1
|
Chang JJ, Kulkarni S, Pasricha TS. Upper Gastrointestinal Mucosal Damage and Subsequent Risk of Parkinson Disease. JAMA Netw Open 2024; 7:e2431949. [PMID: 39235810 PMCID: PMC11378005 DOI: 10.1001/jamanetworkopen.2024.31949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Importance The gut-first hypothesis of Parkinson disease (PD) has gained traction, yet potential inciting events triggering Parkinson pathology from gut-related factors remain unclear. While Helicobacter pylori infection is linked to mucosal damage (MD) and PD, it is unknown how upper gastrointestinal MD from any source increases PD risk. Objective To evaluate any association between upper endoscopy findings of MD and subsequent clinical PD diagnosis. Design, Setting, and Participants This was a retrospective cohort study of patients with no PD history undergoing upper endoscopy with biopsy between January 2000 and December 2005, with final follow-up assessments completed July 31, 2023. The study was conducted within the Mass General Brigham system, a multicenter network in the greater Boston, Massachusetts, area. Patients with MD were matched 1:3 to patients without MD based on age, sex, and date of initial endoscopy. Exposure MD, defined as erosions, esophagitis, ulcers, or peptic injury, observed on upper endoscopy or pathology reports. Main Outcomes and Measures The relative risk of PD given a history of MD, estimated using incident rate ratio (IRR) and multivariate Cox proportional hazard ratios (HRs). Results Of 9350 patients, participants had a mean (SD) age of 52.3 (20.3) years; 5177 (55.4%) were male; and 269 (2.9%) were Asian, 737 (7.9%) Black, and 6888 (73.7%) White. Most participants underwent endoscopy between the ages of 50 and 64 years (2842 [30.4%]). At baseline, patients with MD were more likely to have a history of H pylori infection, proton-pump inhibitor use, chronic nonsteroidal anti-inflammatory drug use, gastroesophageal reflux disease, smoking, constipation, and dysphagia. The mean (SD) follow-up time was 14.9 (6.9) years for the whole cohort, during which patients with MD were more likely to develop PD (IRR, 4.15; 95% CI, 2.89-5.97; P < .001) than those without MD, even after covariate adjustment (HR, 1.76; 95% CI 1.11-2.51; P = .01). Constipation, dysphagia, older age, and higher Charlson-Deyo Comorbidity Index were also associated with higher PD risk. Conclusions and Relevance In this cohort study, a history of upper gastrointestinal MD was associated with elevated risk of developing a clinical PD diagnosis. Increased vigilance among patients with MD for future PD risk may be warranted.
Collapse
Affiliation(s)
| | - Subhash Kulkarni
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Trisha S Pasricha
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Wang Q, Liu F, Wang X, Zhong L, Cai B, Chen T. Identifying potential repurposable medications for Parkinson's disease through Mendelian randomization analysis. Sci Rep 2024; 14:19670. [PMID: 39181920 PMCID: PMC11344818 DOI: 10.1038/s41598-024-70758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Observational studies have suggested the potential benefits of several medications for Parkinson's disease (PD) and their potential for repurposing. However, the conclusions drawn from these studies are not entirely consistent. To address this inconsistency, we used the two-sample Mendelian randomization (MR) method to explore the putative causal relationships between 23 medications and the risk and progression of PD. We applied inverse-variance weighted meta-analysis (IVW) to combine MR estimates. Additionally, sensitivity analyses were conducted to evaluate the robustness of the results. Our genetic evidence suggests that thyroid preparations and calcium channel blockers reduce the risk of PD, and salicylic acid and derivatives slow the progression of PD motor symptoms. Additionally, genetic evidence also suggests that four medications were associated with PD risk or progression, but the sensitivity analysis revealed that three of the medications may have interference caused by reverse causality. Our findings suggest that there are weak causal relationships between several medications and the risk or progression of PD. Though further replication studies are needed to verify these findings, these new insights may help in understanding the etiology of the disease, generate new clues related to drug discovery, and quantify the risk of future drug intake.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Lifan Zhong
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
3
|
Badawoud AM, Ali LS, Abdallah MS, El Sabaa RM, Bahaa MM, Elmasry TA, Wahsh E, Yasser M, Eltantawy N, Eldesoqui M, Hamouda MA. The relation between Parkinson's disease and non-steroidal anti-inflammatories; a systematic review and meta-analysis. Front Pharmacol 2024; 15:1434512. [PMID: 39156113 PMCID: PMC11327556 DOI: 10.3389/fphar.2024.1434512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Parkinson's disease (PD) is a neurological condition that typically shows up with aging. It is characterized by generalized slowness of movement, resting tremor or stiffness, and bradykinesia. PD patients' brains mostly exhibit an increase in inflammatory mediators and microglial response. Nevertheless, a variety of non-steroidal anti-inflammatory medications (NSAIDS) offered neuroprotection in animal models and preclinical trials. Aim: The current systematic review and meta-analysis were designed to try to resolve the debate over the association of NSAID use with the development of PD because the results of several studies were somehow contradictory. Methods: An intense search was performed on Scopus, PubMed, and Web of Science databases for articles relating the incidence of PD to the use of NSAIDs. Statistical analysis of the included studies was carried out using Review Manager version 5.4.1 by random effect model. The outcome was identified as the development of PD in patients who were on NSAIDs, ibuprofen only, aspirin only, and non-aspirin NSAIDs. This was analyzed using pooled analysis of odds ratio (OR) at a significance level of ≤0.05 and a confidence level of 95%. A statistically significant decreased risk of PD was observed in patients taking NSAIDs, Ibuprofen, and non-aspirin NSAIDs. Results: The ORs of PD occurrence in patients who took NSAIDs, Ibuprofen, and non-aspirin NSAIDs were 0.88 [95% CI (0.8-0.97), p = 0.01], 0.73 [95% CI (0.53-1), p = 0.05] and 0.85 [95% CI (0.75-0.97), p = 0.01]. Meanwhile, the risk of PD in patients who took aspirin was not statistically significant. Conclusion: In conclusion, Ibuprofen, non-aspirin NSAIDs, and other types of NSAIDs could be associated with a reduction in PD risk. However, there was no association between aspirin intake and the development of PD.
Collapse
Affiliation(s)
- Amal Mohammad Badawoud
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lashin Saad Ali
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
- Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mahmoud S. Abdallah
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sadat City (USC), Sadat City, Egypt
- Department of PharmD, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Ramy M. El Sabaa
- Clinical Pharmacy Department, Faculty of Pharmacy, Menuofia University, Shibin Al Kawm, Egypt
| | - Mostafa M. Bahaa
- Pharmacy Practice Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Thanaa A. Elmasry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman Wahsh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Mohamed Yasser
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nashwa Eltantawy
- Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal A. Hamouda
- Clinical Pharmacy Department, Faculty of Pharmacy, Menuofia University, Shibin Al Kawm, Egypt
| |
Collapse
|
4
|
Hull A, Atilano ML, Gergi L, Kinghorn KJ. Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220381. [PMID: 38368939 PMCID: PMC10874704 DOI: 10.1098/rstb.2022.0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/08/2023] [Indexed: 02/20/2024] Open
Abstract
Impairment of autophagic-lysosomal pathways is increasingly being implicated in Parkinson's disease (PD). GBA1 mutations cause the lysosomal storage disorder Gaucher disease (GD) and are the commonest known genetic risk factor for PD. GBA1 mutations have been shown to cause autophagic-lysosomal impairment. Defective autophagic degradation of unwanted cellular constituents is associated with several pathologies, including loss of normal protein homeostasis, particularly of α-synuclein, and innate immune dysfunction. The latter is observed both peripherally and centrally in PD and GD. Here, we will discuss the mechanistic links between autophagy and immune dysregulation, and the possible role of these pathologies in communication between the gut and brain in these disorders. Recent work in a fly model of neuronopathic GD (nGD) revealed intestinal autophagic defects leading to gastrointestinal dysfunction and immune activation. Rapamycin treatment partially reversed the autophagic block and reduced immune activity, in association with increased survival and improved locomotor performance. Alterations in the gut microbiome are a critical driver of neuroinflammation, and studies have revealed that eradication of the microbiome in nGD fly and mouse models of PD ameliorate brain inflammation. Following these observations, lysosomal-autophagic pathways, innate immune signalling and microbiome dysbiosis are discussed as potential therapeutic targets in PD and GD. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.
Collapse
Affiliation(s)
- Alexander Hull
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Laith Gergi
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Kerri J Kinghorn
- Department of Genetics, Evolution & Environment, Institute of Healthy Ageing, Darwin Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
6
|
Power MC, Parthasarathy V, Gianattasio KZ, Walker RL, Crane PK, Larson EB, Gibbons LE, Kumar RG, Dams O'Connor K. Investigation of the association of military employment and Parkinson's disease with a validated Parkinson's disease case-finding strategy. Brain Inj 2023; 37:383-387. [PMID: 36524738 PMCID: PMC10033361 DOI: 10.1080/02699052.2022.2158234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Persons with military involvement may be more likely to have Parkinson's disease (PD) risk factors. As PD is rare, case finding remains a challenge, contributing to our limited understanding of PD risk factors. Here, we explore the validity of case-finding strategies and whether military employment is associated with PD. MATERIALS AND METHODS We identified Adult Changes in Thought (ACT) study participants reporting military employment as their longest or second longest occupation. We used self-report and prescription fills to identify PD cases and validated this case-finding approach against medical record review. RESULTS At enrollment, 6% of 5,125 eligible participants had military employment and 1.8% had prevalent PD; an additional 3.5% developed PD over follow-up (mean: 8.3 years). Sensitivity of our case-finding approach was higher for incident (80%) than prevalent cases (54%). Specificity was high (>97%) for both. Military employment was not associated with prevalent PD. Among nonsmokers, point estimates suggested an increased risk of incident PD with military employment, but the result was non-significant and based on a small number of cases. CONCLUSIONS Self-report and prescription medications can accurately identify incident PD cases relative to the reference method of medical record review. We found no association between military employment and PD.
