1
|
Bignami EG, Berdini M, Panizzi M, Domenichetti T, Bezzi F, Allai S, Damiano T, Bellini V. Artificial Intelligence in Sepsis Management: An Overview for Clinicians. J Clin Med 2025; 14:286. [PMID: 39797368 PMCID: PMC11722371 DOI: 10.3390/jcm14010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Sepsis is one of the leading causes of mortality in hospital settings, and early diagnosis is a crucial challenge to improve clinical outcomes. Artificial intelligence (AI) is emerging as a valuable resource to address this challenge, with numerous investigations exploring its application to predict and diagnose sepsis early, as well as personalizing its treatment. Machine learning (ML) models are able to use clinical data collected from hospital Electronic Health Records or continuous monitoring to predict patients at risk of sepsis hours before the onset of symptoms. Background/Objectives: Over the past few decades, ML and other AI tools have been explored extensively in sepsis, with models developed for the early detection, diagnosis, prognosis, and even real-time management of treatment strategies. Methods: This review was conducted according to the SPIDER (Sample, Phenomenon of Interest, Design, Evaluation, Research Type) framework to define the study methodology. A critical overview of each paper was conducted by three different reviewers, selecting those that provided original and comprehensive data relevant to the specific topic of the review and contributed significantly to the conceptual or practical framework discussed, without dwelling on technical aspects of the models used. Results: A total of 194 articles were found; 28 were selected. Articles were categorized and analyzed based on their focus-early prediction, diagnosis, mortality or improvement in the treatment of sepsis. The scientific literature presents mixed outcomes; while some studies demonstrate improvements in mortality rates and clinical management, others highlight challenges, such as a high incidence of false positives and the lack of external validation. This review is designed for clinicians and healthcare professionals, and aims to provide an overview of the application of AI in sepsis management, reviewing the main studies and methodologies used to assess its effectiveness, limitations, and future potential.
Collapse
Affiliation(s)
- Elena Giovanna Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Viale Gramsci 14, 43126 Parma, Italy; (M.B.); (M.P.); (T.D.); (F.B.); (S.A.); (T.D.); (V.B.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Kijpaisalratana N, Saoraya J, Nhuboonkaew P, Vongkulbhisan K, Musikatavorn K. Real-time machine learning-assisted sepsis alert enhances the timeliness of antibiotic administration and diagnostic accuracy in emergency department patients with sepsis: a cluster-randomized trial. Intern Emerg Med 2024; 19:1415-1424. [PMID: 38381351 DOI: 10.1007/s11739-024-03535-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024]
Abstract
Machine learning (ML) has been applied in sepsis recognition across different healthcare settings with outstanding diagnostic accuracy. However, the advantage of ML-assisted sepsis alert in expediting clinical decisions leading to enhanced quality for emergency department (ED) patients remains unclear. A cluster-randomized trial was conducted in a tertiary-care hospital. Adult patient data were subjected to an ML model for sepsis alert. Patient visits were assigned into one of two groups. In the intervention cluster, staff received alerts on a display screen if patients met the ML threshold for sepsis diagnosis, while patients in the control cluster followed the regular alert process. The study compared triage-to-antibiotic (TTA) time, length of stay, and mortality rate between the two groups. Additionally, the diagnostic performance of the ML model was assessed. A total of 256 (intervention) and 318 (control) sepsis patients were analyzed. The proportions of patients who received antibiotics within 1 and 3 h were higher in the intervention group than in the control group (in 1 h; 68.4 vs. 60.1%, respectively; P = 0.04, in 3 h; 94.5 vs. 89.0%, respectively; P = 0.02). The median TTA times were marginally shorter in the intervention group (46 vs. 50 min). The area under the receiver operating characteristic curve (AUROC) of ML in early sepsis identification was significantly higher than qSOFA, SIRS, and MEWS. The ML-assisted sepsis alert system may help sepsis ED patients receive antibiotics more rapidly than with the conventional, human-dedicated alert process. The diagnostic performance of ML in prompt sepsis detection was superior to that of the rule-based system.Trial registration Thai Clinical Trials Registry TCTR20230120001. Registered 16 January 2023-Retrospectively registered, https://www.thaiclinicaltrials.org/show/TCTR20230120001 .
Collapse
Affiliation(s)
- Norawit Kijpaisalratana
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Jutamas Saoraya
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padcha Nhuboonkaew
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Komsanti Vongkulbhisan
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Khrongwong Musikatavorn
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Oh N, Cha WC, Seo JH, Choi SG, Kim JM, Chung CR, Suh GY, Lee SY, Oh DK, Park MH, Lim CM, Ko RE. ChatGPT Predicts In-Hospital All-Cause Mortality for Sepsis: In-Context Learning with the Korean Sepsis Alliance Database. Healthc Inform Res 2024; 30:266-276. [PMID: 39160785 PMCID: PMC11333818 DOI: 10.4258/hir.2024.30.3.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 08/21/2024] Open
Abstract
OBJECTIVES Sepsis is a leading global cause of mortality, and predicting its outcomes is vital for improving patient care. This study explored the capabilities of ChatGPT, a state-of-the-art natural language processing model, in predicting in-hospital mortality for sepsis patients. METHODS This study utilized data from the Korean Sepsis Alliance (KSA) database, collected between 2019 and 2021, focusing on adult intensive care unit (ICU) patients and aiming to determine whether ChatGPT could predict all-cause mortality after ICU admission at 7 and 30 days. Structured prompts enabled ChatGPT to engage in in-context learning, with the number of patient examples varying from zero to six. The predictive capabilities of ChatGPT-3.5-turbo and ChatGPT-4 were then compared against a gradient boosting model (GBM) using various performance metrics. RESULTS From the KSA database, 4,786 patients formed the 7-day mortality prediction dataset, of whom 718 died, and 4,025 patients formed the 30-day dataset, with 1,368 deaths. Age and clinical markers (e.g., Sequential Organ Failure Assessment score and lactic acid levels) showed significant differences between survivors and non-survivors in both datasets. For 7-day mortality predictions, the area under the receiver operating characteristic curve (AUROC) was 0.70-0.83 for GPT-4, 0.51-0.70 for GPT-3.5, and 0.79 for GBM. The AUROC for 30-day mortality was 0.51-0.59 for GPT-4, 0.47-0.57 for GPT-3.5, and 0.76 for GBM. Zero-shot predictions using GPT-4 for mortality from ICU admission to day 30 showed AUROCs from the mid-0.60s to 0.75 for GPT-4 and mainly from 0.47 to 0.63 for GPT-3.5. CONCLUSIONS GPT-4 demonstrated potential in predicting short-term in-hospital mortality, although its performance varied across different evaluation metrics.
