1
|
Satooka H, Nakamura Y, Hirata T. ROS-dependent SOCS3 upregulation disrupts regulatory T cell stability during autoimmune disease development. Redox Biol 2025; 82:103590. [PMID: 40090133 DOI: 10.1016/j.redox.2025.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025] Open
Abstract
Autoimmune diseases including rheumatoid arthritis (RA) are often associated with high levels of reactive oxygen species (ROS); however, the ROS targets in autoimmunity are diverse and unclear. Using collagen-induced arthritis (CIA) mice as a model for RA, we report that antioxidants markedly suppress joint inflammation, antibody production, and effector T cell responses. We found that the frequency of CD4+ regulatory T cells (Tregs) was reduced in CIA mice, which was reversed by antioxidant treatment, and SOCS3, known to be associated with Treg instability, was upregulated in Tregs from both RA patients and CIA mice. Mechanistically, SOCS3 upregulation was induced by ROS-dependent PTEN oxidation and the resultant Akt/mTOR/STAT3 activation. We further showed that the source of ROS involved in this pathway is NADPH oxidase 2 (Nox2). Nox2 expression was upregulated in Tregs from CIA mice, and Nox2 transduction induced a decrease in Treg frequency that depended on SOCS3 upregulation. This study thus provides a mechanistic understanding of ROS-induced Treg instability and suggests that ROS-dependent disruption of Treg homeostasis underlies the development and progression of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Satooka
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yuzuki Nakamura
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Chen T, Zhu J, Zhan X, Zhou C, Huang C, Wu S, Zhang B, Feng S, Chen J, Xue J, Yang Z, Liu C. Investigating ferroptosis-related genes NFE2L2 in neutrophils for ankylosing spondylitis: therapeutic potential of cassia twigs. Sci Rep 2025; 15:8233. [PMID: 40064975 PMCID: PMC11893771 DOI: 10.1038/s41598-025-88775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
We determined the relationship between ferroptosis and immune cells in ankylosing spondylitis and the role of the Chinese herbal medicine Cassia twigs in treating ankylosing spondylitis. We analyzed clinical data on ankylosing spondylitis, transcriptome data, single-cell sequencing data, and genes related to ferroptosis and Cassia twigs. Clinical variables related to AS were selected through logistic regression analysis of the clinical data combined with machine learning. GSEA and enrichment analysis were performed on genes related to ferroptosis, combined with transcriptome data and drug-related genes, to identify the key genes and drug targets related to AS, as well as, the key immune cells. Then, the single-cell data and cell subtypes were analyzed. Finally, the interconnections between immune cells were analyzed through intercellular communication. Five variables, including neutrophils, were screened for clinical data analysis. The AUC of the experimental group was 0.859 and that of the validation group was 0.807. Ferroptosis gene NFE2L2 was identified as the final drug target of AS; it was upregulated in AS and downregulated in the control group by immunohistochemical verification, both of which were statistically significant (P < 0.001). Neutrophils were divided into two subgroups: high expression of NFE2L2 and low expression of NFE2L2. Through molecular docking, Cassia twigs were found to effectively act on the ferroptosis gene NFE2L2. Neutrophils act as important immune cells in AS. The twigs of the Chinese herb Cassia can treat AS by acting on the protein structure of the ferroptosis gene NFE2L2.
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Bin Zhang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jiang Xue
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Zhenwei Yang
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
3
|
Wu B, Dong Q, Zhang Q, Jin F, Weng J. Protective effects of Catalpol to attenuate TNF- α and collagen-induced inflammation in vitro HFLS-RA cells and in vivo mice models for the treatment of rheumatoid arthritis. Clin Rheumatol 2025; 44:1041-1056. [PMID: 39907970 DOI: 10.1007/s10067-024-07261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND/RATIONALE Rheumatoid Arthritis (RA) is a prolonged autoimmune condition marked by persistent inflammation, causing joint damage and bone erosion. Catalpol (CAT), an iridoid glycoside, offers anti-inflammatory benefits, warranting its study in RA models. OBJECTIVE To investigate the anti-inflammatory effects of CAT in RA by evaluating its impact on cellular and animal RA models. METHODS In vitro biological actions of CAT were investigated by the methods of cell viability, proliferation, migration, invasion, apoptosis, ROS generation, double luciferase reporter assay for NF-κB-p65 activity, Nitrite release detection, and RT-qPCR for gene expression in Tumor Necrosis Factor-alpha (TNF-α)-induced Human Fibroblast-Like Synoviocytes from RA patients (HFLS-RA) (cellular RA model). Arthritis severity, joint cellular structure, gene expression, inflammatory factors, and joint inflammation studies were investigated in mice with collagen-induced arthritis (CIA) (animal RA model). KEY RESULTS CAT treatment groups showed significant improvements (P < 0.001) in cell viability, migration, invasion, and apoptosis compared to the TNF-α-induced group. ROS generation and the activity of NF-κB-p65 were significantly reduced (P < 0.001). Nitrite release was decreased (P < 0.01, P < 0.001) in CAT-treatment groups. Pro-inflammatory and bone-metabolizing cytokine gene expression was markedly downregulated (P < 0.05, P < 0.001) in the cellular RA model. CIA mice treated with CAT exhibited significantly reduced arthritis severity, paw edema, and arthritis index (P < 0.05, P < 0.01). Joint pathology scores showed improvement (P < 0.001) in CAT-treatment groups. In the animal RA model, bone-metabolizing and inflammatory cytokine gene expression was significantly reduced in CAT-treatment groups (P < 0.01, P < 0.001). CONCLUSION CAT effectively reduces RA's inflammation and bone metabolism issues, suggesting its potential as a therapeutic agent for RA treatments. Key Points • Plant-derived Catalpol compound is an effective choice for rheumatoid arthritis treatment due to its anti-inflammatory potential. • CAT's effects were tested on TNF-α-induced HFLS-RA cells and in CIA mice, assessing cell viability, apoptosis, ROS generation, arthritis severity, inflammatory factors, and joint inflammation studies. • The administration of CAT could greatly enhance cell health and reduce inflammation markers and arthritis symptoms. • Observed significant reduction of RA inflammation and bone issues, confirming CAT as a therapeutic agent in RA treatment.
Collapse
Affiliation(s)
- Bin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Qinyan Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Qin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Fangqin Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Jiangping Weng
- Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
4
|
Klootwyk BM, Fleury GM, Albright S, Deiters A, Floreancig PE. Difunctional oxidatively cleavable alkenyl boronates: application to cellular peroxide sensing from a fluorophore-quencher pair. Chem Commun (Camb) 2025; 61:3375-3378. [PMID: 39887215 PMCID: PMC11784462 DOI: 10.1039/d5cc00090d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This manuscript describes the development of difunctional alkenyl boronates that contain an oxidatively releasable cargo and an amine for attaching to groups that can improve physical properties or enhance cellular targeting. The design is applied to a FRET-based system that delivers a selective fluorescence response in oxidatively stressed cells.
Collapse
Affiliation(s)
- Brittany M Klootwyk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Grace M Fleury
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Savannah Albright
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| |
Collapse
|
5
|
Khan D, Ahmed N, Muhammad A, Shah KU, Mir M, Rehman AU. A macromolecule infliximab loaded reverse nanomicelles-based transdermal hydrogel: An innovative approach against rheumatoid arthritis. BIOMATERIALS ADVANCES 2025; 167:214093. [PMID: 39492133 DOI: 10.1016/j.bioadv.2024.214093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Infliximab (IFX) is used as a biotherapeutic agent for the treatment of rheumatoid arthritis (RA); however, its biological activity is lost orally because of variations in gastric pH and enzymatic degradation, and reduced bioavailability. The authors have tried to improve the efficacy of macromolecule delivery through transdermal route. Polycaprolactone-Polyethylene glycol-Polycaprolactone (PCL-PEG-PCL) triblock copolymer previously synthesized and was used as an efficient carrier for the preparation of IFX loaded reverse nanomicelles (IFX-RNMs). The RNMs were fabricated via nanoprecipitation technique, characterized and then were incorporated into a Carbopol-based hydrogel with eucalyptus oil (EO) as a penetration enhancer. The optimized RNMs had a particle size of 72.32 nm and an encapsulation efficiency of 83 %. In vitro release, exhibited a sustained pattern of IFX from the prepared carrier system, ex-vivo skin permeation and fluorescence microscopic studies revealed that IFX-RNMs loaded hydrogel with EO markedly improved permeation. An in vivo study was carried out on a CFA-induced RA mice model that revealed significant improvements in the results of behavioral parameters, biochemical assays, histopathological and radiological analysis. Overall, the results concluded that the IFX-RNMs loaded hydrogel can be used as a suitable approach for treating RA.