Collapse
Affiliation(s)
- Melinda C Power
- Department of Epidemiology, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Varsha Parthasarathy
- Department of Medicine, The George Washington School of Medicine and Health Sciences, Washington, Washington, USA
| | - Kan Z Gianattasio
- Department of Epidemiology, George Washington University Milken Institute School of Public Health, Washington, DC, USA
| | - Rod L Walker
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Raj G Kumar
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Kristen Dams O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, NY, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| |
Collapse
|
7
|
Di Maio R, Keeney MT, Cechova V, Mortimer A, Sekandari A, Rowart P, Greenamyre JT, Freeman BA, Fazzari M. Neuroprotective actions of a fatty acid nitroalkene in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:55. [PMID: 37029127 PMCID: PMC10082007 DOI: 10.1038/s41531-023-00502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
To date there are no therapeutic strategies that limit the progression of Parkinson's disease (PD). The mechanisms underlying PD-related nigrostriatal neurodegeneration remain incompletely understood, with multiple factors modulating the course of PD pathogenesis. This includes Nrf2-dependent gene expression, oxidative stress, α-synuclein pathology, mitochondrial dysfunction, and neuroinflammation. In vitro and sub-acute in vivo rotenone rat models of PD were used to evaluate the neuroprotective potential of a clinically-safe, multi-target metabolic and inflammatory modulator, the electrophilic fatty acid nitroalkene 10-nitro-oleic acid (10-NO2-OA). In N27-A dopaminergic cells and in the substantia nigra pars compacta of rats, 10-NO2-OA activated Nrf2-regulated gene expression and inhibited NOX2 and LRRK2 hyperactivation, oxidative stress, microglial activation, α-synuclein modification, and downstream mitochondrial import impairment. These data reveal broad neuroprotective actions of 10-NO2-OA in a sub-acute model of PD and motivate more chronic studies in rodents and primates.
Collapse
Affiliation(s)
- Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Amanda Mortimer
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ahssan Sekandari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
8
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. A story of the potential effect of non-steroidal anti-inflammatory drugs (NSAIDs) in Parkinson's disease: beneficial or detrimental effects. Inflammopharmacology 2023; 31:673-688. [PMID: 36961665 DOI: 10.1007/s10787-023-01192-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Parkinson's disease (PD) is an advanced neurodegenerative disease (NDD) caused by the degeneration of dopaminergic neurons (DNs) in the substantia nigra (SN). As PD is an age-related disorder, the majority of PD patients are associated with musculoskeletal disorders with prolonged use of analgesic and anti-inflammatory agents, such as non-steroidal anti-inflammatory drugs (NSAIDs). Therefore, NSAIDs can affect PD neuropathology in different ways. Thus, the objective of the present narrative review was to clarify the potential role of NSAIDs in PD according to the assorted view of preponderance. Inhibition of neuroinflammation and modulation of immune response by NSAIDs could be an effective way in preventing the development of NDD. NSAIDs affect PD neuropathology in different manners could be beneficial or detrimental effects. Inhibition of cyclooxygenase 2 (COX2) by NSAIDs may prevent the development of PD. NSAIDs afforded a neuroprotective role against the development and progression of PD neuropathology through the modulation of neuroinflammation. Though, NSAIDs may lead to neutral or harmful effects by inhibiting neuroprotective prostacyclin (PGI2) and accentuation of pro-inflammatory leukotrienes (LTs). In conclusion, there is still a potential conflict regarding the effect of NSAIDs on PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M.B.Ch.B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt.
| |
Collapse
|
9
|
Gao M, Zhang C, Gao L, Sun S, Song L, Liu S. Association between C-reactive protein-albumin ratio and overall survival in Parkinson's disease using publicly available data: A retrospective cohort study. Heliyon 2023; 9:e12671. [PMID: 36747520 PMCID: PMC9898616 DOI: 10.1016/j.heliyon.2022.e12671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/14/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Background At present, many studies have confirmed that inflammation plays a central role in Parkinson's disease (PD). The inflammatory index is related to the prognosis of the disease, but a single inflammatory index has some limitations. The C-reactive protein-albumin ratio (CAR) is a better marker of inflammation or nutritional status than C-reactive protein (CRP) or albumin (Alb), but there is limited study on the association between CAR and the overall survival (OS) of PD. Object To study the association between CAR and OS in PD patients. Methods All of these data were obtained from the Dryad Digital Repository, based on which we conducted a secondary analysis. The study was conducted by the Department of Neurology, the National Regional Center for Neurological Disorders, and the National Hospital of Utano study between March 2004 to November 2007. The final analytic sample included 235 PD patients with the outcome of survival or all-cause death from the study registration to the endpoint. In this study, univariate and multivariate COX regression analyses were used to calculate the adjusted hazard ratio (HR), with a 95% confidence interval (CI). In addition, the association between CAR and OS in PD patients was explored by Kaplan-Meier curve and subgroup analysis. Results This study included 235 PD patients with an average age of 62.25 years, including 135 females and 100 males, and 45 died during the follow-up period. CAR was associated with gender, modified Hoehn-Yahr stages (mH-Y), and Mini-Mental State Examination (MMSE) of PD patients. In the COX multivariate regression model, after adjusting the age, gender, PD duration, mH-Y, MMSE, and the non-steroidal anti-inflammatory drugs, CAR was found to be associated with the OS in PD (HR = 1.54, 95% CI = 1.01-2.34, p = 0.044). Subgroup analysis showed that the subgroup did not play an interactive role in the association between the prognosis of patients with CAR and PD (p for interaction >0.05), and the results remained stable. Conclusions The all-cause mortality of PD patients with a high level of CAR is higher, which indicates that the poor overall survival of PD patients is associated with the increase of CAR. The CAR may be a reliable prognostic biomarker for PD patients.
Collapse
Key Words
- Alb, albumin
- Biomarker
- C-reactive protein-albumin ratio
- CAR, C-reactive protein
- CI, Confidence interval
- CRP, C-reactive protein-albumin ratio
- HR, Hazard ratio
- IQR, Interquartile range
- MMSE, Mini-Mental State Examination
- NSAIDs, Non-steroidal anti-inflammatory drugs
- Overall survival
- PD, Parkinson's disease
- Parkinson's disease
- Prognosis
- mH-Y, Modified Hoehn-Yahr stages
Collapse
Affiliation(s)
- Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijie Gao
- Department of Neurology, Sichuan University of West China Hospital, Sichuan, China
| | - Shanmei Sun
- Department of TCM, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lucheng Song
- Department of TCM, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China,Corresponding author.
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Corresponding author.
| |
Collapse
|
10
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
11
|
Sun S, Wen Y, Li Y. Serum albumin, cognitive function, motor impairment, and survival prognosis in Parkinson disease. Medicine (Baltimore) 2022; 101:e30324. [PMID: 36123949 PMCID: PMC9478219 DOI: 10.1097/md.0000000000030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The role of albumin in Parkinson disease (PD) is not well understood, our study will investigate the association between the serum albumin level and risk of dementia, motor impairment, as well as survival outcome in PD. Data were obtained from the publicly available dataset in the DRYAD database (https://datadryad.org/). The original prospective study enrolled patients with PD from a single center in Japan between March 2004 and November 2007. Due to missing values, 242 and 274 participants were included in the study, in which we aimed to, respectively, analyze the relationship between serum albumin and cognitive function as well as motor impairment; additionally, 264 participants were included to assess the association between baseline serum albumin levels and risk of PD-related death with a median follow-up of 5.24 years. Compared to patients of the low tertile of albumin levels, Mini-Mental State Examination (MMSE) of patients of middle tertile increased 2.09 [95% confidence interval (CI) (0.45, 3.73), P = .013], independent of age, sex, PD duration, modified Hoehn-Yahr (mHY) stage, C-reactive protein (CRP) level, and use of nonsteroidal anti-inflammatory drugs (NSAIDs). Further analysis revealed a positive curvilinear association between albumin and MMSE, with cutoff values of 3.9. As concentration serum albumin increased, the risk of severe motor impairment was grown [odds ratio (OR) 0.34 (95% CI 0.14,0.8), P = .013] after adjustment by age, sex, PD duration, MMSE scores, CRP level, and use of NSAIDs. Albumin levels increased per unit of mg/dL, and the risk of PD-related death reduced 0.74-fold with 95% CI (0.15, 0.86) (P = .021), independent of age, sex, PD disease duration, mHY stage, CRP levels, use of NSAIDs, and MMSE. Higher serum albumin levels were significantly association with the better cognitive function when albumin was <3.9 mg/dL, and played a protective role in severe motor impairment and PD-related death.
Collapse
Affiliation(s)
- Shujun Sun
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
- * Correspondence: Shujun Sun, Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China (e-mail: )
| | - Yiyong Wen
- Department of General Practice, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| | - Yandeng Li
- Department of Neurology, The Frist People’s Hospital of Changde City, Changde, Hunan 415003, China
| |
Collapse
|
12
|
Canonico M, Artaud F, Degaey I, Moisan F, Kabore R, Portugal B, Nguyen TTH, Pesce G, Boutron-Ruault MC, Roze E, Elbaz A. Incidence of Parkinson's disease in French women from the E3N cohort study over 27 years of follow-up. Eur J Epidemiol 2022; 37:513-523. [PMID: 35286513 DOI: 10.1007/s10654-022-00851-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/06/2022] [Indexed: 11/03/2022]
Abstract
Parkinson's disease (PD) is an uncommon disease with a long prodromal period and higher incidence in men than women. Large cohort studies of women with a long follow-up are needed. Within the E3N French cohort study (98,995 women, 40-65 years at baseline), we identified 3,584 participants who self-reported PD or used anti-parkinsonian drugs over 27 years (1992-2018). We obtained medical records to validate PD diagnosis (definite, probable, possible, no). When medical records were not available, we used a validated algorithm based on drug claims to predict PD status. We retained a PD diagnosis for 1,294 women (medical records, 62%; algorithm, 38%). After exclusion of prevalent/possible cases, cases without age at diagnosis, and women lost to follow-up, our analyses included 98,069 women, of whom 1,200 had incident PD (mean age at diagnosis = 71.8 years; incidence rate = 0.494/1,000 person-years). Age-adjusted incidence rates increased over the six first years of follow-up, possibly due to healthy volunteer bias, and remained stable thereafter, similar to incidence rates in women from Western Europe. Forty three percent of PD cases occurred after 20 years of follow-up (2012-2018). The cumulative incidence of PD from 50 to 90 years was 2.41% (95% confidence interval [CI] = 2.27-2.65). PD incidence was lower in ever than never smokers (hazard ratio = 0.86, 95% CI = 0.76-0.96). In conclusion, we estimated PD incidence rates in French women over a 27-year follow-up, and showed stable incidence between 2002 and 2018. The long follow-up and large sample size make this study a valuable resource to improve our knowledge on PD etiology in women.