Collapse
Affiliation(s)
- Namkee Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Won Chul Cha
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jun Hyuk Seo
- Department of Digital Health, Samsung Advanced Institute for Health Science & Technology, Sungkyunkwan University, Seoul,
Korea
| | - Seong-Gyu Choi
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Jong Man Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Chi Ryang Chung
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Gee Young Suh
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul,
Korea
| | - Su Yeon Lee
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Dong Kyu Oh
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Mi Hyeon Park
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Chae-Man Lim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Ryoung-Eun Ko
- Department of Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
4
|
De Backer D, Deutschman CS, Hellman J, Myatra SN, Ostermann M, Prescott HC, Talmor D, Antonelli M, Pontes Azevedo LC, Bauer SR, Kissoon N, Loeches IM, Nunnally M, Tissieres P, Vieillard-Baron A, Coopersmith CM. Surviving Sepsis Campaign Research Priorities 2023. Crit Care Med 2024; 52:268-296. [PMID: 38240508 DOI: 10.1097/ccm.0000000000006135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVES To identify research priorities in the management, epidemiology, outcome, and pathophysiology of sepsis and septic shock. DESIGN Shortly after publication of the most recent Surviving Sepsis Campaign Guidelines, the Surviving Sepsis Research Committee, a multiprofessional group of 16 international experts representing the European Society of Intensive Care Medicine and the Society of Critical Care Medicine, convened virtually and iteratively developed the article and recommendations, which represents an update from the 2018 Surviving Sepsis Campaign Research Priorities. METHODS Each task force member submitted five research questions on any sepsis-related subject. Committee members then independently ranked their top three priorities from the list generated. The highest rated clinical and basic science questions were developed into the current article. RESULTS A total of 81 questions were submitted. After merging similar questions, there were 34 clinical and ten basic science research questions submitted for voting. The five top clinical priorities were as follows: 1) what is the best strategy for screening and identification of patients with sepsis, and can predictive modeling assist in real-time recognition of sepsis? 2) what causes organ injury and dysfunction in sepsis, how should it be defined, and how can it be detected? 3) how should fluid resuscitation be individualized initially and beyond? 4) what is the best vasopressor approach for treating the different phases of septic shock? and 5) can a personalized/precision medicine approach identify optimal therapies to improve patient outcomes? The five top basic science priorities were as follows: 1) How can we improve animal models so that they more closely resemble sepsis in humans? 2) What outcome variables maximize correlations between human sepsis and animal models and are therefore most appropriate to use in both? 3) How does sepsis affect the brain, and how do sepsis-induced brain alterations contribute to organ dysfunction? How does sepsis affect interactions between neural, endocrine, and immune systems? 4) How does the microbiome affect sepsis pathobiology? 5) How do genetics and epigenetics influence the development of sepsis, the course of sepsis and the response to treatments for sepsis? CONCLUSIONS Knowledge advances in multiple clinical domains have been incorporated in progressive iterations of the Surviving Sepsis Campaign guidelines, allowing for evidence-based recommendations for short- and long-term management of sepsis. However, the strength of existing evidence is modest with significant knowledge gaps and mortality from sepsis remains high. The priorities identified represent a roadmap for research in sepsis and septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Clifford S Deutschman
- Department of Pediatrics, Cohen Children's Medical Center, Northwell Health, New Hyde Park, NY
- Sepsis Research Lab, the Feinstein Institutes for Medical Research, Manhasset, NY
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Marlies Ostermann
- Department of Critical Care, King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Hallie C Prescott
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel Talmor
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Massimo Antonelli
- Department of Intensive Care, Emergency Medicine and Anesthesiology, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Seth R Bauer
- Department of Pharmacy, Cleveland Clinic, Cleveland, OH
| | - Niranjan Kissoon
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ignacio-Martin Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Leinster, Dublin, Ireland
| | | | - Pierre Tissieres
- Pediatric Intensive Care, Neonatal Medicine and Pediatric Emergency, AP-HP Paris Saclay University, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antoine Vieillard-Baron
- Service de Medecine Intensive Reanimation, Hopital Ambroise Pare, Universite Paris-Saclay, Le Kremlin-Bicêtre, France
| | | |
Collapse
|
5
|
Su L, Liu S, Long Y, Chen C, Chen K, Chen M, Chen Y, Cheng Y, Cui Y, Ding Q, Ding R, Duan M, Gao T, Gu X, He H, He J, Hu B, Hu C, Huang R, Huang X, Jiang H, Jiang J, Lan Y, Li J, Li L, Li L, Li W, Li Y, Lin J, Luo X, Lyu F, Mao Z, Miao H, Shang X, Shang X, Shang Y, Shen Y, Shi Y, Sun Q, Sun W, Tang Z, Wang B, Wang H, Wang H, Wang L, Wang L, Wang S, Wang Z, Wang Z, Wei D, Wu J, Wu Q, Xing X, Yang J, Yang X, Yu J, Yu W, Yu Y, Yuan H, Zhai Q, Zhang H, Zhang L, Zhang M, Zhang Z, Zhao C, Zheng R, Zhong L, Zhou F, Zhu W. Chinese experts' consensus on the application of intensive care big data. Front Med (Lausanne) 2024; 10:1174429. [PMID: 38264049 PMCID: PMC10804886 DOI: 10.3389/fmed.2023.1174429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/09/2023] [Indexed: 01/25/2024] Open
Abstract
The development of intensive care medicine is inseparable from the diversified monitoring data. Intensive care medicine has been closely integrated with data since its birth. Critical care research requires an integrative approach that embraces the complexity of critical illness and the computational technology and algorithms that can make it possible. Considering the need of standardization of application of big data in intensive care, Intensive Care Medicine Branch of China Health Information and Health Care Big Data Society, Standard Committee has convened expert group, secretary group and the external audit expert group to formulate Chinese Experts' Consensus on the Application of Intensive Care Big Data (2022). This consensus makes 29 recommendations on the following five parts: Concept of intensive care big data, Important scientific issues, Standards and principles of database, Methodology in solving big data problems, Clinical application and safety consideration of intensive care big data. The consensus group believes this consensus is the starting step of application big data in the field of intensive care. More explorations and big data based retrospective research should be carried out in order to enhance safety and reliability of big data based models of critical care field.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengjun Liu
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chaodong Chen
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Kai Chen
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Ming Chen
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yisong Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yating Cui
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Ding
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tao Gao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaohua Gu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongli He
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jiawei He
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaobo Huang
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Huizhen Jiang
- Department of Information Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Jiang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Yunping Lan
- Intensive Care Unit, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology, Chengdu, China
| | - Jun Li
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - Linfeng Li
- Medical Data Research Institute, Chongqing Medical University, Chongqing, China
| | - Lu Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenxiong Li
- Department of Surgical Intensive Critical Unit, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yongzai Li
- Information Network Center, QiLu Hospital, ShanDong University, Jinan, China
| | - Jin Lin
- Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xufei Luo
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lyu
- Department of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhi Mao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopu Shang
- Department of Information Management, Beijing Jiaotong University, Beijing, China
| | - Xiuling Shang
- Department of Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fuzhou, Fujian, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Shen
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Yinghuan Shi
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Qihang Sun
- British Chinese Society of Health Informatics, Beijing, China
| | - Weijun Sun
- Faculty of Automation, Guangdong University of Technology, Guangzhou, China
| | - Zhiyun Tang
- Department of Intensive Care Unit, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Emergency and Intensive Care Unit Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Haijun Wang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Luhao Wang
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Sicong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhanwen Wang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Zhong Wang
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dong Wei
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Jianfeng Wu
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xuezhong Xing
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences; School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jin Yang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Xianghong Yang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuan Yu
- Intensive Care Unit of Cardiovascular Surgery Department, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Yuan
- Department of Critical Care Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, China
| | - Qian Zhai
- National Institute of Healthcare Data Science, Nanjing University, Nanjing, China
| | - Hao Zhang
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lina Zhang
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Meng Zhang
- Department of Critical Care Medicine, Chongqing General Hospital, Chongqing, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunguang Zhao
- Intensive Care Unit, XiangYa Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiang Ya Hospital, Central South University, Changsha, China
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiang Ya Hospital, Central South University, Changsha, China
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Northern Jiangsu People’s Hospital; Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lei Zhong
- Department of Intensive Care Unit, National Cancer Center/National Clinical Research Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiguo Zhu
- Department of General Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Fu R, Yu Z, Zhou C, Zhang J, Gao F, Wang D, Hao X, Pang X, Yu J. Artificial intelligence-based model for dose prediction of sertraline in adolescents: a real-world study. Expert Rev Clin Pharmacol 2024; 17:177-187. [PMID: 38197873 DOI: 10.1080/17512433.2024.2304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Variability exists in sertraline pharmacokinetic parameters in individuals, especially obvious in adolescents. We aimed to establish an individualized dosing model of sertraline for adolescents with depression based on artificial intelligence (AI) techniques. METHODS Data were collected from 258 adolescent patients treated at the First Hospital of Hebei Medical University between December 2019 to July 2022. Nine different algorithms were used for modeling to compare the prediction abilities on sertraline daily dose, including XGBoost, LGBM, CatBoost, GBDT, SVM, ANN, TabNet, KNN, and DT. Performance of four dose subgroups (50 mg, 100 mg, 150 mg, and 200 mg) were analyzed. RESULTS CatBoost was chosen to establish the individualized medication model with the best performance. Six important variables were found to be correlated with sertraline dose, including plasma concentration, PLT, MPV, GL, A/G, and LDH. The ROC curve and confusion matrix exhibited the good prediction performance of CatBoost model in four dose subgroups (the AUC of 50 mg, 100 mg, 150 mg, and 200 mg were 0.93, 0.81, 0.93, and 0.93, respectively). CONCLUSION The AI-based dose prediction model of sertraline in adolescents with depression had a good prediction ability, which provides guidance for clinicians to propose the optimal medication regimen.
