. Expression of GR and its isoforms GRα and GRβ and HDACs was investigated in primary ASMC in the absence or in the presence of dexamethasone (10- 8M) by western blotting. The complex formation of GR with transcription factors was assessed by co-immunoprecipitation. RESULTS Expression of GR and its isoform GRα but not GRβ was significantly reduced in ASMC from COPD patients as compared to controls. There were no significant differences in the expression of GR, GRα and GRβ between responders and non-responders to ICS. However, treatment with dexamethasone upregulated the expression of total GR (p = 0.004) and GRα (p = 0.005) after 30 min in responders but not in non-responders. Τhe formation of the complex GR-c-Jun was increased 60 min after treatment with dexamethasone only in responders who exhibited significantly lower expression of HDAC3 (p = 0.005) and HDAC5 (p < 0.0001) as compared to non-responders. CONCLUSIONS These data suggest that ASMC from COPD patients who do not respond to treatment with ICS, are characterized by reduced GR-c-Jun complex formation and increased expression of HDAC3 and HDAC5. TRIAL REGISTRATION ISRCTN11017699 (Registration date: 15/11/2016).
Collapse
MESH Headings
- Humans
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/drug therapy
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Histone Deacetylases/metabolism
- Histone Deacetylases/biosynthesis
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Middle Aged
- Female
- Aged
- Cells, Cultured
- Adrenal Cortex Hormones/therapeutic use
- Glucocorticoids/pharmacology
- Dexamethasone/pharmacology
- Treatment Outcome
- Administration, Inhalation
- Bronchi/drug effects
- Bronchi/metabolism
- Bronchi/pathology
- Bronchi/enzymology
Collapse
Affiliation(s)
- Liang Zhou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michael Roth
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Eleni Papakonstantinou
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Tamm
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Daiana Stolz
- Department of Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland.
- Clinic of Respiratory Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
6
|
Swarnkar G, Semenkovich NP, Arra M, Mims DK, Naqvi SK, Peterson T, Mbalaviele G, Wu CL, Abu-Amer Y. DNA hypomethylation ameliorates erosive inflammatory arthritis by modulating interferon regulatory factor-8. Proc Natl Acad Sci U S A 2024; 121:e2310264121. [PMID: 38319963 PMCID: PMC10873594 DOI: 10.1073/pnas.2310264121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Epigenetic regulation plays a crucial role in the pathogenesis of autoimmune diseases such as inflammatory arthritis. DNA hypomethylating agents, such as decitabine (DAC), have been shown to dampen inflammation and restore immune homeostasis. In the present study, we demonstrate that DAC elicits potent anti-inflammatory effects and attenuates disease symptoms in several animal models of arthritis. Transcriptomic and epigenomic profiling show that DAC-mediated hypomethylation regulates a wide range of cell types in arthritis, altering the differentiation trajectories of anti-inflammatory macrophage populations, regulatory T cells, and tissue-protective synovial fibroblasts (SFs). Mechanistically, DAC-mediated demethylation of intragenic 5'-Cytosine phosphate Guanine-3' (CpG) islands of the transcription factor Irf8 (interferon regulatory factor 8) induced its re-expression and promoted its repressor activity. As a result, DAC restored joint homeostasis by resetting the transcriptomic signature of negative regulators of inflammation in synovial macrophages (MerTK, Trem2, and Cx3cr1), TREGs (Foxp3), and SFs (Pdpn and Fapα). In conclusion, we found that Irf8 is necessary for the inhibitory effect of DAC in murine arthritis and that direct expression of Irf8 is sufficient to significantly mitigate arthritis.
Collapse
Affiliation(s)
- Gaurav Swarnkar
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | | | - Manoj Arra
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Dorothy K. Mims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Syeda Kanwal Naqvi
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Timothy Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- HealthSpan Technologies, Inc, St. Louis, MO63110
| | - Gabriel Mbalaviele
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopedics and Physical Performance, University of Rochester, Rochester, NY14642
| | - Yousef Abu-Amer
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO63110
- Shriners Hospital for Children, St. Louis, MO63110
| |
Collapse
|
7
|
Comertpay B, Gov E. Immune cell-specific and common molecular signatures in rheumatoid arthritis through molecular network approaches. Biosystems 2023; 234:105063. [PMID: 37852410 DOI: 10.1016/j.biosystems.2023.105063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder and common symptom of RA is chronic synovial inflammation. The pathogenesis of RA is not fully understood. Therefore, we aimed to identify underlying common and distinct molecular signatures and pathways among ten types of tissue and cells obtained from patients with RA. In this study, transcriptomic data including synovial tissues, macrophages, blood, T cells, CD4+T cells, CD8+T cells, natural killer T (NKT), cells natural killer (NK) cells, neutrophils, and monocyte cells were analyzed with an integrative and comparative network biology perspective. Each dataset yielded a list of differentially expressed genes as well as a reconstruction of the tissue-specific protein-protein interaction (PPI) network. Molecular signatures were identified by a statistical test using the hypergeometric probability density function by employing the interactions of transcriptional regulators and PPI. Reporter metabolites of each dataset were determined by using genome-scale metabolic networks. It was defined as the common hub proteins, novel molecular signatures, and metabolites in two or more tissue types while immune cell-specific molecular signatures were identified, too. Importantly, miR-155-5p is found as a common miRNA in all tissues. Moreover, NCOA3, PRKDC and miR-3160 might be novel molecular signatures for RA. Our results establish a novel approach for identifying immune cell-specific molecular signatures of RA and provide insights into the role of common tissue-specific genes, miRNAs, TFs, receptors, and reporter metabolites. Experimental research should be used to validate the corresponding genes, miRNAs, and metabolites.
Collapse
Affiliation(s)
- Betul Comertpay
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Türkiye.
| |
Collapse
|
8
|
Man E, Evran S. Deacetylation of Histones and Non-histone Proteins in Inflammatory Diseases and Cancer Therapeutic Potential of Histone Deacetylase Inhibitors. Curr Genomics 2023; 24:136-145. [PMID: 38178983 PMCID: PMC10761333 DOI: 10.2174/0113892029265046231011100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/26/2023] [Indexed: 01/06/2024] Open
Abstract
Epigenetic changes play an important role in the pathophysiology of autoimmune diseases such as allergic asthma, multiple sclerosis, lung diseases, diabetes, cystic fibrosis, atherosclerosis, rheumatoid arthritis, and COVID-19. There are three main classes of epigenetic alterations: post-translational modifications of histone proteins, control by non-coding RNA and DNA methylation. Since histone modifications can directly affect chromatin structure and accessibility, they can regulate gene expression levels. Abnormal expression and activity of histone deacetylases (HDACs) have been reported in immune mediated diseases. Increased acetylated levels of lysine residues have been suggested to be related to the overexpression of inflammatory genes. This review focuses on the effect of HDAC modifications on histone and non-histone proteins in autoimmune diseases. Furthermore, we discuss the potential therapeutic effect of HDAC inhibitors (HDACi) used in these diseases.
Collapse
Affiliation(s)
- Ezgi Man
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
- EGE SCIENCE PRO Scientific Research Inc., Ege University, IdeEGE Technology Development Zone, 35100, Bornova-Izmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100, İzmir, Türkiye
| |
Collapse
|
9
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
10
|
Zhu M, Ding Q, Lin Z, Fu R, Zhang F, Li Z, Zhang M, Zhu Y. New Targets and Strategies for Rheumatoid Arthritis: From Signal Transduction to Epigenetic Aspect. Biomolecules 2023; 13:biom13050766. [PMID: 37238636 DOI: 10.3390/biom13050766] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that can lead to joint damage and even permanent disability, seriously affecting patients' quality of life. At present, the complete cure for RA is not achievable, only to relieve the symptoms to reduce the pain of patients. Factors such as environment, genes, and sex can induce RA. Presently, non-steroidal anti-inflammatory drugs, DRMADs, and glucocorticoids are commonly used in treating RA. In recent years, some biological agents have also been applied in clinical practice, but most have side effects. Therefore, finding new mechanisms and targets for treating RA is necessary. This review summarizes some potential targets discovered from the perspective of epigenetics and RA mechanisms.