Collapse
Affiliation(s)
- Marianne Canonico
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Fanny Artaud
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Isabelle Degaey
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Frédéric Moisan
- Santé publique France, French Public Health Agency, Direction Santé Environnement Travail, Saint-Maurice, France
| | - Rahime Kabore
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Berta Portugal
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Thi Thu Ha Nguyen
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Giancarlo Pesce
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Marie-Christine Boutron-Ruault
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France
| | - Emmanuel Roze
- Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.,Sorbonne Université, Paris, France.,INSERM U1127, CNRS 7225, Institut du Cerveau, Paris, France
| | - Alexis Elbaz
- Paris-Saclay University, Paris-South University, UVSQ, Center for Research in Epidemiology and Population Health, INSERM, 16 Avenue Paul Vaillant Couturier, 94807, Villejuif Cedex, France.
| |
Collapse
|
13
|
Bogár F, Fülöp L, Penke B. Novel Therapeutic Target for Prevention of Neurodegenerative Diseases: Modulation of Neuroinflammation with Sig-1R Ligands. Biomolecules 2022; 12:363. [PMID: 35327555 PMCID: PMC8945408 DOI: 10.3390/biom12030363] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive deterioration of the structure and function of cells and their networks in the nervous system. There are currently no drugs or other treatments that can stop the progression of NDDs. NDDs have many similarities and common pathways, e.g., formation of misfolded amyloid proteins, intra- and extracellular amyloid deposits, and chronic inflammation. Initially, the inflammation process has a cytoprotective function; however, an elevated and prolonged immune response has damaging effects and causes cell death. Neuroinflammation has been a target of drug development for treating and curing NDDs. Treatment of different NDDs with non-steroid anti-inflammatory drugs (NSAIDs) has failed or has given inconsistent results. The use of NSAIDs in diagnosed Alzheimer's disease is currently not recommended. Sigma-1 receptor (Sig-1R) is a novel target for NDD drug development. Sig-1R plays a key role in cellular stress signaling, and it regulates endoplasmic reticulum stress and unfolded protein response. Activation of Sig-1R provides neuroprotection in cell cultures and animal studies. Clinical trials demonstrated that several Sig-1R agonists (pridopidine, ANAVEX3-71, fluvoxamine, dextrometorphan) and their combinations have a neuroprotective effect and slow down the progression of distinct NDDs.
Collapse
Affiliation(s)
- Ferenc Bogár
- MTA-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network (ELKH), Dóm Square 8, H-6720 Szeged, Hungary;
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, Dóm Square 8, H-6720 Szeged, Hungary;
| |
Collapse
|
14
|
Orkaby AR, Ward R, Chen J, Shanbhag A, Sesso HD, Gaziano JM, Djousse L, Driver JA. Influence of Long-term Nonaspirin NSAID Use on Risk of Frailty in Men ≥60 Years: The Physicians' Health Study. J Gerontol A Biol Sci Med Sci 2022; 77:1048-1054. [PMID: 35018441 PMCID: PMC9071430 DOI: 10.1093/gerona/glac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inflammation is a central pathway leading to frailty but whether commonly used nonaspirin nonsteroidal anti-inflammatory drugs (NSAIDs) can prevent frailty is unknown. METHODS Prospective cohort study of male physicians ≥60 who participated in the Physicians' Health Study. Annual questionnaires collected data on NSAID use, lifestyle, and morbidity. Average annual NSAID use was categorized as 0 days/year, 1-12 days/year, 13-60 days/year, and >60 days/year. Frailty was assessed using a validated 33-item frailty index. Propensity score inverse probability of treatment weighting was used to address confounding by indication and logistic regression models estimated odds ratios (ORs) of prevalent frailty according to nonaspirin NSAID use. RESULTS A total of 12 101 male physicians were included (mean age 70 ± 7 years, mean follow-up 11 years). Reported NSAID use was 0 days/year for 2 234, 1-12 days/year for 5 812, 13-60 days/year for 2 833, and >60 days/year for 1 222 participants. A total of 2 413 participants (20%) were frail. Higher self-reported NSAID use was associated with greater alcohol use, smoking, arthritis, hypertension, and heart disease, while less NSAID use was associated with coumadin use and prior bleeding. After propensity score adjustment, all characteristics were balanced. ORs (95% confidence intervals) of prevalent frailty were 0.90 (0.80-1.02), 1.02 (0.89-1.17), and 1.26 (1.07-1.49) for average NSAID use of 1-12 days/year, 13-60 days/year, and >60 days/year, compared to 0 days/year (p-trend < .001). CONCLUSIONS Long-term use of NSAIDs at high frequency is associated with increased risk of frailty among older men. Additional study is needed to understand the role of anti-inflammatory medication in older adults and its implication for overall health.
Collapse
Affiliation(s)
- Ariela R Orkaby
- Address correspondence to: Ariela R. Orkaby, MD, MPH, New England GRECC (Geriatric Research, Education, and Clinical Center), VA Boston Healthcare System, 150 South Huntington Street, Boston, MA 02130, USA. E-mail:
| | - Rachel Ward
- New England GRECC (Geriatric Research, Education, and Clinical Center), VA Boston Healthcare System, Boston, Massachusetts, USA,Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Jiaying Chen
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Akshay Shanbhag
- Department of Gerontology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Howard D Sesso
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Luc Djousse
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Jane A Driver
- New England GRECC (Geriatric Research, Education, and Clinical Center), VA Boston Healthcare System, Boston, Massachusetts, USA,Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Orkaby AR, Dufour AB, Yang L, Sesso HD, Gaziano JM, Djousse L, Driver JA, Travison TG. Long-Term Aspirin Use and Self-Reported Walking Speed in Older Men: The Physicians' Health Study. J Frailty Aging 2022; 11:12-17. [PMID: 35122085 PMCID: PMC8818085 DOI: 10.14283/jfa.2021.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mobility limitation is a component of frailty that shares a bidirectional relationship with cardiovascular disease (CVD). Data are limited on the role of established CVD prevention therapies, such as aspirin, for prevention of frailty and mobility limitation. OBJECTIVES Examine the association between long-term aspirin use and walking speed. DESIGN, SETTING, PARTICIPANTS Prospective cohort of 14,315 men who participated in the Physicians' Health Study I, a completed randomized controlled trial of aspirin (1982-1988), with extended post-trial follow-up. MEASUREMENTS Annual questionnaires collected data on aspirin use, lifestyle and other factors. Average annual aspirin use was categorized for each participant: ≤60 days/year and >60 days/year. Mobility was defined according to self-reported walking pace, categorized as: don't walk regularly (reference), easy/casual <2mph, normal ≥2-2.9mph, or brisk/very brisk ≥3mph. Propensity scoring balanced covariates between aspirin categories. Multinomial logistic regression models estimated odds of being in each self-reported walking category. RESULTS Mean age was 70±8 years; mean aspirin use 11 years. There were 2,056 (14.3%) participants who reported aspirin use ≤60 days/year. Aspirin use >60 days/year was associated with drinking alcohol, smoking, hypertension, heart disease and stroke, while ≤60 days/year was associated with anticoagulation use and bleeding history. In all, 13% reported not walking regularly, 12% walked <2 mph, 44% walked ≥2-2.9 mph, and 31% walked ≥3 mph. After propensity score adjustment, regular aspirin use was associated with a faster walking speed. Odds ratios (95% confidence intervals) were 1.16 (0.97 to 1.39), 1.24 (1.08 to 1.43), and 1.40 (1.21 to 1.63) for <2 mph, ≥2-2.9 mph and ≥3 mph, respectively, compared to not walking regularly (p-trend<0.001). CONCLUSIONS In this cohort of older men, long-term aspirin use is associated with a greater probability of faster walking speed later in life.
Collapse
Affiliation(s)
- Ariela R. Orkaby
- New England GRECC, VA Boston Healthcare System, Boston, MA;,Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Alyssa B. Dufour
- Marcus Institute for Aging Research, Hebrew Senior Life, and Harvard Medical School, Boston, MA
| | - Laiji Yang
- Marcus Institute for Aging Research, Hebrew Senior Life, and Harvard Medical School, Boston, MA
| | - Howard D. Sesso
- Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - J. Michael Gaziano
- New England GRECC, VA Boston Healthcare System, Boston, MA;,Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Luc Djousse
- New England GRECC, VA Boston Healthcare System, Boston, MA;,Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Jane A. Driver
- New England GRECC, VA Boston Healthcare System, Boston, MA;,Brigham & Women’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas G. Travison
- Marcus Institute for Aging Research, Hebrew Senior Life, and Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Kaduševičius E. Novel Applications of NSAIDs: Insight and Future Perspectives in Cardiovascular, Neurodegenerative, Diabetes and Cancer Disease Therapy. Int J Mol Sci 2021; 22:6637. [PMID: 34205719 PMCID: PMC8235426 DOI: 10.3390/ijms22126637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Once it became clear that inflammation takes place in the modulation of different degenerative disease including neurodegenerative, cardiovascular, diabetes and cancer the researchers has started intensive programs evaluating potential role of non-steroidal anti-inflammatory drugs (NSAIDs) in the prevention or therapy of these diseases. This review discusses the novel mechanism of action of NSAIDs and its potential use in the pharmacotherapy of neurodegenerative, cardiovascular, diabetes and cancer diseases. Many different molecular and cellular factors which are not yet fully understood play an important role in the pathogenesis of inflammation, axonal damage, demyelination, atherosclerosis, carcinogenesis thus further NSAID studies for a new potential indications based on precise pharmacotherapy model are warranted since NSAIDs are a heterogeneous group of medicines with relative different pharmacokinetics and pharmacodynamics profiles. Hopefully the new data from studies will fill in the gap between experimental and clinical results and translate our knowledge into successful disease therapy.