Collapse
Affiliation(s)
- Ran Fu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Medicinovo Technology Co., Ltd, Beijing, China
| | - Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinyuan Zhang
- Beijing Medicinovo Technology Co., Ltd, Beijing, China
| | - Fei Gao
- Beijing Medicinovo Technology Co., Ltd, Beijing, China
| | - Donghan Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Hao
- Dalian Medicinovo Technology Co., Ltd, Dalian, China
| | - Xiaolu Pang
- Department of Physical Diagnostics, Hebei Medical University, Shijiazhuang, China
| | - Jing Yu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Wan YKJ, Wright MC, McFarland MM, Dishman D, Nies MA, Rush A, Madaras-Kelly K, Jeppesen A, Del Fiol G. Information displays for automated surveillance algorithms of in-hospital patient deterioration: a scoping review. J Am Med Inform Assoc 2023; 31:256-273. [PMID: 37847664 PMCID: PMC10746326 DOI: 10.1093/jamia/ocad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
OBJECTIVE Surveillance algorithms that predict patient decompensation are increasingly integrated with clinical workflows to help identify patients at risk of in-hospital deterioration. This scoping review aimed to identify the design features of the information displays, the types of algorithm that drive the display, and the effect of these displays on process and patient outcomes. MATERIALS AND METHODS The scoping review followed Arksey and O'Malley's framework. Five databases were searched with dates between January 1, 2009 and January 26, 2022. Inclusion criteria were: participants-clinicians in inpatient settings; concepts-intervention as deterioration information displays that leveraged automated AI algorithms; comparison as usual care or alternative displays; outcomes as clinical, workflow process, and usability outcomes; and context as simulated or real-world in-hospital settings in any country. Screening, full-text review, and data extraction were reviewed independently by 2 researchers in each step. Display categories were identified inductively through consensus. RESULTS Of 14 575 articles, 64 were included in the review, describing 61 unique displays. Forty-one displays were designed for specific deteriorations (eg, sepsis), 24 provided simple alerts (ie, text-based prompts without relevant patient data), 48 leveraged well-accepted score-based algorithms, and 47 included nurses as the target users. Only 1 out of the 10 randomized controlled trials reported a significant effect on the primary outcome. CONCLUSIONS Despite significant advancements in surveillance algorithms, most information displays continue to leverage well-understood, well-accepted score-based algorithms. Users' trust, algorithmic transparency, and workflow integration are significant hurdles to adopting new algorithms into effective decision support tools.
Collapse
Affiliation(s)
- Yik-Ki Jacob Wan
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Melanie C Wright
- College of Pharmacy, Idaho State University, Meridian, ID 83642, United States
| | - Mary M McFarland
- Eccles Health Sciences Library, University of Utah, Salt Lake City, UT 84112, United States
| | - Deniz Dishman
- Cizik School of Nursing Department of Research, University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Mary A Nies
- College of Health, Idaho State University, Pocatello, ID 83209, United States
| | - Adriana Rush
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Karl Madaras-Kelly
- College of Pharmacy, Idaho State University, Meridian, ID 83642, United States
| | - Amanda Jeppesen
- College of Pharmacy, Idaho State University, Meridian, ID 83642, United States
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| |
Collapse
|
8
|
Susanto AP, Lyell D, Widyantoro B, Berkovsky S, Magrabi F. Effects of machine learning-based clinical decision support systems on decision-making, care delivery, and patient outcomes: a scoping review. J Am Med Inform Assoc 2023; 30:2050-2063. [PMID: 37647865 PMCID: PMC10654852 DOI: 10.1093/jamia/ocad180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
OBJECTIVE This study aims to summarize the research literature evaluating machine learning (ML)-based clinical decision support (CDS) systems in healthcare settings. MATERIALS AND METHODS We conducted a review in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta Analyses extension for Scoping Review). Four databases, including PubMed, Medline, Embase, and Scopus were searched for studies published from January 2016 to April 2021 evaluating the use of ML-based CDS in clinical settings. We extracted the study design, care setting, clinical task, CDS task, and ML method. The level of CDS autonomy was examined using a previously published 3-level classification based on the division of clinical tasks between the clinician and CDS; effects on decision-making, care delivery, and patient outcomes were summarized. RESULTS Thirty-two studies evaluating the use of ML-based CDS in clinical settings were identified. All were undertaken in developed countries and largely in secondary and tertiary care settings. The most common clinical tasks supported by ML-based CDS were image recognition and interpretation (n = 12) and risk assessment (n = 9). The majority of studies examined assistive CDS (n = 23) which required clinicians to confirm or approve CDS recommendations for risk assessment in sepsis and for interpreting cancerous lesions in colonoscopy. Effects on decision-making, care delivery, and patient outcomes were mixed. CONCLUSION ML-based CDS are being evaluated in many clinical areas. There remain many opportunities to apply and evaluate effects of ML-based CDS on decision-making, care delivery, and patient outcomes, particularly in resource-constrained settings.
Collapse
Affiliation(s)
- Anindya Pradipta Susanto
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
- Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta 10430, Indonesia
| | - David Lyell
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| | - Bambang Widyantoro
- Faculty of Medicine, Universitas Indonesia, Jakarta, DKI Jakarta 10430, Indonesia
- National Cardiovascular Center Harapan Kita Hospital, Jakarta, DKI Jakarta 11420, Indonesia
| | - Shlomo Berkovsky
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| | - Farah Magrabi
- Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
9
|
Laupland KB, Tabah A, White KC, Ramanan M. Exploiting Electronic Data to Advance Knowledge and Management of Severe Infections. Curr Infect Dis Rep 2023; 25:273-279. [DOI: 10.1007/s11908-023-00815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Purpose of Review
To identify opportunities and recent advances in the use of multicentric digital data sources and networks to investigate the epidemiology and management of patients with infections admitted to intensive care units (ICUs).
Recent Findings
Electronic surveillance systems for a range of serious infections have been reported from large cohorts with evident improvements in efficiency, objectivity, and comprehensiveness of coverage as compared to traditional methods. Electronic data, most notably from electronic health records, has been used to define the epidemiology and outcomes of severe infections in several settings and conditions and has facilitated population-based evaluation. Automated alerts and notifications hold promise to identify patients at risk for sepsis and bloodstream infection although demonstration of efficacy in interventional trials is needed.
