1
|
Kan AKC, Tang WT, Li PH. Helper T cell subsets: Development, function and clinical role in hypersensitivity reactions in the modern perspective. Heliyon 2024; 10:e30553. [PMID: 38726130 PMCID: PMC11079302 DOI: 10.1016/j.heliyon.2024.e30553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Helper T cells are traditionally classified into T helper 1 (TH1) and T helper 2 (TH2). The more recent discoveries of T helper 17 (TH17), follicular helper T cells (TFH) and regulatory T cells (Treg) enhanced our understanding on the mechanisms of immune function and hypersensitivity reactions, which shaped the modern perspective on the function and role of these different subsets of helper T cells in hypersensitivity reactions. Each subset of helper T cells has characteristic roles in different types of hypersensitivity reactions, hence giving rise to the respective characteristic clinical manifestations. The roles of helper T cells in allergic contact dermatitis (TH1-mediated), drug rash with eosinophilia and systemic symptoms (DRESS) syndrome (TH2-mediated), and acute generalised exanthematous pustulosis (AGEP) (TH17-mediated) are summarised in this article, demonstrating the correlation between the type of helper T cell involved and the clinical features. TFH plays crucial roles in antibody class-switch recombination; they may be implicated in antibody-mediated hypersensitivity reactions, but further research is warranted to delineate their exact pathogenic roles. The helper T cell subsets and their specific cytokine profiles implicated in different hypersensitivity reactions could be potential treatment targets by biologics, but more clinical trials are warranted to establish their clinical effectiveness.
Collapse
Affiliation(s)
- Andy Ka Chun Kan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Wang Tik Tang
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| | - Philip H. Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
2
|
Mauch RM, Jensen PØ, Qvist T, Kolpen M, Moser C, Pressler T, Nolasco da Silva MT, Høiby N. Adaptive Immune Response to Mycobacterium abscessus Complex (MABSC) in Cystic Fibrosis and the Implications of Cross-Reactivity. Front Cell Infect Microbiol 2022; 12:858398. [PMID: 35548464 PMCID: PMC9084186 DOI: 10.3389/fcimb.2022.858398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background We aimed to characterise the adaptive immune response to Mycobacterium abscessus complex (MABSC) and its cross-reactivity with Mycobacterium avium complex (MAC) and Mycobacterium bovis (Bacille Calmette-Guérin, BCG) in cystic fibrosis (CF) patients and non-CF controls in terms of lymphocyte proliferation and immunophenotyping, cytokine production and anti-MABSC IgG plasma levels. Methods In this cross-sectional analysis, peripheral blood mononuclear cells (PBMC) from CF patients with MABSC (CF/MABSC, n=12), MAC infection history (CF/MAC, n=5), no NTM history (CF/NTM-, n=15), BCG-vaccinated (C/BCG+, n=9) and non-vaccinated controls (C/BCG-, n=8) were cultured for four days under stimulation with an in-house MABSC lysate and we used flow cytometry to assess lymphocyte proliferation (given by lymphoblast formation) and immunophenotypes. Cytokine production was assessed after overnight whole blood stimulation with the same lysate, and anti-MABSC IgG levels were measured in plasma from non-stimulated blood. Results All CF/MABSC patients had increased CD3+ and CD19+ lymphoblast formation upon PBMC stimulation with MABSC lysate. There was a higher rate of CD3+ than CD19+ lymphoblasts, predominance of CD4+ over CD8+ lymphoblasts, IFN-γ, TNF-α and IL-2 production, low production of the Th17-associated IL-17, and discrete or no production of Th2/B cell-associated cytokines soluble CD40 ligand (CD40L), IL-4 and IL-5, indicating a Th1-dominated phenotype and infection restricted to the lungs. A similar pattern was seen in C/BCG+ controls, and CF/MAC patients, pointing to cross-reactivity. MABSC-IgG levels were higher in CF/MABSC patients than in both control groups, but not CF/NTM- patients, most of whom also had CD3+ and/or CD19+ lymphoblast formation upon PBMC stimulation, indicating previous exposure, subclinical or latent infection with MABSC or other NTM. Conclusion The anti-MABSC immune response is Th1-skewed and underlines the cross-reactivity in the anti-mycobacterial immune response. The results, together with published clinical observations, indicate that BCG vaccination may cross-react against NTM in CF patients, and this should be investigated. Due to cross-reactivity, it would also be interesting to investigate whether a combination of MABSC-induced cytokine production by blood cells and anti-MABSC IgG measurement can be useful for identifying latent or subclinical infection both with MABSC and other NTM in CF patients.
Collapse
Affiliation(s)
- Renan Marrichi Mauch
- Center for Investigation in Pediatrics, School of Medical Sciences, University of Campinas, Campinas, Brazil.,Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark.,Institute of Inflammation Research, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Tavs Qvist
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | - Mette Kolpen
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Adult Clinic , Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark
| | | | - Niels Høiby
- Clinical Microbiology Department, Rigshospitalet (Copenhagen University Hospital), Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences (Panum Institute), University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Alam A, Abubaker Bagabir H, Sultan A, Siddiqui MF, Imam N, Alkhanani MF, Alsulimani A, Haque S, Ishrat R. An Integrative Network Approach to Identify Common Genes for the Therapeutics in Tuberculosis and Its Overlapping Non-Communicable Diseases. Front Pharmacol 2022; 12:770762. [PMID: 35153741 PMCID: PMC8829040 DOI: 10.3389/fphar.2021.770762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is the leading cause of death from a single infectious agent. The estimated total global TB deaths in 2019 were 1.4 million. The decline in TB incidence rate is very slow, while the burden of noncommunicable diseases (NCDs) is exponentially increasing in low- and middle-income countries, where the prevention and treatment of TB disease remains a great burden, and there is enough empirical evidence (scientific evidence) to justify a greater research emphasis on the syndemic interaction between TB and NCDs. The current study was proposed to build a disease-gene network based on overlapping TB with NCDs (overlapping means genes involved in TB and other/s NCDs), such as Parkinson’s disease, cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and lung cancer. We compared the TB-associated genes with genes of its overlapping NCDs to determine the gene-disease relationship. Next, we constructed the gene interaction network of disease-genes by integrating curated and experimentally validated interactions in humans and find the 13 highly clustered modules in the network, which contains a total of 86 hub genes that are commonly associated with TB and its overlapping NCDs, which are largely involved in the Inflammatory response, cellular response to cytokine stimulus, response to cytokine, cytokine-mediated signaling pathway, defense response, response to stress and immune system process. Moreover, the identified hub genes and their respective drugs were exploited to build a bipartite network that assists in deciphering the drug-target interaction, highlighting the influential roles of these drugs on apparently unrelated targets and pathways. Targeting these hub proteins by using drugs combination or drug repurposing approaches will improve the clinical conditions in comorbidity, enhance the potency of a few drugs, and give a synergistic effect with better outcomes. Thus, understanding the Mycobacterium tuberculosis (Mtb) infection and associated NCDs is a high priority to contain its short and long-term effects on human health. Our network-based analysis opens a new horizon for more personalized treatment, drug-repurposing opportunities, investigates new targets, multidrug treatment, and can uncover several side effects of unrelated drugs for TB and its overlapping NCDs.
Collapse
Affiliation(s)
- Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Armiya Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Nikhat Imam
- Department of Mathematics, Institute of Computer Science and Information Technology, Magadh University, Bodh Gaya, India
| | - Mustfa F Alkhanani
- Emergency Service Department, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
5
|
Sheikhpour M, Shokrgozar MA, Biglari A, Pornour M, Abdolrahimi F, Poorazar Dizaji S, Khanipour S, Masoumi M, Ebrahimzadeh N, Abolfathi H. Gene Expression and In Vitro Pharmacogenetic Studies of Dopamine and Serotonin Gene Receptors in Tuberculosis. TANAFFOS 2021; 20:126-133. [PMID: 34976083 PMCID: PMC8710225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND Dopamine and serotonin receptors are present in lymphocytes, macrophages, and neutrophils, and have a mediating role in the immune system to respond to infections, including bacterial tuberculosis. MATERIALS AND METHODS In this study, at first, the changes in the expression pattern of 5 dopamine and 2 serotonin (5HTR2B & 5HTR2C) gene receptors were examined in the two groups of healthy and Tuberculosis patients using Real-Time PCR. Then pharmacogenetic studies aimed to induce autophagy on a lung monocyte cell line (THP1) infected with the standard strain of Mycobacterium tuberculosis (H37RV) were performed. Stimulation of the pro-inflammatory pathway by secreting cytokines before and after drug efficacy was investigated. RESULTS According to the result, dopamine receptor 2 genes showed decreased expression in patients with tuberculosis compared to normal individuals, and serotonin receptor genes showed increased expression. Additionally, with the effects of Bromocriptine and Fluoxetine, pro-inflammatory pathways were activated in macrophages infected with H37RV, and ELISA results showed that the levels of IL6 and TNFα secreted in these cells were significantly increased. CONCLUSION According to the results, these receptors agonists or antagonists can activate the autophagy pathway to kill TB bacteria.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran,,Correspondence to: Sheikhpour M, Address: Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran, Email address:
| | - Mohammad Ali Shokrgozar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Zanjan University, Zanjan, Iran
| | | | - Majid Pornour
- Photo Healing and Regeneration Research Group, Medical Laser Research Center, ACECR, Tehran, Iran
| | - Farid Abdolrahimi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shahin Poorazar Dizaji
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sharareh Khanipour
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nayereh Ebrahimzadeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hanieh Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Ullah I, Bibi S, Ul Haq I, Safia, Ullah K, Ge L, Shi X, Bin M, Niu H, Tian J, Zhu B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01 E and MVA85A. Front Immunol 2020; 11:1806. [PMID: 33133057 PMCID: PMC7578575 DOI: 10.3389/fimmu.2020.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.