Collapse
Affiliation(s)
- Menglin Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Rong Fu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Fuyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Mei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Shanaki M, Omidifar A, Shabani P, Toolabi K. Association between HDACs and pro-inflammatory cytokine gene expressions in obesity. Arch Physiol Biochem 2022; 128:880-886. [PMID: 32238064 DOI: 10.1080/13813455.2020.1734843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone deacetylases (HDACs) are important players in a variety of physiological and pathological conditions. Few studies have addressed HDAC expressions in human adipose tissue in obese individuals, and their association with pro-inflammatory cytokines. Here, we compared 20 non-obese and 20 obese women to investigate possible changes in gene expressions of HDAC2, 4, 5, and 6 in the subcutaneous adipose tissues (SAT) and visceral adipose tissues (VAT) of these individuals. Our findings showed decreased HDAC5 expression in SAT and elevated HDAC4 expression in VAT from the obese group compared with the non-obese group. Our analyses showed negative correlations between HDAC2, 5, and 6 and the obesity indices and positive correlations between HDAC4 and obesity indices. HDAC2 showed a positive correlation with pro-inflammatory cytokines whereas HDAC4, 5, and 6 were negatively correlated with pro-inflammatory cytokines. Our findings provide new evidence that implicates the important roles of HDACs in obesity and obesity-associated inflammation.
Collapse
Affiliation(s)
- Mehrnoosh Shanaki
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Omidifar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Shabani
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Karamollah Toolabi
- Department of Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Wang Q, Yu X, Gong M. Single-Cell Transcriptome Analysis Reveals the Importance of IRF1/FSTL1 in Synovial Fibroblast Subsets for the Development of Rheumatoid Arthritis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1169614. [PMID: 35572839 PMCID: PMC9098313 DOI: 10.1155/2022/1169614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022]
Abstract
Objectives This study aimed to investigate the potential role of synovial fibroblasts (SFs) in the development of rheumatoid arthritis (RA) to identify potential molecular targets and provide a theoretical basis for the treatment of RA. Methods GSE109449, a fibroblast transcriptome dataset of synovial tissue from RA and osteoarthritis (OA), were obtained from the GEO database. After standard cell quality control, this single-cell transcriptome data was used to perform routine single-cell analysis processes. After completing dimensionality reduction, clustering, and cell subset identification of fibroblasts, the SCENIC analysis helped calculate the significant gene regulatory networks in fibroblasts and their subsets. From these computed gene regulatory networks, the regulon in which follistatin-like protein 1 (FSTL1) resides was extracted and used to analyze the transcriptional regulatory status of fibroblasts. Finally, the gene set enrichment analysis (GSEA) was used to calculate the respective enriched gene sets of IRF1 and FSTL1. Results Three SF subgroups were identified from the single-cell transcriptome analysis; SF subset 3 was more abundant in RA than in OA (p < 0.001). From the SCENIC analysis, we obtained 269 regulons and the corresponding gene regulatory networks in SF from the RA datasets. Next, we screened and obtained a regulon-containing FSTL1, where IRF1 was the major transcription factor. The top five regulons in SF subset 3 were TWIST1, MECOM, KLF6, MAFB, and RUNX1. Among the 3 SF subsets, IRF1 regulon was ranked the highest in SF subset 3. Differential analysis of pseudobulk RNA-seq showed that IRF1 was up-regulated in RA compared to OA. Between the three SF subgroups, IRF1 and FSTL1 expression was more up-regulated in SF subset 3 compared to the other two subgroups. Conclusions IRF1 was found to regulate the invasiveness of SFs by regulating FSTL1, which may influence the disease progression of RA.
Collapse
Affiliation(s)
- Qiang Wang
- Department of traumatic orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint and Sports Medicine, Taian City Central Hospital, Taian City, Shandong, China
| | - Xia Yu
- Department of nuclear medicine, Taian City Central Hospital, Taian City, Shandong, China
| | - Mingzhi Gong
- Department of traumatic orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
13
|
Ji M, Ryu HJ, Baek HM, Shin DM, Hong JH. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp Mol Med 2022; 54:503-517. [PMID: 35414711 PMCID: PMC9076869 DOI: 10.1038/s12276-022-00756-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive fibroblast-like synoviocytes (FLSs) and pannus formation. Various therapeutic strategies have been developed against inflammatory cytokines in RA in recent decades. Based on the migratory features of FLSs, we examined whether modulation of the migratory module attenuates RA severity. In this study, inflamed synovial fluid-stimulated FLSs exhibited enhanced migration and migratory apparatus expression, and sodium bicarbonate cotransporter n1 (NBCn1) was identified in primary cultured RA-FLSs for the first time. The NBC inhibitor S0859 attenuated the migration of FLSs induced with synovial fluid from patients with RA or with TNF-α stimulation. Inhibition of NBCs with S0859 in a collagen-induced arthritis (CIA) mouse model reduced joint swelling and destruction without blood, hepatic, or renal toxicity. Primary FLSs isolated from the CIA-induced mouse model also showed reduced migration in the presence of S0859. Our results suggest that inflammatory mediators in synovial fluid, including TNF-α, recruit NBCn1 to the plasma membrane of FLSs to provide dynamic properties and that modulation of NBCn1 could be developed into a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdongdae-ro 774-gil, Nandong-gu, Incheon, South Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
14
|
Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol 2022; 5:102. [PMID: 35091696 PMCID: PMC8799722 DOI: 10.1038/s42003-022-03035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Romão VC, Fonseca JE. Etiology and Risk Factors for Rheumatoid Arthritis: A State-of-the-Art Review. Front Med (Lausanne) 2021; 8:689698. [PMID: 34901047 PMCID: PMC8661097 DOI: 10.3389/fmed.2021.689698] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common systemic inflammatory rheumatic disease. It is associated with significant burden at the patient and societal level. Extensive efforts have been devoted to identifying a potential cause for the development of RA. Epidemiological studies have thoroughly investigated the association of several factors with the risk and course of RA. Although a precise etiology remains elusive, the current understanding is that RA is a multifactorial disease, wherein complex interactions between host and environmental factors determine the overall risk of disease susceptibility, persistence and severity. Risk factors related to the host that have been associated with RA development may be divided into genetic; epigenetic; hormonal, reproductive and neuroendocrine; and comorbid host factors. In turn, environmental risk factors include smoking and other airborne exposures; microbiota and infectious agents; diet; and socioeconomic factors. In the present narrative review, aimed at clinicians and researchers in the field of RA, we provide a state-of-the-art overview of the current knowledge on this topic, focusing on recent progresses that have improved our comprehension of disease risk and development.
Collapse
Affiliation(s)
- Vasco C Romão
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon Academic Medical Centre and European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ERN-ReCONNET), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Sacristán-Gómez P, Serrano-Somavilla A, González-Amaro R, Martínez-Hernández R, Marazuela M. Analysis of Expression of Different Histone Deacetylases in Autoimmune Thyroid Disease. J Clin Endocrinol Metab 2021; 106:3213-3227. [PMID: 34272941 PMCID: PMC8530745 DOI: 10.1210/clinem/dgab526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Histone deacetylases (HDACs) and histone acetyltransferases (HAT) have an important role in the regulation of gene transcription as well as in the development and function of CD4+Foxp3+ T regulatory (Treg) cells. Our group and others have reported that patients with autoimmune thyroid disease (AITD) show abnormalities in the levels and function of different Treg cell subsets. OBJECTIVE We aimed to analyze the levels of expression of several HDACs and the Tip60 HAT in the thyroid gland and immune cells from patients with AITD. METHODS The expression of HDAC1-11 and the Tip60 HAT, at RNA and protein levels, were determined in thyroid tissue from 20 patients with AITD and 10 healthy controls and these findings were correlated with clinical data. HDAC9 and Tip60 levels were also analyzed in thyroid cell cultures, stimulated or not with proinflammatory cytokines, as well as in different cell subsets from peripheral blood mononuclear cells. RESULTS Altered expression of different HDACs was observed in thyroid tissue from AITD patients, including a significant increase in HDAC9, at RNA and protein levels. Likewise, HDAC9 expression was increased in peripheral blood mononuclear cells particularly in Treg cells in patients with AITD. In contrast, Tip60 expression was reduced in thyroid gland samples from patients with Hashimoto thyroiditis. CONCLUSION Our results indicate that HDAC expression is dysregulated in thyroid gland and immune cells from patients with AITD, suggesting involvement in the pathogenesis of this condition.