Summary
Exploitation of electronic data in ICUs has led to a better understanding of the epidemiology of severe infections and holds promise for future interventional clinical trials.
Collapse
|
10
|
Yang J, Hao S, Huang J, Chen T, Liu R, Zhang P, Feng M, He Y, Xiao W, Hong Y, Zhang Z. The application of artificial intelligence in the management of sepsis. MEDICAL REVIEW (2021) 2023; 3:369-380. [PMID: 38283255 PMCID: PMC10811352 DOI: 10.1515/mr-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024]
Abstract
Sepsis is a complex and heterogeneous syndrome that remains a serious challenge to healthcare worldwide. Patients afflicted by severe sepsis or septic shock are customarily placed under intensive care unit (ICU) supervision, where a multitude of apparatus is poised to produce high-granularity data. This reservoir of high-quality data forms the cornerstone for the integration of AI into clinical practice. However, existing reviews currently lack the inclusion of the latest advancements. This review examines the evolving integration of artificial intelligence (AI) in sepsis management. Applications of artificial intelligence include early detection, subtyping analysis, precise treatment and prognosis assessment. AI-driven early warning systems provide enhanced recognition and intervention capabilities, while profiling analyzes elucidate distinct sepsis manifestations for targeted therapy. Precision medicine harnesses the potential of artificial intelligence for pathogen identification, antibiotic selection, and fluid optimization. In conclusion, the seamless amalgamation of artificial intelligence into the domain of sepsis management heralds a transformative shift, ushering in novel prospects to elevate diagnostic precision, therapeutic efficacy, and prognostic acumen. As AI technologies develop, their impact on shaping the future of sepsis care warrants ongoing research and thoughtful implementation.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Sicheng Hao
- Duke University School of Medicine, Durham, NC, USA
| | - Jiajie Huang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Tianqi Chen
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Ruoqi Liu
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Ping Zhang
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Mengling Feng
- Saw Swee Hock School of Public Health and Institute of Data science, National University of Singapore, Singapore, Singapore
| | - Yang He
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Wei Xiao
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhenjiang Province, China
| |
Collapse
|
11
|
Theodosiou AA, Read RC. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J Infect 2023; 87:287-294. [PMID: 37468046 DOI: 10.1016/j.jinf.2023.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Artificial intelligence (AI), machine learning and deep learning (including generative AI) are increasingly being investigated in the context of research and management of human infection. OBJECTIVES We summarise recent and potential future applications of AI and its relevance to clinical infection practice. METHODS 1617 PubMed results were screened, with priority given to clinical trials, systematic reviews and meta-analyses. This narrative review focusses on studies using prospectively collected real-world data with clinical validation, and on research with translational potential, such as novel drug discovery and microbiome-based interventions. RESULTS There is some evidence of clinical utility of AI applied to laboratory diagnostics (e.g. digital culture plate reading, malaria diagnosis, antimicrobial resistance profiling), clinical imaging analysis (e.g. pulmonary tuberculosis diagnosis), clinical decision support tools (e.g. sepsis prediction, antimicrobial prescribing) and public health outbreak management (e.g. COVID-19). Most studies to date lack any real-world validation or clinical utility metrics. Significant heterogeneity in study design and reporting limits comparability. Many practical and ethical issues exist, including algorithm transparency and risk of bias. CONCLUSIONS Interest in and development of AI-based tools for infection research and management are undoubtedly gaining pace, although the real-world clinical utility to date appears much more modest.
Collapse
Affiliation(s)
- Anastasia A Theodosiou
- Clinical and Experimental Sciences and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Tremona Road, SO166YD Southampton, United Kingdom.
| | - Robert C Read
- Clinical and Experimental Sciences and NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Tremona Road, SO166YD Southampton, United Kingdom
| |
Collapse
|
12
|
Zhang A, Wu Z, Wu E, Wu M, Snyder MP, Zou J, Wu JC. Leveraging physiology and artificial intelligence to deliver advancements in health care. Physiol Rev 2023; 103:2423-2450. [PMID: 37104717 PMCID: PMC10390055 DOI: 10.1152/physrev.00033.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/06/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence in health care has experienced remarkable innovation and progress in the last decade. Significant advancements can be attributed to the utilization of artificial intelligence to transform physiology data to advance health care. In this review, we explore how past work has shaped the field and defined future challenges and directions. In particular, we focus on three areas of development. First, we give an overview of artificial intelligence, with special attention to the most relevant artificial intelligence models. We then detail how physiology data have been harnessed by artificial intelligence to advance the main areas of health care: automating existing health care tasks, increasing access to care, and augmenting health care capabilities. Finally, we discuss emerging concerns surrounding the use of individual physiology data and detail an increasingly important consideration for the field, namely the challenges of deploying artificial intelligence models to achieve meaningful clinical impact.
Collapse
Affiliation(s)
- Angela Zhang
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
| | - Zhenqin Wu
- Department of Chemistry, Stanford University, Stanford, California, United States
| | - Eric Wu
- Department of Electrical Engineering, Stanford University, Stanford, California, United States
| | - Matthew Wu
- Greenstone Biosciences, Palo Alto, California, United States
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, California, United States
| | - James Zou
- Department of Biomedical Informatics, School of Medicine, Stanford University, Stanford, California, United States
- Department of Computer Science, Stanford University, Stanford, California, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, School of Medicine, Stanford University, Stanford, California, United States
- Greenstone Biosciences, Palo Alto, California, United States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, California, United States
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, United States
| |
Collapse
|
13
|
Alanazi A, Aldakhil L, Aldhoayan M, Aldosari B. Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1276. [PMID: 37512087 PMCID: PMC10385427 DOI: 10.3390/medicina59071276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: Early detection of sepsis is crucial and can save lives. However, identifying sepsis early and accurately remains a difficult task in the medical field. This study aims to investigate a new machine-learning approach. By analyzing the clinical laboratory results and vital signs of adult patients in the ICU, this approach can predict and detect the initial signs of sepsis. Materials and Methods: To examine survival rates and predict outcomes, the study utilized several models, including the proportional hazards model and data mining algorithms. We analyzed data from the BESTCare database at KAMC, with a focus on patients aged 14 and older who were admitted to the ICU between April and October 2018. We conducted a thorough analysis of the medical records of a total of 1182 patients who were diagnosed with sepsis. Results: We studied two approaches to predict sepsis in ICU patients. The regression model utilizing survival analysis showed moderate predictive ability, emphasizing the importance of only three factors-time (from sepsis to an outcome; discharge or death), lactic acid, and temperature-had a significant p-value (p = 0.000568, p = 0.01, p = 0.02, respectively). Other data mining algorithms may have limitations due to their assumptions of variable independence and linear classification nature. Conclusions: To achieve progress and accuracy in the field of sepsis prediction, it is important to continuously strive for improvement. By meticulously cleaning and selecting data attributes, we can create a strong foundation for future advancements in this area.
Collapse
Affiliation(s)
- Abdullah Alanazi
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Ibn Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 14611, Saudi Arabia
| | - Lujain Aldakhil
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Ibn Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 14611, Saudi Arabia
| | - Mohammed Aldhoayan
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Ibn Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 14611, Saudi Arabia
| | - Bakheet Aldosari
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Ibn Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 14611, Saudi Arabia
| |
Collapse
|
14
|
Al Mohajer M, Lasco T. The Impact of Initial Specimen Diversion Systems on Blood Culture Contamination. Open Forum Infect Dis 2023; 10:ofad182. [PMID: 37152189 PMCID: PMC10157757 DOI: 10.1093/ofid/ofad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Blood culture contamination is associated with increased antimicrobial use, length of stay, and hospital cost. To address this problem, blood culture diversion has been developed as an additional measure to reduce contamination to targeted goals. Three different versions were proposed, including an open technique and 2 commercially available devices. This study aims to review the existing literature and analyze evidence for these 3 techniques.