Collapse
Affiliation(s)
- Dildar Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Adil Muhammad
- Infection Medicine, College of Medicine and Veterinary Medicine, the University of Edinburgh, EH16 4UU, United Kingdom
| | - Kifayat Ullah Shah
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Mir
- Department of Pharmacy and Allied Health Sciences, Iqra University Islamabad Campus, Sector H-9/1 Islamabad Capital Territory, Pakistan
| | - Asim Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
6
|
Zhang B, Hou S, Tang J. Riboflavin Deficiency and Apoptosis: A Review. J Nutr 2025; 155:27-36. [PMID: 39510506 DOI: 10.1016/j.tjnut.2024.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
Riboflavin, commonly known as vitamin B2, is an essential micronutrient critical for the function of flavoproteins, which utilize flavin mononucleotide and flavin adenine dinucleotide as cofactors in energy metabolism, lipid metabolism, redox regulation, and protein folding. Nutritional riboflavin deficiency (RD) has previously been observed in humans and animals, leading to adverse outcomes such as growth retardation, increased mortality, and liver damage, which may be attributed to apoptosis. Although such deficiencies are now uncommon because of improved living standards, certain high-risk groups (e.g. those with chronic diseases, the elderly, and pregnant) have increased riboflavin demands, making them vulnerable to physiological RD associated with apoptosis. Understanding the pathways through which RD induces apoptosis, including mitochondrial dysfunction, endoplasmic reticulum stress, and reactive oxygen species, is essential for grasping its broader health impacts. Additionally, this deficiency disrupts fatty acid metabolism, potentially resulting in lipotoxic apoptosis. Despite its significance, RD-induced apoptosis remains underexplored in the literature. Therefore, this review will discuss the roles of redox imbalance, mitochondrial dysfunction, endoplasmic reticulum stress, and lipotoxicity in apoptosis regulation because of RD, aiming to highlight its importance for improving riboflavin nutrition and overall health.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Ge S, Wang X, Zhao X, Yuan L, Bao X, Sun C, Gong Z, Guo J, Yuan S, Hu D, Yang J, Yuan B, Zhang G. Responsive Multi-Arm PEG-Modified COF Nanocomposites: Dynamic Photothermal, pH/ROS Dual-Responsive, Targeted Carriers for Rheumatoid Arthritis Treatment. Adv Healthc Mater 2024; 13:e2401744. [PMID: 38885286 DOI: 10.1002/adhm.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease characterized by the infiltration of immune cells and the proliferation of fibroblast-like synoviocytes (FLS) at the joint site, leading to inflammation and joint destruction. However, the available treatment options targeting both inflammatory and proliferative FLS are limited. Herein, this work presents three covalent organic frameworks (COFs) photothermal composite systems modified with multi-armed polyethylene glycols (PEG) for the treatment of RA. These systems exhibit a dual response under low pH and high reactive oxygen species (ROS) conditions at the site of inflammation, with a specific focus on delivering the protein drug ribonuclease A (RNase A). Notably, molecular docking studies reveal the interaction between RNase A and NF-κB p65 protein, and Western blotting confirm its inhibitory effect on NF-κB activity. In vitro and in vivo experiments verify the significant reduction in joint swelling and deformities in adjuvant-induced arthritis (AIA) rats after treatment with RNase A delivered by multi-armed PEG-modified COF ligands, restoring joint morphology to normal. These findings underscore the promising therapeutic potential of COFs for the treatment of RA, highlighting their unique capabilities in addressing both inflammatory and proliferative aspects of the disease and expanding the scope of biomedical applications for COFs.
Collapse
MESH Headings
- Animals
- Polyethylene Glycols/chemistry
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/therapy
- Rats
- Reactive Oxygen Species/metabolism
- Nanocomposites/chemistry
- Nanocomposites/therapeutic use
- Hydrogen-Ion Concentration
- Metal-Organic Frameworks/chemistry
- Metal-Organic Frameworks/pharmacology
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/chemistry
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/therapy
- Arthritis, Experimental/metabolism
- Humans
- Drug Carriers/chemistry
- Male
- Molecular Docking Simulation
- Synoviocytes/metabolism
- Synoviocytes/drug effects
Collapse
Affiliation(s)
- Saisai Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinru Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Caidie Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zehua Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
8
|
Han Z, Liu C, Li M, Deng M, Ding Y, Li Y, Huo M, Xu H, Qiao H, Gao N. Discovery of CYP2E1 as a novel target in rheumatoid arthritis and validation by a new specific CYP2E1 inhibitor. Biochem Pharmacol 2024; 229:116501. [PMID: 39173843 DOI: 10.1016/j.bcp.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Considerable evidence indicates that CYP2E1 is associated with a variety of inflammatory diseases. Here we evaluated CYP2E1 as a potential therapeutic target for rheumatoid arthritis (RA) and established the protective effect of a new CYP2E1 inhibitor. Gene-expression datasets were used to analyze the change in expression of CYP2E1 in RA patients; CYP2E1 activity in collagen-induced arthritis (CIA) rats was determined by HPLC. We further evaluated the protective effects of Cyp2e1 knockout and a CYP2E1-specific inhibitor, Q11, synthesized by our group, in CIA and adjuvant-induced arthritis (AIA) rats. The expression of CYP2E1 in synovial tissue was elevated in RA patients and in CIA rats and the activity of CYP2E1 in vivo and in vitro in CIA rats was greater than that of controls. Cyp2e1 knockout significantly reduced the incidence of CIA and alleviated the severity of symptoms. Treatment with different doses of Q11 decreased paw thickness, volume and arthritis scores and reduced the serum levels of IL-6, TNF-α, IL-1β and MDA, and increased the level of GSH in CIA rats. A similar inhibitory effect was exhibited for Q11 in the AIA rats. Moreover, Q11 significantly impeded proliferation, migration, and invasion of human rheumatoid arthritis synovial fibroblasts cells. Q11 decreased the release of ROS and enhanced Nrf2 nuclear translocation and HO-1 expression in the cell nucleus. Overall, our results indicated that CYP2E1 may be a new target for RA and Q11 has potential protective effects against RA by reducing oxidative stress and opposing the inflammatory response via the ROS/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Zixinying Han
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxu Liu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mingrui Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Meidan Huo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Liu Z, Fu Q, Shao Y, Duan X. The role of mitochondrial DNA copy number in autoimmune disease: a bidirectional two sample mendelian randomization study. Front Immunol 2024; 15:1409969. [PMID: 39464879 PMCID: PMC11502960 DOI: 10.3389/fimmu.2024.1409969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Background Mitochondrial DNA (mtDNA) plays an important role in autoimmune diseases (AD), yet the relationship between mitochondria and autoimmune disease is controversial. This study employed bidirectional Mendelian randomization (MR) to explore the causal relationship between mtDNA copy number and 13 ADs (including ankylosing spondylitis [AS], Crohn's disease [CD], juvenile rheumatoid arthritis [JRA], polymyalgia rheumatica [PMR], psoriasis [PSO], rheumatoid arthritis [RA], Sjogren's syndrome [SS], systemic lupus erythematosus [SLE], thyrotoxicosis, type 1 diabetes mellitus [T1DM], ulcerative colitis [UC], and vitiligo). Methods A two-sample MR analysis was performed to assess the causal relationship between mtDNA copy number and AD. Genome-wide association study (GWAS) for mtDNA copy number were obtained from the UK Biobank (UKBB), while those associated with AD were sourced from the FinnGen Biobank. Inverse variance weighting (IVW) was the primary analysis method, complemented by three sensitivity analyses (MR-Egger, weighted median, weighted mode) to validate the results. Results IVW MR analysis identified significant associations between mtDNA copy number and CD (OR=2.51, 95% CI 1.56-4.22, P<0.001), JRA (OR=1.87, 95% CI 1.17-7.65, P=0.022), RA (OR=1.71, 95%CI 1.18-2.47, P=0.004), thyrotoxicosis (OR=0.51, 95% CI0.27-0.96, P=0.038), and T1DM (OR=0.51, 95% CI 0.27-0.96, P=0.038). Sensitivity analyses indicated no horizontal pleiotropy. Conclusions Our study revealed a potential causal relationship between mtDNA copy number and ADs, indicating that these markers may be relevant in exploring new therapeutic approaches.
Collapse
Affiliation(s)
- Zhekang Liu
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingan Fu
- Cardiovascular Medicine Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yijia Shao
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinwang Duan
- Rheumatology and Immunology Department, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
10
|
Geaneotes PJ, Janosko CP, Afeke C, Deiters A, Floreancig PE. Potent and Selective Oxidatively Labile Ether-Based Prodrugs through Late-Stage Boronate Incorporation. Angew Chem Int Ed Engl 2024; 63:e202409229. [PMID: 38986017 DOI: 10.1002/anie.202409229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
This manuscript describes a new strategy for prodrug synthesis in which a relatively inert ether group is introduced at an early stage in a synthetic sequence and functionalized in the final step to introduce a prodrug-activating group through a chemoselective process. Boryl allyloxy (BAO) ether groups are synthesized through several metal-mediated processes to form entities that are readily cleaved under oxidative conditions commonly found in cancer cells. The high cleavage propensity of the BAO group allows for ether cleavage, making these compounds substantially more hydrolytically stable in comparison to acyl-linked prodrugs while retaining the ability to release alcohols. We report the preparation of prodrug analogues of the natural products camptothecin and pederin from acetal precursors that serve as protecting groups in their synthetic sequences. The BAO acetal groups cleave in the presence of hydrogen peroxide to release the cytotoxic agents. The pederin-based prodrug shows dramatically greater cytotoxicity than negative controls and outstanding selectivity and potency toward cancer cell lines in comparison to non-cancerous cell lines. This late-stage functionalization approach to prodrug synthesis should be applicable to numerous systems that can be accessed through chemoselective processes.