Collapse
Affiliation(s)
- Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Shaheen Bibi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China.,School of Life Science, Northwest Normal University, Lanzhou, China
| | - Ijaz Ul Haq
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Safia
- Pakistan Institute of Community Ophthalmology (PICO), Hayatabad Medical Complex, KMU, Peshawar, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xintong Shi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Ma Bin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Toll like-receptor agonist Pam 3Cys modulates the immunogenicity of liposomes containing the tuberculosis vaccine candidate H56. Med Microbiol Immunol 2020; 209:163-176. [PMID: 32020284 PMCID: PMC7125073 DOI: 10.1007/s00430-020-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
Abstract
A major roadblock in the development of novel vaccines is the formulation and delivery of the antigen. Liposomes composed of a dimethyldioctadecylammonium (DDA) backbone and the adjuvant trehalose-6-6-dibehenate (TDB, termed "cationic adjuvant formulation (CAF01)", promote immunogenicity and protective efficacy of vaccines, most notably against infection with Mycobacterium tuberculosis. Specifically, the multicomponent antigen H56 delivered by CAF01 protects against tuberculosis in mice. Here we investigated whether the inclusion of immune-modulatory adjuvants into CAF01 modulates the immunogenicity of H56/CAF01 in vitro and in vivo. Based on our recent findings we selected the active sequence of the mycobacterial 19 kDa lipoprotein, Pam3Cys, which interacts with Toll like receptor 2 to induce an antimicrobial pathway. H56/CAF01-Pam3Cys liposomes were characterized for Pam3Cys incorporation, size, toxicity and activation of primary human macrophages. Macrophages efficiently take up H56/CAF01-Pam3Cys and trigger the release of significantly higher levels of TNF, IL-12 and IL-10 than H56/CAF01 alone. To evaluate the immunogenicity in vivo, we immunized mice with H56/CAF01-Pam3Cys and measured the release of IFN-γ and IL-17A by lymph node cells and spleen cells. While the antigen-specific production of IFN-γ was reduced by inclusion of Pam3Cys into H56/CAF01, the levels of IL-17A remained unchanged. In agreement with this finding, the concentration of the IFN-γ-associated IgG2a antibodies in the serum was lower than in H56/CAF01 immunized animals. These results provide proof of concept that Toll like-receptor agonist can be included into liposomes to modulate immune responses. The discordant results between the in vitro studies with human macrophages and in vivo studies in mice highlight the relevance and complexity of comparing immune responses in different species.
Collapse
|
8
|
Vecchione MB, Laufer N, Sued O, Corti M, Salomon H, Quiroga MF. 7-oxo-DHEA enhances impaired M. tuberculosis-specific T cell responses during HIV-TB coinfection. J Biomed Sci 2020; 27:20. [PMID: 31906962 PMCID: PMC6943934 DOI: 10.1186/s12929-019-0604-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/19/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), affecting approximately one third of the world's population. Development of an adequate immune response will determine disease progression or progress to chronic infection. Risk of developing TB among human immunodeficiency virus (HIV)-coinfected patients (HIV-TB) is 20-30 times higher than those without HIV infection, and a synergistic interplay between these two pathogens accelerates the decline in immunological functions. TB treatment in HIV-TB coinfected persons is challenging and it has a prolonged duration, mainly due to the immune system failure to provide an adequate support for the therapy. Therefore, we aimed to study the role of the hormone 7-oxo-dehydroepiandrosterone (7-OD) as a modulator of anti-tuberculosis immune responses in the context of HIV-TB coinfection. METHODS A cross-sectional study was conducted among HIV-TB patients and healthy donors (HD). We characterized the ex vivo phenotype of CD4 + T cells and also evaluated in vitro antigen-specific responses by Mtb stimulation of peripheral blood mononuclear cells (PBMCs) in the presence or absence of 7-OD. We assessed lymphoproliferative activity, cytokine production and master transcription factor profiles. RESULTS Our results show that HIV-TB patients were not able to generate successful anti-tubercular responses in vitro compared to HD, as reduced IFN-γ/IL-10 and IFN-γ/IL-17A ratios were observed. Interestingly, treatment with 7-OD enhanced Th1 responses by increasing Mtb-induced proliferation and the production of IFN-γ and TNF-α over IL-10 levels. Additionally, in vitro Mtb stimulation augmented the frequency of cells with a regulatory phenotype, while 7-OD reduced the proportion of these subsets and induced an increase in CD4 + T-bet+ (Th1) subpopulation, which is associated with clinical data linked to an improved disease outcome. CONCLUSIONS We conclude that 7-OD modifies the cytokine balance and the phenotype of CD4 + T cells towards a more favorable profile for mycobacteria control. These results provide new data to delineate novel treatment approaches as co-adjuvant for the treatment of TB.
Collapse
Affiliation(s)
- María Belén Vecchione
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Natalia Laufer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Omar Sued
- Área de Investigaciones Clínicas, Fundación Huésped, Buenos Aires, Argentina
| | - Marcelo Corti
- División "B" VIH/Sida, Hospital Francisco J. Muñiz, Buenos Aires, Argentina
| | - Horacio Salomon
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Maria Florencia Quiroga
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina.
| |
Collapse
|
9
|
Jensen K, Stevens JM, Glass EJ. Interleukin 10 knock-down in bovine monocyte-derived macrophages has distinct effects during infection with two divergent strains of Mycobacterium bovis. PLoS One 2019; 14:e0222437. [PMID: 31527895 PMCID: PMC6748433 DOI: 10.1371/journal.pone.0222437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis (TB), a cattle disease of global importance. M. bovis infects bovine macrophages (Mø) and subverts the host cell response to generate a suitable niche for survival and replication. We investigated the role of the anti-inflammatory cytokine interleukin (IL) 10 during in vitro infection of bovine monocyte-derived Mø (bMDM) with two divergent UK strains of M. bovis, which differentially modulate expression of IL10. The use of IL10-targeting siRNA revealed that IL10 inhibited the production of IL1B, IL6, tumour necrosis factor (TNF) and interferon gamma (IFNG) during infection of bMDM with the M. bovis strain G18. In contrast, IL10 only regulated a subset of these genes; TNF and IFNG, during infection with the M. bovis reference strain AF2122/97. Furthermore, nitric oxide (NO) production was modulated by IL10 during AF2122/97 infection, but not at the nitric oxide synthase 2 (NOS2) mRNA level, as observed during G18 infection. However, IL10 was found to promote survival of both M. bovis strains during early bMDM infection, but this effect disappeared after 24 h. The role of IL10-induced modulation of TNF, IFNG and NO production in M. bovis survival was investigated using siRNA targeting TNF, IFNG receptor 1 (IFNGR1) and NOS2. Knock-down of these genes individually did not promote survival of either M. bovis strain and therefore modulation of these genes does not account for the effect of IL10 on M. bovis survival. However, TNF knock-down was found to be detrimental to the survival of the M. bovis strain G18 during early infection. The results provide further evidence for the importance of IL10 during M. bovis infection of Mø. Furthermore, they highlight M. bovis strain specific differences in the interaction with the infected bMDM, which may influence the course of infection and progression of bovine TB.
Collapse
Affiliation(s)
- Kirsty Jensen
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
- * E-mail:
| | - Joanne M. Stevens
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | - Elizabeth J. Glass
- Division of Infection & Immunity, The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
10
|
Ji Z, Jian M, Chen T, Luo L, Li L, Dai X, Bai R, Ding Z, Bi Y, Wen S, Zhou G, Abi ME, Liu A, Bao F. Immunogenicity and Safety of the M72/AS01 E Candidate Vaccine Against Tuberculosis: A Meta-Analysis. Front Immunol 2019; 10:2089. [PMID: 31552037 PMCID: PMC6735267 DOI: 10.3389/fimmu.2019.02089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Currently, there is no tuberculosis (TB) vaccine recommended for use in latent TB infections and healthy adults. M72/AS01E is a new peptide vaccine currently under development, which may improve protection against TB disease. This vaccine has been investigated in several phase I/II clinical trials. We conducted a meta-analysis to clarify the immunogenicity and safety of the M72/AS01E peptide vaccine. Methods: We searched the PubMed, Embase, and Cochrane Library databases for published studies (until December 2018) investigating this candidate vaccine. A meta-analysis was performed using the standard methods and procedures established by the Cochrane Collaboration. Results: Seven eligible studies—involving 4,590 participants—were selected. The analysis revealed a vaccine efficacy was 57.0%, significantly higher abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.58] in the vaccine group vs. the control group, the highest seropositivity rate [relative risk (RR) = 74.87] at 1 month after the second dose of vaccination (Day 60), and sustained elevated anti-M72 IgG geometric mean concentration at study end (Day 210) (SWD = 4.94). Compared with the control, participants who received vaccination were at increased risk of local injection site redness [relative risk (RR) = 5.99], local swelling (RR = 7.57), malaise (RR = 3.01), and fatigue (RR = 3.17). However, they were not at increased risk of headache (RR = 1.57), myalgia (RR = 0.97), and pain (RR = 3.02). Conclusion: The M72/AS01E vaccine against TB is safe and effective. Although the vaccine is associated with a mild adverse reaction, it is promising for the prevention of TB in healthy adults.
Collapse
Affiliation(s)
- Zhenhua Ji
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Xiting Dai
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Ruolan Bai
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Zhe Ding
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yunfeng Bi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
High-density lipoprotein suppresses tumor necrosis factor alpha production by mycobacteria-infected human macrophages. Sci Rep 2018; 8:6736. [PMID: 29712918 PMCID: PMC5928146 DOI: 10.1038/s41598-018-24233-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/23/2018] [Indexed: 12/23/2022] Open
Abstract
Immune responses to parasitic pathogens are affected by the host physiological condition. High-density lipoprotein (HDL) and low-density lipoprotein (LDL) are transporters of lipids between the liver and peripheral tissues, and modulate pro-inflammatory immune responses. Pathogenic mycobacteria are parasitic intracellular bacteria that can survive within macrophages for a long period. Macrophage function is thus key for host defense against mycobacteria. These basic facts suggest possible effects of HDL and LDL on mycobacterial diseases, which have not been elucidated so far. In this study, we found that HDL and not LDL enhanced mycobacterial infections in human macrophages. Nevertheless, we observed that HDL remarkably suppressed production of tumor necrosis factor alpha (TNF-α) upon mycobacterial infections. TNF-α is a critical host-protective cytokine against mycobacterial diseases. We proved that toll-like receptor (TLR)-2 is responsible for TNF-α production by human macrophages infected with mycobacteria. Subsequent analysis showed that HDL downregulates TLR2 expression and suppresses its intracellular signaling pathways. This report demonstrates for the first time the substantial action of HDL in mycobacterial infections to human macrophages.