Collapse
Affiliation(s)
- Mayar Al Mohajer
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Todd Lasco
- Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
15
|
Tricco AC, Hezam A, Parker A, Nincic V, Harris C, Fennelly O, Thomas SM, Ghassemi M, McGowan J, Paprica PA, Straus SE. Implemented machine learning tools to inform decision-making for patient care in hospital settings: a scoping review. BMJ Open 2023; 13:e065845. [PMID: 36750280 PMCID: PMC9906263 DOI: 10.1136/bmjopen-2022-065845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES To identify ML tools in hospital settings and how they were implemented to inform decision-making for patient care through a scoping review. We investigated the following research questions: What ML interventions have been used to inform decision-making for patient care in hospital settings? What strategies have been used to implement these ML interventions? DESIGN A scoping review was undertaken. MEDLINE, Embase, Cochrane Central Register of Controlled Trials (CENTRAL) and the Cochrane Database of Systematic Reviews (CDSR) were searched from 2009 until June 2021. Two reviewers screened titles and abstracts, full-text articles, and charted data independently. Conflicts were resolved by another reviewer. Data were summarised descriptively using simple content analysis. SETTING Hospital setting. PARTICIPANT Any type of clinician caring for any type of patient. INTERVENTION Machine learning tools used by clinicians to inform decision-making for patient care, such as AI-based computerised decision support systems or "'model-based'" decision support systems. PRIMARY AND SECONDARY OUTCOME MEASURES Patient and study characteristics, as well as intervention characteristics including the type of machine learning tool, implementation strategies, target population. Equity issues were examined with PROGRESS-PLUS criteria. RESULTS After screening 17 386 citations and 3474 full-text articles, 20 unique studies and 1 companion report were included. The included articles totalled 82 656 patients and 915 clinicians. Seven studies reported gender and four studies reported PROGRESS-PLUS criteria (race, health insurance, rural/urban). Common implementation strategies for the tools were clinician reminders that integrated ML predictions (44.4%), facilitated relay of clinical information (17.8%) and staff education (15.6%). Common barriers to successful implementation of ML tools were time (11.1%) and reliability (11.1%), and common facilitators were time/efficiency (13.6%) and perceived usefulness (13.6%). CONCLUSIONS We found limited evidence related to the implementation of ML tools to assist clinicians with patient healthcare decisions in hospital settings. Future research should examine other approaches to integrating ML into hospital clinician decisions related to patient care, and report on PROGRESS-PLUS items. FUNDING Canadian Institutes of Health Research (CIHR) Foundation grant awarded to SES and the CIHR Strategy for Patient Oriented-Research Initiative (GSR-154442). SCOPING REVIEW REGISTRATION: https://osf.io/e2mna.
Collapse
Affiliation(s)
- Andrea C Tricco
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Epidemiology Division and Institute of Health Policy, Management and Evaluation, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Areej Hezam
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Amanda Parker
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Vera Nincic
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Charmalee Harris
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Orna Fennelly
- Irish Centre for High End Computing (ICHEC), National University of Ireland Galway, Galway, Ireland
| | - Sonia M Thomas
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Marco Ghassemi
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
| | - Jessie McGowan
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - P Alison Paprica
- Institute for Health Policy, Management and Evaluation, University of Toronto Dalla Lana School of Public Health, Toronto, Ontario, Canada
| | - Sharon E Straus
- Knowledge Translation Program, St Michael's Hospital Li Ka Shing Knowledge Institute, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Monfredi OJ, Moore CC, Sullivan BA, Keim-Malpass J, Fairchild KD, Loftus TJ, Bihorac A, Krahn KN, Dubrawski A, Lake DE, Moorman JR, Clermont G. Continuous ECG monitoring should be the heart of bedside AI-based predictive analytics monitoring for early detection of clinical deterioration. J Electrocardiol 2023; 76:35-38. [PMID: 36434848 PMCID: PMC10061545 DOI: 10.1016/j.jelectrocard.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/01/2022] [Accepted: 10/22/2022] [Indexed: 11/24/2022]
Abstract
The idea that we can detect subacute potentially catastrophic illness earlier by using statistical models trained on clinical data is now well-established. We review evidence that supports the role of continuous cardiorespiratory monitoring in these predictive analytics monitoring tools. In particular, we review how continuous ECG monitoring reflects the patient and not the clinician, is less likely to be biased, is unaffected by changes in practice patterns, captures signatures of illnesses that are interpretable by clinicians, and is an underappreciated and underutilized source of detailed information for new mathematical methods to reveal.
Collapse
Affiliation(s)
- Oliver J Monfredi
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Christopher C Moore
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Brynne A Sullivan
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Pediatrics, University of Virginia, United States of America
| | - Jessica Keim-Malpass
- Center for Advanced Medical Analytics, University of Virginia, United States of America; School of Nursing, University of Virginia, United States of America
| | - Karen D Fairchild
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Pediatrics, University of Virginia, United States of America
| | - Tyler J Loftus
- Department of Surgery, University of Florida, United States of America
| | - Azra Bihorac
- Department of Medicine, University of Florida, United States of America
| | - Katherine N Krahn
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - Artur Dubrawski
- Robotics Institute, Carnegie Mellon University, United States of America
| | - Douglas E Lake
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America
| | - J Randall Moorman
- Center for Advanced Medical Analytics, University of Virginia, United States of America; Department of Medicine, University of Virginia, United States of America.
| | - Gilles Clermont
- Department of Critical Care, University of Pittsburgh, United States of America
| |
Collapse
|
17
|
Chen Q, Li R, Lin C, Lai C, Huang Y, Lu W, Li L. SEPRES: Intensive Care Unit Clinical Data Integration System to Predict Sepsis. Appl Clin Inform 2023; 14:65-75. [PMID: 36452980 PMCID: PMC9876660 DOI: 10.1055/a-1990-3037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The lack of information interoperability between different devices and systems in the intensive care unit (ICU) hinders further utilization of data, especially for early warning of specific diseases in the ICU. OBJECTIVES We aimed to establish a data integration system. Based on this system, the sepsis prediction module was added to compose the Sepsis PREdiction System (SEPRES), where real-time early warning of sepsis can be implemented at the bedside in the ICU. METHODS Data are collected from bedside devices through the integration hub and uploaded to the integration system through the local area network. The data integration system was designed to integrate vital signs data, laboratory data, ventilator data, demographic data, pharmacy data, nursing data, etc. from multiple medical devices and systems. It integrates, standardizes, and stores information, making the real-time inference of the early warning module possible. The built-in sepsis early warning module can detect the onset of sepsis within 5 hours preceding at most. RESULTS Our data integration system has already been deployed in Ruijin Hospital, confirming the feasibility of our system. CONCLUSION We highlight that SEPRES has the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention.
