1
|
Reis de Andrade J, Scourfield E, Peswani-Sajnani SL, Poulton K, ap Rees T, Khooshemehri P, Doherty G, Ong S, Ivan IF, Goudarzi N, Gardiner I, Caine E, Maguire TJA, Leightley D, Torrico L, Gasulla A, Menendez-Vazquez A, Ortega-Prieto AM, Pickering S, Jimenez-Guardeño JM, Batra R, Rubinchik S, Tan AVF, Griffin A, Sherrin D, Papaioannou S, Trouillet C, Mischo HE, Giralt V, Wilson S, Kirk M, Neil SJD, Galao RP, Martindale J, Curtis C, Zuckerman M, Razavi R, Malim MH, Martinez-Nunez RT. KCL TEST: an open-source inspired asymptomatic SARS-CoV-2 surveillance programme in an academic institution. Biol Methods Protoc 2024; 9:bpae046. [PMID: 38993523 PMCID: PMC11238426 DOI: 10.1093/biomethods/bpae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Rapid and accessible testing was paramount in the management of the COVID-19 pandemic. Our university established KCL TEST: a SARS-CoV-2 asymptomatic testing programme that enabled sensitive and accessible PCR testing of SARS-CoV-2 RNA in saliva. Here, we describe our learnings and provide our blueprint for launching diagnostic laboratories, particularly in low-resource settings. Between December 2020 and July 2022, we performed 158277 PCRs for our staff, students, and their household contacts, free of charge. Our average turnaround time was 16 h and 37 min from user registration to result delivery. KCL TEST combined open-source automation and in-house non-commercial reagents, which allows for rapid implementation and repurposing. Importantly, our data parallel those of the UK Office for National Statistics, though we detected a lower positive rate and virtually no delta wave. Our observations strongly support regular asymptomatic community testing as an important measure for decreasing outbreaks and providing safe working spaces. Universities can therefore provide agile, resilient, and accurate testing that reflects the infection rate and trend of the general population. Our findings call for the early integration of academic institutions in pandemic preparedness, with capabilities to rapidly deploy highly skilled staff, as well as develop, test, and accommodate efficient low-cost pipelines.
Collapse
Affiliation(s)
- Joana Reis de Andrade
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Edward Scourfield
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | | | - Kate Poulton
- Department of Infectious Diseases, King’s College London, London, UK
| | - Thomas ap Rees
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | | | - George Doherty
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
- Department of Infectious Diseases, King’s College London, London, UK
| | - Stephanie Ong
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
- Department of Infectious Diseases, King’s College London, London, UK
| | - Iustina-Francisca Ivan
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
- Department of Infectious Diseases, King’s College London, London, UK
| | - Negin Goudarzi
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
- Department of Infectious Diseases, King’s College London, London, UK
| | - Isaac Gardiner
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Estelle Caine
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Thomas J A Maguire
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
- Department of Infectious Diseases, King’s College London, London, UK
| | - Daniel Leightley
- Department of Population Health Sciences, School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | | | | | | | | | - Suzanne Pickering
- Department of Infectious Diseases, King’s College London, London, UK
| | | | - Rahul Batra
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sona Rubinchik
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Aaron V F Tan
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Amy Griffin
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - David Sherrin
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | | | - Celine Trouillet
- Department of Infectious Diseases, King’s College London, London, UK
| | - Hannah E Mischo
- Department of Infectious Diseases, King’s College London, London, UK
| | - Victoriano Giralt
- Area de Sistemas, Servicio Central de Informática, University of Malaga, Malaga, Spain
| | - Samantha Wilson
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Martin Kirk
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Stuart J D Neil
- Department of Infectious Diseases, King’s College London, London, UK
| | - Rui Pedro Galao
- Department of Infectious Diseases, King’s College London, London, UK
| | - Jo Martindale
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Charles Curtis