Collapse
|
12
|
Lim CH, Chen HH, Chen YH, Chen DY, Huang WN, Tsai JJ, Hsieh TY, Hsieh CW, Hung WT, Lin CT, Lai KL, Tang KT, Tseng CW, Chen YM. The risk of tuberculosis disease in rheumatoid arthritis patients on biologics and targeted therapy: A 15-year real world experience in Taiwan. PLoS One 2017; 12:e0178035. [PMID: 28570568 PMCID: PMC5453436 DOI: 10.1371/journal.pone.0178035] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to determine the risk of tuberculosis (TB) disease in biologics users among rheumatoid arthritis (RA) patients in Taiwan from 2000 to 2015. This retrospective cohort study enrolled adult RA patients initiated on first biologics at Taichung Veterans General Hospital. TB risks were determined as hazard ratio (HR) with 95% confidence interval (CI) using cox regression. A total of 951 patients were recruited; etanercept (n = 443), adalimumab (n = 332), abatacept (n = 74), golimumab (n = 60), tocilizumab (n = 31) and tofacitinib (n = 11). Twenty-four TB cases were identified; 13 in etanercept and 11 in adalimumab group with the TB incidence rate of 889.3/ 100,000 and 1055.6/ 100,000 patient-years respectively. There was no significant difference in TB risk between adalimumab and etanercept users with an incidence rate ratio of 1.27 (p = 0.556 by Poisson model). Significant 2-year TB risk factors included elderly patient >65 year-old (HR: 2.72, 95% CI: 1.06–6.99, p = 0.037), history of TB (HR: 6.24, 95% CI: 1.77–22.00, p = 0.004) and daily glucocorticoid use ≥5mg (HR:5.01, 95% CI: 1.46–17.21, p = 0.010). Sulfasalazine treatment appeared to be protective (HR: 0.32, 95% CI: 0.11–0.97, p = 0.043). Risk management plan (RMP) for TB before initiation of biologics commenced in 2012. The 2-year TB risks after RMP was compared with that before 2012 (HR:0.67, 95% CI: 0.30–1.49, p = 0.323). Elderly RA patients with a history of previous TB infection and concomitant moderate dose glucocorticoid were at higher risk of TB disease. Concurrent sulfasalazine treatment appeared to be a protective factor against TB disease.
Collapse
Affiliation(s)
- Chong Hong Lim
- Rheumatology Unit, Department of Internal Medicine, Pulau Pinang General Hospital, Georgetown, Malaysia
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hsing Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Der-Yuan Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, Chung-Hsing University, Taichung, Taiwan
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Wen-Nan Huang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Ji Tsai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsu-Yi Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Wei Hsieh
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ching-Tsai Lin
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Wei Tseng
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
13
|
Korb VC, Phulukdaree A, Lalloo UG, Chuturgoon AA, Moodley D. TB/HIV pleurisy reduces Th17 lymphocyte proportion independent of the cytokine microenvironment. Tuberculosis (Edinb) 2016; 99:92-99. [PMID: 27450010 DOI: 10.1016/j.tube.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/01/2016] [Indexed: 12/29/2022]
Abstract
T-helper (Th) 17 cells are a pro-inflammatory subset of CD4(+) effector T-cells critical in mucosal immunity. Imbalances in Th17 cell proportion have been implicated in the pathogenesis of several diseases; however, this has not been adequately explored in tuberculosis (TB) and human immunodeficiency virus (HIV) co-infection. Since Th17 cells are predominantly mucosally associated, we assessed Th17 proportion and associated microenvironment in pleural effusions from patients co-infected with TB/HIV. Our results show that TB(+)HIV(+) pleurisy results in significantly reduced frequency of CD4(+)IL-17(+)RORC(+)STAT3(+) Th17 cells compared to TB(-)HIV(-)ex vivo (p = 0.0054) and was confirmed in conditioned media studies in vitro (p = 0.0001). This was not associated with alterations in Th17 polarising cytokines IL-6, IL-21 and IL-23 or changes in Th17 signature cytokines IL-17A and F. However, the mRNA expression of Th17 signalling molecules, IL-6 (p = 0.0022), IL-6R (p = 0.0247), IL-1β (p = 0.0022) and signal transducer and activator (STAT) 3 (p = 0.0022) were significantly upregulated. Notably, TB(+)HIV(+) pleural fluid contained significantly higher concentrations of IL-1β (p = 0.0008), IL-22 (p = 0.0115), IL-31 (p = 0.0210), TNF-α (p = 0.0251) and IFN-γ (p = 0.0026) than TB(-)HIV(-) pleural fluid ex vivo. Taken together, this suggests a reduced portion of Th17 lymphocytes in TB/HIV pleurisy is independent of locally mediated cytokine polarisation.
Collapse
Affiliation(s)
- Vanessa C Korb
- Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Umesh G Lalloo
- Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| | - Devapregasan Moodley
- Discipline of Medical Biochemistry and Chemical Pathology, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4041, South Africa.
| |
Collapse
|
14
|
Sousa-Vasconcelos PDS, Seguins WDS, Luz EDS, Pinho RTD. Pattern of cytokine and chemokine production by THP-1 derived macrophages in response to live or heat-killed Mycobacterium bovis bacillus Calmette-Guérin Moreau strain. Mem Inst Oswaldo Cruz 2016; 110:809-13. [PMID: 26517663 PMCID: PMC4667587 DOI: 10.1590/0074-02760140420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Tuberculosis has great public health impact with high rates of mortality and the only
prophylactic measure for it is the Mycobacterium bovisbacillus
Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines
[interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage
inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived
macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa
de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare
the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported
to lose viability during the lyophilisation process and during storage, we examined
whether exposing BCG to different temperatures also triggers differences in the
expression of some important cytokines and chemokines of the immune response.
Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine
production in a different pattern from that observed with live mycobacteria.
Collapse
Affiliation(s)
| | | | - Eduardo de Souza Luz
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rosa Teixeira de Pinho
- Laboratório de Imunologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
15
|
New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells. Antimicrob Agents Chemother 2015; 60:1216-25. [PMID: 26643325 DOI: 10.1128/aac.01567-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/24/2015] [Indexed: 01/17/2023] Open
Abstract
There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5(flox/flox) (control) and ATG5(flox/flox) Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs.
Collapse
|
16
|
Yu CH, Micaroni M, Puyskens A, Schultz TE, Yeo JC, Stanley AC, Lucas M, Kurihara J, Dobos KM, Stow JL, Blumenthal A. RP105 Engages Phosphatidylinositol 3-Kinase p110δ To Facilitate the Trafficking and Secretion of Cytokines in Macrophages during Mycobacterial Infection. THE JOURNAL OF IMMUNOLOGY 2015; 195:3890-900. [PMID: 26371254 DOI: 10.4049/jimmunol.1500017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022]
Abstract
Cytokines are key regulators of adequate immune responses to infection with Mycobacterium tuberculosis. We demonstrate that the p110δ catalytic subunit of PI3K acts as a downstream effector of the TLR family member RP105 (CD180) in promoting mycobacteria-induced cytokine production by macrophages. Our data show that the significantly reduced release of TNF and IL-6 by RP105(-/-) macrophages during mycobacterial infection was not accompanied by diminished mRNA or protein expression. Mycobacteria induced comparable activation of NF-κB and p38 MAPK signaling in wild-type (WT) and RP105(-/-) macrophages. In contrast, mycobacteria-induced phosphorylation of Akt was abrogated in RP105(-/-) macrophages. The p110δ-specific inhibitor, Cal-101, and small interfering RNA-mediated knockdown of p110δ diminished mycobacteria-induced TNF secretion by WT but not RP105(-/-) macrophages. Such interference with p110δ activity led to reduced surface-expressed TNF in WT but not RP105(-/-) macrophages, while leaving TNF mRNA and protein expression unaffected. Activity of Bruton's tyrosine kinase was required for RP105-mediated activation of Akt phosphorylation and TNF release by mycobacteria-infected macrophages. These data unveil a novel innate immune signaling axis that orchestrates key cytokine responses of macrophages and provide molecular insight into the functions of RP105 as an innate immune receptor for mycobacteria.
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Massimo Micaroni
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Puyskens
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Thomas E Schultz
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Jeremy Changyu Yeo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda C Stanley
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Megan Lucas
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jade Kurihara
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Karen M Dobos
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523; and
| | - Jennifer L Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, University of Queensland, Translational Research Institute, Brisbane, Queensland 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Borekci S, Atahan E, Demir Yilmaz D, Mazıcan N, Duman B, Ozguler Y, Musellim B, Hamuryudan V, Ongen G. Factors affecting the tuberculosis risk in patients receiving anti-tumor necrosis factor-α treatment. Respiration 2015; 90:191-8. [PMID: 26137891 DOI: 10.1159/000434684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tumor necrosis factor (TNF)-α inhibitors are known to increase the risk of tuberculosis (TB). OBJECTIVES To examine the factors associated with an increased risk of TB in patients receiving anti-TNF-α treatment (aTNF-α-T). METHOD Of 3,094 patients who received aTNF-α-T between 2003 and 2013, a total of 1,964 subjects with a follow-up time longer than 6 months were identified and included in this retrospective analysis. Potential risk factors for the development of TB in patients receiving aTNF-α-T were evaluated. RESULTS Of the 1,964 patients, 1,009 (51%) were male and 955 (49%) were female, with a mean age of 39.7 ± 13.9 years. The primary conditions requiring aTNF-α-T included ankylosing spondylitis (n = 875), rheumatoid arthritis (n = 711), Behçet's disease (n = 83), and others (n = 295). Sixteen patients [8 (50%) males and 8 (50%) females; 5 (31.2%) with pulmonary TB and 11 (68.8%) with extrapulmonary TB] developed TB, with a corresponding TB incidence of 466/100,000. No significant associations were found between age, gender, smoking history, pack-years of smoking, isoniazid (INH) chemoprophylaxis, type of anti-TNF-α agent, use of other immunosuppressive drugs, and the risk of TB (p > 0.05). Multivariate logistic regression analysis showed a significantly higher risk of TB in patients diagnosed with Behçet's disease, and a significantly lower risk of TB in patients with a tuberculin skin test wheal ≥10 mm in diameter (p < 0.05). CONCLUSION aTNF-α-T is associated with an increased risk of pulmonary or extrapulmonary TB, even when follow-up protocols and INH chemoprophylaxis are implemented, and TB often develops in the later stages of treatment. The risk of TB was higher in patients with Behçet's disease and lower in patients who had a strong tuberculin skin test reaction.