Collapse
Affiliation(s)
- Pablo Sacristán-Gómez
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Ana Serrano-Somavilla
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, UASLP, 78210 San Luis Potosí, SLP, Mexico
- Center for Applied Research in Health and Biomedicine, UASLP, 78210 San Luis Potosí, SLP, Mexico
| | - Rebeca Martínez-Hernández
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
- Rebeca Martínez-Hernández, PhD, Hospital de la Princesa, C/ Diego de León 62, 28006 Madrid, Spain.
| | - Mónica Marazuela
- Department of Endocrinology, Hospital Universitario de la Princesa, Instituto de Investigación Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Madrid, Spain
- Correspondence: Monica Marazuela, MD, PhD, Hospital de la Princesa, C/ Diego de León 62, 28006 Madrid, Spain.
| |
Collapse
|
17
|
Kondo N, Kuroda T, Kobayashi D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222010922. [PMID: 34681582 PMCID: PMC8539723 DOI: 10.3390/ijms222010922] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic systemic inflammation causing progressive joint damage that can lead to lifelong disability. The pathogenesis of RA involves a complex network of various cytokines and cells that trigger synovial cell proliferation and cause damage to both cartilage and bone. Involvement of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 is central to the pathogenesis of RA, but recent research has revealed that other cytokines such as IL-7, IL-17, IL-21, IL-23, granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1β, IL-18, IL-33, and IL-2 also play a role. Clarification of RA pathology has led to the development of therapeutic agents such as biological disease-modifying anti-rheumatic drugs (DMARDs) and Janus kinase (JAK) inhibitors, and further details of the immunological background to RA are emerging. This review covers existing knowledge regarding the roles of cytokines, related immune cells and the immune system in RA, manipulation of which may offer the potential for even safer and more effective treatments in the future.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| | - Takeshi Kuroda
- Health Administration Center, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City 950-2181, Japan
- Correspondence: ; Tel.: +81-25-262-6244; Fax: +81-25-262-7517
| | - Daisuke Kobayashi
- Division of Clinical Nephrology and Rheumatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-ku, Niigata City 951-8510, Japan;
| |
Collapse
|
18
|
Ekronarongchai S, Palaga T, Saonanon P, Pruksakorn V, Hirankarn N, van Hagen PM, Dik WA, Virakul S. Histone Deacetylase 4 Controls Extracellular Matrix Production in Orbital Fibroblasts from Graves' Ophthalmopathy Patients. Thyroid 2021; 31:1566-1576. [PMID: 34235979 DOI: 10.1089/thy.2020.0948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Graves' ophthalmopathy (GO) is an autoimmune eye disease with the characteristic symptoms of eyelid retraction and proptosis. Orbital fibroblast activation induced by platelet-derived growth factor-BB (PDGF-BB) stimulation plays a crucial role in GO pathogenesis, leading to excessive proliferation and extracellular matrix production by orbital fibroblasts. Currently, GO treatment options remain limited and novel therapies including targeted drugs are needed. Histone deacetylases (HDACs) are associated with the development and progression of several cancers and autoimmune diseases by epigenetically controlling gene transcription, and HDAC inhibitors (HDACis) may have therapeutic potential. Nevertheless, the role of HDACs in orbital fibroblasts from GO is unknown. Therefore, we studied the expression of HDACs as well as their contribution to extracellular matrix production in orbital fibroblasts. Methods: Orbital tissues were obtained from GO patients (n = 18) who underwent decompression surgery with approval from the Institutional Review Board of the Faculty of Medicine (Protocol number 401/61), Chulalongkorn University (Bangkok, Thailand). Furthermore, orbital tissue was obtained from control patients (n = 3) without inflammatory or thyroid disease who underwent surgery for cosmetic reasons. Orbital fibroblast cultures were established from the orbital tissues. HDAC mRNA and protein expression in orbital fibroblasts was analyzed by reverse transcription-quantitative real-time PCR and Western blot. PDGF-BB-activated orbital fibroblast and orbital tissues were treated with HDACis or HDAC4 small-interfering RNA. Results: PDGF-BB-stimulated orbital fibroblasts had upregulated HDAC4 mRNA and protein expression. HDAC4 mRNA expression was significantly higher in GO compared with healthy control orbital fibroblasts. Histone H3 lysine 9 acetylation (H3K9ac) decreased upon PDGF-BB stimulation. Treatment with HDAC4i (tasquinimod) and HDAC4/5i (LMK-235) significantly decreased both proliferation and hyaluronan production in PDGF-BB-stimulated orbital fibroblasts. HDAC4 silencing reduced mRNA expression of hyaluronan synthase 2 (HAS2), collagen type I alpha 1 chain (COL1A1), Ki67, and α-smooth muscle actin (α-SMA), as well as hyaluronan production in PDGF-BB-stimulated orbital fibroblasts. Tasquinimod significantly reduced HAS2 and α-SMA mRNA expression in whole orbital tissue. Conclusion: Our data indicated, for the first time, that altered HDAC4 regulation along with H3K9 hypoacetylation might represent a mechanism that contributes to excessive proliferation and extracellular matrix production by orbital fibroblasts in GO. HDAC4 might represent a novel target for GO therapy.
Collapse
Affiliation(s)
- Supanuch Ekronarongchai
- Medical Microbiology, Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Preamjit Saonanon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Vannakorn Pruksakorn
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - P Martin van Hagen
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sita Virakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
19
|
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising Therapeutic Targets for Treatment of Rheumatoid Arthritis. Front Immunol 2021; 12:686155. [PMID: 34305919 PMCID: PMC8299711 DOI: 10.3389/fimmu.2021.686155] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic poly-articular chronic autoimmune joint disease that mainly damages the hands and feet, which affects 0.5% to 1.0% of the population worldwide. With the sustained development of disease-modifying antirheumatic drugs (DMARDs), significant success has been achieved for preventing and relieving disease activity in RA patients. Unfortunately, some patients still show limited response to DMARDs, which puts forward new requirements for special targets and novel therapies. Understanding the pathogenetic roles of the various molecules in RA could facilitate discovery of potential therapeutic targets and approaches. In this review, both existing and emerging targets, including the proteins, small molecular metabolites, and epigenetic regulators related to RA, are discussed, with a focus on the mechanisms that result in inflammation and the development of new drugs for blocking the various modulators in RA.
Collapse
Affiliation(s)
- Jie Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Xinxin Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuhong Huang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chao Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
20
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
21
|
Tsuchiya H, Ota M, Fujio K. Multiomics landscape of synovial fibroblasts in rheumatoid arthritis. Inflamm Regen 2021; 41:7. [PMID: 33641680 PMCID: PMC7919303 DOI: 10.1186/s41232-021-00157-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by tumor-like hyperplasia and inflammation of the synovium, which causes synovial cell invasion into the bone and cartilage. In RA pathogenesis, various molecules in effector cells (i.e., immune cells and mesenchymal cells) are dysregulated by genetic and environmental factors. Synovial fibroblasts (SFs), the most abundant resident mesenchymal cells in the synovium, are the major local effectors of the destructive joint inflammation and exert their effects through the pathogenic production of molecules such as interleukin-6. MAIN BODY To date, more than 100 RA susceptibility loci have been identified in genome-wide association studies (GWASs), and finding novel therapeutic targets utilizing genome analysis is considered a promising approach because some candidate causal genes identified by GWASs have previously been established as therapeutic targets. For further exploration of RA-responsible cells and cell type-specific therapeutic targets, integrated analysis (or functional genome analysis) of the genome and intermediate traits (e.g., transcriptome and epigenome) is crucial. CONCLUSION This review builds on the existing knowledge regarding the epigenomic abnormalities in RASFs and discusses the recent advances in single-cell analysis, highlighting the prospects of SFs as targets for safer and more effective therapies against RA.
Collapse
Affiliation(s)
- Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Han Y, Wang J, Jin M, Jia L, Yan C, Wang Y. Shentong Zhuyu Decoction Inhibits Inflammatory Response, Migration, and Invasion and Promotes Apoptosis of Rheumatoid Arthritis Fibroblast-like Synoviocytes via the MAPK p38/PPAR γ/CTGF Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6187695. [PMID: 33511203 PMCID: PMC7826240 DOI: 10.1155/2021/6187695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION The current study is aimed at exploring the effect of Shentong Zhuyu Decoction on the proliferation, migration, invasion, and apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its underlying molecular mechanism. MATERIALS AND METHODS The type II collagen-induced arthritis (CIA) model was established. Subsequently, the RA-FLS were isolated from the CIA rat model and identified by immunohistochemistry. The viability, apoptosis, cell cycle, migration, and invasion of RA-FLS were detected by the cell counting kit 8 (CCK-8) assay, flow cytometry, wound-healing assay, and transwell invasion assay, respectively. The levels of MAPK p38, PPARγ, CTGF, Bcl-2, Bax, caspase-3, IL-1β, MMP-3, CDK4, and cyclin D1 were determined by qRT-PCR and western blotting, respectively. RESULTS After treatment with Shentong Zhuyu Decoction medicated serum, the OD570 value, migrative and invasive abilities, and the secretion of IL-1β, MMP-3 were remarkably decreased in RA-FLS, while the apoptosis rate was increased. Further, results showed that Shentong Zhuyu Decoction inhibited the transition from the G1 phase to S phase. Additionally, Shentong Zhuyu Decoction significantly inhibited the expression of Bcl-2, CDK4, cyclin D1, MAPK p-p38, and CTGF, whereas elevated the levels of Bax, caspase-3, and PPARγ. Importantly, the effects of Shentong Zhuyu Decoction were consistent with the trends of MAPK P38 inhibitor (SB203580) and PPARγ agonist (GW1929). CONCLUSIONS Shentong Zhuyu Decoction inhibited viability, inflammatory response, migration, invasion, and transition from the G1 phase to S phase and promoted apoptosis of RA-FLS via the MAPK p38/PPARγ/CTGF pathway.