Collapse
Affiliation(s)
- Paul J Geaneotes
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Chasity P Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Cephas Afeke
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
11
|
Xu WD, Yang C, Huang AF. The role of Nrf2 in immune cells and inflammatory autoimmune diseases: a comprehensive review. Expert Opin Ther Targets 2024; 28:789-806. [PMID: 39256980 DOI: 10.1080/14728222.2024.2401518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Nrf2 regulates mild stress, chronic inflammation, and metabolic changes by regulating different immune cells via downstream signaling. Collection of information about the role of Nrf2 in inflammatory autoimmune diseases will better understand the therapeutic potential of targeting Nrf2 in these diseases. AREAS COVERED In this review, we comprehensively discussed biological function of Nrf2 in different immune cells, including Nrf2 preventing oxidative tissue injury, affecting apoptosis of immune cells and inflammatory cytokine production. Moreover, we discussed the role of Nrf2 in the development of inflammatory autoimmune diseases. EXPERT OPINION Nrf2 binds to downstream signaling molecules and then provides durable protection against different cellular and organ stress. It has emerged as an important target for inflammatory autoimmune diseases. Development of Nrf2 modulator drugs needs to consider factors such as target specificity, short/long term safety, disease indication identification, and the extent of variation in Nrf2 activity. We carefully discussed the dual role of Nrf2 in some diseases, which helps to better target Nrf2 in the future.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Chan Yang
- Preventive Health Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Blaga FN, Nutiu AS, Lupsa AO, Ghiurau NA, Vlad SV, Ghitea TC. Exploring Platelet-Rich Plasma Therapy for Knee Osteoarthritis: An In-Depth Analysis. J Funct Biomater 2024; 15:221. [PMID: 39194659 DOI: 10.3390/jfb15080221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
The use of platelet-rich plasma (PRP) in all medical fields is currently gaining popularity (1). PRP is a biological product that can be defined as a segment of the plasma fraction of autologous blood with a platelet concentration level above the baseline (2). The fact that it has uses in tissue regeneration and wound healing has caught the eye of orthopedic surgeons as well, as intra-articular treatments have continued to evolve. Its benefits in the treatment of different osteoarticular pathologies are of great interest in the evolving orthopedic community, targeting mostly knee osteoarthritis, meniscus and ligament injuries (3). The purpose of this review is to update the reader on the current uses of platelet-rich plasma (PRP) in the treatment of knee osteoarthritis pathology and to provide clinical feedback on its uses in the fields of orthopedic and sports medicine practice (4). We proceeded in studying 180 titles and abstracts eligible for inclusion. Compared to alternative treatments, PRP injections greatly improve the function of the knee joint.
Collapse
Affiliation(s)
- Florin Nicolae Blaga
- County Clinical Emergency Hospital of Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| | - Alexandru Stefan Nutiu
- County Clinical Emergency Hospital of Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| | - Alex Octavian Lupsa
- County Clinical Emergency Hospital of Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| | - Nicu Adrian Ghiurau
- County Clinical Emergency Hospital of Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| | - Silviu Valentin Vlad
- County Clinical Emergency Hospital of Oradea, 65 Gheorghe Doja Street, 410169 Oradea, Romania
- Department of Surgical Specialties, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| | - Timea Claudia Ghitea
- Pharmacy Department, Faculty of Medicine and Pharmacy, University of Oradea, 10 1st Decembrie Street, 410073 Oradea, Romania
| |
Collapse
|
13
|
Dore MP, Pes GM, Mereu S, Piroddu J, Cavagna L, Erre GL. Association of Rheumatoid Arthritis with Glucose-6-Phosphate Dehydrogenase Deficiency: Results from a Case-Control Study. Mediterr J Hematol Infect Dis 2024; 16:e2024056. [PMID: 38984095 PMCID: PMC11232680 DOI: 10.4084/mjhid.2024.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024] Open
Abstract
Carriers of G6PD deficiency were at an increased risk of RA. This finding opens new windows to better understanding the RA pathogenesis.
Collapse
Affiliation(s)
- Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari 07100, Italy
- Baylor College of Medicine, 77030 Houston, Texas, USA
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari 07100, Italy
- Sardinia Blue Zone Longevity Observatory, Ogliastra, Italy
| | - Sandro Mereu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari 07100, Italy
| | - Jessica Piroddu
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari 07100, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Gian Luca Erre
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
14
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
15
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
16
|
Sun J, Du J, Liu X, An J, Hu Y, Wang J, Zhu F, Feng H, Cheng S, Tian H, Mei X, Wu C. Chondroitin sulfate-modified tragacanth gum-gelatin composite nanocapsules loaded with curcumin nanocrystals for the treatment of arthritis. J Nanobiotechnology 2024; 22:270. [PMID: 38769551 PMCID: PMC11104008 DOI: 10.1186/s12951-024-02540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses, and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1β, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.
Collapse
Affiliation(s)
- Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jing Wang
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Fu Zhu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Huicong Feng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuai Cheng
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Development, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
17
|
Gonçalves AC, Rodrigues S, Fonseca R, Silva LR. Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports. Pharmaceuticals (Basel) 2024; 17:590. [PMID: 38794160 PMCID: PMC11124183 DOI: 10.3390/ph17050590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| | - Sofia Rodrigues
- Health Superior School, Polytechnic Institute of Viseu, 3500-843 Viseu, Portugal;
| | - Rafael Fonseca
- Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal;
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Center, University of Beira Interior, 6201-001 Covilhã, Portugal;
- SPRINT Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
18
|
Sharma P, Ma JX, Karamichos D. Effects of hypoxia in the diabetic corneal stroma microenvironment. Exp Eye Res 2024; 240:109790. [PMID: 38224848 DOI: 10.1016/j.exer.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.
Collapse
Affiliation(s)
- Purnima Sharma
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
19
|
Zhao Z, Xia X, Liu J, Hou M, Liu Y, Zhou Z, Xu Y, He F, Yang H, Zhang Y, Ruan C, Zhu X. Cartilage-inspired self-assembly glycopeptide hydrogels for cartilage regeneration via ROS scavenging. Bioact Mater 2024; 32:319-332. [PMID: 37869724 PMCID: PMC10589380 DOI: 10.1016/j.bioactmat.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity. Biomimetic strategy-based engineered biomaterial, capable of coordinated regulation for cellular and microenvironmental crosstalk, provides an adequate avenue to boost cartilage regeneration. The level of oxidative stress in microenvironments is verified to be vital for tissue regeneration, yet it is often overlooked in engineered biomaterials for cartilage regeneration. Herein, inspired by natural cartilage architecture, a fibril-network glycopeptide hydrogel (Nap-FFGRGD@FU), composed of marine-derived polysaccharide fucoidan (FU) and naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic peptide (Nap-FFGRGD), was presented through a simple supramolecular self-assembly approach. The Nap-FFGRGD@FU hydrogels exhibit a native cartilage-like architecture, characterized by interwoven collagen fibers and attached proteoglycans. Beyond structural simulation, fucoidan-exerted robust biological effects and Arg-Gly-Asp (RGD) sequence-provided cell attachment sites realized functional reinforcement, synergistically promoted extracellular matrix (ECM) production and reactive oxygen species (ROS) elimination, thus contributing to chondrocytes-ECM harmony. In vitro co-culture with glycopeptide hydrogels not only facilitated cartilage ECM anabolic metabolism but also scavenged ROS accumulation in chondrocytes. Mechanistically, the chondro-protective effects induced by glycopeptide hydrogels rely on the activation of endogenous antioxidant pathways associated with nuclear factor erythroid 2-related factor 2 (NRF2). In vivo implantation of glycopeptide hydrogels successfully improved the de novo cartilage generation by 1.65-fold, concomitant with coordinately restructured subchondral bone structure. Collectively, our ingeniously crafted bionic glycopeptide hydrogels simultaneously rewired chondrocytes' function by augmenting anabolic metabolism and rebuilt ECM microenvironment via preserving redox equilibrium, holding great potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215007, China
| |
Collapse
|
20
|
Hung SY, Chen JL, Tu YK, Tsai HY, Lu PH, Jou IM, Mbuyisa L, Lin MW. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway. Biomed Pharmacother 2024; 170:116006. [PMID: 38091640 DOI: 10.1016/j.biopha.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its irreversible destructive impact on the joints. Chondrocytes play a pivotal role in the production and maintenance of the cartilage matrix. However, the presence of inflammatory cytokines can hinder chondrocyte proliferation and promote apoptosis. Isoliquiritigenin (ISL), a flavonoid, potentially exerts protective effects against various inflammatory diseases. However, its specific role in regulating the nuclear factor E2-associated factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in chondrocytes in RA remains unclear. To investigate this, this study used human chondrocytes and Sprague-Dawley rats to construct in vitro and in vivo RA models, respectively. The study findings reveal that cytokines markedly induced oxidative stress, the activation of matrix metalloproteinases, and apoptosis both in vitro and in vivo. Notably, ISL treatment significantly mitigated these effects. Moreover, Nrf2 or HO-1 inhibitors reversed the protective effects of ISL, attenuated the expression of Nrf2/HO-1 and peroxisome proliferator-activated receptor gamma-coactivator-1α, and promoted chondrocyte apoptosis. This finding indicates that ISL primarily targets the Nrf2/HO-1 pathway in RA chondrocytes. Moreover, ISL treatment led to improved behavior scores, reduced paw thickness, and mitigated joint damage as well as ameliorated oxidative stress in skeletal muscles in an RA rat model. In conclusion, this study highlights the pivotal role of the Nrf2/HO-1 pathway in the protective effects of ISL and demonstrates the potential of ISL as a treatment option for RA.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jen-Lung Chen
- Department of Surgery, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Pin-Hsuan Lu
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - I-Ming Jou
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lulekiwe Mbuyisa
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan; Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
21
|
Zaky MY, Mohamed EE, Mahmoud R, Halfaya FM, Farghali A, Abo El-Ela FI. Anti-inflammatory and anti-oxidant activities of mesenchymal stem cells in chemically induced arthritic rats. Mol Biol Rep 2023; 50:9951-9961. [PMID: 37878206 DOI: 10.1007/s11033-023-08905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been extensively used as cell-based treatments for decades due to their anti-inflammatory, immunomodulatory, and healing abilities. The intent of our study was to determine the efficacy of MSCs in alleviating rheumatoid arthritis (RA) induced by Complete Freund's adjuvant (CFA) and to investigate the anti-inflammatory and antioxidant characteristics of MSCs. METHODS AND RESULTS Intrapedally injecting 0.1 ml of CFA directly into the footpad of the right hind paw daily for 2 days was used to induce RA. Arthritic rats received four doses of MSCs (1 × 106 cells/rat/dose) intravenously through the lateral tail vein. Our results showed that arthritic rats treated with MSCs exhibited reduced levels of paw edema. Furthermore, arthritic rats treated with MSCs exhibited a significant decrease in the levels of RF, CRP, IL-1β, TNF-α, IL-17 and ADAMTS-5, along with a significant increase in the levels of IL-4 and TIMP-3. Additionally, MSCs significantly reduced the expression of TGF-β. Both the glutathione (GSH) content and antioxidant activity of GST were enhanced by MSCs, while LPO levels were suppressed. CONCLUSION These findings provide further evidence that MSCs are valuable in treating RA, possibly due to their anti-inflammatory and anti-oxidative properties. Thus, MSCs have potential as a more effective therapeutic strategy for treating RA.