Collapse
Affiliation(s)
- Sermin Borekci
- Department of Pulmonology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bapat PR, Husain AA, Daginawala HF, Agrawal NP, Panchbhai MS, Satav AR, Taori GM, Kashyap RS. The assessment of cytokines in Quantiferon supernatants for the diagnosis of latent TB infection in a tribal population of Melghat, India. J Infect Public Health 2015; 8:329-40. [PMID: 25824629 DOI: 10.1016/j.jiph.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/04/2015] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
The tuberculin skin test (TST) and interferon-gamma release assays (IGRA), namely, the QuantiFERON-TB Gold test (QFT), remain the standard immunological diagnostic tools for latent tuberculosis (TB) infection (LTBI). However, the sub-optimal detection rates of both of these tests are major impediments in recognizing the population at risk. This study was aimed at evaluating additional cytokines besides interferon-gamma (IFN-γ) as biomarkers for improving LTBI diagnosis in the tribal population of Melghat, India. Seventy-four close TB contacts were stratified by QFT and TST results into: (i) QFT+/TST+ (n = 26), (ii) QFT+/TST- (n = 12), (iii) QFT-/TST- (n = 35) and (iv) QFT-/TST+ (n = 1) groups. A panel of cytokines (IL-6, IL-10, TNF-α and IL-2R) was then evaluated in antigen-stimulated QFT cell-free culture supernatants using IMMULITE-1000, an automated immunoassay analyzer. Cytokine estimation showed significantly higher levels of IL-6 in the QFT+/TST+ group, while significantly higher levels of IL-10 were found in the QFT-/TST- group. Correlation analysis identified a positive correlation between IL-6 and the QFT response (r = 0.6723, P < 0.0001), while a negative correlation was seen between QFT and IL-10 expression (r = -0.3271, P = 0.0044). Similarly, IL-6 was positively correlated with TST levels (r = 0.6631, P <0 .0001), and conversely, a negative correlation was found between TST and IL-10 expression (r = -0.5698, P < 0.0001). The positive and negative predictive values of IL-6 were found to be 92.59 and 93.33%, respectively, and the positive and negative predictive values of IL-10 were 96.55 and 91.18%, respectively. No significant impact of the demographic characteristics on cytokine positivity was observed. Our preliminary results suggest that the evaluation of additional cytokines in QFT cell-free culture supernatants may be valuable for the identification of LTBI. Combining IL-6 and IL-10 with QFT and/or TST could markedly improve the detection accuracy of LTBI. Our observations require investigation in larger well-characterized cohorts along with follow-up studies to further confirm the study outcome.
Collapse
Affiliation(s)
- Prachi R Bapat
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Aliabbas A Husain
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Hatim F Daginawala
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Neha P Agrawal
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Milind S Panchbhai
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Ashish R Satav
- Meditation, AIDS, Health, Addiction & Nutrition (MAHAN) Trust, C/O Mahatma Gandhi Tribal Hospital, Karmagram, Utavali, Tahsil Dharni, Amravati, Maharashtra, India
| | - Girdhar M Taori
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Rajpal S Kashyap
- Research Centre, Central India Institute of Medical Sciences, Nagpur, Maharashtra, India.
| |
Collapse
|
19
|
Pagán AJ, Ramakrishnan L. Immunity and Immunopathology in the Tuberculous Granuloma. Cold Spring Harb Perspect Med 2014; 5:cshperspect.a018499. [PMID: 25377142 DOI: 10.1101/cshperspect.a018499] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Granulomas, organized aggregates of immune cells, are a defining feature of tuberculosis (TB). Granuloma formation is implicated in the pathogenesis of a variety of inflammatory disorders. However, the tuberculous granuloma has been assigned the role of a host protective structure which "walls-off" mycobacteria. Work conducted over the past decade has provided a more nuanced view of its role in pathogenesis. On the one hand, pathogenic mycobacteria accelerate and exploit granuloma formation for their expansion and dissemination by manipulating host immune responses to turn leukocyte recruitment and cell death pathways in their favor. On the other hand, granuloma macrophages can preserve granuloma integrity by exerting a microbicidal immune response, thus preventing an even more rampant expansion of infection in the extracellular milieu. Even this host-beneficial immune response required to maintain the bacteria intracellular must be tempered, as an overly vigorous immune response can also cause granuloma breakdown, thereby directly supporting bacterial growth extracellularly. This review will discuss how mycobacteria manipulate inflammatory responses to drive granuloma formation and will consider the roles of the granuloma in pathogenesis and protective immunity, drawing from clinical studies of TB in humans and from animal models--rodents, zebrafish, and nonhuman primates. A deeper understanding of TB pathogenesis and immunity in the granuloma could suggest therapeutic approaches to abrogate the host-detrimental aspects of granuloma formation to convert it into the host-beneficial structure that it has been thought to be for nearly a century.
Collapse
Affiliation(s)
- Antonio J Pagán
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | - Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195 Department of Medicine, University of Washington, Seattle, Washington 98195 Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
20
|
Yasui K. Immunity against Mycobacterium tuberculosis and the risk of biologic anti-TNF-α reagents. Pediatr Rheumatol Online J 2014; 12:45. [PMID: 25317081 PMCID: PMC4196001 DOI: 10.1186/1546-0096-12-45] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/28/2014] [Indexed: 11/26/2022] Open
Abstract
A third of the world's population is exposed to Mycobacterium tuberculosis in their lifetime. Over eight million people develop a tuberculosis (TB) illness and 1.3 million people die from the disease every year. Acquired immunity (cytotoxic CD8+ T cells (CBT), Th1 CD4+ helper T cells) macrophages, and dendritic cells all play important roles in TB infection. Recently, it is well established that innate immunity as well plays a definitive role in the development of TB immunity under the effects of several cytokines, microbicidal proteins and Toll-like receptors. Meanwhile, the introduction and widespread use of biological disease-modifying anti-rheumatic reagents over the last 15 years worldwide has dramatically advanced and improved the standard care and prognosis of patients with rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA). However, as clinical experience with these drugs has grown, the risk of granulomatous infections, especially disseminated TB and fungal infections, has become apparent, especially because having RA or JIA may innately increase the risk of infection (bacterial, viral and fungal). The knowledge of basic immunology has also advanced over the past 10 years and adult and pediatric rheumatologists should increase their understanding of this dynamic between arthritis diseases, anti-TNF-α medications, and TB. This review will provide an up-to-date discussion of both the immunology of the TB organism in the human host and the pathophysiologic mechanisms of the TNF-α blockers in the development of secondary (disseminated) tuberculosis.
Collapse
Affiliation(s)
- Kozo Yasui
- Department of Pediatrics, Hiroshima-City Hospital, Moto-Machi 7-33, Naka-Ku Hiroshima, 730-8518 Japan ,Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Singh AK, Yadav AB, Garg R, Misra A. Single nucleotide polymorphic macrophage cytokine regulation by Mycobacterium tuberculosis and drug treatment. Pharmacogenomics 2014; 15:497-508. [DOI: 10.2217/pgs.13.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the survival of Mycobacterium tuberculosis in primary macrophages with SNPs affecting cytokine secretion under treatment with drugs in solution or microparticles. Materials & methods: Volunteers were typed for TNF (-308G/A), IL-10 (-1082A/G) and IL-4 (-590C/T). Monocyte-derived macrophages (MDMs) were infected in vitro. Cytokine secretion and survival of intracellular bacilli were estimated. Results: IL-10 AG associated with high secretion in uninfected and infected MDMs (p < 0.05) and was reduced more effectively by microparticles than drugs, irrespective of genotype (p < 0.05). Differences were observed between IL-4 secretion by MDMs of CC and TT genotypes (p = 0.1). Bacteria proliferated more in MDMs from volunteers with higher IL-4 levels (p = 0.05). Microparticles showed higher efficacy (p = 0.05) than drugs. Conclusion: IL-4 and IL-10 SNPs affect the ability of macrophages to counter infection with M. tuberculosis. Microparticles elicit favorable macrophage cytokines regardless of SNPs. Original submitted 5 August 2013; Revision submitted 27 November 2013
Collapse
Affiliation(s)
- Amit K Singh
- Pharmaceutics Division, CSIR Central Drug Research Institute, Sector 10, Janakipuram Extension, Lucknow 226031, India
| | - Awadh Bihari Yadav
- Pharmaceutics Division, CSIR Central Drug Research Institute, Sector 10, Janakipuram Extension, Lucknow 226031, India
| | - Rajiv Garg
- Department of Pulmonary Medicine, King George’s Medical University, Chowk, Lucknow 226001, India
| | - Amit Misra
- Pharmaceutics Division, CSIR Central Drug Research Institute, Sector 10, Janakipuram Extension, Lucknow 226031, India
| |
Collapse
|
22
|
Mycobacterium massiliense induces inflammatory responses in macrophages through Toll-like receptor 2 and c-Jun N-terminal kinase. J Clin Immunol 2014; 34:212-23. [PMID: 24402617 PMCID: PMC3937545 DOI: 10.1007/s10875-013-9978-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
Abstract
Mycobacterium massiliense (Mmass) is an emerging, rapidly growing mycobacterium (RGM) that belongs to the M. abscessus (Mabc) group, albeit clearly differentiated from Mabc. Compared with M. tuberculosis, a well-characterized human pathogen, the host innate immune response against Mmass infection is largely unknown. In this study, we show that Mmass robustly activates mRNA and protein expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in murine bone marrow-derived macrophages (BMDMs). Toll-like receptor (TLR)-2 and myeloid differentiation primary response gene 88 (MyD88), but neither TLR4 nor Dectin-1, are involved in Mmass-induced TNF-α or IL-6 production in BMDMs. Mmass infection also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. Mmass-induced TNF-α and IL-6 production was dependent on JNK activation, while they were unaffected by either the ERK1/2 or p38 pathway in BMDMs. Additionally, intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for Mmass-induced proinflammatory cytokine generation in macrophages. Furthermore, the S morphotype of Mmass showed lower overall induction of pro-inflammatory (TNF-α, IL-6, and IL-1β) and anti-inflammatory (IL-10) cytokines than the R morphotype, suggesting fewer immunogenic characteristics for this clinical strain. Together, these results suggest that Mmass-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK and ROS signaling pathways.