Collapse
Affiliation(s)
- Ying Han
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Wang
- Department of Chinese Medicine Diagnostics, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Jin
- Department of Chinese Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Jia
- Department II of Respiratory, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Cuihuan Yan
- Institute of Integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yali Wang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
23
|
Jurdziński KT, Potempa J, Grabiec AM. Epigenetic regulation of inflammation in periodontitis: cellular mechanisms and therapeutic potential. Clin Epigenetics 2020; 12:186. [PMID: 33256844 PMCID: PMC7706209 DOI: 10.1186/s13148-020-00982-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetic mechanisms, namely DNA and histone modifications, are critical regulators of immunity and inflammation which have emerged as potential targets for immunomodulating therapies. The prevalence and significant morbidity of periodontitis, in combination with accumulating evidence that genetic, environmental and lifestyle factors cannot fully explain the susceptibility of individuals to disease development, have driven interest in epigenetic regulation as an important factor in periodontitis pathogenesis. Aberrant promoter methylation profiles of genes involved in inflammatory activation, including TLR2, PTGS2, IFNG, IL6, IL8, and TNF, have been observed in the gingival tissue, peripheral blood or buccal mucosa from patients with periodontitis, correlating with changes in expression and disease severity. The expression of enzymes that regulate histone acetylation, in particular histone deacetylases (HDACs), is also dysregulated in periodontitis-affected gingival tissue. Infection of gingival epithelial cells, gingival fibroblasts and periodontal ligament cells with the oral pathogens Porphyromonas gingivalis or Treponema denticola induces alterations in expression and activity of chromatin-modifying enzymes, as well as site-specific and global changes in DNA methylation profiles and in histone acetylation and methylation marks. These epigenetic changes are associated with excessive production of inflammatory cytokines, chemokines, and matrix-degrading enzymes that can be suppressed by small molecule inhibitors of HDACs (HDACi) or DNA methyltransferases. HDACi and inhibitors of bromodomain-containing BET proteins ameliorate inflammation, osteoclastogenesis, and alveolar bone resorption in animal models of periodontitis, suggesting their clinical potential as host modulation therapeutic agents. However, broader application of epigenomic methods will be required to create a comprehensive map of epigenetic changes in periodontitis. The integration of functional studies with global analyses of the epigenetic landscape will provide critical information on the therapeutic and diagnostic potential of epigenetics in periodontal disease.
Collapse
Affiliation(s)
- Krzysztof T Jurdziński
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
24
|
Hamminger P, Rica R, Ellmeier W. Histone deacetylases as targets in autoimmune and autoinflammatory diseases. Adv Immunol 2020; 147:1-59. [PMID: 32981634 DOI: 10.1016/bs.ai.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reversible lysine acetylation of histones is a key epigenetic regulatory process controlling gene expression. Reversible histone acetylation is mediated by two opposing enzyme families: histone acetyltransferases (HATs) and histone deacetylases (HDACs). Moreover, many non-histone targets of HATs and HDACs are known, suggesting a crucial role for lysine acetylation as a posttranslational modification on the cellular proteome and protein function far beyond chromatin-mediated gene regulation. The HDAC family consists of 18 members and pan-HDAC inhibitors (HDACi) are clinically used for the treatment of certain types of cancer. HDACi or individual HDAC member-deficient (cell lineage-specific) mice have also been tested in a large number of preclinical mouse models for several autoimmune and autoinflammatory diseases and in most cases HDACi treatment results in an attenuation of clinical disease severity. A reduction of disease severity has also been observed in mice lacking certain HDAC members. This indicates a high therapeutic potential of isoform-selective HDACi for immune-mediated diseases. Isoform-selective HDACi and thus targeted inactivation of HDAC isoforms might also overcome the adverse effects of current clinically approved pan-HDACi. This review provides a brief overview about the fundamental function of HDACs as epigenetic regulators, highlights the roles of HDACs beyond chromatin-mediated control of gene expression and summarizes the studies showing the impact of HDAC inhibitors and genetic deficiencies of HDAC members for the outcome of autoimmune and autoinflammatory diseases with a focus on rheumatoid arthritis, inflammatory bowel disease and experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis.
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
25
|
Liu L, Jia J, Jiang M, Liu X, Dai C, Wise BL, Lane NE, Yao W. High susceptibility to collagen-induced arthritis in mice with progesterone receptors selectively inhibited in osteoprogenitor cells. Arthritis Res Ther 2020; 22:165. [PMID: 32616012 PMCID: PMC7331177 DOI: 10.1186/s13075-020-02242-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
Background Progesterone receptor (PR) affects immunomodulation, and lack of PR in osteoprogenitor cells primarily affects pathways associated with immunomodulation, especially in males. In this study, we selectively deleted PR from osteoprogenitor cells using Prx1-Cre to evaluate the tissue-specific effects of PR on the pathegenesis of inflammatary arthritis (IA). Methods Collagen-induced arthritis (CIA) was used as an IA animal model. Both male and female PRΔPrx1 mice and their wild-type (WT) littermates were immunized with collagen II (CII) emulsified complete Freund’s adjuvant (CFA). Joint erosion, inflammation, and cartilage damage were assessed using a semiquantitative histologic scoring system. Bone volume and erosions in knee and ankle joints were quantitated using microCT and histology. Results Bone erosions developed in both paw joints in 37.5% and 41.7% of the WT and PRΔPrx1 female mice and in 45.4 and 83.3% of the WT and PRΔPrx1 male mice, respectively. Also, both joint damage and subchondral bone erosions were significantly more severe in male PRcKO-CIA mice than in male WT-CIA mice. Female PRΔPrx1 mice also developed higher bone loss in the knee joints than the KO-normal or WT-CIA females although with less severity compared to the male mice. Conclusions The presence of PR in osteoprogenitor cells decreased the development of collagen-induced arthritis and might help to explain the sex differences observed in human inflammatory arthritis.
Collapse
Affiliation(s)
- Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Junjing Jia
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, People's Republic of China
| | - Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Xueping Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Chenling Dai
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Barton L Wise
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.,Department of Orthopaedic Surgery, UC Davis Medical Center, Sacramento, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
26
|
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020; 16:316-333. [PMID: 32393826 DOI: 10.1038/s41584-020-0413-5] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
27
|
Hashemi G, Mirjalili M, Basiri Z, Tahamoli-Roudsari A, Kheiripour N, Shahdoust M, Ranjbar A, Mehrpooya M, Ataei S. A Pilot Study to Evaluate the Effects of Oral N-Acetyl Cysteine on Inflammatory and Oxidative Stress Biomarkers in Rheumatoid Arthritis. Curr Rheumatol Rev 2020; 15:246-253. [PMID: 30255760 DOI: 10.2174/1573403x14666180926100811] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/30/2018] [Accepted: 09/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is a common inflammatory disease of the joints. Due to the importance of inflammation and oxidative stress in the pathogenesis of RA, drugs that have anti-oxidant and anti-inflammatory properties, such as N-acetyl Cysteine (NAC), can be used as adjunctive therapy in patients with RA. AIMS The aim of this study was to evaluate the effects of oral NAC on inflammatory cytokines and oxidative stress in patients with RA. METHODS Adjunct to standard treatment, the NAC group (23 patients) received 600 mg of NAC twice daily and the placebo group (19 patients) received identical placebo twice daily for 12 weeks. Serum levels of Total Oxidant Status (TOS), Total Antioxidant Capacity (TAC), nitric oxide (NO), Total Thiol Groups (TTG), Malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interleukin- 6 (IL-6), C-reactive Protein (CRP), and Erythrocyte Sedimentation Rate (ESR) were measured at baseline and at the end of the study. RESULTS Results showed that in the NAC group, the serum levels of MDA, NO, IL-6, TNF-α, ESR and CRP were significantly lower than the baseline. Also, the serum level of TAC and TTG, as antioxidant parameters, increased significantly. However, only NO, MDA and TTG showed a significant difference in the NAC group as compared to the placebo group at the end of study. CONCLUSION According to the results of this study, oral NAC can significantly reduce the several oxidative stress factors and inflammatory cytokines. These results need to be confirmed in larger studies while considering clinical outcomes of RA patients.