Collapse
Affiliation(s)
- Edmundas Kaduševičius
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, 9 A. Mickeviciaus Street, LT-44307 Kaunas, Lithuania
| |
Collapse
|
17
|
Orkaby AR, Yang L, Dufour AB, Travison TG, Sesso HD, Driver JA, Djousse L, Gaziano JM. Association Between Long-Term Aspirin Use and Frailty in Men: The Physicians' Health Study. J Gerontol A Biol Sci Med Sci 2021; 76:1077-1083. [PMID: 32918079 DOI: 10.1093/gerona/glaa233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic inflammation may lead to frailty, however the potential for anti-inflammatory medications such as aspirin to prevent frailty is unknown. We sought to examine the association between long-term aspirin use and prevalent frailty. METHODS We included 12 101 men ≥60 years who participated in the Physicians' Health Study I, a completed aspirin randomized controlled trial (1982-1989). Annual questionnaires collected self-reported data on daily aspirin use, lifestyle, and clinical variables. Average aspirin use was summed into 2 categories: ≤60 days/year and >60 days/year. Frailty was assessed using a 33-item index 11 years after trial completion. A score of ≥0.21 was considered frail. Propensity score inverse probability of treatment weighting was used for statistical control of confounding. Logistic regression models estimated odds of frailty as a function of categories of average aspirin use. RESULTS Mean age was 70.5 years (range 60-101). Following an average of 11 ± 0.6 years of follow-up, aspirin use was reported as ≤60 days/year for 15%; 2413 participants (20%) were frail. Frequency of aspirin use was associated with smoking, alcohol consumption, hypertension, and cardiovascular disease, but negatively associated with bleeding and Coumadin use. The odds ratio (95% confidence intervals) for frailty was 0.85 (0.76-0.96) for average aspirin use >60 days/year versus aspirin use ≤60 days/year. Results were similar using an alternate definition of frailty. CONCLUSIONS Long-term regular aspirin use is inversely associated with frailty among older men, even after consideration of multimorbidity and health behaviors. Work is needed to understand the role of medications with anti-inflammatory properties on aging.
Collapse
Affiliation(s)
- Ariela R Orkaby
- New England GRECC (Geriatric Research, Education, and Clinical Center), VA Boston Healthcare System, Massachusetts.,Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laiji Yang
- Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts
| | - Alyssa B Dufour
- Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Travison
- Institute for Aging Research, Hebrew Senior Life, Harvard Medical School, Boston, Massachusetts
| | - Howard D Sesso
- Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Division of Preventive Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jane A Driver
- New England GRECC (Geriatric Research, Education, and Clinical Center), VA Boston Healthcare System, Massachusetts.,Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luc Djousse
- Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,MAVERIC (Massachusetts Veterans Epidemiology Research and Information Center), VA Boston Healthcare System, Massachusetts
| | - J Michael Gaziano
- Division of Aging, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,MAVERIC (Massachusetts Veterans Epidemiology Research and Information Center), VA Boston Healthcare System, Massachusetts
| |
Collapse
|
18
|
Is Chelation Therapy a Potential Treatment for Parkinson's Disease? Int J Mol Sci 2021; 22:ijms22073338. [PMID: 33805195 PMCID: PMC8036775 DOI: 10.3390/ijms22073338] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Iron loading in some brain regions occurs in Parkinson’s Disease (PD), and it has been considered that its removal by iron chelators could be an appropriate therapeutic approach. Since neuroinflammation with microgliosis is also a common feature of PD, it is possible that iron is sequestered within cells as a result of the “anaemia of chronic disease” and remains unavailable to the chelator. In this review, the extent of neuroinflammation in PD is discussed together with the role played by glia cells, specifically microglia and astrocytes, in controlling iron metabolism during inflammation, together with the results of MRI studies. The current use of chelators in clinical medicine is presented together with a discussion of two clinical trials of PD patients where an iron chelator was administered and showed encouraging results. It is proposed that the use of anti-inflammatory drugs combined with an iron chelator might be a better approach to increase chelator efficacy.
Collapse
|
19
|
Yan YQ, Fang Y, Zheng R, Pu JL, Zhang BR. NLRP3 Inflammasomes in Parkinson's disease and their Regulation by Parkin. Neuroscience 2020; 446:323-334. [PMID: 32795556 DOI: 10.1016/j.neuroscience.2020.08.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation might correlate with the formation of α-synuclein oligomers, subsequently leading to dopaminergic (DA) neuronal death in Parkinson's disease (PD). As major components of chronic inflammation, NOD-like receptor protein 3 (NLRP3) inflammasomes play a crucial role in PD via caspase 1 activation, primarily induced by mitochondrial damage. NLRP3 binds to apoptosis-associated speck-like protein containing a CARD (PYCARD/ASC), and forms inflammasomes in the brain. Inflammasomes act as a platform for caspase 1 to induce interleukin 1 Beta (IL1β) maturation, leading to neuronal pyroptosis. Furthermore, alpha-synuclein, whose abnormal aggregation is the main pathogenesis of PD, also activates NLRP3 inflammasomes. Mutations to PRKN (encoding Parkin) are the most common cause of autosomal recessive familial and sporadic early-onset PD. Evidence has confirmed a relationship between Parkin and NLRP3 inflammasomes. In this review, we summarize the current understanding of NLRP3 inflammasomes and their role in PD progression, and discuss their regulation by Parkin.
Collapse
Affiliation(s)
- Yi-Qun Yan
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Fang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
20
|
Belloli S, Morari M, Murtaj V, Valtorta S, Moresco RM, Gilardi MC. Translation Imaging in Parkinson's Disease: Focus on Neuroinflammation. Front Aging Neurosci 2020; 12:152. [PMID: 32581765 PMCID: PMC7289967 DOI: 10.3389/fnagi.2020.00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.
Collapse
Affiliation(s)
- Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, National Institute for Neuroscience, University of Ferrara, Ferrara, Italy
| | - Valentina Murtaj
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Silvia Valtorta
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Rosa Maria Moresco
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.,Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
21
|
Cabezudo D, Baekelandt V, Lobbestael E. Multiple-Hit Hypothesis in Parkinson's Disease: LRRK2 and Inflammation. Front Neurosci 2020; 14:376. [PMID: 32410948 PMCID: PMC7199384 DOI: 10.3389/fnins.2020.00376] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 12/17/2022] Open
Abstract
The multiple hit hypothesis for Parkinson’s disease (PD) suggests that an interaction between multiple (genetic and/or environmental) risk factors is needed to trigger the pathology. Leucine-Rich Repeat Kinase 2 (LRRK2) is an interesting protein to study in this context and is the focus of this review. More than 15 years of intensive research have identified several cellular pathways in which LRRK2 is involved, yet its exact physiological role or contribution to PD is not completely understood. Pathogenic mutations in LRRK2 are the most common genetic cause of PD but most likely require additional triggers to develop PD, as suggested by the reduced penetrance of the LRRK2 G2019S mutation. LRRK2 expression is high in immune cells such as monocytes, neutrophils, or dendritic cells, compared to neurons or glial cells and evidence for a role of LRRK2 in the immune system is emerging. This has led to the hypothesis that an inflammatory trigger is needed for pathogenic LRRK2 mutations to induce a PD phenotype. In this review, we will discuss the link between LRRK2 and inflammation and how this could play an active role in PD etiology.
Collapse
Affiliation(s)
- Diego Cabezudo
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Zhou Z, Liang Y, Zhang X, Xu J, Lin J, Zhang R, Kang K, Qu H, Zhao C, Zhao M. Fibrinogen and risk of dementia: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 112:353-360. [PMID: 32081688 DOI: 10.1016/j.neubiorev.2020.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/22/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The aim of this meta-analysis is to evaluate the association of fibrinogen with risk of dementia and its subtypes. METHODS Embase, Pubmed and Web of Science were retrieved systematically up to February 2019. Standard mean difference (SMD) with 95 % confidence intervals was estimated using random-effects models. RESULTS Sixteen studies involving 3,649 participants were summarized. Patients with all-cause dementia exhibited higher fibrinogen levels than those in non-dementia controls (SMD = 0.90 [0.43;1.36] p < 0.01). Further subgroup analysis revealed a positive association of fibrinogen with vascular dementia (VaD) (SMD = 1.11 [0.45;1.78] p < 0.01) rather than Alzheimer's disease (AD) (SMD = 0.01 [-0.17;0.19]) p = 0.92) and Parkinson's disease dementia (PDD) (SMD = 0.35 [-0.23;0.93] p = 0.24). This correlation was significant in Europeans (SMD = 0.92 [0.34;1.49] p < 0.01), but probably not in Asian based populations (SMD = 1.04 [-0.09;2.17] p = 0.07), and gradually declined with advancing age (60 ≤ age < 70: SMD = 1.22 [0.38;2.06] p < 0.01; 70 ≤ age < 80: SMD = 0.29 [0.04;0.53] p = 0.02; age ≥ 80: SMD = 0.01 [-0.12;0.15] p = 0.84). CONCLUSIONS Plasma fibrinogen is a potential risk factor for all-cause dementia and VaD under the age of 80, and is more obvious in cohorts with people of European descent.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Yifan Liang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Junjie Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Jueying Lin
- Department of Emergency, Zhongshan Hospital Xiamen University, Xiamen, 361004, Fujian, PR China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Huiling Qu
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, 110016, Liaoning, PR China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, PR China.
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, 110004, Liaoning, PR China.
| |
Collapse
|
23
|
Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest? Neurobiol Dis 2019; 134:104671. [PMID: 31706021 DOI: 10.1016/j.nbd.2019.104671] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder whose pathogenesis depends on a combination of genetic and environmental factors. The aim of the present review was to provide an updated description of the findings emerging from prospective longitudinal cohort studies on the possible risk/protective factors underlying the development, progression and clinical subtypes of PD. We reviewed all the environmental, lifestyle, dietary, comorbid and pharmacological factors that have been investigated as possible modifiable protective/risk factors for PD by longitudinal studies. Only a few factors have the epidemiological evidence and the biological plausibility to be considered risk (pesticides, dairy products, β2-adrenoreceptor antagonists) or protective (smoking, caffeine and tea intake, physical activity, gout, vitamin E intake, non-steroidal anti-inflammatory drugs and β2-adrenoreceptor agonists) factors for PD. Caffeine intake and physical activity also seem to slow down the progression of the disease, thus representing good candidates for primary prevention and disease modifying strategies in PD. Possible modifiable risk factors of PD subtypes is almost unknown and this might depend on the uncertain biological and neuropathological reliability of clinical subtypes. The results of the present review suggest that only eleven risk/protective factors may be associated with the risk of PD. It may be possible to target some of these factors for preventive interventions aimed at reducing the risk of developing and the rate of progression of PD.
Collapse
|
24
|
Bohler S, Liu X, Krauskopf J, Caiment F, Aubrecht J, Nicolaes GAF, Kleinjans JCS, Briedé JJ. Acetaminophen Overdose as a Potential Risk Factor for Parkinson's Disease. Clin Transl Sci 2019; 12:609-616. [PMID: 31305025 PMCID: PMC6853143 DOI: 10.1111/cts.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Four complementary approaches were used to investigate acetaminophen overdose as a risk factor for Parkinson's disease (PD). Circulating microRNAs (miRNAs) serum profiles from acetaminophen-overdosed patients were compared with patients with terminal PD, revealing four shared miRNAs. Similarities were found among molecular structures of dopamine (DA), acetaminophen, and two known PD inducers indicating affinity for dopaminergic transport. Potential interactions between acetaminophen and the human DA transporter were confirmed by molecular docking modeling and binding free energy calculations. Thus, it is plausible that acetaminophen is taken up by the dopaminergic transport system into the substantia nigra (SN). A ChEMBL query identified proteins that are similarly targeted by DA and acetaminophen. Here, we highlight CYP3A4, present in the SN, a predominant metabolizer of acetaminophen into its toxic metabolite N-acetyl-p-benzoquinone imine and shown to be regulated in PD. Overall, based on our results, we hypothesize that overdosing of acetaminophen is a potential risk factor for parkinsonism.