Collapse
|
23
|
Pattern recognition receptors and cytokines in Mycobacterium tuberculosis infection--the double-edged sword? BIOMED RESEARCH INTERNATIONAL 2013; 2013:179174. [PMID: 24350246 PMCID: PMC3844256 DOI: 10.1155/2013/179174] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/16/2013] [Accepted: 09/27/2013] [Indexed: 02/08/2023]
Abstract
Tuberculosis, an infectious disease caused by Mycobacterium tuberculosis (Mtb), remains a major cause of human death worldwide. Innate immunity provides host defense against Mtb. Phagocytosis, characterized by recognition of Mtb by macrophages and dendritic cells (DCs), is the first step of the innate immune defense mechanism. The recognition of Mtb is mediated by pattern recognition receptors (PRRs), expressed on innate immune cells, including toll-like receptors (TLRs), complement receptors, nucleotide oligomerization domain like receptors, dendritic cell-specific intercellular adhesion molecule grabbing nonintegrin (DC-SIGN), mannose receptors, CD14 receptors, scavenger receptors, and FCγ receptors. Interaction of mycobacterial ligands with PRRs leads macrophages and DCs to secrete selected cytokines, which in turn induce interferon-γ- (IFNγ-) dominated immunity. IFNγ and other cytokines like tumor necrosis factor-α (TNFα) regulate mycobacterial growth, granuloma formation, and initiation of the adaptive immune response to Mtb and finally provide protection to the host. However, Mtb can evade destruction by antimicrobial defense mechanisms of the innate immune system as some components of the system may promote survival of the bacteria in these cells and facilitate pathogenesis. Thus, although innate immunity components generally play a protective role against Mtb, they may also facilitate Mtb survival. The involvement of selected PRRs and cytokines on these seemingly contradictory roles is discussed.
Collapse
|
24
|
Montoya J, Solon JA, Cunanan SRC, Acosta L, Bollaerts A, Moris P, Janssens M, Jongert E, Demoitié MA, Mettens P, Gatchalian S, Vinals C, Cohen J, Ofori-Anyinam O. A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 2013; 33:1360-75. [PMID: 24142232 PMCID: PMC3825318 DOI: 10.1007/s10875-013-9949-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Purpose In this dose-finding Phase II study (NCT00621322), we evaluated the safety and immunogenicity of different formulations of the candidate tuberculosis vaccine containing the M72 antigen (10/20/40 μg doses) and the liposome-based AS01 Adjuvant System. We aimed to select the lowest-dose combination of M72 and AS01 that was clinically well tolerated with immunogenicity comparable to that of the previously tested M72/AS01B (40 μg) candidate vaccine. Methods Healthy PPD-positive (induration 3–10 mm) adults (18–45 years) in The Philippines were randomized (4:4:4:4:1:1) to receive 2 injections, 1 month apart, of M72/AS01B (40 μg), M72/AS01E (10 μg), M72/AS01E (20 μg), M72/AS02D (10 μg), M72/Saline (40 μg) or AS01B alone, and were followed up for 6 months. AS01E and AS02D contain half the quantities of the immunostimulants present in AS01B. AS02D is an oil-in-water emulsion. Vaccine selection was based on the CD4+ T-cell responses at 1 month post vaccination. Results All formulations had a clinically acceptable safety profile with no vaccine-related serious adverse events reported. Two vaccinations of each adjuvanted M72 vaccine induced M72-specific CD4+ T-cell and humoral responses persisting at 6 months post vaccination. No responses were observed with AS01B alone. One month post second vaccination, CD4+ T-cell responses induced by each of the three M72/AS01 vaccine formulations were of comparable magnitudes, and all were significantly higher than those induced by M72/AS02D (10 μg) and M72/Saline. Conclusions The formulation with the lowest antigen and adjuvant dose, M72/AS01E (10 μg), fulfilled our pre-defined selection criteria and has been selected for further clinical development.
Collapse
Affiliation(s)
- Jaime Montoya
- Section of Infectious Diseases, Department of Medicine, University of the Philippines College of Medicine, 547 Pedro Gil Street, Ermita, Manila, 1000, Philippines
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodrigues MF, Alves CCS, Figueiredo BBM, Rezende AB, Wohlres-Viana S, Silva VLD, Machado MA, Teixeira HC. Tumour necrosis factor receptors and apoptosis of alveolar macrophages during early infection with attenuated and virulent Mycobacterium bovis. Immunology 2013; 139:503-12. [PMID: 23489296 DOI: 10.1111/imm.12097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 02/14/2013] [Accepted: 03/06/2013] [Indexed: 01/11/2023] Open
Abstract
Apoptosis of macrophages has been reported as an effective host strategy to control the growth of intracellular pathogens, including pathogenic mycobacteria. Tumour necrosis factor-α (TNF-α) plays an important role in the modulation of apoptosis of infected macrophages. It exerts its biological activities via two distinct cell surface receptors, TNFR1 and TNFR2, whose extracellular domain can be released by proteolysis forming soluble TNF receptors (sTNFR1 and sTNFR2). The signalling through TNFR1 initiates the majority of the biological functions of TNF-α, leading to either cell death or survival whereas TNFR2 mediates primarily survival signals. Here, the expression of TNF-α receptors and the apoptosis of alveolar macrophages were investigated during the early phase of infection with attenuated and virulent mycobacteria in mice. A significant increase of apoptosis and high expression of TNFR1 were observed in alveolar macrophages at 3 and 7 days after infection with attenuated Mycobacterium bovis but only on day 7 in infection with the virulent M. bovis. Low surface expression of TNFR1 and increased levels of sTNFR1 on day 3 after infection by the virulent strain were associated with reduced rates of apoptotic macrophages. In addition, a significant reduction in apoptosis of alveolar macrophages was observed in TNFR1(-/-) mice at day 3 after bacillus Calmette-Guérin infection. These results suggest a potential role for TNFR1 in mycobacteria-induced alveolar macrophage apoptosis in vivo. In this scenario, shedding of TNFR1 seems to contribute to the modulation of macrophage apoptosis in a strain-dependent manner.
Collapse
Affiliation(s)
- Michele F Rodrigues
- Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martínez Gómez JM, Koh VHQ, Yan B, Lin W, Ang MLT, Rahim SZZ, Pethe K, Schwarz H, Alonso S. Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Immunobiology 2013; 219:78-86. [PMID: 24091276 DOI: 10.1016/j.imbio.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
The role of the CD137-CD137 ligand (CD137L) signaling pathway in T cell co-stimulation has been well established. Dysregulated CD137 or CD137L stimulation can lead to pathological conditions such as inflammatory diseases or cancer. However, the contribution of CD137-CD137L interaction to the control of infectious diseases has not been extensively studied, with the few available reports focusing mainly on viral infections. Here we investigated the role of the CD137-CD137L interactions during Mycobacterium tuberculosis infection. Using CD137L-deficient mice, we found that absence of the CD137L-mediated signaling pathway during M. tuberculosis infection resulted in delayed activation of CD4(+) T cells in the draining lymph nodes. This finding was supported by an in vitro mixed lymphocyte reaction assay that revealed impaired priming of T cells by CD137L-deficient dendritic cells upon mycobacterial infection. In addition, greater numbers of CD4(+) T cells and antigen presenting cells were measured in the lungs of CD137L-deficient mice. Strikingly, the lung cytokine production profile was profoundly altered in M. tuberculosis-infected CD137L-deficient mice with lower levels of TNF-α, IL-12 and IL-6 and elevated concentrations of IL-17 compared to their wild type counterparts. However and surprisingly, these tangible immunological disorders translated only into a mild and transient increase in the bacterial loads and a higher number of granulomatous lesions with impaired architecture in the lungs of the CD137L-deficient infected mice. Together, while our data support the engagement of the CD137L signaling pathway during M. tuberculosis infection, they underscore the functional redundancy and robustness of the host defense arsenal deployed against mycobacterial infection.
Collapse
Affiliation(s)
- Julia María Martínez Gómez
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harapan H, Fitra F, Ichsan I, Mulyadi M, Miotto P, Hasan NA, Calado M, Cirillo DM. The roles of microRNAs on tuberculosis infection: meaning or myth? Tuberculosis (Edinb) 2013; 93:596-605. [PMID: 24025365 DOI: 10.1016/j.tube.2013.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
The central proteins for protection against tuberculosis are attributed to interferon-γ, tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, while IL-10 primarily suppresses anti-mycobacterial responses. Several studies found alteration of expression profile of genes involved in anti-mycobacterial responses in macrophages and natural killer (NK) cells from active and latent tuberculosis and from tuberculosis and healthy controls. This alteration of cellular composition might be regulated by microRNAs (miRNAs). Albeit only 1% of the genomic transcripts in mammalian cells encode miRNA, they are predicted to control the activity of more than 60% of all protein-coding genes and they have a huge influence in pathogenesis theory, diagnosis and treatment approach to some diseases. Several miRNAs have been found to regulate T cell differentiation and function and have critical role in regulating the innate function of macrophages, dendritic cells and NK cells. Here, we have reviewed the role of miRNAs implicated in tuberculosis infection, especially related to their new roles in the molecular pathology of tuberculosis immunology and as new targets for future tuberculosis diagnostics.
Collapse
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia; Tropical Disease Center, School of Medicine, Syiah Kuala University, Banda Aceh, Indonesia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen T, Zhao Q, Li W, Xie J. Mycobacterium tuberculosis PE_PGRS17 promotes the death of host cell and cytokines secretion via Erk kinase accompanying with enhanced survival of recombinant Mycobacterium smegmatis. J Interferon Cytokine Res 2013; 33:452-8. [PMID: 23663047 DOI: 10.1089/jir.2012.0083] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis (TB) remains a serious threat to global public health, largely due to the successful manipulation of the host immunity by its etiological agent Mycobacterium tuberculosis. The PE_PGRS protein family of M. tuberculosis might be a contributing factor. To investigate the roles of PE_PGRS17, the gene of PE_PGRS 17 was expressed in nonpathogenic fast growing Mycobacterium smegmatis. We found that the recombinant strain survives better than the control in macrophage cultures, accompanied by more host cell death and a marked higher secretion of tumor necrosis factor-alpha by a recombinant strain compared with control. Blocking the action of Erk kinase by an inhibitor can abolish the above effects. In brief, our data showed that PE_PGRS 17 might facilitate pathogen survival and disserve the host cell via remodeling the macrophages immune niche largely consisting of inflammatory cytokines. This furnishes a novel insight into the immune role of this mycobacterium unique gene family.