Collapse
Affiliation(s)
- Ghazal Hashemi
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahtabalsadat Mirjalili
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Basiri
- Department of Rheumatology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ahmad Tahamoli-Roudsari
- Department of Rheumatology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Shahdoust
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, Farhadi E, Mahmoudi M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98:171-186. [PMID: 31856314 DOI: 10.1111/imcb.12311] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Göschl L, Preglej T, Boucheron N, Saferding V, Müller L, Platzer A, Hirahara K, Shih HY, Backlund J, Matthias P, Niederreiter B, Hladik A, Kugler M, Gualdoni GA, Scheinecker C, Knapp S, Seiser C, Holmdahl R, Tillmann K, Plasenzotti R, Podesser B, Aletaha D, Smolen JS, Karonitsch T, Steiner G, Ellmeier W, Bonelli M. Histone deacetylase 1 (HDAC1): A key player of T cell-mediated arthritis. J Autoimmun 2019; 108:102379. [PMID: 31883829 DOI: 10.1016/j.jaut.2019.102379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators. However, the role of individual HDAC members for the pathogenesis of arthritis is still unknown. In this study we demonstrate that mice with a T cell-specific deletion of HDAC1 (HDAC1-cKO) are resistant to the development of Collagen-induced arthritis (CIA), whereas the antibody response to collagen type II was undisturbed, indicating an unaltered T cell-mediated B cell activation. The inflammatory cytokines IL-17 and IL-6 were significantly decreased in sera of HDAC1-cKO mice. IL-6 treated HDAC1-deficient CD4+ T cells showed an impaired upregulation of CCR6. Selective inhibition of class I HDACs with the HDAC inhibitor MS-275 under Th17-skewing conditions inhibited the upregulation of chemokine receptor 6 (CCR6) in mouse and human CD4+ T cells. Accordingly, analysis of human RNA-sequencing (RNA-seq) data and histological analysis of synovial tissue samples from human RA patients revealed the existence of CD4+CCR6+ cells with enhanced HDAC1 expression. Our data indicate a key role for HDAC1 for the pathogenesis of CIA and suggest that HDAC1 and other class I HDACs might be promising targets of selective HDAC inhibitors (HDACi) for the treatment of RA.
Collapse
Affiliation(s)
- Lisa Göschl
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090, Vienna, Austria
| | - Lena Müller
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090, Vienna, Austria
| | - Alexander Platzer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan; AMED-PRIME, AMED, Chiba, 260-8670, Japan
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Johan Backlund
- Department of Medical Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institute, 17177, Stockholm, Sweden
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland; Faculty of Sciences, University of Basel, 4031, Basel, Switzerland
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Anastasiya Hladik
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria; Laboratory of Infection Biology, Department of Internal Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| | - Maximilian Kugler
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Guido A Gualdoni
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Clemens Scheinecker
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Sylvia Knapp
- Research Center for Molecular Medicine of the Austrian Academy of Sciences (CeMM), Vienna, Austria; Laboratory of Infection Biology, Department of Internal Medicine I, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Medical Inflammation Research, Karolinska Institute, 17177, Stockholm, Sweden
| | - Katharina Tillmann
- Division of Biomedical Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Roberto Plasenzotti
- Division of Biomedical Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Bruno Podesser
- Division of Biomedical Research, Medical University of Vienna, 1090, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria; Ludwig Boltzmann Institute for Arthritis and Rehabilitation, 1090, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
30
|
Iguratimod Inhibits the Aggressiveness of Rheumatoid Fibroblast-Like Synoviocytes. J Immunol Res 2019; 2019:6929286. [PMID: 31828173 PMCID: PMC6885276 DOI: 10.1155/2019/6929286] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/16/2019] [Accepted: 09/30/2019] [Indexed: 01/12/2023] Open
Abstract
Objective Iguratimod, a novel disease-modifying anti-rheumatic drug for the treatment of rheumatoid arthritis, has been approved in China and Japan. Here, we aimed to find whether iguratimod can inhibit the aggressive behavior and promote apoptosis of rheumatoid fibroblast-like synoviocytes (RA-FLSs). Methods The proliferation of RA-FLSs was assessed by 5-ethynyl-2′-deoxyuridine test and Cell Counting Kit-8. Migration and invasion were determined by the wound test and a transwell assay. Apoptosis was tested by flow cytometry. The mRNA expression of matrix metalloproteinases (MMPs) and proinflammatory cytokines in RA-FLSs were measured by quantitative PCR and ELISA. To gain insight into the molecular signaling mechanisms, we determined the effect of iguratimod on the activation of mitogen-activated protein kinases (MAPK) signaling pathways by the cellular thermal shift assay (CETSA) and western blot. Results Iguratimod treatment significantly reduced the proliferation, migration, and invasive capacities of RA-FLSs in a dose-dependent manner in vitro. MMP-1, MMP-3, MMP-9, Interleukin-6 (IL-6), and monocyte chemoattractant protein-1 mRNA and protein levels were all decreased after treatment with iguratimod. Furthermore, tumor necrosis factor-alpha- (TNF-α-) induced expression of phosphorylated c-Jun N-terminal kinases (JNK) and P38 MAPK were inhibited by iguratimod. Additionally, iguratimod promoted the apoptosis of RA-FLSs. Most importantly, iguratimod was shown to directly interact with JNK and P38 protein by CETSA assay. Moreover, activating transcription factor 2 (ATF-2), a substrate of both JNK and P38, was suppressed by iguratimod. Conclusions Our findings suggested that the therapeutic effects of iguratimod on RA might be, in part, due to targeting the aggressive behavior and apoptosis of RA-FLSs.
Collapse
|
31
|
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet 2019; 10:1104. [PMID: 31798626 PMCID: PMC6863924 DOI: 10.3389/fgene.2019.01104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accepted that epigenetic pathways play an essential role in the development and function of the immune system. Although many published studies have attempted to elucidate the relation between epigenetic modifications (e.g. DNA methylation, histone post-translational modifications, miRNAs) and autoimmune disorders, the contribution of epigenetic regulation to the pathogenesis of SS and RA is at present poorly understood. This review attempts to shed light from a critical point of view on the identification of the most relevant epigenetic mechanisms related to RA and SS by explaining intricate regulatory processes and phenotypic features of both autoimmune diseases. Moreover, we point out some epigenetic markers which can be used to monitor the inflammation status and the dysregulated immunity in SS and RA. Finally, we discuss the inconvenience of using epigenetic data obtained from bulk immune cell populations instead specific immune cell subpopulations.