Collapse
Affiliation(s)
- Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| | - Eman E Mohamed
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Rehab Mahmoud
- Department of Chemistry Department, Faculty of Science, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| |
Collapse
|
22
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
23
|
Zhang A, Suzuki T, Adachi S, Yoshida E, Sakaguchi S, Yamamoto M. Nrf2 activation improves experimental rheumatoid arthritis. Free Radic Biol Med 2023; 207:279-295. [PMID: 37494986 DOI: 10.1016/j.freeradbiomed.2023.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease with pain and functional disorder of joints. Multiple strategies toward treatment of the rheumatoid arthritis are operating, while there are concerns of serious adverse effects of the therapeutic drugs. Here, we show that activation of Nrf2 (Nuclear factor erythroid 2-related factor 2) efficiently improves arthritis of SKG mice, which develop T cell-mediated autoimmune arthritis by zymosan A injection. We found that genetic Nrf2 activation by knockdown of Keap1 (Kelch-like ECH-associated protein 1), a negative regulator of Nrf2, repressed arthritis by inhibiting the expression of pro-inflammatory cytokines and inducing the expression of antioxidant enzymes in SKG mice. In addition, oral administration of CDDO-Im, a representative chemical inducer of Nrf2, had effects of both prevention and treatment toward arthritis of SKG mice in an Nrf2-dependent manner. We also found that Nrf2 activation through myeloid-cell lineage-specific Keap1 disruption did not achieve significant improvement in the arthritis of SKG mice. In contrast, expressions of pro-inflammatory cytokine genes were decreased, and those of antioxidant enzyme genes were increased in fibroblast-like synoviocytes (FLS) isolated from SKG mouse. Our results thus demonstrate that Nrf2 activation exerts marked anti-arthritis effects in the SKG experimental rheumatoid arthritis model mice, supporting the contention that the Nrf2 activation is a new therapeutic strategy for the rheumatoid arthritis.
Collapse
Affiliation(s)
- Anqi Zhang
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Saki Adachi
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Eiki Yoshida
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Yamamoto
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
| |
Collapse
|
24
|
Alrashdan MS, Al-Rawi NH, Hassona Y, Al Kawas S, Cirillo N. Mechanisms underlying sex bias in oral immune-mediated conditions, an insight. J Oral Pathol Med 2023; 52:795-802. [PMID: 37452464 DOI: 10.1111/jop.13466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The predilection for women in systemic autoimmune diseases is well established. However, this sex bias in oral autoimmune diseases has been classically reported from an epidemiological perspective without any elaborate attempts to unveil the underlying mechanisms. The unique nature of the oral environment is likely to impose a combination of systemic and local factors that ultimately result in the sex bias in autoimmune diseases of the oral cavity. Variations of immune responses, target organ vulnerability, endocrine and genetic factors, sex chromosomes and modes of parental inheritance are potential systemic factors, while the oral microbiome, oral tolerance, saliva, and oral epithelial stem cells may account for local contributing factors. This review will discuss the preponderance of women in oral immune-mediated diseases, the potential systemic and local mechanisms underlying this predominance and highlight the crucial need for further research in this area.
Collapse
Affiliation(s)
- Mohammad S Alrashdan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Oral Medicine and Oral Surgery, Faculty of Dentistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Natheer H Al-Rawi
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Yazan Hassona
- Department of Oral and Maxillofacial Surgery, Oral Medicine, and Periodontics, School of Dentistry, The University of Jordan, Amman, Jordan
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nicola Cirillo
- Melbourne Dental School, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Carlton, Victoria, Australia
| |
Collapse
|
25
|
Mao Y, Liu C, Liu D, Wei X, Tan X, Zhou J, Yu X, Liu M. In vitro inhibitory effect of zingerone on TNFα-stimulated fibroblast-like synoviocytes. In Vitro Cell Dev Biol Anim 2023; 59:615-623. [PMID: 37728855 DOI: 10.1007/s11626-023-00810-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Targeting Fibroblast-like synoviocytes (FLSs) is an attractive complementary approach for RA therapy. This study aimed to investigate the inhibitory effects of zingerone on TNFα-induced arthritic FLSs. MTS, EdU, wound healing, DHE staining and real-time PCR were used to determine the effects of zingerone on the destructive behaviors of arthritic FLSs induced by TNFα. Western blot analysis was used to analyze cell signaling pathways. Zingerone treatment significantly inhibited TNFα-induced proliferation, migration, ROS formation and pro-inflammatory cytokines expression of FLSs. Molecular mechanism studies revealed that zingerone could suppress TNFα-induced activations of MAPKs (ERK, JNK and p38) in arthritic FLSs. Zingerone attenuated pathological features of FLSs via MAPKs pathways, indicating its potential as a complementary or alternative drug for RA therapy.
Collapse
Affiliation(s)
- Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Changze Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Dan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xianhua Wei
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Tan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Junnan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
26
|
Pan Z, Hou M, Zhang Y, Liu Y, Tian X, Hu X, Ge X, Zhao Z, Liu T, Xu Y, Yang H, Liu H, Zhu X, He F. Incorporation of kartogenin and silk fibroin scaffolds promotes rat articular cartilage regeneration through enhancement of antioxidant functions. Regen Biomater 2023; 10:rbad074. [PMID: 37719927 PMCID: PMC10503267 DOI: 10.1093/rb/rbad074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Treating articular cartilage defects in patients remains a challenging task due to the absence of blood vessels within the cartilage tissue. The regenerative potential is further compromised by an imbalance between anabolism and catabolism, induced by elevated levels of reactive oxygen species. However, the advent of tissue engineering introduces a promising strategy for cartilage regeneration, offering viable solutions such as mechanical support and controlled release of chondrogenic molecules or cytokines. In this study, we developed an antioxidant scaffold by incorporating natural silk fibroin (SF) and kartogenin (KGN)-loaded liposomes (SF-Lipo@KGN). The scaffold demonstrated appropriate pore size, connectivity, and water absorption and the sustained release of KGN was achieved through the encapsulation of liposomes. In vitro experiments revealed that the SF-Lipo@KGN scaffolds exhibited excellent biocompatibility, as evidenced by enhanced cell adhesion, migration, and proliferation of chondrocytes. The SF-Lipo@KGN scaffolds were found to stimulate cartilage matrix synthesis through the activation of the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 antioxidant signaling pathway. In vivo experiments demonstrated the effective promotion of articular cartilage regeneration by the SF-Lipo@KGN scaffolds, which enhanced extracellular matrix anabolism and restored the intrinsic redox homeostasis. Overall, this study successfully developed biomimetic KGN-loaded scaffolds that restore cartilage redox homeostasis, indicating promising prospects for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zejun Pan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
- Department of Orthopaedics, People's Hospital of Zhenhai District (Ningbo No.7 Hospital), Ningbo 315202, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiayu Hu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Xiaoyang Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215007, China
| |
Collapse
|
27
|
Klootwyk B, Ryan AE, Lopez A, McCloskey MJR, Janosko CP, Deiters A, Floreancig PE. Peroxide-Mediated Release of Organophosphates from Boron-Containing Phosphotriesters: A New Class of Organophosphate Prodrugs. Org Lett 2023; 25:5530-5535. [PMID: 37463277 PMCID: PMC10391626 DOI: 10.1021/acs.orglett.3c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 07/20/2023]
Abstract
Phosphate mono- and diesters can be liberated efficiently from boryl allyloxy (BAO) and related phosphotriesters by H2O2. This protocol was applied to the release of a phosphorylated serine derivative and the nucleotide analogue AZT monophosphate. Nucleotide release in the presence of ATP and a kinase provides a diphosphate, demonstrating that this method can be applied to biological processes.