Collapse
Affiliation(s)
- Sacha Bohler
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Xiaosong Liu
- Department of BiochemistryMaastricht UniversityMaastrichtThe Netherlands
| | - Julian Krauskopf
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | - Florian Caiment
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| | | | | | | | - Jacco J. Briedé
- Department of ToxicogenomicsMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
25
|
Naeem S, Najam R, Khan SS, Mirza T, Sikandar B. Neuroprotective effect of diclofenac on chlorpromazine induced catalepsy in rats. Metab Brain Dis 2019; 34:1191-1199. [PMID: 31055785 DOI: 10.1007/s11011-019-00416-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Neuroinflammation plays a key role in progressive degeneration of dopaminergic cells. Upregulation of prostaglandins and free radicals formation are involved in the mechanisms of cell death in Parkinson's disease (PD). The present study aimed to investigate the neuroprotective effect of diclofenac against chlorpromazine (CPZ) induced catalepsy and motor impairment in mice. Adult Wistar rats treated with CPZ (3 mg/kg/day, IP) were orally dosed with diclofenac and L-dopa/carbidopa for 21 days. Catalepsy was measured after 21 days of dosing by using standard bar test at 30, 60, 90, 120 and 180 min then motor performances were assessed via open field test and wire hanging test. Histopathological investigation and determination of dopamine (DA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) levels of rat's brain was also carried out. We found that CPZ treated group exhibited reduced motor impairment after 21 days of treatment in open field and wire hanging test (P < 0.01) as compared to control group. The cataleptic scores of CPZ treated rats were also significantly increased (P < 0.01) after 21 days of chronic dosing, however diclofenac treated groups showed significant reduction in cataleptic scores with improved motor performances. Histopathology of CPZ treated rats showed marked degeneration with architecture distortion in the mid brain region. Dopaminergic degeneration is confirmed by neurochemical results that showed reduced amount of dopamine and DOPAC levels in mid brain. Moreover, histopathological slides of diclofenac treated rats showed improved architecture with reduced gliosis of mid brain region as well as improved dopamine and DOPAC levels were achieved after 21 days dosing of diclofenac. Taken together, the present work provide an evidence that diclofenac ameliorated behavioral performances by mediating neuroprotection against CPZ induced PD via preventing dopaminergic neuronal cell death.
Collapse
Affiliation(s)
- Sadaf Naeem
- Department of Pharmacology, University of Karachi, Karachi, Pakistan.
| | - Rahila Najam
- Department of Pharmacology, University of Karachi, Karachi, Pakistan
| | - Saira Saeed Khan
- Department of Pharmacology, University of Karachi, Karachi, Pakistan
| | - Talat Mirza
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Bushra Sikandar
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
26
|
Lv R, Du L, Liu X, Zhou F, Zhang Z, Zhang L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson's disease. Life Sci 2019; 223:158-165. [PMID: 30880023 DOI: 10.1016/j.lfs.2019.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
Inflammation contributes to the pathological processes in patients and animal models of PD. Rosmarinic acid (RA) has been demonstrated to protect neurons in PD models. The present study aimed to evaluate the anti-inflammatory effect of RA on PD and reveal possible pharmacological mechanisms. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) was injected to mice to establish PD model in vivo. BV-2 cells were exposed to 1-methyl-4-phenylpyridinium (MPP+) and α-synuclein to establish PD model in vitro. Results showed that treatment with RA dose-dependently improved motor function of PD mice, increased the number of tyrosine hydroxylase-positive cells, reduced production of pro-inflammatory cytokines, and inhibited microglia activation in ventral midbrain. In cell study, RA also decreased MPP+ or α-synuclein-induced secretion of pro-inflammatory cytokines. Furthermore, RA treatment downregulated the expression levels of HMGB1, TLR4 and Myd88 and inhibited NF-κB nuclear expression both in PD animal and cell models. These findings indicated that RA could attenuate inflammatory responses through suppressing HMGB1/TLR4/NF-κB signaling pathway, which may contribute to its anti-PD activity.
Collapse
Affiliation(s)
- Runxiao Lv
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| | - Xueyong Liu
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Fenghua Zhou
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhiqiang Zhang
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Lixin Zhang
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
27
|
Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J, Lu M, Yao H, Hu G. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 2019; 15:1860-1881. [PMID: 30966861 DOI: 10.1080/15548627.2019.1596481] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aging-related, nonresolving inflammation in both the central nervous system (CNS) and periphery predisposes individuals to the development of neurodegenerative disorders (NDDs). Inflammasomes are thought to be especially relevant to immune homeostasis, and their dysregulation contributes to inflammation and NDDs. However, few agents have been clinically shown to reduce NDD incidence by targeting inflammasomes. Our study indicated that NLRP3 (NLR family, pyrin domain containing 3) inflammasome is involved in Parkinson disease (PD) progression in patients and various murine models. In addition, the small molecule kaempferol (Ka) protected mice against LPS- and SNCA-induced neurodegeneration by inhibiting NLRP3 inflammasome activation as evidenced by the fact that Ka reduced cleaved CASP1 expression and disrupted NLRP3-PYCARD-CASP1 complex assembly with concomitant decreased IL1B secretion. Mechanically, Ka promoted macroautophagy/autophagy in microglia, leading to reduced NLRP3 protein expression, which in turn deactivated the NLRP3 inflammasome. Intriguingly, ubiquitination was involved in Ka-induced autophagic NLRP3 degradation. These findings were further confirmed in vivo as knockdown of Atg5 expression or autophagy inhibitor treatment significantly inhibited the Ka-mediated NLRP3 inflammasome inhibition and neurodegeneration amelioration. Thus, we demonstrated that Ka promotes neuroinflammatory inhibition via the cooperation of ubiquitination and autophagy, suggesting that Ka is a promising therapeutic strategy for the treatment of NDDs. Abbreviations: 3-MA: 3-methyladenine; AAV: adeno-associated virus; ACTB: actin, beta; AIF1/IBA1: allograft inflammatory factor 1; ATG5: autophagy related 5; ATG7: autophagy related 7; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; CASP1: caspase 1; CNS: central nervous system; CQ: chloroquine; DA neurons: dopaminergic neurons; DAMPS: damage-associated molecular patterns; DAPI: 4',6-diamidino-2-phenylindole; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; GFAP: glial fibrillary acidic protein; IP: immunoprecipitation; i.p.: intraperitoneally; Ka: kaempferol; KD: knockdown; KO: knockout; LPS: lipopolysaccharide; IL1B: interleukin 1 beta; IL6: interleukin 6; Ly: lysate; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NC: negative control; NDD: neurodegenerative diseases; NLRP3: NLR family, pyrin domain containing 3; OE: overexpression; PD: Parkinson disease; poly-Ub: poly-ubiquitin; PTM: post-translational modification; PYCARD/ASC: PYD and CARD domain containing; Rapa: rapamycin; RFP: red fluorescent protein; SN: supernatant; SNCA: synuclein alpha; SNpc: substantia nigra pars compacta; SQSTM1: sequestosome 1; TH: tyrosine hydroxylase; TNF/TNF-alpha: tumor necrosis factor; Ub: ubiquitin; WT: wild type.
Collapse
Affiliation(s)
- Xiaojuan Han
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Sifan Sun
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yiming Sun
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Qiqi Song
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jialei Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| | - Miaomiao Chen
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ting Sun
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Meiling Xia
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University , Nanjing , Jiangsu , China
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Jiangsu Key Nanjing Medical University , Nanjing , Jiangsu , China
| |
Collapse
|
28
|
Poly TN, Islam MMR, Yang HC, Li YCJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson's disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol 2018; 75:99-108. [PMID: 30280208 DOI: 10.1007/s00228-018-2561-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Several studies have explored the impact of non-steroidal anti-inflammatory drugs (NSAIDs) and the risk of Parkinson disease (PD). However, the extent to which NSAIDs may increase or decrease the risk of PD remains unresolved. We, therefore, performed a meta-analysis of relevant studies to quantify the magnitude of the association between NSAID use and PD risk in the elderly population. METHODS The electronic databases such as PubMed, EMBASE, Scopus, Google Scholar, and Web of Science were used to search the relevant articles published between January 1990 and December 2017. Large (n ≥ 1000) observational design studies with a follow-up at least 1 year were considered. Two authors independently extracted information from the included studies. Random effect model was used to calculate risk ratios (RRs) with 95% confidence interval (Cl). RESULTS A total of 17 studies with 2,498,258 participants and nearly 14,713 PD patients were included in the final analysis. The overall pooled RR of PD was 0.95 (95%CI 0.860-1.048) with significant heterogeneity (I2 = 63.093, Q = 43.352, p < 0.0001). In the subgroup analysis, the overall pooled RR of PD was 0.90 (95%CI 0.738-1.109), 0.96 (95%CI 0.882-1.055), and 0.99 (95%CI 0.841-0.982) from the studies of North America, Europe, and Asia. Additionally, long-term use, study design, individual NSAID use, and risk of PD were also evaluated. CONCLUSION Despite the neuroprotective potential of NSAIDs demonstrated in some experimental studies, our findings suggest that there is no association between NSAIDs and the risk of Parkinson disease at the population level. Until further evidence is established, clinicians need to be vigilant ensuring that the use of NSAIDs remains restricted to their approved anti-inflammatory and analgesic effect.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Md Mohaimenul Rubel Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan.,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Hsuan-Chia Yang
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan
| | - Yu-Chuan Jack Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 110, Taiwan. .,International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei, Taiwan. .,Department of Dermatology, Wan Fang Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
29
|
Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: A dose-response meta-analysis. Medicine (Baltimore) 2018; 97:e12172. [PMID: 30212946 PMCID: PMC6155958 DOI: 10.1097/md.0000000000012172] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous studies have indicated that nonsteroidal anti-inflammatory drugs (NSAIDs) use is associated with Parkinson disease risk, but presented controversial results.Medline, Embase, Web of Science, and the Cochrane Database were searched update to November 2017. Key data were extracted from eligible studies. A dose-response meta-analysis was conducted for synthesizing data from eligible studies.Fifteen eligible studies were included in this meta-analysis. NSAIDs use was not associated with Parkinson disease risk [relevant risk (RR): 0.06; 95% confidence interval (95% CI), 0.91-1.02]. Subgroup analysis showed that aspirin use (RR: 1.14; 95% CI, 0.98-1.30) or ibuprofen use (RR: 1.01; 95% CI, 0.88-1.17) was not associated with Parkinson disease risk; however, the use of non-aspirin NSAIDs was significantly associated with Parkinson disease risk (RR:0.91; 95% CI, 0.84-0.99). Furthermore, NSAIDs use was not associated with the risk of Parkinson disease in female (RR: 0.99; 95% CI, 0.83-1.17) and male (RR: 1.01; 95% CI, 0.88-1.16). In addition, a dose-response showed per 1 number of prescription incremental increase in NSAIDs use was not associated with the risk of Parkinson disease (RR: 0.96; 95% CI, 0.91-1.02), per 1 year of duration of NSAIDs use incremental increase was not associated with the risk of Parkinson disease (RR: 0.98; 95% CI, 0.92-1.03), and per 1 dosage of NSAIDs use incremental increase was not associated with the risk of Parkinson disease (RR: 0.98; 95% CI, 0.95-1.02).NSAIDs use was not associated with the risk of Parkinson disease. The potency and the cumulative NSAIDs use did not play critical roles.