Collapse
Affiliation(s)
- José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Marta Seco-Cervera
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Rebeca Osca-Verdegal
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
32
|
Lian WS, Ko JY, Chen YS, Ke HJ, Hsieh CK, Kuo CW, Wang SY, Huang BW, Tseng JG, Wang FS. MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death Dis 2019; 10:705. [PMID: 31543513 PMCID: PMC6755134 DOI: 10.1038/s41419-019-1942-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
Osteoporosis deteriorates bone mass and biomechanical strength, becoming a life-threatening cause to the elderly. MicroRNA is known to regulate tissue remodeling; however, its role in the development of osteoporosis remains elusive. In this study, we uncovered that silencing miR-29a expression decreased mineralized matrix production in osteogenic cells, whereas osteoclast differentiation and pit formation were upregulated in bone marrow macrophages as co-incubated with the osteogenic cells in transwell plates. In vivo, decreased miR-29a expression occurred in ovariectomy-mediated osteoporotic skeletons. Mice overexpressing miR-29a in osteoblasts driven by osteocalcin promoter (miR-29aTg/OCN) displayed higher bone mineral density, trabecular volume and mineral acquisition than wild-type mice. The estrogen deficiency-induced loss of bone mass, trabecular morphometry, mechanical properties, mineral accretion and osteogenesis of bone marrow mesenchymal cells were compromised in miR-29aTg/OCN mice. miR-29a overexpression also attenuated the estrogen loss-mediated excessive osteoclast surface histopathology, osteoclast formation of bone marrow macrophages, receptor activator nuclear factor-κ ligand (RANKL) and C–X–C motif chemokine ligand 12 (CXCL12) expression. Treatment with miR-29a precursor improved the ovariectomy-mediated skeletal deterioration and biomechanical property loss. Mechanistically, miR-29a inhibited RANKL secretion in osteoblasts through binding to 3′-UTR of RANKL. It also suppressed the histone acetyltransferase PCAF-mediated acetylation of lysine 27 in histone 3 (H3K27ac) and decreased the H3K27ac enrichment in CXCL12 promoters. Taken together, miR-29a signaling in osteogenic cells protects bone tissue from osteoporosis through repressing osteoclast regulators RANKL and CXCL12 to reduce osteoclastogenic differentiation. Arrays of analyses shed new light on the miR-29a regulation of crosstalk between osteogenic and osteoclastogenic cells. We also highlight that increasing miR-29a function in osteoblasts is beneficial for bone anabolism to fend off estrogen deficiency-induced excessive osteoclastic resorption and osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical Engineering, Cheng Shiu University, Kaohsiung, Taiwan
| | - Jung-Ge Tseng
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
33
|
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Beloukhova MI, Deviatkin AA, Lukashev AN, Zamyatnin AA. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet 2019; 10:570. [PMID: 31258550 PMCID: PMC6587113 DOI: 10.3389/fgene.2019.00570] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease that affects about 1% of the world’s population. The etiology of RA remains unknown. It is considered to occur in the presence of genetic and environmental factors. An increasing body of evidence pinpoints that epigenetic modifications play an important role in the regulation of RA pathogenesis. Epigenetics causes heritable phenotype changes that are not determined by changes in the DNA sequence. The major epigenetic mechanisms include DNA methylation, histone proteins modifications and changes in gene expression caused by microRNAs and other non-coding RNAs. These modifications are reversible and could be modulated by diet, drugs, and other environmental factors. Specific changes in DNA methylation, histone modifications and abnormal expression of non-coding RNAs associated with RA have already been identified. This review focuses on the role of these multiple epigenetic factors in the pathogenesis and progression of the disease, not only in synovial fibroblasts, immune cells, but also in the peripheral blood of patients with RA, which clearly shows their high diagnostic potential and promising targets for therapy in the future.
Collapse
Affiliation(s)
- Marina V Nemtsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Dmitry V Zaletaev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina V Bure
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry S Mikhaylenko
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina B Kuznetsova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina A Alekseeva
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Marina I Beloukhova
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrei A Deviatkin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander N Lukashev
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
34
|
Clinicopathological features and prediction values of HDAC1, HDAC2, HDAC3, and HDAC11 in classical Hodgkin lymphoma. Anticancer Drugs 2019; 29:364-370. [PMID: 29481474 PMCID: PMC5882292 DOI: 10.1097/cad.0000000000000610] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylases (HDACs) are involved in multiple physical and pathological processes in classical Hodgkin lymphoma (cHL). The prognostic value of HDACs in cHL patients has not been discussed. The aim of the current study is to investigate the HDAC1, HDAC2, HDAC3, and HDAC11 expressions, and to evaluate the correlation of HDAC1, HDAC2, HDAC3, and HDAC11 expressions with the survival rate in cHL patients. We retrospectively analyzed clinicopathological data of 28 patients who were diagnosed with cHL between August 2002 and March 2010. Immunohistochemistry was used to detect the expression of HDAC1, HDAC2, HDAC3, and HDAC11 in these patients. The results showed that HDAC1, HDAC3, and HDAC11 were expressed at a higher level in Hodgkin Reed-Sternberg cells, whereas HDAC2 was expressed at a lower level in Hodgkin Reed-Sternberg cells. The expression of HDAC2 had a relationship with pathological type (P=0.012). There was also a correlation between the expression of HDAC11 and the erythrocyte sedimentation rate (P=0.054). Other clinicopathological parameters had no significant correlation with the expression of HDAC1, HDAC2, HDAC3, and HDAC11 in terms of survival (P>0.05). The 10-year total survival rate by Cox multivariate analysis, after taking into account all clinical and pathologic factors, showed that bulky disease retained significance (P=0.028). Higher expression of HDAC1 predicted shorter progression-free survival and overall survival (OS) in cHL patients (P<0.05, in both cases), and higher expression of HDAC11 might be correlated with lower OS (P=0.05). The study showed that the expressions of HDAC2 and HDAC11 have a particular relationship with the pathologic subtype. Increased expression of HDAC1 was correlated negatively with progression-free survival and OS, and increased expression of HDAC11 had a borderline relationship with the OS rate in patients with cHL.
Collapse
|
35
|
Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci 2019; 20:E1110. [PMID: 30841513 PMCID: PMC6429312 DOI: 10.3390/ijms20051110] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.
Collapse
Affiliation(s)
- Himavanth Reddy Gatla
- Department of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| | - Prashanth Thevkar
- Department of Microbiology, New York University, New York, NY 10016, USA.
| | - Siddhartha Yavvari
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Sahithi Sukhavasi
- Center for Distance Learning, GITAM University, Visakhapatnam, AP 530045, India.
| | - Monish Ram Makena
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
36
|
HDAC5 promotes Mycoplasma pneumoniae-induced inflammation in macrophages through NF-κB activation. Life Sci 2019; 221:13-19. [DOI: 10.1016/j.lfs.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/29/2023]
|
37
|
Abstract
PURPOSE OF REVIEW Aberrant epigenetic changes in DNA methylation, histone marks, and noncoding RNA expression regulate the pathogenesis of many rheumatic diseases. The present article will review the recent advances in the epigenetic profile of inflammatory arthritis and discuss diagnostic biomarkers and potential therapeutic targets. RECENT FINDINGS Methylation signatures of fibroblast-like synoviocytes not only distinguish rheumatoid arthritis (RA) and osteoarthritis (OA), but also early RA from late RA or juvenile idiopathic arthritis. Methylation patterns are also specific to individual joint locations, which might explain the distribution of joint involvement in some rheumatic diseases. Hypomethylation in systemic lupus erythematosus (SLE) T cells is, in part, because of active demethylation and 5-hydroxymethylation. The methylation status of some genes in SLE is associated with disease severity and has potential as a diagnostic marker. An integrative analysis of OA methylome, transcriptome, and proteome in chondrocytes has identified multiple-evidence genes that might be evaluated for therapeutic potential. Class-specific histone deacetylase inhibitors are being evaluated for therapy in inflammatory arthritis. SUMMARY Disease pathogenesis is regulated by the interplay of genetics, environment, and epigenetics. Understanding how these mechanisms regulate cell function in health and disease has implications for individualized therapy.
Collapse
|
38
|
Liao W, Sun J, Liu W, Li W, Jia J, Ou F, Su K, Zheng Y, Zhang Z, Sun Y. HDAC10 upregulation contributes to interleukin 1β‐mediated inflammatory activation of synovium‐derived mesenchymal stem cells in temporomandibular joint. J Cell Physiol 2018; 234:12646-12662. [PMID: 30515817 DOI: 10.1002/jcp.27873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Wenting Liao
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Jiadong Sun
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Wenjing Liu
- Department of Prosthodontics Stomatological Hospital, Southern Medical University Guangzhou People's Republic of China
| | - Wenyu Li
- Department of Oncology The First Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Jiaxin Jia
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Farong Ou
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Kai Su
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Youhua Zheng
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Zhiguang Zhang
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| | - Yangpeng Sun
- Department of Oral and Maxillofacial Surgery Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
39
|
Reduced Activity of HDAC3 and Increased Acetylation of Histones H3 in Peripheral Blood Mononuclear Cells of Patients with Rheumatoid Arthritis. J Immunol Res 2018; 2018:7313515. [PMID: 30402512 PMCID: PMC6192092 DOI: 10.1155/2018/7313515] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant histone acetylation and deacetylation are increasingly thought to play important roles in the pathogenesis of rheumatoid arthritis (RA). However, limited data from studies about the activity of histone deacetylases (HDACs) and histone acetyltransferase (HAT) in RA are controversial. Those conflicting results may be caused by sample size, medication, and age- and sex-matched controls. The aim of this study is to investigate the expression and activity of class I HDACs (1-3.8) and their effects on histone acetylation in peripheral blood mononuclear cells (PBMCs) from RA patients. The expression of class I HDACs in PBMCs from RA patients was decreased in both mRNA and protein levels in comparison with HCs. The nuclear HAT activities were dramatically increased. Further, we found HDAC3 activity to be the most significantly reduced in overall reduction of HDACs in the RA group. The extent of total histone H3, but not H4, acetylation in PBMCs from RA patients was increased compared to that in healthy controls (HCs) (p < 0.01). In RA PBMCs, the activity and expression of class I HDACs are decreased, which is accompanied with enhanced HAT activity. An altered balance between HDAC and HAT activity was found in RA PBMCs.