Collapse
Affiliation(s)
- Tian Chen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing, China
| | | | | | | |
Collapse
|
29
|
Jayachandran R, Scherr N, Pieters J. Elimination of intracellularly residing Mycobacterium tuberculosis through targeting of host and bacterial signaling mechanisms. Expert Rev Anti Infect Ther 2013; 10:1007-22. [PMID: 23106276 DOI: 10.1586/eri.12.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more than 2 billion latently infected people, TB continues to represent a serious threat to human health. According to the WHO, 1.1 million people died from TB in 2010, which is equal to approximately 3000 deaths per day. The causative agent of the disease, Mycobacterium tuberculosis, is a highly successful pathogen having evolved remarkable strategies to persist within the host. Although normally, upon phagocytosis by macrophages, bacteria are readily eliminated by lysosomes, pathogenic mycobacteria actively prevent destruction within macrophages. The strategies that pathogenic mycobacteria apply range from releasing virulence factors to manipulating host molecules resulting in the modulation of host signal transduction pathways in order to sustain their viability within the infected host. Here, we analyze the current status of how a better understanding of both the bacterial and host factors involved in virulence can be used to develop drugs that may be helpful to curb the TB epidemic.
Collapse
Affiliation(s)
- Rajesh Jayachandran
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
30
|
Druszczynska M, Wlodarczyk M, Janiszewska-Drobinska B, Kielnierowski G, Zawadzka J, Kowalewicz-Kulbat M, Fol M, Szpakowski P, Rudnicka K, Chmiela M, Rudnicka W. Monocyte signal transduction receptors in active and latent tuberculosis. Clin Dev Immunol 2013; 2013:851452. [PMID: 23401703 PMCID: PMC3562648 DOI: 10.1155/2013/851452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 11/17/2022]
Abstract
The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms.
Collapse
Affiliation(s)
- Magdalena Druszczynska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marcin Wlodarczyk
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Beata Janiszewska-Drobinska
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation, Szpitalna 5, 95-080 Tuszyn, Poland
| | - Grzegorz Kielnierowski
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation, Szpitalna 5, 95-080 Tuszyn, Poland
| | - Joanna Zawadzka
- Regional Specialized Hospital of Tuberculosis, Lung Diseases and Rehabilitation, Szpitalna 5, 95-080 Tuszyn, Poland
| | - Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Piotr Szpakowski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Wieslawa Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
31
|
Looking Within the Zebrafish to Understand the Tuberculous Granuloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:251-66. [DOI: 10.1007/978-1-4614-6111-1_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development of Pulmonary Tuberculosis. Pulm Med 2012; 2012:745483. [PMID: 23251798 PMCID: PMC3515941 DOI: 10.1155/2012/745483] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/05/2012] [Indexed: 01/04/2023] Open
Abstract
Host immune response against Mycobacterium tuberculosis is mediated by cellular immunity, in which cytokines and Th1 cells play a critical role. In the process of control of the infection by mycobacteria, TNF-alpha seems to have a primordial function. This cytokine acts in synergy with IFN-gamma, stimulating the production of reactive nitrogen intermediates (RNIs), thus mediating the tuberculostatic function of macrophages, and also stimulating the migration of immune cells to the infection site, contributing to granuloma formation, which controls the disease progression. IFN-gamma is the main cytokine involved in the immune response against mycobacteria, and its major function is the activation of macrophages, allowing them to exert its microbicidal role functions. Different from TNF-alpha and IFN-gamma, IL-10 is considered primarily an inhibitory cytokine, important to an adequate balance between inflammatory and immunopathologic responses. The increase in IL-10 levels seems to support the survival of mycobacteria in the host. Although there is not yet conclusive studies concerning a clear dichotomy between Th1 and Th2 responses, involving protective immunity and susceptibility to the disease, respectively, we can suggest that the knowledge about this responses based on the prevailing cytokine profile can help to elucidate the immune response related to the protection against M. tuberculosis.
Collapse
|
33
|
Via LE, Tsytsykova AV, Rajsbaum R, Falvo JV, Goldfeld AE. The transcription factor NFATp plays a key role in susceptibility to TB in mice. PLoS One 2012; 7:e41427. [PMID: 22844476 PMCID: PMC3402414 DOI: 10.1371/journal.pone.0041427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 06/27/2012] [Indexed: 01/10/2023] Open
Abstract
In T cells, the transcription factor nuclear factor of activated T cells p (NFATp) is a key regulator of the cytokine genes tumor necrosis factor (TNF) and interferon-γ (IFN-γ). Here, we show that NFATp-deficient (NFATp(-/-)) mice have a dramatic and highly significant increase in mortality after Mycobacterium tuberculosis (MTb) infection as compared to mortality of control animals after MTb infection. Animals deficient in NFATp have significantly impaired levels of TNF and IFN-γ transcription and protein expression in naïve or total CD4(+) T cells, but display wild-type levels of TNF mRNA or protein from MTb-stimulated dendritic cells (DC). The rapid mortality and disease severity observed in MTb-infected NFATp(-/-) mice is associated with dysregulated production of TNF and IFN-γ in the lungs, as well as with increased levels of TNF, in their serum. Furthermore, global blocking of TNF production by injection of a TNF neutralizaing agent at 6 weeks, but not 12 weeks, post-MTb-infection further decreased the survival rate of both wild-type and NFATp(-/-) mice, indicating an early role for TNF derived from cells from the monocyte lineage in containment of infection. These results thus demonstrate that NFATp plays a critical role in immune containment of TB disease in vivo, through the NFATp-dependent expression of TNF and IFN-γ in T cells.
Collapse
Affiliation(s)
- Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alla V. Tsytsykova
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ricardo Rajsbaum
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James V. Falvo
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anne E. Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
Mycobacterium tuberculosis was one of the first human pathogens to be identified as the cause of a specific disease – TB. TB was also one of the first specific diseases for which immunotherapy was attempted. In more than a century since, multiple different immunotherapies have been attempted, alongside vaccination and antibiotic treatment, with varying degrees of success. Despite this, TB remains a major worldwide health problem that causes nearly 2 million deaths annually and has infected an estimated 2 billion people. A major reason for this is that M. tuberculosis is an ancient human pathogen that has evolved complex strategies for persistence in the human host. It has thus been long understood that, to effectively control TB, we will need to address the ability of the pathogen to establish a persistent, latent infection in most infected individuals. This review discusses what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge has been used to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- T Mark Doherty
- Medical Affairs, GlaxoSmithKline, Brøndby, DK-2605, Copenhagen, Denmark
| |
Collapse
|
35
|
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012; 12:352-66. [PMID: 22517424 DOI: 10.1038/nri3211] [Citation(s) in RCA: 564] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The granuloma, which is a compact aggregate of immune cells, is the hallmark structure of tuberculosis. It is historically regarded as a host-protective structure that 'walls off' the infecting mycobacteria. This Review discusses surprising new discoveries--from imaging studies coupled with genetic manipulations--that implicate the innate immune mechanisms of the tuberculous granuloma in the expansion and dissemination of infection. It also covers why the granuloma can fail to eradicate infection even after adaptive immunity develops. An understanding of the mechanisms and impact of tuberculous granuloma formation can guide the development of therapies to modulate granuloma formation. Such therapies might be effective for tuberculosis as well as for other granulomatous diseases.
Collapse
Affiliation(s)
- Lalita Ramakrishnan
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
36
|
Sim YS, Kim SY, Kim EJ, Shin SJ, Koh WJ. Impaired Expression of MAPK Is Associated with the Downregulation of TNF-α, IL-6, and IL-10 in Mycobacterium abscessus Lung Disease. Tuberc Respir Dis (Seoul) 2012; 72:275-83. [PMID: 23227067 PMCID: PMC3510277 DOI: 10.4046/trd.2012.72.3.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 12/07/2011] [Accepted: 01/09/2012] [Indexed: 11/26/2022] Open
Abstract
Background Healthy individuals who develop nontuberculous mycobacteria (NTM) lung disease are likely to have specific susceptibility factors which can lead to a NTM infection. The aim of the present study was to investigate the mechanism underlying innate immune responses, including the role of mitogen-activated protein kinase (MAPK), in Mycobacterium abscessus lung disease. Methods Extracellular signal-regulated kinase (ERK1/2) and p38 MAPK expression in monocytes from peripheral blood mononuclear cells were measured by Western blot analysis after stimulation by Mycobacterium avium in five patients with M. abscessus lung disease and seven healthy controls. A M. avium-induced cytokine assay was performed after inhibition of ERK1/2 and p38 MAPK pathways. Results Mycobacterium avium induced p38 and ERK1/2 expression in monocytes from healthy controls and subsequently upregulated tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 production. In monocytes from patients with M. abscessus lung disease, however, induction of p38 and ERK1/2 expression, and the production of TNF-α, IL-6, and IL-10 were significantly lower. Conclusion Decreased activity of MAPK and cytokine secretion in monocytes from patients with M. abscessus lung disease may provide an explanation regarding host susceptibility to these uncommon infections.
Collapse
Affiliation(s)
- Yun Su Sim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
37
|
Mitogen-activated protein kinases mediate Mycobacterium tuberculosis–induced CD44 surface expression in monocytes. J Biosci 2012; 37:41-54. [DOI: 10.1007/s12038-011-9179-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Li L, Qiao D, Li Q, Zhang X, Lao S, Wu C. Distinct polyfunctional CD4+ T cell responses to BCG, ESAT-6 and CFP-10 in tuberculous pleurisy. Tuberculosis (Edinb) 2012; 92:63-71. [DOI: 10.1016/j.tube.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/14/2011] [Accepted: 11/07/2011] [Indexed: 01/20/2023]
|
39
|
Natarajan PL, Narayanan S. Mitogen-activated protein kinases mediate the production of B-cell lymphoma 2 protein by Mycobacterium tuberculosis in monocytes. BIOCHEMISTRY (MOSCOW) 2011; 76:938-50. [PMID: 22022968 DOI: 10.1134/s0006297911080104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changes in the levels of antiapoptotic protein B-cell lymphoma 2 (Bcl-2) protein has been reported in murine and human tuberculosis. We investigated the role of mitogen-activated protein kinase pathways in the production of Bcl-2 protein in THP-1 human monocytes infected with Mycobacterium tuberculosis H37Rv and H37Ra. Analysis of phosphorylation profiles of mitogen-activated protein kinase kinase-1, extracellular-signal regulated kinase 1/2, mitogen-activated protein kinase kinase 3/6, and p38 mitogen-activated protein kinase; B-cell lymphoma 2 kinetics; and tumor necrosis factor-α (TNF-α) secretion levels showed variation between the two strains. Mycobacterium tuberculosis H37Rv induced higher Bcl-2 and lower TNF-α levels, whereas H37Ra the reverse. The strains also differed in their usage of CD14 and human leukocyte antigen-DR receptors in mediating extracellular-signal regulated kinase 1/2 and p38 mitogen-activated protein kinase activation. Mycobacterium tuberculosis H37Rv- and H37Ra-induced Bcl-2 production was reduced by specific inhibitors of mitogen-activated protein kinase kinase-1 (PD98059) and p38 (SB203580), but increased by nuclear factor κB (NF-κB) inhibitor (BAY 11-7082). TNF-α production by both strains was reduced in the presence of specific inhibitors of mitogen-activated protein kinase kinase-1 (PD98059), p38 (SB203580), and NF-κB (BAY 11-7082). Furthermore, inhibition of NF-κB was accompanied by an increase in strain-induced extracellular-signal regulated kinase 1/2 phosphorylation. Collectively, these results indicate for the first time that the production of Bcl-2 and TNF-α by M. tuberculosis H37Rv/H37Ra-infected THP-1 human monocytes is mediated through mitogen-activated protein kinases and NF-κB.