Collapse
|
30
|
Liu Y, Xie X, Xia LP, Lv H, Lou F, Ren Y, He ZY, Luo XG. Peripheral immune tolerance alleviates the intracranial lipopolysaccharide injection-induced neuroinflammation and protects the dopaminergic neurons from neuroinflammation-related neurotoxicity. J Neuroinflammation 2017; 14:223. [PMID: 29145874 PMCID: PMC5693474 DOI: 10.1186/s12974-017-0994-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroinflammation plays a critical role in the onset and development of neurodegeneration disorders such as Parkinson's disease. The immune activities of the central nervous system are profoundly affected by peripheral immune activities. Immune tolerance refers to the unresponsiveness of the immune system to continuous or repeated stimulation to avoid excessive inflammation and unnecessary by-stander injury in the face of continuous antigen threat. It has been proved that the immune tolerance could suppress the development of various peripheral inflammation-related diseases. However, the role of immune tolerance in neuroinflammation and neurodegenerative diseases was not clear. METHODS Rats were injected with repeated low-dose lipopolysaccharide (LPS, 0.3 mg/kg) intraperitoneally for 4 days to induce peripheral immune tolerance. Neuroinflammation was produced using intracranial LPS (15 μg) injection. Inflammation cytokines were measured using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Microglial activation were measured using immunostaining of Iba-1 and ED-1. Dopaminergic neuronal damage was evaluated using immunochemistry staining and stereological counting of TH-positive neurons. Behavioral impairment was evaluated using amphetamine-induced rotational behavioral assessment. RESULTS Compared with the non-immune tolerated animals, pre-treatment of peripheral immune tolerance significantly decreased the production of inflammatory cytokines, suppressed the microglial activation, and increased the number of dopaminergic neuronal survival in the substantia nigra. CONCLUSIONS Our results indicated that peripheral immune tolerance attenuated neuroinflammation and inhibited neuroinflammation-induced dopaminergic neuronal death.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Xin Xie
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Li-Ping Xia
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Hong Lv
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Fan Lou
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Yan Ren
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Zhi-Yi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Xiao-Guang Luo
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
31
|
Joshi N, Singh S. Updates on immunity and inflammation in Parkinson disease pathology. J Neurosci Res 2017; 96:379-390. [DOI: 10.1002/jnr.24185] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Neeraj Joshi
- Department of Biochemistry and Biophysics; Helen Diller Comprehensive Cancer Center; San Francisco California
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute; Lucknow India
| |
Collapse
|
32
|
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 2016; 15:1257-1272. [PMID: 27751556 DOI: 10.1016/s1474-4422(16)30230-7] [Citation(s) in RCA: 1126] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
Since 2006, several longitudinal studies have assessed environmental or behavioural factors that seem to modify the risk of developing Parkinson's disease. Increased risk of Parkinson's disease has been associated with exposure to pesticides, consumption of dairy products, history of melanoma, and traumatic brain injury, whereas a reduced risk has been reported in association with smoking, caffeine consumption, higher serum urate concentrations, physical activity, and use of ibuprofen and other common medications. Randomised trials are investigating the possibility that some of the negative risk factors might be neuroprotective and thus beneficial in individuals with early Parkinson's disease, particularly with respect to smoking (nicotine), caffeine, and urate. In the future, it might be possible to identify Parkinson's disease in its prodromal phase and to promote neuroprotective interventions before the onset of motor symptoms. At this time, however, the only intervention that seems justifiable for the primary prevention of Parkinson's disease is the promotion of physical activity, which is likely to be beneficial for the prevention of several chronic diseases.
Collapse
Affiliation(s)
- Alberto Ascherio
- Departments of Epidemiology and Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA; Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
33
|
Del-Bel E, Bortolanza M, Dos-Santos-Pereira M, Bariotto K, Raisman-Vozari R. l-DOPA-induced dyskinesia in Parkinson's disease: Are neuroinflammation and astrocytes key elements? Synapse 2016; 70:479-500. [DOI: 10.1002/syn.21941] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Elaine Del-Bel
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Mariza Bortolanza
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Maurício Dos-Santos-Pereira
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Physiology; FMRP; São Paulo Brazil
| | - Keila Bariotto
- Department of MFPB-Physiology; FORP, Campus USP, University of São Paulo; Av. Café, s/no Ribeirão Preto SP 14040-904 Brazil
- Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
- Department of Neurology and Behavioral Neuroscience; FMRP, Campus USP, University of São Paulo; Av. Bandeirantes 13400 Ribeirão Preto SP 14049-900 Brazil
| | - Rita Raisman-Vozari
- INSERM UMR 1127, CNRS UMR 7225, UPMC; Thérapeutique Expérimentale de la Neurodégénérescence, Hôpital de la Salpetrière-ICM (Institut du cerveau et de la moelle épinière); Paris France
| |
Collapse
|
34
|
Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628192. [PMID: 26295044 PMCID: PMC4532803 DOI: 10.1155/2015/628192] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, being characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Among several putative factors that may contribute to PD pathogenesis, inflammatory mechanisms may play a pivotal role. The involvement of microglial activation as well as of brain and peripheral immune mediators in PD pathophysiology has been reported by clinical and experimental studies. These inflammatory biomarkers evaluated by imaging techniques and/or by biological sample analysis have become valuable tools for PD diagnosis and prognosis. Regardless of the significant increase in the number of people suffering from PD, there are still no established disease-modifying or neuroprotective therapies for it. There is growing evidence of protective effect of anti-inflammatory drugs on PD development. Herein, we reviewed the current literature regarding the central nervous system and peripheral immune biomarkers in PD and advances in diagnostic and prognostic tools as well as the neuroprotective effects of anti-inflammatory therapies.
Collapse
|
35
|
Sawada H, Oeda T, Umemura A, Tomita S, Kohsaka M, Park K, Yamamoto K, Sugiyama H. Baseline C-Reactive Protein Levels and Life Prognosis in Parkinson Disease. PLoS One 2015. [PMID: 26218286 PMCID: PMC4517917 DOI: 10.1371/journal.pone.0134118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background C-reactive protein (CRP) is a biomarker of inflammation, and high levels of CRP correlate with vascular death. Chronic inflammation is considered to be involved in neurodegeneration, although there is no evidence linking it with the process of neurodegenerative diseases. Objective To determine the role of baseline CRP levels in the prognosis of patients with Parkinson disease (PD). Methods A cohort of 313 patients with a mean age of 69.1 and mean PD duration of 7.9 years was retrospectively followed for a mean observation time of 1,753 days. CRP was measured when patients were not diagnosed with any infections, and levels were repetitively measured to investigate a tendency of “regression to mean.” The primary outcome measure was a survival time from study enrollment to death. Results During the observation period 56 patients died. Baseline CRP was log-linearly associated with a risk of death in PD. Mean survival time was 3,149 (95% confidence interval; 3,009-3,289) days in patients with CRP ≤ 0.8mg/L (lower two thirds) and 2,620 (2,343-2,897) days in those with CRP > 0.8 mg/L (top third, p < 0.001, log-rank test). The adjusted hazard ratio (HR) per two-fold higher CRP concentration for all deaths was 1.29 (1.10-1.52), and after excluding PD-unrelated deaths, such as cancer or stroke, HR was 1.23 (1.01-1.49) (adjusted for age, sex, PD duration, modified Hohen-Yahr stages, MMSE scores, and serum albumin). Conclusions Baseline CRP concentrations were associated with the risk of death and predicted life prognosis of patients with PD. The associations were independent from PD duration, PD severity, cognitive function, ages, and nutritional conditions, suggesting the possibility that subclinical chronic inflammation is associated with a neurodegenerative process in PD.
Collapse
Affiliation(s)
- Hideyuki Sawada
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
- * E-mail:
| | - Tomoko Oeda
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Atsushi Umemura
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Satoshi Tomita
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Masayuki Kohsaka
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kwiyoung Park
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Kenji Yamamoto
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Neurology and Clinical Research Center, National Hospital of Utano, National Hospital Organization, Kyoto, Japan
| |
Collapse
|
36
|
Bassani TB, Vital MA, Rauh LK. Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. ARQUIVOS DE NEURO-PSIQUIATRIA 2015. [DOI: 10.1590/0004-282x20150057] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease affecting approximately 1.6% of the population over 60 years old. The cardinal motor symptoms are the result of progressive degeneration of substantia nigra pars compacta dopaminergic neurons which are involved in the fine motor control. Currently, there is no cure for this pathology and the cause of the neurodegeneration remains unknown. Several studies suggest the involvement of neuroinflammation in the pathophysiology of PD as well as a protective effect of anti-inflammatory drugs both in animal models and epidemiological studies, although there are controversial reports. In this review, we address evidences of involvement of inflammatory process and possible therapeutic usefulness of anti-inflammatory drugs in PD.