Collapse
|
40
|
Romanick SS, Morrill K, Hostler A, Evans LW, Shen Y, Matsumura A, Piotrowski H, Silva LG, Faciola AP, Ferguson BS. HDAC1/2-mediated regulation of JNK and ERK phosphorylation in bovine mammary epithelial cells in response to TNF-α. J Cell Physiol 2018; 234:1088-1098. [PMID: 30203485 DOI: 10.1002/jcp.27265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/24/2018] [Indexed: 01/04/2023]
Abstract
Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.
Collapse
Affiliation(s)
- Samantha S Romanick
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, Nevada.,Department of Cellular and Molecular Pharmacology & Physiology, University of Nevada, Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, Nevada
| | - Kristen Morrill
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, Nevada
| | - Andrew Hostler
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, Nevada
| | - Levi W Evans
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, Nevada.,Department of Environmental Science & Health, University of Nevada, Reno, Nevada
| | - Yiqiu Shen
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Allison Matsumura
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Haleigh Piotrowski
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Lorrayny G Silva
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Antonio P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Bradley S Ferguson
- Department of Agriculture, Nutrition, & Veterinary Sciences, University of Nevada, Reno, Nevada.,Center for Cardiovascular Research, University of Nevada, Reno, Nevada
| |
Collapse
|
41
|
Panga V, Raghunathan S. A cytokine protein-protein interaction network for identifying key molecules in rheumatoid arthritis. PLoS One 2018; 13:e0199530. [PMID: 29928007 PMCID: PMC6013252 DOI: 10.1371/journal.pone.0199530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints. Though the current RA therapeutics such as disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs) and biologics can halt the progression of the disease, none of these would either dramatically reduce or cure RA. So, the identification of potential therapeutic targets and new therapies for RA are active areas of research. Several studies have discovered the involvement of cytokines in the pathogenesis of this disease. These cytokines induce signal transduction pathways in RA synovial fibroblasts (RASF). These pathways share many signal transducers and their interacting proteins, resulting in the formation of a signaling network. In order to understand the involvement of this network in RA pathogenesis, it is essential to identify the key transducers and their interacting proteins that are part of this network. In this study, based on a detailed literature survey, we have identified a list of 12 cytokines that induce signal transduction pathways in RASF. For these cytokines, we have built a signaling network using the protein-protein interaction (PPI) data that was obtained from public repositories such as HPRD, BioGRID, MINT, IntAct and STRING. By combining the network centrality measures with the gene expression data from the RA related microarrays that are available in the open source Gene Expression Omnibus (GEO) database, we have identified 24 key proteins of this signaling network. Two of these 24 are already drug targets for RA, and of the remaining, 12 have direct PPI links to some of the current drug targets of RA. Therefore, these key proteins seem to be crucial in the pathogenesis of RA and hence might be treated as potential drug targets.
Collapse
Affiliation(s)
- Venugopal Panga
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronics City Phase I, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srivatsan Raghunathan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronics City Phase I, Bengaluru, Karnataka, India
- * E-mail:
| |
Collapse
|
42
|
Afzali MF, Popichak KA, Burton LH, Klochak AL, Wilson WJ, Safe S, Tjalkens RB, Legare ME. A novel diindolylmethane analog, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane, inhibits the tumor necrosis factor-induced inflammatory response in primary murine synovial fibroblasts through a Nurr1-dependent mechanism. Mol Immunol 2018; 101:46-54. [PMID: 29870816 DOI: 10.1016/j.molimm.2018.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/10/2018] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The progression of rheumatoid arthritis involves the thickening of the synovial lining due to the proliferation of fibroblast-like synoviocytes (FLS) and infiltration by inflammatory cells. Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine involved in progression of the disease. Under rheumatoid conditions, FLS express the tumor necrosis factor (TNF)-recognition complex (TNFR1, TNFR2, VCAM-1 and ICAM-1), which induces local macrophage activation and leads to downstream nuclear factor κB (NF-κB) signaling. The NF-κB-regulated inflammatory gene, cyclooxygenase (COX), increases synthesis of prostaglandins that contribute to the propagation of inflammatory damage within the joint. Because the nuclear orphan receptor, NR4A2 (Nurr1), can negatively regulate NF-κB-dependent inflammatory gene expression in macrophages, we postulated that activation of this receptor by the Nurr1 ligand 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) would modulate inflammatory gene expression in synovial fibroblasts by inhibiting NF-κB. Treatment with C-DIM12 suppressed TNFα-induced expression of adhesion molecules and NF-κB regulated genes in primary synovial fibroblasts including vascular adhesion molecule 1 (VCAM-1), PGE2 and COX-2. Immunofluorescence studies indicated that C-DIM12 did not prevent translocation of p65 and stabilized nuclear localization of Nurr1 in synovial fibroblasts. Knockdown of Nurr1 expression by RNA interference prevented the inhibitory effects of C-DIM12 on inflammatory gene expression, indicating that the anti-inflammatory effects of this compound are Nurr1-dependent. Collectively, these data suggest that this receptor may be a viable therapeutic target in RA.
Collapse
Affiliation(s)
- Maryam F Afzali
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA
| | - Katriana A Popichak
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO, USA
| | - Lindsey H Burton
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA
| | - Anna L Klochak
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA
| | - William J Wilson
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Ronald B Tjalkens
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA
| | - Marie E Legare
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Center for Environmental Medicine, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
43
|
Sellmer A, Stangl H, Beyer M, Grünstein E, Leonhardt M, Pongratz H, Eichhorn E, Elz S, Striegl B, Jenei-Lanzl Z, Dove S, Straub RH, Krämer OH, Mahboobi S. Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors. J Med Chem 2018; 61:3454-3477. [DOI: 10.1021/acs.jmedchem.7b01593] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Elisabeth Grünstein
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Michel Leonhardt
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Herwig Pongratz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Emerich Eichhorn
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Sigurd Elz
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Birgit Striegl
- Technical University of Applied Sciences (OTH) Regensburg, 93053 Regensburg, Germany
- Regensburg Center of Biomedical Engineering (RCBE), OTH and University Regensburg, 93053 Regensburg, Germany
| | - Zsuzsa Jenei-Lanzl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital, Friedrichsheim gGmbH, 60528 Frankfurt/Main, Germany
| | - Stefan Dove
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| | - Rainer H. Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, 93042 Regensburg, Germany
| | - Oliver H. Krämer
- Institute of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
44
|
Zhang C, Wang X, Zhang E, Yang L, Yuan H, Tu W, Zhang H, Yin Z, Shen W, Chen X, Zhang Y, Ouyang H. An epigenetic bioactive composite scaffold with well-aligned nanofibers for functional tendon tissue engineering. Acta Biomater 2018; 66:141-156. [PMID: 28963019 DOI: 10.1016/j.actbio.2017.09.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
Poor tendon repair is often a clinical challenge due to the lack of ideal biomaterials. Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. Here, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), an HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. We found that TSA incorporated aligned fibers of PLLA had an additive effect in directing tenogenic differentiation. Moreover, the in situ implantation study in rat model further confirmed that A-TSA scaffold promoted the structural and mechanical properties of the regenerated Achilles tendon. This study demonstrated that HDAC was involved in the teno-differentiation with aligned fiber topography, and the combination of HDAC with aligned topography might be a more efficient strategy to promote tenogenesis of stem cells. STATEMENT OF SIGNIFICANCE Electrospun aligned fibers, resembling the ultrastructure of tendon, have been previously reported to promote tenogenesis. However, the underlying mechanism is unclear and the aligned fibers alone are not capable enough to commit teno-differentiation of stem cells. The uniqueness of our studies are as follows, based on our observation of reduced expression of histone deacetylases (HDACs) in tendon stem/progenitor cells (TSPCs) cultured on aligned fibers, we proposed a strategy to enhance the tenogenesis effect of aligned fibers by using a small molecule Trichostatin A (TSA), a HDAC inhibitor. Such a TSA-laden poly (l-lactic acid) (PLLA) aligned fiber (A-TSA) scaffold was successfully fabricated by a stable jet electrospinning method, and demonstrated its sustained capability in releasing TSA. The incorporation and subsequent release of bioactive small molecule TSA into electrospun aligned fibers allows a controllable manner for both biochemical and physical regulation of tenogenesis of stem cells both in vitro and in vivo. Collectively, the present study provides a model of "translating the biological knowledge learned from cell-material interaction into optimizing biomaterials (from Biomat-to-Biomat)".