Collapse
Affiliation(s)
- Qiyu Chen
- Division of Applied Mathematics, Fudan University, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Shanghai Jiaotong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - ChihChe Lin
- Department of Intelligent Medical Products, Shanghai Electric Group Co., Ltd. Central Academe, Shanghai, China
| | - Chiming Lai
- Department of Intelligent Medical Products, Shanghai Electric Group Co., Ltd. Central Academe, Shanghai, China
| | - Yaling Huang
- Department of Intelligent Medical Products, Shanghai Electric Group Co., Ltd. Central Academe, Shanghai, China
| | - Wenlian Lu
- Division of Applied Mathematics, Fudan University, Shanghai, China
| | - Lei Li
- Department of Critical Care Medicine, Shanghai Jiaotong University School of Medicine, Ruijin Hospital, Shanghai, China
| |
Collapse
|
18
|
Chen Q, Li R, Lin C, Lai C, Chen D, Qu H, Huang Y, Lu W, Tang Y, Li L. Transferability and interpretability of the sepsis prediction models in the intensive care unit. BMC Med Inform Decis Mak 2022; 22:343. [PMID: 36581881 PMCID: PMC9798724 DOI: 10.1186/s12911-022-02090-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We aimed to develop an early warning system for real-time sepsis prediction in the ICU by machine learning methods, with tools for interpretative analysis of the predictions. In particular, we focus on the deployment of the system in a target medical center with small historical samples. METHODS Light Gradient Boosting Machine (LightGBM) and multilayer perceptron (MLP) were trained on Medical Information Mart for Intensive Care (MIMIC-III) dataset and then finetuned on the private Historical Database of local Ruijin Hospital (HDRJH) using transfer learning technique. The Shapley Additive Explanations (SHAP) analysis was employed to characterize the feature importance in the prediction inference. Ultimately, the performance of the sepsis prediction system was further evaluated in the real-world study in the ICU of the target Ruijin Hospital. RESULTS The datasets comprised 6891 patients from MIMIC-III, 453 from HDRJH, and 67 from Ruijin real-world data. The area under the receiver operating characteristic curves (AUCs) for LightGBM and MLP models derived from MIMIC-III were 0.98 - 0.98 and 0.95 - 0.96 respectively on MIMIC-III dataset, and, in comparison, 0.82 - 0.86 and 0.84 - 0.87 respectively on HDRJH, from 1 to 5 h preceding. After transfer learning and ensemble learning, the AUCs of the final ensemble model were enhanced to 0.94 - 0.94 on HDRJH and to 0.86 - 0.9 in the real-world study in the ICU of the target Ruijin Hospital. In addition, the SHAP analysis illustrated the importance of age, antibiotics, net balance, and ventilation for sepsis prediction, making the model interpretable. CONCLUSIONS Our machine learning model allows accurate real-time prediction of sepsis within 5-h preceding. Transfer learning can effectively improve the feasibility to deploy the prediction model in the target cohort, and ameliorate the model performance for external validation. SHAP analysis indicates that the role of antibiotic usage and fluid management needs further investigation. We argue that our system and methodology have the potential to improve ICU management by helping medical practitioners identify at-sepsis-risk patients and prepare for timely diagnosis and intervention. TRIAL REGISTRATION NCT05088850 (retrospectively registered).
Collapse
Affiliation(s)
- Qiyu Chen
- Department of Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - ChihChe Lin
- Shanghai Electric Group Co., Ltd., Central Academe, Shanghai, China
| | - Chiming Lai
- Shanghai Electric Group Co., Ltd., Central Academe, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yaling Huang
- Shanghai Electric Group Co., Ltd., Central Academe, Shanghai, China
| | - Wenlian Lu
- Department of Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai, 200433, China.
| | - Yaoqing Tang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Lei Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Ngo B, Nguyen D, vanSonnenberg E. The Cases for and against Artificial Intelligence in the Medical School Curriculum. Radiol Artif Intell 2022; 4:e220074. [PMID: 36204540 PMCID: PMC9530767 DOI: 10.1148/ryai.220074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/02/2023]
Abstract
Although artificial intelligence (AI) has immense potential to shape the future of medicine, its place in undergraduate medical education currently is unclear. Numerous arguments exist both for and against including AI in the medical school curriculum. AI likely will affect all medical specialties, perhaps radiology more so than any other. The purpose of this article is to present a balanced perspective on whether AI should be included officially in the medical school curriculum. After presenting the balanced point-counterpoint arguments, the authors provide a compromise. Keywords: Artificial Intelligence, Medical Education, Medical School Curriculum, Medical Students, Radiology, Use of AI in Education © RSNA, 2022.
Collapse
Affiliation(s)
- Brandon Ngo
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| | - Diep Nguyen
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| | - Eric vanSonnenberg
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| |
Collapse
|
20
|
Zhang Z, Chen L, Xu P, Wang Q, Zhang J, Chen K, Clements CM, Celi LA, Herasevich V, Hong Y. Effectiveness of automated alerting system compared to usual care for the management of sepsis. NPJ Digit Med 2022; 5:101. [PMID: 35854120 PMCID: PMC9296632 DOI: 10.1038/s41746-022-00650-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
There is a large body of evidence showing that delayed initiation of sepsis bundle is associated with adverse clinical outcomes in patients with sepsis. However, it is controversial whether electronic automated alerts can help improve clinical outcomes of sepsis. Electronic databases are searched from inception to December 2021 for comparative effectiveness studies comparing automated alerts versus usual care for the management of sepsis. A total of 36 studies are eligible for analysis, including 6 randomized controlled trials and 30 non-randomized studies. There is significant heterogeneity in these studies concerning the study setting, design, and alerting methods. The Bayesian meta-analysis by using pooled effects of non-randomized studies as priors shows a beneficial effect of the alerting system (relative risk [RR]: 0.71; 95% credible interval: 0.62 to 0.81) in reducing mortality. The automated alerting system shows less beneficial effects in the intensive care unit (RR: 0.90; 95% CI: 0.73–1.11) than that in the emergency department (RR: 0.68; 95% CI: 0.51–0.90) and ward (RR: 0.71; 95% CI: 0.61–0.82). Furthermore, machine learning-based prediction methods can reduce mortality by a larger magnitude (RR: 0.56; 95% CI: 0.39–0.80) than rule-based methods (RR: 0.73; 95% CI: 0.63–0.85). The study shows a statistically significant beneficial effect of using the automated alerting system in the management of sepsis. Interestingly, machine learning monitoring systems coupled with better early interventions show promise, especially for patients outside of the intensive care unit.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lin Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Ping Xu
- Emergency Department, Zigong Fourth People's Hospital, Zigong, Sichuan, China.,Institute of Medical Big Data, Zigong Academy of Artificial Intelligence and Big Data for Medical Science Artificial Intelligence, Zigong, Sichuan, China.,Key Laboratory of Sichuan Province, Zigong, China
| | - Qing Wang
- Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jianjun Zhang
- Emergency Department, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Kun Chen
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China
| | - Casey M Clements
- Department of Emergency Medicine, Mayo Clinic, Rochester, MN, USA
| | - Leo Anthony Celi
- Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, USA.,Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, USA
| | - Vitaly Herasevich
- Department of Anesthesiology and Perioperative Medicine, Division of Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yucai Hong
- Department of Emergency Medicine, Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Denecke K, Baudoin CR. A Review of Artificial Intelligence and Robotics in Transformed Health Ecosystems. Front Med (Lausanne) 2022; 9:795957. [PMID: 35872767 PMCID: PMC9299071 DOI: 10.3389/fmed.2022.795957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Health care is shifting toward become proactive according to the concept of P5 medicine-a predictive, personalized, preventive, participatory and precision discipline. This patient-centered care heavily leverages the latest technologies of artificial intelligence (AI) and robotics that support diagnosis, decision making and treatment. In this paper, we present the role of AI and robotic systems in this evolution, including example use cases. We categorize systems along multiple dimensions such as the type of system, the degree of autonomy, the care setting where the systems are applied, and the application area. These technologies have already achieved notable results in the prediction of sepsis or cardiovascular risk, the monitoring of vital parameters in intensive care units, or in the form of home care robots. Still, while much research is conducted around AI and robotics in health care, adoption in real world care settings is still limited. To remove adoption barriers, we need to address issues such as safety, security, privacy and ethical principles; detect and eliminate bias that could result in harmful or unfair clinical decisions; and build trust in and societal acceptance of AI.