Collapse
Affiliation(s)
- Taysa Bervian Bassani
- Pontifícia Universidade Católica do Paraná, Brazil; Universidade Federal do Paraná, Brazil
| | | | | |
Collapse
|
37
|
Abdel-Salam OME. Drug therapy for Parkinson’s disease: An update. World J Pharmacol 2015; 4:117-143. [DOI: 10.5497/wjp.v4.i1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting about 1% of the population above the age of 65. PD is characterized by a selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta. This results in a marked loss of striatal dopamine and the development of the characteristic features of the disease, i.e., bradykinesia, rest tremor, rigidity, gait abnormalities and postural instability. Other types of neurons/neurotransmitters are also involved in PD, including cholinergic, serotonergic, glutamatergic, adenosine, and GABAergic neurotransmission which might have relevance to the motor, non-motor, neuropsychiatric and cognitive disturbances that occur in the course of the disease. The treatment of PD relies on replacement therapy with levodopa (L-dopa), the precursor of dopamine, in combination with a peripheral decarboxylase inhibitor (carbidopa or benserazide). The effect of L-dopa, however, declines over time together with the development of motor complications especially dyskinesia in a significant proportion of patients within 5 years of therapy. Other drugs include dopamine-receptor-agonists, catechol-O-methyltransferase inhibitors, monoamine oxidase type B (MAO-B) inhibitors, anticholinergics and adjuvant therapy with the antiviral drug and the N-methyl-D-aspartate glutamate receptor antagonist amantadine. Although, these medications can result in substantial improvements in parkinsonian symptoms, especially during the early stages of the disease, they are often not successful in advanced disease. Moreover, dopaminergic cell death continues over time, emphasizing the need for neuroprotective or neuroregenerative therapies. In recent years, research has focused on non-dopaminergic approach such as the use of A2A receptor antagonists: istradefylline and preladenant or the calcium channel antagonist isradipine. Safinamide is a selective and reversible inhibitor of MAO-B, a glutamate receptor inhibitor as well as sodium and calcium channel blocker. Minocycline and pioglitazone are other agents which have been shown to prevent dopaminergic nigral cell loss in animal models of PD. There is also an evidence to suggest a benefit from iron chelation therapy with deferiprone and from the use of antioxidants or mitochondrial function enhancers such as creatine, alpha-lipoic acid, l-carnitine, and coenzyme Q10.
Collapse
|
38
|
Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E. Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson's disease. Neurobiol Dis 2014; 73:377-87. [PMID: 25447229 DOI: 10.1016/j.nbd.2014.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/22/2014] [Indexed: 12/22/2022] Open
Abstract
l-3, 4-dihydroxyphenylalanine (L-DOPA) is the most effective treatment for Parkinson's disease but can induce debilitating abnormal involuntary movements (dyskinesia). Here we show that the development of L-DOPA-induced dyskinesia in the rat is accompanied by upregulation of an inflammatory cascade involving nitric oxide. Male Wistar rats sustained unilateral injections of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. After three weeks animals started to receive daily treatment with L-DOPA (30 mg/kg plus benserazide 7.5 mg/kg, for 21 days), combined with an inhibitor of neuronal NOS (7-nitroindazole, 7-NI, 30 mg/kg/day) or vehicle (saline-PEG 50%). All animals treated with L-DOPA and vehicle developed abnormal involuntary movements, and this effect was prevented by 7-NI. L-DOPA-treated dyskinetic animals exhibited an increased striatal and pallidal expression of glial fibrillary acidic protein (GFAP) in reactive astrocytes, an increased number of CD11b-positive microglial cells with activated morphology, and the rise of cells positive for inducible nitric oxide-synthase immunoreactivity (iNOS). All these indexes of glial activation were prevented by 7-NI co-administration. These findings provide evidence that the development of L-DOPA-induced dyskinesia in the rat is associated with activation of glial cells that promote inflammatory responses. The dramatic effect of 7-NI in preventing this glial response points to an involvement of nitric oxide. Moreover, the results suggest that the NOS inhibitor prevents dyskinesia at least in part via inhibition of glial cell activation and iNOS expression. Our observations indicate nitric oxide synthase inhibitors as a therapeutic strategy for preventing neuroinflammatory and glial components of dyskinesia pathogenesis in Parkinson's disease.
Collapse
Affiliation(s)
- Mariza Bortolanza
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Roberta Cavalcanti-Kiwiatkoski
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Fernando E Padovan-Neto
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Miso Mitkovski
- Light Microscopy Facility Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Rita Raisman-Vozari
- Sorbonne Université UPMC UM75 INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirao Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Department of Behavioral Neurosciences, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
39
|
Adult hippocampal neurogenesis in Parkinson's disease: impact on neuronal survival and plasticity. Neural Plast 2014; 2014:454696. [PMID: 25110593 PMCID: PMC4106176 DOI: 10.1155/2014/454696] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/19/2014] [Indexed: 12/23/2022] Open
Abstract
In Parkinson's disease (PD) and other synucleinopathies, chronic neurodegeneration occurs within different areas of the central nervous system leading to progressive motor and nonmotor symptoms. The symptomatic treatment options that are currently available do not slow or halt disease progression. This highlights the need of a better understanding of disease mechanisms and disease models. The generation of newborn neurons in the adult hippocampus and in the subventricular zone/olfactory bulb system is affected by many different regulators and possibly involved in memory processing, depression, and olfaction, symptoms which commonly occur in PD. The pathology of the adult neurogenic niches in human PD patients is still mostly elusive, but different preclinical models have shown profound alterations of adult neurogenesis. Alterations in stem cell proliferation, differentiation, and survival as well as neurite outgrowth and spine formation have been related to different aspects in PD pathogenesis. Therefore, neurogenesis in the adult brain provides an ideal model to study disease mechanisms and compounds. In addition, adult newborn neurons have been proposed as a source of endogenous repair. Herein, we review current knowledge about the adult neurogenic niches in PD and highlight areas of future research.
Collapse
|
40
|
Antihypertensive agents and risk of Parkinson's disease: a nationwide cohort study. PLoS One 2014; 9:e98961. [PMID: 24910980 PMCID: PMC4049613 DOI: 10.1371/journal.pone.0098961] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/08/2014] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose Hypertension has been associated with Parkinson's disease (PD), but data on antihypertensive drugs and PD are inconclusive. We aim to evaluate antihypertensive drugs for an association with PD in hypertensive patients. Methods Hypertensive patients who were free of PD, dementia and stroke were recruited from 2005–2006 using Taiwan National Health Insurance Database. We examined the association between the use of calcium channel blockers (CCBs), angiotensin converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs) and the incidence of PD using beta-blockers as the reference. Cox regression model with time-varying medication use was applied. Results Among 65,001 hypertensive patients with a mean follow-up period of 4.6 years, use of dihydropyridine CCBs, but not non-dihydropyridine CCBs, was associated with a reduced risk of PD (adjusted hazard ratio [aHR] = 0.71; 95% CI, 0.57–0.90). Additionally, use of central-acting CCBs, rather than peripheral-acting ones, was associated with a decreased risk of PD (aHR = .69 [55–0.87]. Further decreased association was observed for higher cumulative doses of felodipine (aHR = 0.54 [0.36–0.80]) and amlodipine (aHR = 0.60 [0.45–0.79]). There was no association between the use of ACEIs (aHR = 0.80 [0.64–1.00]) or ARBs (aHR = 0.86 [0.69–1.08]) with PD. A potentially decreased association was only found for higher cumulative use of ACEIs (HR = 0.52 [0.34–0.80]) and ARBs (HR = 0.52 [0.33–0.80]). Conclusions Our study suggests centrally-acting dihydropyridine CCB use and high cumulative doses of ACEIs and ARBs may associate with a decreased incidence of PD in hypertensive patients. Further long-term follow-up studies are needed to confirm the potential beneficial effects of antihypertensive agents in PD.
Collapse
|
41
|
Wittenberg NJ, Wootla B, Jordan LR, Denic A, Warrington AE, Oh SH, Rodriguez M. Applications of SPR for the characterization of molecules important in the pathogenesis and treatment of neurodegenerative diseases. Expert Rev Neurother 2014; 14:449-63. [PMID: 24625008 PMCID: PMC3989105 DOI: 10.1586/14737175.2014.896199] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Characterization of binding kinetics and affinity between a potential drug and its receptor are key steps in the development of new drugs. Among the techniques available to determine binding affinities, surface plasmon resonance has emerged as the gold standard because it can measure binding and dissociation rates in real-time in a label-free fashion. Surface plasmon resonance is now finding applications in the characterization of molecules for treatment of neurodegenerative diseases, characterization of molecules associated with pathogenesis of neurodegenerative diseases and detection of neurodegenerative disease biomarkers. In addition it has been used in the characterization of a new class of natural autoantibodies that have therapeutic potential in a number of neurologic diseases. In this review we will introduce surface plasmon resonance and describe some applications of the technique that pertain to neurodegenerative disorders and their treatment.
Collapse
Affiliation(s)
- Nathan J. Wittenberg
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
| | - Bharath Wootla
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Luke R. Jordan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Aleksandar Denic
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN USA
| | | | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA
| | - Moses Rodriguez
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN USA
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
42
|
Rist PM, Glymour MM, Orav EJ, Kim E, Kase CS, Buring JE, Kurth T. Non-steroidal anti-inflammatory drug use and functional outcome from ischemic cerebral events among women. Eur J Intern Med 2014; 25:255-8. [PMID: 24525385 PMCID: PMC3970177 DOI: 10.1016/j.ejim.2014.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Use of some non-steroidal anti-inflammatory drugs (NSAIDs) has been linked to an increased risk of stroke. However, information on the impact of NSAID use on functional outcomes from stroke is limited. METHODS Using women enrolled in the Women's Healthy Study who were free of a history of stroke or TIA at baseline, a prospective cohort study was performed to examine the impact of NSAID use on functional outcomes from stroke. Women were classified as NSAID non-user (<11 days of use in the past month), user (≥ 11 days of use in the past month), and missing (did not answer the question about NSAID use) during each year of the study. Possible functional outcomes were TIA or ischemic stroke with modified Rankin scale (mRS) score of 0 to 1, 2 to 3, or 4 to 6. RESULTS After 15.7 mean years of follow-up, 702 TIAs, 292 ischemic strokes with mRS 0-1, 233 ischemic strokes with mRS 2-3 and 98 ischemic strokes with mRS 4-6 occurred. Compared to women who were NSAID non-users, women who were NSAID users had multivariable-adjusted (95% CI) of 1.00 (0.77, 1.29) for TIA, 1.48 (1.04, 2.10) for mRS 0-1, 0.83 (0.52, 1.33) for mRS 2-3, and 1.33 (0.68, 2.59) for mRS 4-6. CONCLUSION Results from this large cohort study suggest than NSAID use may be associated with an increased risk of ischemic stroke with mild functional outcome.