Collapse
Affiliation(s)
- Can Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Institute of Bionanotechnology and Tissue Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Erchen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Long Yang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Huihua Yuan
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wenjing Tu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Huilan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China.
| | - Yanzhong Zhang
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou 310058, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Zhang K, Liu G, Goldys EM. Robust immunosensing system based on biotin-streptavidin coupling for spatially localized femtogram mL -1 level detection of interleukin-6. Biosens Bioelectron 2017; 102:80-86. [PMID: 29127899 DOI: 10.1016/j.bios.2017.11.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 10/18/2022]
Abstract
Detection of a very low amount of cytokines such as interleukin-6 (IL-6) in clinical fluids is important in biomedical research and clinical applications. Here, we demonstrate spatially-localized ultrasensitive (femtogram mL-1) level detection of IL-6 in serum and in cell culture media. Our approach is based on a sandwich immunosensor fabricated on the surface of an optical fibre. Firstly, the biotinylated IL-6 capture antibody was immobilized on the fibre surface by biotin-streptavidin coupling. Then the fabricated fibre was used for capturing IL-6 followed by exposure to detection antibody which was labeled with the fluorescent magnetic nanoparticles to report the signal. A linear relationship between IL-6 concentration and the fluorescence signal was obtained in the range from 0.4pgmL-1 to 400pgmL-1 of IL-6, with the limit of detection down to 0.1pgmL-1. In addition, this optical fibre sensor was successfully applied for the localized detection of IL-6 with the spatial resolution of 200µm and a sample volume of 1µL. Finally, the performance of the fibre sensor was demonstrated by detection of IL-6 secreted by BV-2 cells with comparable performance of the conventional enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Kaixin Zhang
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia
| | - Guozhen Liu
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia; Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Ewa M Goldys
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia.
| |
Collapse
|
46
|
HADC5 deacetylates MKL1 to dampen TNF-α induced pro-inflammatory gene transcription in macrophages. Oncotarget 2017; 8:94235-94246. [PMID: 29212224 PMCID: PMC5706870 DOI: 10.18632/oncotarget.21670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022] Open
Abstract
Macrophage-dependent inflammatory response on the one hand functions as a key line of defense in host immunity but on the other hand underlies the pathogenesis of a host of human pathologies when aberrantly activated. Our previous investigations have led to the identification of megakaryocytic leukemia 1 (MKL1) as a key co-factor of NF-κB/p65 participating in TNF-α induced pro-inflammatory transcription in macrophages. How post-translational modifications contribute to the modulation of MKL1 activity remains an underexplored subject matter. Here we report that the lysine deacetylase HDAC5 interacts with and deacetylates MKL1 in cells. TNF-α treatment down-regulates HDAC5 expression and expels HDAC5 from the promoters of pro-inflammatory genes in macrophages. In contrast, over-expression of HDAC5 attenuates TNF-α induced pro-inflammatory transcription. Mechanistically, HDAC5-mediated MKL1 deacetylation disrupts the interaction between MKL1 and p65. In addition, deacetylation of MKL1 by HDAC5 blocks its nuclear translocation in response to TNF-α treatment. In conclusion, our work has identified an important pathway that contributes to the regulation of pro-inflammatory response in macrophages.
Collapse
|
47
|
Grabiec AM, Potempa J. Epigenetic regulation in bacterial infections: targeting histone deacetylases. Crit Rev Microbiol 2017; 44:336-350. [PMID: 28971711 DOI: 10.1080/1040841x.2017.1373063] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogens have developed sophisticated strategies to evade the immune response, among which manipulation of host cellular epigenetic mechanisms plays a prominent role. In the last decade, modulation of histone acetylation in host cells has emerged as an efficient strategy of bacterial immune evasion. Virulence factors and metabolic products of pathogenic microorganisms alter expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to suppress transcription of host defense genes through epigenetic changes in histone acetylation marks. This new avenue of pathogen-host interactions is particularly important in light of introduction of HDAC inhibitors into clinical practice. Considerable effort is currently being applied to better understand the effects of HDAC inhibitors on the quality of immune responses to pathogens and to characterize the therapeutic potential of these compounds in microbial infections. In this review, we will discuss the recently discovered mechanisms utilized by bacteria to facilitate their survival within infected hosts through subversion of the host acetylation system and the effects of acetylation modulators, including HDAC inhibitors and bromodomain-containing BET protein inhibitors, on innate immune responses against microbial pathogens. Integration of these two lines of experimental evidence provides critical information on the perspectives of epigenetic therapies targeting protein acetylation in infectious diseases.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- a Department of Microbiology , Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| | - Jan Potempa
- a Department of Microbiology , Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland.,b Department of Oral Immunology and Infectious Diseases , University of Louisville School of Dentistry , Louisville , KY , USA
| |
Collapse
|
48
|
Ballestar E, Li T. New insights into the epigenetics of inflammatory rheumatic diseases. Nat Rev Rheumatol 2017; 13:593-605. [DOI: 10.1038/nrrheum.2017.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Tsou PS, Wren JD, Amin MA, Schiopu E, Fox DA, Khanna D, Sawalha AH. Histone Deacetylase 5 Is Overexpressed in Scleroderma Endothelial Cells and Impairs Angiogenesis via Repression of Proangiogenic Factors. Arthritis Rheumatol 2017; 68:2975-2985. [PMID: 27482699 DOI: 10.1002/art.39828] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/26/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Vascular dysfunction represents a disease-initiating event in systemic sclerosis (SSc; scleroderma). Results of recent studies suggest that epigenetic dysregulation impairs normal angiogenesis and can result in abnormal patterns of blood vessel growth. Histone deacetylases (HDACs) control endothelial cell (EC) proliferation and regulate EC migration. Specifically, HDAC-5 appears to be antiangiogenic. This study was undertaken to test whether HDAC-5 contributes to impaired angiogenesis in SSc by repressing proangiogenic factors in ECs. METHODS Dermal ECs were isolated from patients with diffuse cutaneous SSc and healthy controls. Angiogenesis was assessed using an in vitro Matrigel tube formation assay. An assay for transposase-accessible chromatin using sequencing (ATAC-seq) was performed to assess and localize the genome-wide effects of HDAC5 knockdown on chromatin accessibility. RESULTS The expression of HDAC5 was significantly increased in ECs from patients with SSc compared to healthy control ECs. Silencing of HDAC5 in SSc ECs restored normal angiogenesis. HDAC5 knockdown followed by ATAC-seq assay in SSc ECs identified key HDAC5-regulated genes involved in angiogenesis and fibrosis, such as CYR61, PVRL2, and FSTL1. Simultaneous knockdown of HDAC5 in conjunction with either CYR61, PVRL2, or FSTL1 inhibited angiogenesis in SSc ECs. Conversely, overexpression of these genes individually led to an increase in tube formation as assessed by Matrigel assay, suggesting that these genes play functional roles in the impairment of angiogenesis in SSc. CONCLUSION Several novel HDAC5-regulated target genes associated with impaired angiogenesis were identified in SSc ECs by ATAC-seq. The results of this study provide a potential link between epigenetic regulation and impaired angiogenesis in SSc, and identify a novel mechanism for the dysregulated angiogenesis that characterizes this disease.
Collapse
Affiliation(s)
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | | | | | | | | | | |
Collapse
|
50
|
Angiolilli C, Baeten DL, Radstake TR, Reedquist KA. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 2017; 9:447-461. [DOI: 10.2217/epi-2016-0136] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the idea that aberrancies in epigenetic processes contribute to the onset and progression of human immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). Epigenetic regulators of histone tail modifications play a role in chromatin accessibility and transcriptional responses to inflammatory stimuli. Among these, histone deacetylases (HDACs) regulate the acetylation status of histones and nonhistone proteins, essential for immune responses. Broad-spectrum HDAC inhibitors are well-known anti-inflammatory agents and reduce disease severity in animal models of arthritis; however, selective HDAC inhibitors remain poorly studied. In this review, we describe emerging findings regarding the aberrant acetyl code in RA and other rheumatic disorders which may help identify not only novel diagnostic and prognostic clinical biomarkers for RA, but also new targets for epigenetic pharmacological applications.
Collapse
Affiliation(s)
- Chiara Angiolilli
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominique L Baeten
- Amsterdam Rheumatology & Immunology Center, Department of Clinical Immunology & Rheumatology, Department of Experimental Immunology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timothy R Radstake
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kris A Reedquist
- Laboratory of Translational Immunology & Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|