Collapse
Affiliation(s)
- Brittany
M. Klootwyk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Amy E. Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Arbil Lopez
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Mitchell J. R. McCloskey
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Chasity P. Janosko
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul E. Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
29
|
Shen Y, Teng L, Qu Y, Huang Y, Peng Y, Tang M, Fu Q. Hederagenin Suppresses Inflammation and Cartilage Degradation to Ameliorate the Progression of Osteoarthritis: An In vivo and In vitro Study. Inflammation 2023; 46:655-678. [PMID: 36348189 DOI: 10.1007/s10753-022-01763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA), a common degenerative joint disease, is characterized by the progressive degradation of articular cartilage and inflammation. Hederagenin (HE) is a pentacyclic triterpenoid saponin extracted from many herb plants. It has anti-inflammatory, anti-lipid peroxidative, anti-cancer, and neuroprotective activities. However, its effect on OA has not been investigated. Our study found that HE may be a potential anti-OA drug. In vitro, HE could suppress extracellular matrix (ECM) degradation via up-regulating aggrecan and Collagen II levels as well as downregulating MMPs and ADAMTS5 levels. It could also reduce proinflammatory and inflammatory cytokines or enzymes production, including TNF-α, IL-6, iNOS, COX-2, NO, and PGE2. Besides, HE markedly reduced IL-1β-induced C28/I2 cell apoptosis and ROS accumulation. Mechanistically, HE exerted chondroprotective and anti-inflammatory effects by partly inhibiting JAK2/STAT3/MAPK signalling pathway and the crosstalk of the two pathways. Also, HE exhibited anti-apoptotic and anti-oxidative effect via targeting Keap1-Nrf2/HO-1/ROS/Bax/Bcl-2 axis. In vivo, HE significantly reduced monosodium iodoacetate (MIA) induced cartilage destruction of rats with a lower OARSI score and inflammatory cytokine levels, further demonstrating its protective effects in OA progression. These results suggest that HE is a potential compound for the development of drugs to treat OA.
Collapse
Affiliation(s)
- Yue Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Teng
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuhan Qu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuehui Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yi Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Min Tang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qiang Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
30
|
Expression of Nrf2 protein in serum of patients with rheumatoid arthritis: A novel indicator for disease activity and disease prognosis. Clin Biochem 2023; 113:1-8. [PMID: 36574898 DOI: 10.1016/j.clinbiochem.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE This study aimed to detect the expression level of nuclear factor erythroid 2-related factor 2 (Nrf2) in the serum of patients with rheumatoid arthritis (RA) to clarify the correlation between Nrf2 levels and medical parameters, such as disease activity, pro-inflammatory factor, clinical characteristics, as well as changes after treatment. METHODS Serum samples were collected from 100 patients with RA and 42 normal controls (NCs). Serum levels of Nrf2 protein, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17A, and malondialdehyde (MDA) were analyzed. The receiver operating characteristic (ROC) curve was adopted to assess the potential of Nrf2 to predict different levels of disease activity in patients with RA. The relationship between clinical variables and parameters were evaluated. RESULTS For the first time, it was reported that Nrf2 levels were significantly elevated in the serum of patients with RA compared to those of NCs, as were the MDA levels. The levels of Nrf2 were positively correlated with the disease activity and pro-inflammatory factor levels. The significant cut-off points for Nrf2 to determine RA disease activity were 0.69 ng/mL, 0.69 ng/mL and 1.18 ng/mL. Levels of Nrf2 were higher in RA patients with wrist joint involvement and interstitial lung disease. Moreover, Nrf2 levels decreased after treatment. CONCLUSIONS Serum Nrf2 protein level is potentially a novel indicator to monitor disease activity and prognosis in patients with RA.
Collapse
|
31
|
Pan YN, Jia C, Yu JP, Wu ZW, Xu GC, Huang YX. Fibroblast growth factor 9 reduces TBHP-induced oxidative stress in chondrocytes and diminishes mouse osteoarthritis by activating ERK/Nrf2 signaling pathway. Int Immunopharmacol 2023; 114:109606. [PMID: 36700776 DOI: 10.1016/j.intimp.2022.109606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is a degenerative and progressive disease that affects joints. Pathologically, it is characterized by oxidative stress-mediated excessive chondrocyte apoptosis and mitochondrial dysfunction. Fibroblast growth factor 9 (FGF9) has been shown to exert antioxidant effects and prevent degenerative diseases by activating ERK-related signaling pathways. However, the mechanism of FGF9 in the pathogenesis of OA and its relationship with anti-oxidative stress and related pathways are unclear. In this study, mice with medial meniscus instability (DMM) were used as the in vivo model whereas TBHP-induced chondrocytes served as the in vitro model to explore the mechanism underlying the effects of FGF9 in OA and its association with anti-oxidative stress. Results showed that FGF9 reduced oxidative stress, apoptosis, and mitochondrial dysfunction in TBHP-treated chondrocytes and promoted the nuclear translocation of Nrf2 to activate the Nrf2/HO1 signaling pathway. Interestingly, silencing the Nrf2 gene or blocking the ERK signaling pathway abolished the antioxidant effects of FGF9. FGF9 treatment reduced joint space narrowing, cartilage ossification, and synovial thickening in the DMM model mice. In conclusion, the present findings demonstrate that FGF9 can inhibit TBHP-induced oxidative stress in chondrocytes through the ERK and Nrf2-HO1 signaling pathways and prevent the progression of OA in vivo.
Collapse
Affiliation(s)
- Yi-Nan Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chao Jia
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jia-Pei Yu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhou-Wei Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Guo-Chao Xu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yi-Xing Huang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
32
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
33
|
Zhang L, Qin Z, Sun H, Chen X, Dong J, Shen S, Zheng L, Gu N, Jiang Q. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18:1-14. [PMID: 35387158 PMCID: PMC8961303 DOI: 10.1016/j.bioactmat.2022.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by synovitis and destruction of cartilage, promoted by sustained inflammation. However, current treatments remain unsatisfactory due to lacking of selective and effective strategies for alleviating inflammatory environments in RA joint. Inspired by neutrophil chemotaxis for inflammatory region, we therefore developed neutrophil-derived exosomes functionalized with sub-5 nm ultrasmall Prussian blue nanoparticles (uPB-Exo) via click chemistry, inheriting neutrophil-targeted biological molecules and owning excellent anti-inflammatory properties. uPB-Exo can selectively accumulate in activated fibroblast-like synoviocytes, subsequently neutralizing pro-inflammatory factors, scavenging reactive oxygen species, and alleviating inflammatory stress. In addition, uPB-Exo effectively targeted to inflammatory synovitis, penetrated deeply into the cartilage and real-time visualized inflamed joint through MRI system, leading to precise diagnosis of RA in vivo with high sensitivity and specificity. Particularly, uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. Therefore, nanoenzyme functionalized exosomes hold the great potential for enhanced treatment of RA in clinic. uPB-Exo were firstly developed by combining NE-Exo with sub-5 nm ultrasmall PB nanoparticles via click chemistry. uPB-Exo selectively targeted inflamed joints via neutrophil-targeted biological molecules inherited from neutrophils. uPB-Exo accumulated in active FLS, and eventually scavenged reactive oxygen species and alleviated inflammatory stress. uPB-Exo induced a cascade of anti-inflammatory events via Th17/Treg cell balance regulation, thereby significantly ameliorating joint damage. uPB-Exo, as a drug free therapeutical agent, holds the great potential for enhanced treatment of RA in clinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ziguo Qin
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, PR China
- Corresponding author.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
- Corresponding author. State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
34
|
Manda G, Milanesi E, Genc S, Niculite CM, Neagoe IV, Tastan B, Dragnea EM, Cuadrado A. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic Biol Med 2022; 190:179-201. [PMID: 35964840 DOI: 10.1016/j.freeradbiomed.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.