Collapse
Affiliation(s)
- P L Natarajan
- Department of Immunology, Tuberculosis Research Centre, Chennai, India
| | | |
Collapse
|
40
|
Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A 2011; 108:17408-13. [PMID: 21969554 DOI: 10.1073/pnas.1112660108] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Contact of Mycobacterium tuberculosis (M.tb) with the immune system requires interactions between microbial surface molecules and host pattern recognition receptors. Major M.tb-exposed cell envelope molecules, such as lipomannan (LM), contain subtle structural variations that affect the nature of the immune response. Here we show that LM from virulent M.tb (TB-LM), but not from avirulent Myocobacterium smegmatis (SmegLM), is a potent inhibitor of TNF biosynthesis in human macrophages. This difference in response is not because of variation in Toll-like receptor 2-dependent activation of the signaling kinase MAPK p38. Rather, TB-LM stimulation leads to destabilization of TNF mRNA transcripts and subsequent failure to produce TNF protein. In contrast, SmegLM enhances MAPK-activated protein kinase 2 phosphorylation, which is critical for maintaining TNF mRNA stability in part by contributing microRNAs (miRNAs). In this context, human miRNA miR-125b binds to the 3' UTR region of TNF mRNA and destabilizes the transcript, whereas miR-155 enhances TNF production by increasing TNF mRNA half-life and limiting expression of SHIP1, a negative regulator of the PI3K/Akt pathway. We show that macrophages incubated with TB-LM and live M.tb induce high miR-125b expression and low miR-155 expression with correspondingly low TNF production. In contrast, SmegLM and live M. smegmatis induce high miR-155 expression and low miR-125b expression with high TNF production. Thus, we identify a unique cellular mechanism underlying the ability of a major M.tb cell wall component, TB-LM, to block TNF biosynthesis in human macrophages, thereby allowing M.tb to subvert host immunity and potentially increase its virulence.
Collapse
|
41
|
Sutherland JS, Hill PC, Adetifa IM, de Jong BC, Donkor S, Joosten SA, Opmeer L, Haks MC, Ottenhoff THM, Adegbola RA, Ota MOC. Identification of probable early-onset biomarkers for tuberculosis disease progression. PLoS One 2011; 6:e25230. [PMID: 21966464 PMCID: PMC3179487 DOI: 10.1371/journal.pone.0025230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022] Open
Abstract
Determining what constitutes protective immunity to TB is critical for the development of improved diagnostics and vaccines. The comparison of the immune system between contacts of TB patients, who later develop TB disease (progressors), versus contacts who remain healthy (non-progressors), allows for identification of predictive markers of TB disease. This study provides the first comprehensive analysis of the immune system of progressors and non-progressors using a well-characterised TB case-contact (TBCC) platform in The Gambia, West Africa. 22 progressors and 31 non-progressors were analysed at recruitment, 3 months and 18 months (time to progression: median[IQR] of 507[187-714] days). Immunophenotyping of PBMC, plasma cytokine levels and RT-MLPA analysis of whole blood-derived RNA was performed to capture key immune system parameters. At recruitment, progressors had lower PBMC proportions of CD4+ T cells, NKT cells and B cells relative to non-progressors. Analysis of the plasma showed higher levels of IL-18 in progressors compared to non-progressors and analysis of the RNA showed significantly lower gene expression of Bcl2 but higher CCR7 in progressors compared to non-progressors. This study shows several markers that may predict the onset of active TB at a very early stage after infection. Once these markers have been validated in larger studies, they provide avenues to prospectively identify people at risk of developing TB, a key issue in the testing of new TB vaccines.
Collapse
Affiliation(s)
- Jayne S Sutherland
- Vaccinology Theme Group, Medical Research Council Unit, Fajara, The Gambia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Effective treatment with etanercept results from a congregation of immunological signaling and modulating roles played by tumor necrosis factor-alpha (TNF-alpha), a pervasive member of the TNF super-family of cytokines participating in numerous immunologic and metabolic functions. Macrophages, lymphocytes and other cells produce TNF as part of the deregulated immune response resulting in psoriasis or other chronic inflammatory disorders. Tumor necrosis factor is also produced by macrophages and lymphocytes responding to foreign antigens as a primary response to potential infection. Interference with cytokine signaling by etanercept yields therapeutic response. At the same time, interference with cytokine signaling by etanercept exposes patients to potential adverse events. While the efficacy of etanercept for the treatment of psoriasis is evident, the risks of treatment continue to be defined. Of the potential serious adverse events, response to infection is the best characterized in terms of physiology, incidence, and management. Rare but serious events: activation of latent tuberculosis, multiple sclerosis, lymphoma, and others, have been observed but have questionable or yet to be defined association with therapeutic uses of etanercept. The safe use of etanercept for the treatment of psoriasis requires an appreciation of potential adverse events as well as screening and monitoring strategies designed to manage patient risk
Collapse
Affiliation(s)
- Kim A Papp
- University of Western Ontario, and K Papp Clinical Research Waterloo, ON, Canada
| |
Collapse
|
43
|
Mycobacterium tuberculosis culture filtrate protein 10-specific effector/memory CD4⁺ and CD8⁺ T cells in tubercular pleural fluid, with biased usage of T cell receptor Vβ chains. Infect Immun 2011; 79:3358-65. [PMID: 21606188 DOI: 10.1128/iai.00014-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell-mediated immunity is critical for the control of Mycobacterium tuberculosis infection. Identifying the precise immune mechanisms that lead to control of initial M. tuberculosis infection and preventing reactivation of latent infection are crucial for combating tuberculosis. However, a detailed understanding of the role of T cells in the immune response to infection has been hindered. In addition, there are few flow cytometry studies characterizing the Vβ repertoires of T cell receptors (TCRs) at local sites of M. tuberculosis infection in adult tuberculosis. In this study, we used culture filtrate protein 10 (CFP-10) from M. tuberculosis to characterize T cells at local sites of infection. We simultaneously analyzed the correlation of the production of cytokines with TCR Vβ repertoires in CFP-10-specific CD4(+) and CD8(+) T cell subsets. For the first time, we demonstrate that CFP-10-specific CD4(+) or CD8(+) T cells from tubercular pleural fluid can produce high levels of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) and upregulate the expression of CD107a/b on the cell surface. The CFP-10-specific cells were effector/memory cells with a CD45RO(+) CD62L(-) CCR7(-) CD27(-) expression profile. In addition, we found CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid, with biased usage of TCR Vβ9, Vβ12, or Vβ7.2. Our findings of CFP-10-specific CD4(+) and CD8(+) T cells in tubercular pleural fluid are critical for understanding the mechanisms of the local cellular immune response and developing more effective therapeutic interventions in cases of M. tuberculosis infection.
Collapse
|
44
|
Modulation of cell death by M. tuberculosis as a strategy for pathogen survival. Clin Dev Immunol 2011; 2011:678570. [PMID: 21253484 PMCID: PMC3022200 DOI: 10.1155/2011/678570] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/27/2010] [Indexed: 12/28/2022]
Abstract
It has been clearly demonstrated that in vitro, virulent M. tuberculosis can favor necrosis over apoptosis in infected macrophages, and this has been suggested as a mechanism for evading the host immune response. We recently reported that an effect consistent with this hypothesis could be observed in cells from the blood of TB patients, and in this paper, we review what is known about evasion strategies employed by M. tuberculosis and in particular consider the possible interaction of the apoptosis-inhibiting effects of M. tuberculosis infection with another factor (IL-4) whose expression is thought to play a role in the failure to control M. tuberculosis infection. It has been noted that IL-4 may exacerbate TNF-α-induced pathology, though the mechanism remains unexplained. Since pathology in TB typically involves inflammatory aggregates around infected cells, where TNF-α plays an important role, we predicted that IL-4 would inhibit the ability of cells to remove M. tuberculosis by apoptosis of infected cells, through the extrinsic pathway, which is activated by TNF-α. Infection of human monocytic cells with mycobacteria in vitro, in the presence of IL-4, appears to promote necrosis over apoptosis in infected cells—a finding consistent with its suggested role as a factor in pathology during M. tuberculosis infection.
Collapse
|
45
|
Oliveira RAS, Azevedo-Ximenes E, Luzzati R, Garcia RC. The hydroxy-naphthoquinone lapachol arrests mycobacterial growth and immunomodulates host macrophages. Int Immunopharmacol 2010; 10:1463-73. [PMID: 20837170 DOI: 10.1016/j.intimp.2010.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 12/31/2022]
Abstract
The present study reports the anti-mycobacterial activity of 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone (lapachol) as well as its influence on macrophage functions. Lapachol (L) did not induce apoptosis/necrosis of THP-1 macrophages at ≤32 μg/mL. Mycobacterium avium liquid growth was arrested by ≥32 μg/mL and intra-macrophage proliferation by ≥16 μg/mL lapachol. The main immuno-modulatory effects of lapachol observed were an up-regulation of interferon-γ-receptor 1 (IFN-γR1) and major histocompatibility complex class II (MHCII) surface expression, and a marked inhibition of IL-10 secretion. Lapachol did not affect resting, IFN-γ- or toll-like receptor 2 (TLR2)-induced levels of oxygen and nitrogen metabolism key proteins nor the TLR2-mediated secretion of TNF-α, nor induced either oxidative or endoplasmic reticulum (ER) stress. Lapachol inhibited the surface expression of the co-stimulatory molecule CD86 but not that of CD80 and CD83. The results obtained indicate that the substituted naphthoquinone lapachol exhibits an anti-mycobacterial activity that is more efficient intra- than extra-cellularly, and exerts immuno-modulatory effects some of which may enhance the capacity of the host cell to control mycobacterial growth. The immune-modulatory action of lapachol could contribute to its more efficient intra-macrophage anti-mycobacterial activity.