- Research Management and Innovation Directorate, KCL TEST, King’s College London, London, UK
| | - Mark Zuckerman
- South London Specialist Virology Centre, King’s College Hospital, London, UK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Michael H Malim
- Department of Infectious Diseases, King’s College London, London, UK
| | | |
Collapse
|
2
|
Ismail NF, Rahman AE, Kulkarni D, Zhu F, Wang X, del Carmen Morales G, Srivastava A, Allen KE, Spinardi J, Kyaw MH, Nair H. Incidence and outcome of SARS-CoV-2 reinfection in the pre-Omicron era: A global systematic review and meta-analysis. J Glob Health 2023; 13:06051. [PMID: 37994839 PMCID: PMC10667793 DOI: 10.7189/jogh.13.06051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023] Open
Abstract
Background With the emergence of new variants and sub-lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reinfections can significantly impact herd immunity, vaccination policies, and decisions on other public health measures. We conducted a systematic review and meta-analysis to synthesise the global evidence on SARS-CoV-2 reinfections in the pre-Omicron era. Methods We searched five global databases (MEDLINE, Embase, CINAHL Plus, Global Health, WHO COVID-19) on 12 May 2022 and 28 July 2023 and three Chinese databases (CNKI, Wanfang, CQvip) on 16 October 2022 for articles reporting incidence and outcomes of SARS-CoV-2 reinfection before the period of Omicron (B.1.1.529) predominance. We assessed risk of bias using Joanna Briggs Institute critical appraisal tools and conducted meta-analyses with random effects models to estimate the proportion of SARS-CoV-2 reinfection among initially infected cases and hospitalisation and mortality proportions among reinfected ones. Results We identified 7593 studies and extracted data from 64 included ones representing 21 countries. The proportion of SARS-CoV-2 reinfection was 1.16% (95% confidence interval (CI) = 1.01-1.33) based on 11 639 247 initially infected cases, with ≥45 days between the two infections. Healthcare providers (2.28%; 95% CI = 1.37-3.40) had a significantly higher risk of reinfection than the general population (1.00%; 95% CI = 0.81-1.20), while young adults aged 18 to 35 years (1.01%; 95% CI = 0.8-1.25) had a higher reinfection burden than other age groups (children <18 years old: 0.57%; 95% CI = 0.39-0.79, older adults aged 36-65 years old: 0.53%; 95% CI = 0.41-0.65, elderly >65 years old: 0.37%; 95% CI = 0.15-0.66). Among the reinfected cases, 8.12% (95% CI = 5.30-11.39) were hospitalised, 1.31% (95% CI = 0.29-2.83) were admitted to the intensive care unit, and 0.71% (95% CI = 0.02-2.01) died. Conclusions Our data suggest a relatively low risk of SARS-CoV-2 reinfection in the pre-Omicron era, but the risk of hospitalisation was relatively high among the reinfected cases. Considering the possibility of underdiagnosis, the reinfection burden may be underestimated. Registration PROSPERO: CRD42023449712.
Collapse
Affiliation(s)
- Nabihah Farhana Ismail
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- Communicable Disease Control Unit, Public Health Department, Johor State, Malaysia
| | - Ahmed Ehsanur Rahman
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- International Centre for Diarrhoeal Diseases Research, Bangladesh
| | - Durga Kulkarni
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Fuyu Zhu
- School of Public Health, Nanjing Medical University, Jiangsu, China
| | - Xin Wang
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- School of Public Health, Nanjing Medical University, Jiangsu, China
| | | | - Amit Srivastava
- Pfizer, Vaccines, Emerging Markets
- Orbital Therapeutics, United States of America
| | | | | | | | - Harish Nair
- Centre for Global Health, University of Edinburgh, Edinburgh, United Kingdom
- School of Public Health, Nanjing Medical University, Jiangsu, China
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Rennert L, Ma Z, McMahan CS, Dean D. Covid-19 vaccine effectiveness against general SARS-CoV-2 infection from the omicron variant: A retrospective cohort study. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001111. [PMID: 36777314 PMCID: PMC9910751 DOI: 10.1371/journal.pgph.0001111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