Collapse
Affiliation(s)
- Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Sermin Genc
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cristina Mariana Niculite
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Bora Tastan
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Elena Mihaela Dragnea
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
35
|
Ogawa T, Ishitsuka Y. The Role of KEAP1-NRF2 System in Atopic Dermatitis and Psoriasis. Antioxidants (Basel) 2022; 11:antiox11071397. [PMID: 35883888 PMCID: PMC9312147 DOI: 10.3390/antiox11071397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The Kelch-like erythroid cell-derived protein with cap‘n’collar homology-associated protein 1 (KEAP1)-nuclear factor erythroid-2-related factor 2 (NRF2) system, a thiol-based sensor-effector apparatus, exerts antioxidative and anti-inflammatory effects and maintains skin homeostasis. Thus, NRF2 activation appears to be a promising treatment option for various skin diseases. However, NRF2-mediated defense responses may deteriorate skin inflammation in a context-dependent manner. Atopic dermatitis (AD) and psoriasis are two common chronic inflammatory skin diseases caused by a defective skin barrier, dysregulated immune responses, genetic predispositions, and environmental factors. This review focuses on the role of the KEAP1-NRF2 system in the pathophysiology of AD and psoriasis and the therapeutic approaches that utilize this system.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Correspondence: ; Tel.: +81-29-853-3128; Fax: +81-29-853-3217
| | - Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Ibaraki, Japan;
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
36
|
Zhou X, Mi J, Liu Z. Causal association of diet-derived circulating antioxidants with the risk of rheumatoid arthritis: a Mendelian randomization study. Semin Arthritis Rheum 2022; 56:152079. [DOI: 10.1016/j.semarthrit.2022.152079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
|
37
|
Scanu A, Lorenzin M, Luisetto R, Galozzi P, Ortolan A, Oliviero F, Doria A, Ramonda R. Identification in synovial fluid of a new potential pathogenic player in arthropathies. Exp Biol Med (Maywood) 2022; 247:1061-1066. [PMID: 35470716 DOI: 10.1177/15353702221087966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
STING (stimulator of interferon genes) has been recognized as an important signaling molecule in the innate immune response to cytosolic nucleic acids. Although it has been proposed that STING signaling pathway may play a pathogenic role in developing autoimmune and autoinflammatory diseases, its involvement in rheumatic disease processes remains to be elucidated. Here, we evaluated STING protein levels, expression and relationship with inflammatory parameters in synovial fluid (SF) of patients with psoriatic arthritis (PsA), rheumatoid arthritis (RA), gout, calcium pyrophosphate crystal-induced arthritis (CPP-IA), osteoarthritis (OA), and OA with CPP crystals (OA + CPP). The correlation with its negative regulator, nuclear factor erythroid 2-related factor 2 (Nrf2), was also investigated. SFs from 72 patients were analyzed for white blood cell (WBC) count, polymorphonuclear cell percentage (PMN%), and IL-1β, IL-6, IL-8, extra- and intracellular STING levels. STING and Nrf2 expression was also determined. WBC count and PMN% were greater in SF from inflammatory arthritis, while they were lower in OA groups. RA and gouty SFs have the highest levels of IL-1β, IL-8, and IL-6; while OA and OA + CPP showed the lowest concentrations. Gout and RA had the highest intracellular STING levels, while extracellular STING was greater in CPP-IA and OA SFs. STING was not detectable in PsA. STING mRNA was lower in PsA than other arthritides. Nrf2 mRNA was not detectable in OA. This study determines the presence of STING in SF of different arthritides, except for PsA, and suggests that it may be involved in pathogenesis and progression of arthropathies.
Collapse
Affiliation(s)
- Anna Scanu
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Mariagrazia Lorenzin
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padova, Padova 35128, Italy
| | - Paola Galozzi
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Augusta Ortolan
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Francesca Oliviero
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| | - Roberta Ramonda
- Rheumatology Unit, Department of Medicine (DIMED), University of Padova, Padova 35128, Italy
| |
Collapse
|
38
|
Chen JY, Tian XY, Liu WJ, Wu BK, Wu YC, Zhu MX, Jin-Liu, Zhou X, Zheng YF, Ma XQ, Huang MQ. Importance of Gedunin in Antagonizing Rheumatoid Arthritis via Activating the Nrf2/ARE Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6277760. [PMID: 35432723 PMCID: PMC9010203 DOI: 10.1155/2022/6277760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/15/2023]
Abstract
Objective This study assessed the anti-arthritic effect and protection of Gedunin (GDN) on joint tissues and revealed the possible mechanism in suppressing rheumatoid arthritis (RA). Methods LPS-induced macrophages and TNF-α-stimulated synovial fibroblasts (MH7A) or IL-1β-stimulated primary rheumatoid arthritis synovial fibroblasts (RASFs) were used to evaluate the antiinflammatory effect of GDN. In addition, CIA-induced arthritis was employed here to evaluate the anti-arthritic effect. MTT and BRDU assays were utilized to evaluate the cell viability and proliferation, Q-PCR was conducted to detect the mRNA expression of cytokines, FACS was adopted to monitor ROS production, while western blotting (WB) and siRNA interference were applied in confirming the anti-arthritic effects of GDN via the Nrf2 signaling. Results. In vitro, cell viability was inhibited in macrophages and MH7A cells, but not in RASFs; but the proliferation of RASFs was significantly suppressed in time- and dose-dependent manners. GDN suppressed cytokine levels in LPS-stimulated macrophages and TNF-α-stimulated MH7A cells or RASFs. GDN suppressed ROS expression. Furthermore, GDN treatment notably dose-dependently decreased the mRNA and protein expression of iNOS in LPS-induced macrophages. sip62 interference results showed that GDN cause the less expression of HO-1 and Keap1 and also fail to inhibit cytokines after sip62 interference. In vivo, GDN effectively inhibited paw swelling, arthritis score, and arthritis incidence and cytokines. Conclusions Our study suggested that GDN exhibited strong antagonistic effect on arthritis both in vitro and in vivo via activation of Nrf2 signaling. Our work will provide a promising therapeutic strategy for RA.
Collapse
Affiliation(s)
- Jian-Yu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Xiao-Yun Tian
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Wen-Jing Liu
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Bao-Kun Wu
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Yue-Chan Wu
- LiuHe Township Health Center, No. 63, LiuHe Road, Qi Chun Liu He, Huang Gang 436328, China
| | - Ming-Xing Zhu
- Fujian University of Traditional Chinese Medicine, Institute of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jin-Liu
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Yan-Fang Zheng
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| | - Xue-Qin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ming-Qing Huang
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, China
| |
Collapse
|
39
|
Rockwell CE, Jin Y, Boss AP, Kaiser LM, Awali S. The Complicated Role of Nuclear Factor Erythroid-Derived 2-Like 2 in Allergy and Asthma. Drug Metab Dispos 2022; 50:500-507. [PMID: 34930784 PMCID: PMC11022934 DOI: 10.1124/dmd.121.000414] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a stress-activated transcription factor that is highly responsive to oxidative stress and electrophilic stimuli. Upon activation, Nrf2 upregulates a battery of cytoprotective genes meant to prevent cell death or damage. In many models of inflammation, Nrf2 protects against the immune response and decreases injury, including in the context of asthma and allergy. However, in some models of asthma and allergy, Nrf2 either does not play a role or can even exacerbate inflammation. In general, the reasons behind these discrepancies are not clear and the mechanisms by which Nrf2 modulates immune response are largely uncharacterized. The aim of this review is to highlight current literature assessing the role of Nrf2 in allergy and asthma to understand Nrf2 as a potential therapeutic target. SIGNIFICANCE STATEMENT: Nuclear factor erythroid-derived 2-like 2 (Nrf2) is an important immune mediator that modulates numerous immune cell types in various inflammatory diseases, including allergy and asthma. There is considerable interest in Nrf2 as a drug target in inflammation, which is complicated by the complex nature of Nrf2 in the immune system. This review focuses on the role of Nrf2 in asthma and allergy, including in regulating immune cell function and in detoxifying xenobiotics that exacerbate these diseases.
Collapse
Affiliation(s)
- Cheryl E Rockwell
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Yining Jin
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Allison P Boss
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Luca M Kaiser
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| | - Saamera Awali
- Department of Pharmacology and Toxicology, College of Human Medicine (C.E.R., Y.J., A.P.B., L.M.K., S.A.), Institute for Integrative Toxicology (C.E.R.), Cell and Molecular Biology Program (C.E.R.), Applied Immunology Center for Education and Research (C.E.R.), Department of Food Science and Human Nutrition (A.P.B.), and College of Osteopathic Medicine (L.M.K.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
40
|
Chen J, Zhu G, Sun Y, Wu Y, Wu B, Zheng W, Ma X, Zheng Y. 7-deacetyl-gedunin suppresses proliferation of Human rheumatoid arthritis synovial fibroblast through activation of Nrf2/ARE signaling. Int Immunopharmacol 2022; 107:108557. [PMID: 35247778 DOI: 10.1016/j.intimp.2022.108557] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an chronic autoimmune disease and characterized by high incidence. However, there is no effective therapies for RA. Therefore, it is urgent to discover new drugs for RA treatment. Nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) can effectively protect against arthritic inflammatory diseases through diverse stages, such as regulating redox balance, detoxification, metabolism and inflammation. Dimethyl fumarate (DMF), targets the Nrf2 pathway, was approved by FDA for the clinical treatment of multiple sclerosis (MS), which is another autoimmune disease. The latest report shown that DMF ameliorates complete Freund's adjuvant-induced arthritis in rats through activation of the Nrf2/HO-1 signaling pathway. Hence, Nrf2 serves as an important target for inflammation interference and oxidative stress of macrophages and RASFs in RA; therefore, it can be adopted as an effective therapeutic approach in the future. Rheumatoid arthritis synovial fibroblasts (RASFs) play crucial roles in the RA pathogenesis. Our results revealed that 7-deacetyl-gedunin (7-d-GDN), derived from fruits of Toona sinensis (A. Juss.) Roem, significantly inhibited RASFs proliferation in dose- and time- dependent manners and inhibited cell viability in MH7A cells, which is a kind of immortal cell line from joints of patients with RA. Additionally, 7-d-GDN remarkably down-regulated MMP-1/3/9/13 in RASFs, IL-6 and IL-33 in MH7A cells. Besides, 7-d-GDN sharply inhibited reactive oxygen species (ROS) in RASFs. Further mechanistic study demonstrated that 7-d-GDN induced heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone 1(NQO1), which all participated in suppressing of oxidative stress. Additionally, 7-d-GDN increased sequestosome 1 (SQSTM1, p62), causing down-regulating Kelch-like ECH-associated protein 1 (Keap1), which resulting in NF-E2-related factor 2 (Nrf2) cytoplasm accumulation and subsequently translocation into nucleus. Collectively, 7-d-GDN exerts the anti-inflammatory effect through regulating anti-oxidative enzymes via p62/ Nrf2/ARE signaling. All suggest that the potential of 7-d-GDN in suppression of inflammation, especially antagonizing RA severity. Our works support for drugs discovery in RA treatment.