Collapse
Affiliation(s)
- Renato A S Oliveira
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | | | |
Collapse
|
46
|
Krummel B, Strassburg A, Ernst M, Reiling N, Eker B, Rath H, Hoerster R, Wappler W, Glaewe A, Schoellhorn V, Sotgiu G, Lange C. Potential role for IL-2 ELISpot in differentiating recent and remote infection in tuberculosis contact tracing. PLoS One 2010; 5:e11670. [PMID: 20652022 PMCID: PMC2907387 DOI: 10.1371/journal.pone.0011670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 06/23/2010] [Indexed: 12/03/2022] Open
Abstract
Interferon (IFN)-gamma release assays (IGRA) have improved tuberculosis contact tracing, but discrimination of recent from remote Mycobacterium tuberculosis contacts is not possible by IGRA alone. We present results of a tuberculosis contact investigation with a new early-secretory-antigenic-target (ESAT)-6 and culture-filtrate-protein (CFP)-10 specific interleukin (IL)-2 ELISpot in addition to ESAT-6 and CFP-10 specific IFN-gamma ELISpot and tuberculin skin testing (TST). Results of the TST, IFN-gamma ELISpot and IL-2 ELISpot were positive in 6/172 (3.4%), 7/167 (4.2%) and 6/196 (3.1%) of contacts, respectively. Close contact (> or =100 hours) to the index case increased the risk of positive results in the IFN-gamma ELISpot, TST, and IL-2 ELISpot by 40.8, 19.3, and 2.5 times, respectively. Individuals with a positive IFN-gamma ELISpot/negative IL-2 ELISpot result had a median (IQR) duration of index case exposure of 568 hours (133_1000) compared to individuals with a positive IFN-gamma ELISpot/positive IL-2 ELISpot result (median = 24 hours; 20_130; p-value = 0.047). Combination of a M. tuberculosis specific IFN-gamma ELISpot with a M. tuberculosis specific IL-2 ELISpot significantly improved the identification of individuals with the highest risk of recent M. tuberculosis infection and is a promising method that should be explored to target tuberculosis preventive chemotherapy.
Collapse
Affiliation(s)
- Benjamin Krummel
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Alan Strassburg
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Martin Ernst
- Division of Immune Cell Analytics, Research Center Borstel, Borstel, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Borstel, Germany
| | - Barbara Eker
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Heidrun Rath
- TB Surveillance, Public Health Department, Lübeck, Germany
| | - Robert Hoerster
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Waltraud Wappler
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | - Andrea Glaewe
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| | | | - Giovanni Sotgiu
- Hygiene and Preventive Medicine Institute, University of Sassari, Sassari, Italy
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
| |
Collapse
|
47
|
Smith SG, Lalor MK, Gorak-Stolinska P, Blitz R, Beveridge NER, Worth A, McShane H, Dockrell HM. Mycobacterium tuberculosis PPD-induced immune biomarkers measurable in vitro following BCG vaccination of UK adolescents by multiplex bead array and intracellular cytokine staining. BMC Immunol 2010; 11:35. [PMID: 20609237 PMCID: PMC2910033 DOI: 10.1186/1471-2172-11-35] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 07/07/2010] [Indexed: 11/29/2022] Open
Abstract
Background The vaccine efficacy reported following Mycobacterium bovis Bacillus Calmette Guerin (BCG) administration to UK adolescents is 77% and defining the cellular immune response in this group can inform us as to the nature of effective immunity against tuberculosis. The aim of this study was to identify which cytokines and lymphocyte populations characterise the peripheral blood cellular immune response following BCG vaccination. Results Diluted blood from before and after vaccination was stimulated with Mycobacterium tuberculosis purified protein derivative for 6 days, after which soluble biomarkers in supernatants were assayed by multiplex bead array. Ten out of twenty biomarkers measured were significantly increased (p < 0.0025) 1 month after BCG vaccination when compared to paired samples (n = 12) taken prior to vaccination (IFNγ, TNFα, IL-1α, IL-2, IL-6, IL-10, IL-17, GM-CSF, MIP1α, IP-10). All of these remained detectable by multiplex bead array in samples taken 12 months after BCG vaccination of a partially overlapping adolescent group (n = 12). Intracellular cytokine staining after 24 hour Mycobacterium tuberculosis purified protein derivative stimulation of PBMC samples from the 12 month group revealed that IFNγ expression was detectable in CD4 and CD8 T-cells and natural killer cells. Polyfunctional flow cytometry analysis demonstrated that cells expressing IFNγ alone formed the majority in each subpopulation of cells. Only in CD4 T-cells and NK cells were there a notable proportion of responding cells of a different phenotype and these were single positive, TNFα producers. No significant expression of the cytokines IL-2, IL-17 or IL-10 was seen in any population of cells. Conclusions The broad array of biomarker responses detected by multiplex bead array suggests that BCG vaccination is capable, in this setting, of inducing a complex immune phenotype. Although polyfunctional T-cells have been proposed to play a role in protective immunity, they were not present in vaccinated adolescents who, based on earlier epidemiological studies, should have developed protection against pulmonary tuberculosis. This may be due to the later sampling time point available for testing or on the kinetics of the assays used.
Collapse
Affiliation(s)
- Steven G Smith
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Young JM, Adetifa IMO, Ota MOC, Sutherland JS. Expanded polyfunctional T cell response to mycobacterial antigens in TB disease and contraction post-treatment. PLoS One 2010; 5:e11237. [PMID: 20574540 PMCID: PMC2888639 DOI: 10.1371/journal.pone.0011237] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/31/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND T cells producing multiple factors have been shown to be required for protection from disease progression in HIV but we have recently shown this not to be the case in TB. Subjects with active disease had a greater proportion of polyfunctional cells responding to ESAT-6/CFP-10 stimulation than their infected but non-diseased household contacts (HHC). We therefore wanted to assess this profile in subjects who had successfully completed standard TB chemotherapy. METHODS We performed a cross-sectional study using PBMC from TB cases (pre- and post-treatment) and HHC. Samples were stimulated overnight with TB antigens (ESAT-6/CFP-10 and PPD) and their CD4+ and CD8+ T cells were assessed for production of CD107a, IFN-gamma, IL-2 and TNF-alpha and the complexity of the responses was determined using SPICE and PESTLE software. RESULTS AND CONCLUSIONS We found that an increase in complexity (i.e., production of more than 1 factor simultaneously) of the T cell profile was associated with TB disease and that this was significantly reduced following TB treatment. This implies that T cells are able to respond adequately to TB antigens with active disease (at least initially) but the ability of this response to protect the host from disease progression is hampered, presumably due to immune evasion strategies by the bacteria. These findings have implications for the development of new diagnostics and vaccine strategies.
Collapse
Affiliation(s)
- James M. Young
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| | - Ifedayo M. O. Adetifa
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| | - Martin O. C. Ota
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
| | - Jayne S. Sutherland
- Bacterial Diseases Programme, Medical Research Council Laboratories, Banjul, The Gambia
- * E-mail:
| |
Collapse
|
49
|
Fotio AL, Olleros ML, Vesin D, Tauzin S, Bisig R, Dimo T, Nguelefack TB, Dongo E, Kamtchouing P, Garcia I. In vitro inhibition of lipopolysaccharide and mycobacterium bovis bacillus Calmette Guérin-induced inflammatory cytokines and in vivo protection from D-galactosamine/LPS -mediated liver injury by the medicinal plant Sclerocarya birrea. Int J Immunopathol Pharmacol 2010; 23:61-72. [PMID: 20377995 DOI: 10.1177/039463201002300106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sclerocarya birrea is a medicinal plant used for the treatment of inflammatory- and bacterial-related diseases. The present study investigated in vitro and in vivo the effects of the stem bark methanol extract of S. birrea. Nitrite, TNF, IL-1beta, IL-6 and IL-12p40 production by bone marrow-derived macrophages (BMDM) pre-incubated with or without S. birrea, and stimulated with Lipopolysaccharide (LPS) or infected with live Mycobacterium bovis Bacillus Calmette Guérin (BCG) was evaluated. S. birrea extract inhibited, in a concentration-dependent manner, nitrite, TNF, IL-1beta, IL-6 and IL-12p40 production by BMDM stimulated with LPS or infected with live BCG. The iNOS expression was reduced by S. birrea after stimulation of BMDM with LPS. In addition, S. birrea inhibited the nuclear factor kB (NF-kB) activation by both LPS and BCG. The effects of the plant extract were also evaluated in an in vivo model of liver injury induced by D-galactosamine/LPS (D-GalN/LPS) administration in mice. S. birrea limited D-GalN/LPS-liver injury as assessed by a reduction in transaminases and TNF, IL-1beta, IL-6 serum levels, and translocation of NF-kB to the nucleus. Taken together, our data indicate that stem bark methanol extract of S. birrea possesses anti-inflammatory properties by inhibiting NF-kB activation and cytokine release induced by inflammatory or infectious stimuli.
Collapse
Affiliation(s)
- A L Fotio
- Department of Pathology and Immunology, CMU, University of Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sutherland JS, Young JM, Peterson KL, Sanneh B, Whittle HC, Rowland-Jones SL, Adegbola RA, Jaye A, Ota MOC. Polyfunctional CD4(+) and CD8(+) T cell responses to tuberculosis antigens in HIV-1-infected patients before and after anti-retroviral treatment. THE JOURNAL OF IMMUNOLOGY 2010; 184:6537-44. [PMID: 20435929 DOI: 10.4049/jimmunol.1000399] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tuberculosis (TB) kills 2 million people per year and infection with HIV is the most potent known risk factor for progression to active TB. An understanding of the immune response to TB Ags in HIV-infected patients is required to develop optimal TB vaccines and diagnostics. We assessed polyfunctional (IFN-gamma(+)IL-2(+)TNF-alpha(+)) T cell responses to TB Ags in three groups of HIV-1-infected patients dependent on their TB status, CD4 counts, and anti-retroviral exposure. We found that although the proportion of IFN-gamma cells in response to TB Ags was higher in patients with low CD4 counts, the responding cells changed from a polyfunctional CD4(+) to a monofunctional CD8(+) response. The overall polyfunctionality of the cells was restored by 12 mo of anti-retroviral therapy and primarily involved CD4(+) T cells with an effector memory phenotype. These findings have major implications for diagnosis of TB and in vaccine development strategies for TB in HIV-1-infected patients.
Collapse
|