We aim to estimate the effectiveness of 2-dose and 3-dose mRNA vaccination (BNT162b2 and mRNA-1273) against general Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection (asymptomatic or symptomatic) caused by the omicron BA.1 variant. This propensity-score matched retrospective cohort study takes place in a large public university undergoing weekly Coronavirus Disease 2019 (Covid-19) testing in South Carolina, USA. The population consists of 24,145 university students and employees undergoing weekly Covid-19 testing between January 3rd and January 31st, 2022. The analytic sample was constructed via propensity score matching on vaccination status: unvaccinated, completion of 2-dose mRNA series (BNT162b2 or mRNA-1273) within the previous 5 months, and receipt of mRNA booster dose (BNT162b2 or mRNA-1273) within the previous 5 months. The resulting analytic sample consists of 1,944 university students (mean [SD] age, 19.64 [1.42] years, 66.4% female, 81.3% non-Hispanic White) and 658 university employees (mean [SD] age, 43.05 [12.22] years, 64.7% female, 83.3% non-Hispanic White). Booster protection against any SARS-CoV-2 infection was 66.4% among employees (95% CI: 46.1-79.0%; P<.001) and 45.4% among students (95% CI: 30.0-57.4%; P<.001). Compared to the 2-dose mRNA series, estimated increase in protection from the booster dose was 40.8% among employees (P=.024) and 37.7% among students (P=.001). We did not have enough evidence to conclude a statistically significant protective effect of the 2-dose mRNA vaccination series, nor did we have enough evidence to conclude that protection waned in the 5-month period after receipt of the 2nd or 3rd mRNA dose. Furthermore, we did not find evidence that protection varied by manufacturer. We conclude that in adults 18-65 years of age, Covid-19 mRNA booster doses offer moderate protection against general SARS-CoV-2 infection caused by the omicron variant and provide a substantial increase in protection relative to the 2-dose mRNA vaccination series.
Collapse
Affiliation(s)
- Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Zichen Ma
- Department of Mathematics, Colgate University, Hamilton, New York, United States of America
| | - Christopher S. McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
4
|
Blake H, Somerset S, Mahmood I, Mahmood N, Corner J, Ball JK, Denning C. A Qualitative Evaluation of the Barriers and Enablers for Implementation of an Asymptomatic SARS-CoV-2 Testing Service at the University of Nottingham: A Multi-Site Higher Education Setting in England. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13140. [PMID: 36293719 PMCID: PMC9603241 DOI: 10.3390/ijerph192013140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Asymptomatic testing for SARS-CoV-2 RNA has been used to prevent and manage COVID-19 outbreaks in university settings, but few studies have explored their implementation. The aim of the study was to evaluate how an accredited asymptomatic SARS-CoV-2 testing service (ATS) was implemented at the University of Nottingham, a multi-campus university in England, to identify barriers and enablers of implementation and to draw out lessons for implementing pandemic response initiatives in higher education settings. A qualitative interview study was conducted with 25 ATS personnel between May and July 2022. Interviews were conducted online, audio-recorded, and transcribed. Participants were asked about their experience of the ATS, barriers and enablers of implementation. Transcripts were thematically analysed. There were four overarching themes: (1) social responsibility and innovation, (2) when, how and why people accessed testing, (3) impact of the ATS on the spread of COVID-19, and (4) lessons learned for the future. In establishing the service, the institution was seen to be valuing its community and socially responsible. The service was viewed to be broadly successful as a COVID-19 mitigation approach. Challenges to service implementation were the rapidly changing pandemic situation and government advice, delays in service accreditation and rollout to staff, ambivalence towards testing and isolating in the target population, and an inability to provide follow-up support for positive cases within the service. Facilitators included service visibility, reduction in organisational bureaucracy and red tape, inclusive leadership, collaborative working with regular feedback on service status, flexibility in service delivery approaches and simplicity of saliva testing. The ATS instilled a perception of early 'return to normality' and impacted positively on staff feelings of safety and wellbeing, with wider benefits for healthcare services and local communities. In conclusion, we identified common themes that have facilitated or hindered the implementation of a SARS-CoV-2 testing service at a university in England. Lessons learned from ATS implementation will inform future pandemic response interventions in higher education settings.