Collapse
Affiliation(s)
- JianYu Chen
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1,Huatuo Road, Min hou shang jie, Fuzhou 350122, China
| | - GuoYuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - YiBin Sun
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1,Huatuo Road, Min hou shang jie, Fuzhou 350122, China
| | - YueChan Wu
- LiuHe Township Health Center, No.63, LiuHe Road, Qi Chun Liu He, Huang Gang 436328, China
| | - BaoKun Wu
- AIM Explorer Life Sciences Co., Ltd., Gemdale Viseem MinHang Technology & Industrial Park, No. 1288, Zhongchun Road, Minhang, ShangHai 201108, China
| | - WanTing Zheng
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1,Huatuo Road, Min hou shang jie, Fuzhou 350122, China
| | - XueQin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - YanFang Zheng
- Department of Pharmacology, School of Pharmacy, Fujian University of Traditional Chinese Medicine, No.1,Huatuo Road, Min hou shang jie, Fuzhou 350122, China.
| |
Collapse
|
41
|
Allawadhi P, Khurana A, Sayed N, Godugu C, Vohora D. Ameliorative effect of cerium oxide nanoparticles against Freund’s complete adjuvant-induced arthritis. Nanomedicine (Lond) 2022; 17:383-404. [PMID: 35124975 DOI: 10.2217/nnm-2021-0172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To assess the mechanistic effects of cerium oxide nanoparticles (CONPs) on Freund’s complete adjuvant (FCA)-induced rheumatoid arthritis in rats. Methods: CONPs were characterized and evaluated in vitro (RAW 264.7 macrophages) and in vivo (FCA-induced rheumatoid arthritis model). Results: In vitro treatment with CONPs significantly reduced lipopolysaccharide-induced oxidative stress (as evident from dichlorodihydrofluorescein diacetate staining), diminished mitochondrial stress (as observed with tetraethylbenzimidazolylcarbocyanine iodide staining) and reduced superoxide radicals. In vivo, CONPs exhibited anti-rheumatoid arthritis activity, as evident from results of paw volume, x-ray, clinical scoring, levels of cytokines (IL-17, IL-1β, TNF-α and TGF-β1) and histology. Conclusion: We provide preclinical proof that CONPs may be a novel futuristic nanoparticle-based approach for therapy of rheumatoid arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Nilofer Sayed
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education & Research (NIPER), Balanagar, Hyderabad, 500037, Telangana State, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|
42
|
Carreon-Gonzalez M, Muñoz-Rugeles L, Vivier-Bunge A, Alvarez-Idaboy JR. Chemical repair of damaged leucine and tryptophane by thiophenols at close to diffusion-controlled rates: Mechanisms and kinetics. J Comput Chem 2022; 43:556-567. [PMID: 35106786 DOI: 10.1002/jcc.26813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
Thiophenols are chemical species with multiple desirable biological properties, including their primary and secondary antioxidant capacity. In this work, the repairing antioxidant activity of eight different thiophenols has been investigated for damaged leucine and tryptophane. The investigation was carried out employing quantum mechanical and transition state methods to calculate the thermodynamic and kinetic data of the reactions involved, while simulating the biological conditions at physiological pH and aqueous and lipidic medium. The analysis of the atomic charges and the spin densities at each of the points on the potential energy surface was the tool that allowed the elucidation of the reaction mechanisms through which thiophenols repair the oxidative damage caused to the amino acids leucine and tryptophan. It was found that thiophenols can repair leucine via a hydrogen atom transfer mechanism in a manner which is similar to the one used by glutathione to repair the carbon-centered radicals of guanosine. In addition, thiophenols can also restore tryptophane, a nitrogen-centered radical, via proton-coupled electron transfer and single electron transfer mechanisms. Moreover, both processes occur at close to diffusion-controlled rates.
Collapse
Affiliation(s)
- Mirzam Carreon-Gonzalez
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leonardo Muñoz-Rugeles
- Laboratorio de Espectroscopia Atómica y Molecular (LEAM), Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Annik Vivier-Bunge
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Juan Raul Alvarez-Idaboy
- Facultad de Química, Departamento de Física y Química Teórica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
43
|
Kubo Y, Beckmann R, Fragoulis A, Conrads C, Pavanram P, Nebelung S, Wolf M, Wruck CJ, Jahr H, Pufe T. Nrf2/ARE Signaling Directly Regulates SOX9 to Potentially Alter Age-Dependent Cartilage Degeneration. Antioxidants (Basel) 2022; 11:antiox11020263. [PMID: 35204144 PMCID: PMC8868513 DOI: 10.3390/antiox11020263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is implicated in osteoarthritis, and nuclear factor erythroid 2–related factor 2 (Nrf2)/antioxidant response element (ARE) pathway maintains redox homeostasis. We investigated whether Nrf2/ARE signaling controls SOX9. SOX9 expression in human C-28/I2 chondrocytes was measured by RT–qPCR after shRNA-mediated knockdown of Nrf2 or its antagonist the Kelch-like erythroid cell-derived protein with cap ‘‘n’’ collar homology-associated protein 1 (Keap1). To verify whether Nrf2 transcriptionally regulates SOX9, putative ARE-binding sites in the proximal SOX9 promoter region were inactivated, cloned into pGL3, and co-transfected with phRL–TK for dual-luciferase assays. SOX9 promoter activities without and with Nrf2-inducer methysticin were compared. Sox9 expression in articular chondrocytes was correlated to cartilage thickness and degeneration in wild-type (WT) and Nrf2-knockout mice. Nrf2-specific RNAi significantly decreased SOX9 expression, whereas Keap1-specific RNAi increased it. Putative ARE sites (ARE1, ARE2) were identified in the SOX9 promoter region. ARE2 mutagenesis significantly reduced SOX9 promoter activity, but ARE1 excision did not. Functional ARE2 site was essential for methysticin-mediated induction of SOX9 promoter activity. Young Nrf2-knockout mice revealed significantly lower Sox9-positive chondrocytes, and old Nrf2-knockout animals showed thinner cartilage and more cartilage degeneration. Our results suggest Nrf2 directly regulates SOX9 in articular cartilage, and Nrf2-loss can develop mild osteoarthritis at old age. Pharmacological Nrf2 induction may hold the potential to diminish age-dependent cartilage degeneration through improving SOX9 expression.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
- Correspondence: ; Tel.: +49-24-1808-9525
| | - Rainer Beckmann
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Claudius Conrads
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Prathyusha Pavanram
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Uniklinik RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany;
| | - Michael Wolf
- Department of Orthodontics, Uniklinik RWTH Aachen, Pauwelsstraße 30, D-52074 Aachen, Germany;
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, D-52074 Aachen, Germany; (R.B.); (A.F.); (C.C.); (P.P.); (C.J.W.); (H.J.); (T.P.)
| |
Collapse
|
44
|
Kan S, Duan M, Liu Y, Wang C, Xie J. Role of Mitochondria in Physiology of Chondrocytes and Diseases of Osteoarthritis and Rheumatoid Arthritis. Cartilage 2021; 13:1102S-1121S. [PMID: 34894777 PMCID: PMC8804744 DOI: 10.1177/19476035211063858] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE OF REVIEW Mitochondria are recognized to be one of the most important organelles in chondrocytes for their role in triphosphate (ATP) generation through aerobic phosphorylation. Mitochondria also participate in many intracellular processes involving modulating reactive oxygen species (ROS), responding to instantaneous hypoxia stress, regulating cytoplasmic transport of calcium ion, and directing mitophagy to maintain the homeostasis of individual chondrocytes. DESIGNS To summarize the specific role of mitochondria in chondrocytes, we screened related papers in PubMed database and the search strategy is ((mitochondria) AND (chondrocyte)) AND (English [Language]). The articles published in the past 5 years were included and 130 papers were studied. RESULTS In recent years, the integrity of mitochondrial structure has been regarded as a prerequisite for normal chondrocyte survival and defect in mitochondrial function has been found in cartilage-related diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the understanding of mitochondria in cartilage is still largely limited. The mechanism on how the changes in mitochondrial structure and function directly lead to the occurrence and development of cartilage-related diseases remains to be elusive. CONCLUSION This review aims to summarize the role of mitochondria in chondrocytes under the physiological and pathological changes from ATP generation, calcium homeostasis, redox regulation, mitophagy modulation, mitochondria biogenesis to immune response activation. The enhanced understanding of molecular mechanisms in mitochondria might offer some new cues for cartilage remodeling and pathological intervention.