Collapse
Affiliation(s)
- Kerstin Denecke
- Institute for Medical Information, Bern University of Applied Sciences, Bern, Switzerland
| | | |
Collapse
|
22
|
Adams R, Henry KE, Sridharan A, Soleimani H, Zhan A, Rawat N, Johnson L, Hager DN, Cosgrove SE, Markowski A, Klein EY, Chen ES, Saheed MO, Henley M, Miranda S, Houston K, Linton RC, Ahluwalia AR, Wu AW, Saria S. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat Med 2022; 28:1455-1460. [PMID: 35864252 DOI: 10.1038/s41591-022-01894-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/08/2022] [Indexed: 12/20/2022]
Abstract
Early recognition and treatment of sepsis are linked to improved patient outcomes. Machine learning-based early warning systems may reduce the time to recognition, but few systems have undergone clinical evaluation. In this prospective, multi-site cohort study, we examined the association between patient outcomes and provider interaction with a deployed sepsis alert system called the Targeted Real-time Early Warning System (TREWS). During the study, 590,736 patients were monitored by TREWS across five hospitals. We focused our analysis on 6,877 patients with sepsis who were identified by the alert before initiation of antibiotic therapy. Adjusting for patient presentation and severity, patients in this group whose alert was confirmed by a provider within 3 h of the alert had a reduced in-hospital mortality rate (3.3%, confidence interval (CI) 1.7, 5.1%, adjusted absolute reduction, and 18.7%, CI 9.4, 27.0%, adjusted relative reduction), organ failure and length of stay compared with patients whose alert was not confirmed by a provider within 3 h. Improvements in mortality rate (4.5%, CI 0.8, 8.3%, adjusted absolute reduction) and organ failure were larger among those patients who were additionally flagged as high risk. Our findings indicate that early warning systems have the potential to identify sepsis patients early and improve patient outcomes and that sepsis patients who would benefit the most from early treatment can be identified and prioritized at the time of the alert.
Collapse
Affiliation(s)
- Roy Adams
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Katharine E Henry
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Hossein Soleimani
- Health Informatics, University of California, San Francisco, CA, USA
| | - Andong Zhan
- Department of Psychiatry and Behavioral Science, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Nishi Rawat
- Armstrong Institute for Patient Safety and Quality, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lauren Johnson
- Department of Quality Improvement, Johns Hopkins Hospital, Baltimore, MD, USA
| | - David N Hager
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sara E Cosgrove
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Eili Y Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Edward S Chen
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mustapha O Saheed
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maureen Henley
- Department of Quality Improvement, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sheila Miranda
- Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Katrina Houston
- Department of Quality Improvement, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | - Albert W Wu
- Armstrong Institute for Patient Safety and Quality, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Suchi Saria
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA. .,Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA. .,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA. .,Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Bayesian Health, New York, NY, USA.
| |
Collapse
|
23
|
Goergen CJ, Tweardy MJ, Steinhubl SR, Wegerich SW, Singh K, Mieloszyk RJ, Dunn J. Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annu Rev Biomed Eng 2022; 24:1-27. [PMID: 34932906 PMCID: PMC9218991 DOI: 10.1146/annurev-bioeng-103020-040136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mounting clinical evidence suggests that viral infections can lead to detectable changes in an individual's normal physiologic and behavioral metrics, including heart and respiration rates, heart rate variability, temperature, activity, and sleep prior to symptom onset, potentially even in asymptomatic individuals. While the ability of wearable devices to detect viral infections in a real-world setting has yet to be proven, multiple recent studies have established that individual, continuous data from a range of biometric monitoring technologies can be easily acquired and that through the use of machine learning techniques, physiological signals and warning signs can be identified. In this review, we highlight the existing knowledge base supporting the potential for widespread implementation of biometric data to address existing gaps in the diagnosis and treatment of viral illnesses, with a particular focus on the many important lessons learned from the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Steven R Steinhubl
- physIQ Inc., Chicago, Illinois, USA
- Scripps Research Translational Institute, La Jolla, California, USA
| | | | - Karnika Singh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | | | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
24
|
Rahmani K, Garikipati A, Barnes G, Hoffman J, Calvert J, Mao Q, Das R. Early prediction of central line associated bloodstream infection using machine learning. Am J Infect Control 2022; 50:440-445. [PMID: 34428529 DOI: 10.1016/j.ajic.2021.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Central line-associated bloodstream infections (CLABSIs) are associated with significant morbidity, mortality, and increased healthcare costs. Despite the high prevalence of CLABSIs in the U.S., there are currently no tools to stratify a patient's risk of developing an infection as the result of central line placement. To this end, we have developed and validated a machine learning algorithm (MLA) that can predict a patient's likelihood of developing CLABSI using only electronic health record data in order to provide clinical decision support. METHODS We created three machine learning models to retrospectively analyze electronic health record data from 27,619 patient encounters. The models were trained and validated using an 80:20 split for the train and test data. Patients designated as having a central line procedure based on International Statistical Classification of Diseases and Related Health Problems 10 codes were included. RESULTS XGBoost was the highest performing MLA out of the three models, obtaining an AUROC of 0.762 for CLABSI risk prediction at 48 hours after the recorded time for central line placement. CONCLUSIONS Our results demonstrate that MLAs may be effective clinical decision support tools for assessment of CLABSI risk and should be explored further for this purpose.
Collapse
|
25
|
Murri R, Masciocchi C, Lenkowicz J, Fantoni M, Damiani A, Marchetti A, Sergi PDA, Arcuri G, Cesario A, Patarnello S, Antonelli M, Bellantone R, Bernabei R, Boccia S, Calabresi P, Cambieri A, Cauda R, Colosimo C, Crea F, De Maria R, De Stefano V, Franceschi F, Gasbarrini A, Landolfi R, Parolini O, Richeldi L, Sanguinetti M, Urbani A, Zega M, Scambia G, Valentini V. A real-time integrated framework to support clinical decision making for covid-19 patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106655. [PMID: 35158181 PMCID: PMC8800500 DOI: 10.1016/j.cmpb.2022.106655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. METHODS The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. RESULTS The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher d-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. INTERPRETATION The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the opportunity to build predictive models with a machine learning approach to identify undescribed clinical phenotypes and to foster hospital networks. A real-time updated dashboard built from the Data Mart may represent a valid tool for a better knowledge of epidemiological and clinical features of COVID-19, especially when multiple waves are observed, as well as for epidemic and pandemic events of the same nature (e. g. with critical clinical conditions leading to severe pulmonary inflammation). Therefore, we believe the approach presented in this paper may find several applications in comparable situations even at region or state levels. Finally, models predicting the course of future waves or new pandemics could largely benefit from network of DataMarts.