Collapse
Affiliation(s)
- Holly Blake
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
| | - Sarah Somerset
- NIHR Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ikra Mahmood
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Neelam Mahmood
- School of Health Sciences, University of Nottingham, Nottingham NG7 2HA, UK
| | - Jessica Corner
- Executive Office, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jonathan K. Ball
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
5
|
Jayes L, Bogdanovica I, Johnston E, Chattopadhyay K, Morling JR, Devine S, Richmond N, Langley T. Perspectives of attenders and non-attenders to SARS-CoV-2 asymptomatic community testing in England: a qualitative interview study. BMJ Open 2022; 12:e064542. [PMID: 36137625 PMCID: PMC9511010 DOI: 10.1136/bmjopen-2022-064542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES In December 2020, Derbyshire County Council in England introduced 'walk-in' asymptomatic community COVID-19 testing sites. Our study aimed to explore people's views of the newly established COVID-19 community testing (CT) sites among those who attended and those who did not attend them, alongside gathering individuals' experiences of attending a CT site to complete a lateral flow test. SETTING This qualitative research study comprised of one-to-one interviews with those attending a COVID-19 CT sites in Derbyshire and those from the surrounding area who did not attend. PARTICIPANTS A combination of purposive and convenience sampling was used to recruit those who had (n=18) and those who had not attended (n=15) a walk-in asymptomatic CT site. RESULTS Employers played a key role in raising awareness of the testing sites, with most attending CT at the request of their workplace. The experience of attending a CT site was overwhelmingly positive and those who got tested spoke about the reassurance a negative result offered, knowing they were not passing on the virus when going about their daily lives. However, there was a perception that awareness of CT sites was low across the county and some confusion about who was eligible to attend and under what circumstances. Individuals linked this to low level of advertising they had seen, in addition to a lack of clarity in the information provided. CONCLUSIONS People's experience of attending a 'walk-in' asymptomatic CT site in Derbyshire was generally very positive; however, ensuring clear communication for future testing programmes is essential to maximise their uptake.
Collapse
Affiliation(s)
- Leah Jayes
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ilze Bogdanovica
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Emily Johnston
- Department of Psychology, Sociology & Politics, Sheffield Hallam University, Sheffield, UK
| | - Kaushik Chattopadhyay
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Joanne R Morling
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| | | | | | - Tessa Langley
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Rennert L, Ma Z, McMahan CS, Dean D. Effectiveness and protection duration of Covid-19 vaccines and previous infection against any SARS-CoV-2 infection in young adults. Nat Commun 2022; 13:3946. [PMID: 35803915 PMCID: PMC9263799 DOI: 10.1038/s41467-022-31469-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/19/2022] [Indexed: 12/12/2022] Open
Abstract
Data on effectiveness and protection duration of Covid-19 vaccines and previous infection against general SARS-CoV-2 infection in general populations are limited. Here we evaluate protection from Covid-19 vaccination (primary series) and previous infection in 21,261 university students undergoing repeated surveillance testing between 8/8/2021-12/04/2021, during which B.1.617 (delta) was the dominant SARS-CoV-2 variant. Estimated mRNA-1273, BNT162b2, and AD26.COV2.S effectiveness against any SARS-CoV-2 infection is 75.4% (95% CI: 70.5-79.5), 65.7% (95% CI: 61.1-69.8), and 42.8% (95% CI: 26.1-55.8), respectively. Among previously infected individuals, protection is 72.9% when unvaccinated (95% CI: 66.1-78.4) and increased by 22.1% with full vaccination (95% CI: 15.8-28.7). Statistically significant decline in protection is observed for mRNA-1273 (P < .001), BNT162b2 (P < .001), but not Ad26.CoV2.S (P = 0.40) or previous infection (P = 0.12). mRNA vaccine protection dropped 29.7% (95% CI: 17.9-41.6) six months post- vaccination, from 83.2% to 53.5%. We conclude that the 2-dose mRNA vaccine series initially offers strong protection against general SARS-CoV-2 infection caused by the delta variant in young adults, but protection substantially decreases over time. These findings indicate that vaccinated individuals may still contribute to community spread. While previous SARS-CoV-2 infection consistently provides moderately strong protection against repeat infection from delta, vaccination yields a substantial increase in protection.