Collapse
Affiliation(s)
- Pamela M Rist
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States; Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, United States.
| | - M Maria Glymour
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA, United States; Department of Epidemiology and Biostatistics, University of California-San Francisco, San Francisco, CA, United States
| | - E John Orav
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Biostatistics, Harvard School of Public Health, Boston, MA, United States
| | - Eunjung Kim
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Carlos S Kase
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Julie E Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States
| | - Tobias Kurth
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Epidemiology, Harvard School of Public Health, Boston, MA, United States; Inserm Research Center for Epidemiology and Biostatistics (U897), Bordeaux, France, Bordeaux, France; College of Health Sciences, University of Bordeaux, Bordeaux, France
| |
Collapse
|
43
|
Straccia M, Dentesano G, Valente T, Pulido-Salgado M, Solà C, Saura J. CCAAT/enhancer binding protein β regulates prostaglandin E synthase expression and prostaglandin E2 production in activated microglial cells. Glia 2013; 61:1607-19. [PMID: 23893854 DOI: 10.1002/glia.22542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2013] [Accepted: 05/21/2013] [Indexed: 11/11/2022]
Abstract
The eicosanoid prostaglandin E2 (PGE2 ) plays important roles in neuroinflammation and it is produced by the sequential action of the enzymes cyclooxygenase-2 (COX-2) and prostaglandin E synthase (PTGES). The expression of both enzymes and the production of PGE2 are increased in neuroinflammation. The objective of this study was to elucidate whether the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) regulates the expression of prostaglandin synthesis enzymes in neuroinflammation. To this aim, the expression of these enzymes in wild-type and C/EBPβ-null mice was analyzed in vitro and in vivo. In mixed glial cultures, lipopolysaccharide (LPS) ± interferon γ (IFN-γ) induced C/EBPβ binding to COX-2 and PTGES promoters. LPS ± IFN-γ-induced increases in PTGES expression and in PGE2 production in mixed glial and microglial cultures were abrogated in the absence of C/EBPβ. Also, increased brain PTGES expression induced by systemic LPS administration was markedly reduced in C/EBPβ-null mice. In contrast to PTGES, the induction of COX-2 expression in vitro or in vivo was not markedly affected by the absence of C/EBPβ. These results demonstrate that C/EBPβ regulates PTGES expression and PGE2 production by activated microglial cells in vitro and point to C/EBPβ as a regulator of PTGES expression in vivo in the inflamed central nervous system. Altogether, these findings strengthen the proposed role of C/EBPβ as a key player in the orchestration of neuroinflammatory gene response.
Collapse
Affiliation(s)
- Marco Straccia
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Skaper SD, Facci L, Giusti P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol Neurobiol 2013; 48:340-52. [PMID: 23813098 DOI: 10.1007/s12035-013-8487-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/29/2022]
Abstract
Glia are key players in a number of nervous system disorders. Besides releasing glial and neuronal signaling molecules directed to cellular homeostasis, glia respond also to pro-inflammatory signals released from immune-related cells, with the mast cell being of particular interest. A proposed mast cell-glia communication may open new perspectives for designing therapies to target neuroinflammation by differentially modulating activation of non-neuronal cells normally controlling neuronal sensitization-both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be upregulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamines, whose principal family members are the endocannabinoid N-arachidonoylethanolamine (anandamide), and its congeners N-stearoylethanolamine, N-oleoylethanolamine, and N-palmitoylethanolamine (PEA). A key role of PEA may be to maintain cellular homeostasis when faced with external stressors provoking, for example, inflammation: PEA is produced and hydrolyzed by microglia, it downmodulates mast cell activation, it increases in glutamate-treated neocortical neurons ex vivo and in injured cortex, and PEA levels increase in the spinal cord of mice with chronic relapsing experimental allergic encephalomyelitis. Applied exogenously, PEA has proven efficacious in mast cell-mediated experimental models of acute and neurogenic inflammation. This fatty acid amide possesses also neuroprotective effects, for example, in a model of spinal cord trauma, in a delayed post-glutamate paradigm of excitotoxic death, and against amyloid β-peptide-induced learning and memory impairment in mice. These actions may be mediated by PEA acting through "receptor pleiotropism," i.e., both direct and indirect interactions of PEA with different receptor targets, e.g., cannabinoid CB2 and peroxisome proliferator-activated receptor-alpha.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo "Egidio Meneghetti" 2, 35131, Padova, Italy,
| | | | | |
Collapse
|
45
|
Dranka BP, Gifford A, Ghosh A, Zielonka J, Joseph J, Kanthasamy AG, Kalyanaraman B. Diapocynin prevents early Parkinson's disease symptoms in the leucine-rich repeat kinase 2 (LRRK2R¹⁴⁴¹G) transgenic mouse. Neurosci Lett 2013; 549:57-62. [PMID: 23721786 DOI: 10.1016/j.neulet.2013.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 01/19/2023]
Abstract
The most prominent mechanism proposed for death of dopaminergic neurons in Parkinson's disease (PD) is elevated generation of reactive oxygen/nitrogen species (ROS/RNS). Recent studies suggest that ROS produced during PD pathogenesis may contribute to cytotoxicity in cell culture models of PD. We hypothesized that inhibition of ROS production would prevent PD symptoms in the LRRK2(R1441G) transgenic (tg) mouse model of PD. These mice overexpress a mutant form of leucine-rich repeat kinase 2 (LRRK2) and are reported to develop PD-like symptoms at approximately 10 months of age. Despite similar expression of the transgene, our colony did not recapitulate the same type of motor dysfunction originally reported. However, tests of motor coordination (pole test, Rotor-Rod) revealed a significant defect in LRRK2(R1441G) mice by 16 months of age. LRRK2(R1441G) tg mice, or wild type littermates, were given diapocynin (200mg/kg, a proposed NADPH oxidase inhibitor) three times per week by oral gavage starting at 12 weeks of age. Decreased performance on the pole test and Rotor-Rod in the LRRK2(R1441G) mice was prevented with diapocynin treatment. No loss in open field movement or rearing was found. As expected, tyrosine hydroxylase staining was similar in both the substantia nigra and striatum in all treatment groups. Together these data demonstrate that diapocynin is a viable agent for protection of neurobehavioral function.
Collapse
Affiliation(s)
- Brian P Dranka
- Department of Biophysics, and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | | | | | | |
Collapse
|
46
|
Lin CH, Wu RM, Chang HY, Chiang YT, Lin HH. Preceding pain symptoms and Parkinson's disease: a nationwide population-based cohort study. Eur J Neurol 2013; 20:1398-404. [DOI: 10.1111/ene.12197] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Affiliation(s)
- C.-H. Lin
- Department of Neurology; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei; Taiwan
| | - R.-M. Wu
- Department of Neurology; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei; Taiwan
| | - H.-Y. Chang
- Institute of Population Health Science; National Health Research Institute; Miaoli; Taiwan
| | - Y.-T. Chiang
- Institute of Epidemiology and Preventive Medicine; National Taiwan University; Taipei; Taiwan
| | - H.-H. Lin
- Institute of Epidemiology and Preventive Medicine; National Taiwan University; Taipei; Taiwan
| |
Collapse
|
47
|
Bettcher BM, Kramer JH. Inflammation and clinical presentation in neurodegenerative disease: a volatile relationship. Neurocase 2013; 19:182-200. [PMID: 22515699 PMCID: PMC3733377 DOI: 10.1080/13554794.2011.654227] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A proposed immune mechanism that potentially modifies or exacerbates neurodegenerative disease presentation in older adults has received considerable attention in the past decade, with recent studies demonstrating a strong link between pro-inflammatory markers and neurodegeneration. The overarching aim of the following review is to synthesize recent research that supports a possible relationship between inflammation and clinical features of neurodegenerative diseases, including risk of development, cognitive and clinical correlates, and progression of the specified diseases. Specific emphasis is placed on providing a temporal context for the association between inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Brianne Magouirk Bettcher
- Neurology Department, Memory and Aging Center, University of California, San Francisco, CA 94143-1207, USA.
| | | |
Collapse
|
48
|
Pradhan S, Andreasson K. Commentary: Progressive inflammation as a contributing factor to early development of Parkinson's disease. Exp Neurol 2013; 241:148-55. [DOI: 10.1016/j.expneurol.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/08/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
|
49
|
Blandini F. Neural and immune mechanisms in the pathogenesis of Parkinson's disease. J Neuroimmune Pharmacol 2013; 8:189-201. [PMID: 23378275 DOI: 10.1007/s11481-013-9435-y] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/15/2013] [Indexed: 12/12/2022]
Abstract
Although almost 50 years have passed since impaired dopaminergic transmission was identified as the main neurochemical defect in Parkinson's disease (PD), the cause of the disease remains unknown. A restricted number of biological mechanisms are likely to contribute to the process of cell death in the nigrostriatal pathway. These mechanisms include mitochondrial defects and enhanced formation of reactive oxygen species--leading to oxidative damage--and abnormal protein aggregation. In addition to or, possibly, intermingled with these mechanisms of neuronal damage there is another crucial factor: neuroinflammation. The inflammatory response associated with cell loss in the dopaminergic nigrostriatal tract and, more in general, the role of immune mechanisms are increasingly recognized in PD pathogenesis. Neuroinflammatory changes have been repeatedly demonstrated, in both neurotoxic and transgenic animal models of PD, as well as in PD patients. Transgenic models based on α-synuclein overexpression, in particular, have provided crucial insights into the correlation between this protein and the dichotomous response that microglia can activate, with the polarization toward a cytotoxic (M1) or cytoprotective (M2) phenotype. Full understanding of such mechanisms may set the ground for a fine tuning of the neuroinflammatory process that accompanies and sustains neurodegeneration, thereby opening new therapeutic perspectives for PD.
Collapse
Affiliation(s)
- Fabio Blandini
- Center for Research in Neurodegenerative Diseases, IRCCS National Neurological Institute C. Mondino, Via Mondino, 2, 27100 Pavia, Italy.
| |
Collapse
|
50
|
Kieburtz K, Wunderle KB. Parkinson's disease: Evidence for environmental risk factors. Mov Disord 2012; 28:8-13. [DOI: 10.1002/mds.25150] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/09/2022] Open
Affiliation(s)
- Karl Kieburtz
- Center for Human Experimental Therapeutics; University of Rochester Medical Center; Rochester; New York; USA
| | - Kathryn B. Wunderle
- Center for Human Experimental Therapeutics; University of Rochester Medical Center; Rochester; New York; USA
| |
Collapse
|