Collapse
Affiliation(s)
- Shiyi Kan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chunli Wang
- “111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases,
West China Hospital of Stomatology, Sichuan University, Chengdu, China,“111” Project Laboratory of
Biomechanics and Tissue Repair, Bioengineering College, Chongqing University,
Chongqing, China,Lab of Bone & Joint Disease, State
Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
University, Chengdu, China,Jing Xie, Lab of Bone & Joint Disease,
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
45
|
Once-monthly hemin suppresses inflammatory and autoreactive CD4 + T cell responses to robustly ameliorate experimental rheumatoid arthritis. iScience 2021; 24:103101. [PMID: 34622156 PMCID: PMC8479697 DOI: 10.1016/j.isci.2021.103101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that would permanently damage the affected joints. Unfortunately, a large proportion of RA patients fail to respond adequately to current treatments. Here, repurposing hemin and its ultra-long-acting formulation were explored for the effective treatment of RA in animal models. We provided evidence that hemin prevented the onset and ameliorated the clinical course of RA. Notably, hemin treatment rescued the dysregulated gene expression in animal models of RA, resulting in attenuation of Th1/Th17 cell-mediated responses and proinflammatory cytokines. Moreover, we further formulated hemin into the in-situ forming implant, and a single injection of the ultra-long-acting hemin exerted potent disease-modifying effects for at least six weeks with a remarkable dose reduction. Taken together, given the potent anti-inflammatory and immunosuppressive effects, the once-monthly hemin injection holds promise for rapid clinical translation, and represents a potential strategy to treat RA and possibly other autoimmune diseases. Repurposing hemin prevents the onset and ameliorates the clinical course of RA Once-monthly hemin achieve sustained remission of RA for at least six weeks Hemin rescue dysregulated gene expression and attenuate autoreactive immune responses
Collapse
|
46
|
Zejnullahu VA, Zejnullahu VA, Kosumi E. The role of oxidative stress in patients with recurrent pregnancy loss: a review. Reprod Health 2021; 18:207. [PMID: 34656123 PMCID: PMC8520213 DOI: 10.1186/s12978-021-01257-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) presents one of the main problems in the field of reproductive medicine, due to the unknown etiology in 50% of cases, as well as limited evidence-based diagnostic and therapeutic modalities. Recent studies indicate that systemic and placental oxidative stress (OS) represents an essential factor in the etiopathogenesis of RPL. This article is a comprehensive narrative synthesis of previously published studies concerning the role of oxidative stress in the etiology of recurrent pregnancy loss. METHODS We conducted literature search of published studies in the English language focusing on oxidative stress and its association with recurrent pregnancy loss (RPL) utilizing the Medline and Cochrane databases from 2000 through January 2021. The keywords used were "recurrent pregnancy loss" "oxidative stress and recurrent pregnancy loss" and "oxidative stress biomarkers and recurrent pregnancy loss". RESULTS The search yielded 1116 publications, of which 92 were included in the final analysis. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) at basal levels have various physiological functions whereas deviation from redox window is associated with different pathologies including early pregnancy loss. The currently available studies support the concept that increased oxidative stress (OS) and deficient antioxidant protection is implicated in the etiology of recurrent pregnancy loss (RPL) but underlying mechanisms through which OS affects pregnancy outcome remains largely indefinable. CONCLUSIONS Future research in this field can provide new insights regarding the OS-mediated damage in recurrent pregnancy loss as well as potential applications of antioxidant therapy in this group of patients.
Collapse
Affiliation(s)
- Vjosa A Zejnullahu
- Department of Obstetrics and Gynecology, University Clinical Center of Kosovo, 10000, Prishtina, Kosovo. .,Faculty of Medicine, University of Prishtina "Hasan Prishtina", Prishtina, Kosovo.
| | - Valon A Zejnullahu
- Department of Abdominal Surgery, University Clinical Center of Kosovo, 10000, Prishtina, Kosovo
| | - Ernad Kosumi
- Department of Obstetrics and Gynecology, University Clinical Center of Kosovo, 10000, Prishtina, Kosovo
| |
Collapse
|
47
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
48
|
Saxon E, Peng X. Recent Advances in Hydrogen Peroxide Responsive Organoborons for Biological and Biomedical Applications. Chembiochem 2021; 23:e202100366. [PMID: 34636113 DOI: 10.1002/cbic.202100366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Indexed: 12/26/2022]
Abstract
Hydrogen peroxide is the most stable reactive oxygen species generated endogenously, participating in numerous physiological processes and abnormal pathological conditions. Mounting evidence suggests that a higher level of H2 O2 exists in various disease conditions. Thus, H2 O2 functions as an ideal target for site-specific bioimaging and therapeutic targeting. The unique reactivity of organoborons with H2 O2 provides a method for developing chemoselective molecules for biological and biomedical applications. This review highlights the design and application of boron-derived molecules for H2 O2 detection, and the utility of boron moieties toward masking reactive compounds leading to the development of metal prochelators and prodrugs for selectively delivering an active species at the target sites with elevated H2 O2 levels. Additionally, the emergence of H2 O2 -responsive theranostic agents consisting of both therapeutic and diagnostic moieties in one integrated system are discussed. The purpose of this review is to provide a better understanding of the role of boron-derived molecules toward biological and pharmacological applications.
Collapse
Affiliation(s)
- Eron Saxon
- University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Xiaohua Peng
- University of Wisconsin-Milwaukee, Milwaukee, USA
| |
Collapse
|
49
|
Mei L, Zheng Y, Ma T, Xia B, Gao X, Hao Y, Luo Z, Huang J. The Novel Antioxidant Compound JSH-23 Prevents Osteolysis by Scavenging ROS During Both Osteoclastogenesis and Osteoblastogenesis. Front Pharmacol 2021; 12:734774. [PMID: 34566656 PMCID: PMC8458573 DOI: 10.3389/fphar.2021.734774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory osteolysis is a pathological skeletal disease associated with not only the production of inflammatory cytokines but also local oxidative status. Excessive reactive oxygen species (ROS) promote bone resorption by osteoclasts and induce the apoptosis of osteoblasts. In consideration of the lack of effective preventive or treatments options against osteolysis, the exploitation of novel pharmacological compounds/agents is critically required. In our study, we found that a novel antioxidant compound, JSH-23, plays a role in restoring bone homeostasis by scavenging intracellular ROS during both osteoclastogenesis and osteoblastogenesis. Mechanically, JSH-23 suppressed RANKL-induced osteoclastogenesis, bone resorption and the expression of specific genes (including NFATc1, c-Fos, TRAP, CTSK and DC-STAMP) via inhibition of the NF-κB signaling pathway. Meanwhile, JSH-23 suppressed RANKL-induced ROS generation via the TRAF6/Rac1/NOX1 pathway and the enhanced expression of Nrf2/HO-1. In addition, JSH-23 attenuated H2O2-induced apoptosis and mineralization reduction in osteoblasts by reducing ROS production and enhancing Nrf2/HO-1 expression. Our in vivo results further revealed that JSH-23 exerts its protective effects on bone mass through its antioxidant activity. In conclusion, our results show that the application of JSH-23 might be a novel and plausible strategy for the treatment of osteolysis-related disease.
Collapse
Affiliation(s)
- Liangwei Mei
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Zheng
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Teng Ma
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xue Gao
- Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Kaur G, Sharma A, Bhatnagar A. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity 2021; 54:385-397. [PMID: 34415206 DOI: 10.1080/08916934.2021.1963959] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis is one of the most prevalent, chronic, inflammatory disorders involving multiple articular and extra-articular complications. Immune deregulation owing to a combinatorial network of cells, inflammatory components, degrading enzymes, angiogenetic factors, exhibiting pleiotropy, synergy, or redundancy, is a critical hallmark for synovial inflammatory milieu reasoning clinical heterogeneity and variability of the disease. As a prototype of autoimmune disease, the pathophysiology of rheumatoid arthritis has been linked to oxidative stress. However, the exact mechanism for these potential driving factors contributing to disease inception and perpetuation is yet elusive. Nuclear factor erythroid 2-related factor 2 - Kelch ECH associating protein 1 (Nrf2-Keap1) pathway, controlled via multifactorial regulation, functions as a ubiquitous, evolutionarily conserved intracellular defense mechanism. Nrf2-Keap1 signalling maintains homeostatic responses against a plethora of environmental or endogenous deviations in cellular growth, death, redox metabolism, inflammation, bone remodelling, detoxification, etc. Administration of antioxidants as an add-on pharmacotherapy along with conventional drugs has been elucidated as a better measure for disease management. Some of the most promising natural and synthetic redox-based therapeutic compounds function as either scavengers of reactive species, or inhibitors of their sources, or activators of an endogenous antioxidant system (Nrf2-Keap1). The present review focuses on the binomial "rheumatoid arthritis-oxidative stress", bringing insights into their pathophysiological interrelationships and Nrf2 signalling, as well as the implications of potential diagnostic oxidative stress biomarkers and therapeutic interventions directed for disease management in patients with rheumatoid arthritis.Highlights:RA has complex etiopathogenesis, evolving from multiple endogenous and exogenous factors with oxidative stress as a critical pathogenic signature.Oxidative damage and damaged compounds could serve as potent biomarkers for disease diagnosis, therapeutic response, and prognosis.One of the supreme cytoprotective signalling cascades, the Nrf2-Keap1 pathway has been known to elicit a protective effect against RA and various other autoimmune, inflammatory, degenerative disorders.Inclusion of natural and synthetic antioxidants has been encouraged by various studies for additional therapy to conventional drugs for better management of the disease.
Collapse
Affiliation(s)
- Gurjasmine Kaur
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|