Collapse
Affiliation(s)
- Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA.
| | - Zichen Ma
- Department of Public Health Sciences, Clemson University, Clemson, SC, USA
| | - Christopher S McMahan
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, USA
| | - Delphine Dean
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
7
|
Berrig C, Andreasen V, Frost Nielsen B. Heterogeneity in testing for infectious diseases. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220129. [PMID: 35600424 PMCID: PMC9114977 DOI: 10.1098/rsos.220129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/28/2022] [Indexed: 05/03/2023]
Abstract
Testing strategies have varied widely between nation states during the COVID-19 pandemic, in intensity as well as methodology. Some countries have mainly performed diagnostic testing while others have opted for mass-screening for the presence of SARS-CoV-2 as well. COVID passport solutions have been introduced, in which access to several aspects of public life requires either testing, proof of vaccination or a combination thereof. This creates a coupling between personal activity levels and testing behaviour which, as we show in a mathematical model, leverages heterogeneous behaviours in a population and turns this heterogeneity from a disadvantage to an advantage for epidemic control.
Collapse
Affiliation(s)
- Christian Berrig
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Viggo Andreasen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Bjarke Frost Nielsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
8
|
Ng CYH, Lim NA, Bao LXY, Quek AML, Seet RCS. Mitigating SARS-CoV-2 Transmission in Hospitals: A Systematic Literature Review. Public Health Rev 2022; 43:1604572. [PMID: 35296115 PMCID: PMC8906284 DOI: 10.3389/phrs.2022.1604572] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: Hospital outbreaks of SARS-CoV-2 infection are dreaded but preventable catastrophes. We review the literature to examine the pattern of SARS-CoV-2 transmission in hospitals and identify potential vulnerabilities to mitigate the risk of infection. Methods: Three electronic databases (PubMed, Embase and Scopus) were searched from inception to July 27, 2021 for publications reporting SARS-CoV-2 outbreaks in hospital. Relevant articles and grey literature reports were hand-searched. Results: Twenty-seven articles that described 35 SARS-CoV-2 outbreaks were included. Despite epidemiological investigations, the primary case could not be identified in 37% of outbreaks. Healthcare workers accounted for 40% of primary cases (doctors 17%, followed by ancillary staff 11%). Mortality among infected patients was approximately 15%. By contrast, none of the infected HCWs died. Several concerning patterns were identified, including infections involving ancillary staff and healthcare worker infections from the community and household contacts. Conclusion: Continuous efforts to train-retrain and enforce correct personal protective equipment use and regular routine screening tests (especially among ancillary staff) are necessary to stem future hospital outbreaks of SARS-CoV-2.
Collapse
Affiliation(s)
- Chester Yan Hao Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicole-Ann Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lena X. Y. Bao
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amy M. L. Quek
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Raymond C. S. Seet
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Raymond C. S. Seet,
| |
Collapse
|
9
|
Greenhalgh T, Katzourakis A, Wyatt TD, Griffin S. Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17270.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted predominantly through the air in crowded and unventilated indoor spaces, especially among unvaccinated people. Universities and colleges are potential settings for its spread. Methods: An interdisciplinary team from public health, virology, and biology used narrative methods to summarise and synthesise evidence on key control measures, taking account of mode of transmission. Results: Evidence from a wide range of primary studies supports six measures. Vaccinate (aim for > 90% coverage and make it easy to get a jab). Require masks indoors, especially in crowded settings. If everyone wears well-fitting cloth masks, source control will be high, but for maximum self-protection, respirator masks should be worn. Masks should not be removed for speaking or singing. Space people out by physical distancing (but there is no “safe” distance because transmission risk varies with factors such as ventilation, activity levels and crowding), reducing class size (including offering blended learning), and cohorting (students remain in small groups with no cross-mixing). Clean indoor air using engineering controls—ventilation (while monitoring CO2 levels), inbuilt filtration systems, or portable air cleaners fitted with high efficiency particulate air [HEPA] filters). Test asymptomatic staff and students using lateral flow tests, with tracing and isolating infectious cases when incidence of coronavirus disease 2019 (COVID-19) is high. Support clinically vulnerable people to work remotely. There is no direct evidence to support hand sanitising, fomite controls or temperature-taking. There was no evidence that freestanding plastic screens, face visors and electronic air-cleaning systems are effective. Conclusions: The above evidence-based measures should be combined into a multi-faceted strategy to maximise both student safety and the continuation of in-person and online education provision. Those seeking to provide a safe working and learning environment should collect data (e.g. CO2 levels, room occupancy) to inform their efforts.
Collapse
|