Collapse
Affiliation(s)
- Rita Murri
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Sicurezza e Bioetica, Sezione Malattie Infettive, Università Cattolica S. Cuore, Roma, Italy.
| | | | - Jacopo Lenkowicz
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Massimo Fantoni
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Sicurezza e Bioetica, Sezione Malattie Infettive, Università Cattolica S. Cuore, Roma, Italy
| | - Andrea Damiani
- Istituto di Radiologia, Università Cattolica Sacro Cuore, Roma, Italy
| | - Antonio Marchetti
- Datawarehouse, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Giovanni Arcuri
- Unità Operativa Complessa Tecnologie Sanitarie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Alfredo Cesario
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Massimo Antonelli
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Rocco Bellantone
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Roberto Bernabei
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Geriatriche ed Ortopediche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Stefania Boccia
- Dipartimento di Scienze della Salute della Donna e del Bambino e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di scienza della vita e sanità pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Paolo Calabresi
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Cambieri
- Direzione Sanitaria Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Roberto Cauda
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Sicurezza e Bioetica, Sezione Malattie Infettive, Università Cattolica S. Cuore, Roma, Italy
| | - Cesare Colosimo
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Valerio De Stefano
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Francesco Franceschi
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Raffaele Landolfi
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e chirurgia traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ornella Parolini
- Dipartimento di scienza della vita e sanità pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Luca Richeldi
- Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Cardiovascolari e Pneumologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Andrea Urbani
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maurizio Zega
- Servizio Infermieristico, Tecnico e Riabilitativo Aziendale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanni Scambia
- Dipartimento di Scienze della Salute della Donna e del Bambino e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di scienza della vita e sanità pubblica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia, Oncologia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
26
|
Douthit BJ, Walden RL, Cato K, Coviak CP, Cruz C, D'Agostino F, Forbes T, Gao G, Kapetanovic TA, Lee MA, Pruinelli L, Schultz MA, Wieben A, Jeffery AD. Data Science Trends Relevant to Nursing Practice: A Rapid Review of the 2020 Literature. Appl Clin Inform 2022; 13:161-179. [PMID: 35139564 PMCID: PMC8828453 DOI: 10.1055/s-0041-1742218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The term "data science" encompasses several methods, many of which are considered cutting edge and are being used to influence care processes across the world. Nursing is an applied science and a key discipline in health care systems in both clinical and administrative areas, making the profession increasingly influenced by the latest advances in data science. The greater informatics community should be aware of current trends regarding the intersection of nursing and data science, as developments in nursing practice have cross-professional implications. OBJECTIVES This study aimed to summarize the latest (calendar year 2020) research and applications of nursing-relevant patient outcomes and clinical processes in the data science literature. METHODS We conducted a rapid review of the literature to identify relevant research published during the year 2020. We explored the following 16 topics: (1) artificial intelligence/machine learning credibility and acceptance, (2) burnout, (3) complex care (outpatient), (4) emergency department visits, (5) falls, (6) health care-acquired infections, (7) health care utilization and costs, (8) hospitalization, (9) in-hospital mortality, (10) length of stay, (11) pain, (12) patient safety, (13) pressure injuries, (14) readmissions, (15) staffing, and (16) unit culture. RESULTS Of 16,589 articles, 244 were included in the review. All topics were represented by literature published in 2020, ranging from 1 article to 59 articles. Numerous contemporary data science methods were represented in the literature including the use of machine learning, neural networks, and natural language processing. CONCLUSION This review provides an overview of the data science trends that were relevant to nursing practice in 2020. Examinations of such literature are important to monitor the status of data science's influence in nursing practice.
Collapse
Affiliation(s)
- Brian J. Douthit
- Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rachel L. Walden
- Annette and Irwin Eskind Family Biomedical Library, Vanderbilt University, Nashville, Tennessee, United States
| | - Kenrick Cato
- Department of Emergency Medicine, Columbia University School of Nursing, New York, New York, United States
| | - Cynthia P. Coviak
- Professor Emerita of Nursing, Grand Valley State University, Allendale, Michigan, United States
| | - Christopher Cruz
- Global Health Technology and Informatics, Chevron, San Ramon, California, United States
| | - Fabio D'Agostino
- Department of Medicine and Surgery, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Thompson Forbes
- College of Nursing, East Carolina University, Greenville, North California, United States
| | - Grace Gao
- Department of Nursing, St Catherine University, Saint Paul, Minnesota, United States
| | - Theresa A. Kapetanovic
- College of Nursing, East Carolina University, Greenville, North California, United States
| | - Mikyoung A. Lee
- College of Nursing, Texas Woman's University, Denton, Texas, United States
| | - Lisiane Pruinelli
- School of Nursing, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mary A. Schultz
- Department of Nursing, California State University, San Bernardino, California, United States
| | - Ann Wieben
- School of Nursing, University of Wisconsin-Madison, Wisconsin, United States
| | - Alvin D. Jeffery
- School of Nursing, Vanderbilt University; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, Tennessee, United States,Address for correspondence Alvin D. Jeffery, PhD, RN-BC, CCRN-K, FNP-BC 461 21st Avenue South, Nashville, TN 37240United States
| |
Collapse
|
27
|
Baker E. Improving sepsis recognition through use of the Sepsis Trust's community screening tool. Br J Community Nurs 2022; 27:69-75. [PMID: 35137616 DOI: 10.12968/bjcn.2022.27.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sepsis is associated with high levels of morbidity and mortality. All healthcare professionals have a responsibility to ensure they have sufficient knowledge to effectively screen patients for signs and symptoms of sepsis. In the community setting, screening for sepsis can be challenging, due to the complexity within the patient population and difficulties associated with observation for changes in the patient's condition. The Sepsis Trust community nursing sepsis screening tool provides decision-making support to community healthcare professionals, enabling them to make a rapid assessment for risk factors for sepsis, ensuring a proportionate, consistent and appropriate response. Through implementation of a decision-support tool within the clinical setting, it is likely that patients at risk of sepsis will be identified earlier, and patients will be escalated in a more consistent manner. This process of improving consistency in practice can improve patient outcomes, including mortality, morbidity and overall patient experience.
Collapse
Affiliation(s)
- Edward Baker
- Lecturer in Applied Technology for Clinical Care, Florence Nightingale Faculty of Nursing, Midwifery and Palliative Care, King's College London, London, UK
| |
Collapse
|
28
|
Tran NK, Albahra S, May L, Waldman S, Crabtree S, Bainbridge S, Rashidi H. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clin Chem 2021; 68:125-133. [PMID: 34969102 PMCID: PMC9383167 DOI: 10.1093/clinchem/hvab239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/15/2021] [Indexed: 12/31/2022]
Abstract
Background Artificial intelligence (AI) and machine learning (ML) are poised to transform infectious disease testing. Uniquely, infectious disease testing is technologically diverse spaces in laboratory medicine, where multiple platforms and approaches may be required to support clinical decision-making. Despite advances in laboratory informatics, the vast array of infectious disease data is constrained by human analytical limitations. Machine learning can exploit multiple data streams, including but not limited to laboratory information and overcome human limitations to provide physicians with predictive and actionable results. As a quickly evolving area of computer science, laboratory professionals should become aware of AI/ML applications for infectious disease testing as more platforms are become commercially available. Content In this review we: (a) define both AI/ML, (b) provide an overview of common ML approaches used in laboratory medicine, (c) describe the current AI/ML landscape as it relates infectious disease testing, and (d) discuss the future evolution AI/ML for infectious disease testing in both laboratory and point-of-care applications. Summary The review provides an important educational overview of AI/ML technique in the context of infectious disease testing. This includes supervised ML approaches, which are frequently used in laboratory medicine applications including infectious diseases, such as COVID-19, sepsis, hepatitis, malaria, meningitis, Lyme disease, and tuberculosis. We also apply the concept of “data fusion” describing the future of laboratory testing where multiple data streams are integrated by AI/ML to provide actionable clinical knowledge.
Collapse
Affiliation(s)
- Nam K Tran
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Samer Albahra
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Larissa May
- Department of Emergency Medicine, UC Davis School of Medicine, CA
| | - Sarah Waldman
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Crabtree
- Department of Internal Medicine, Division of Infectious Diseases, UC Davis School of Medicine, CA
| | - Scott Bainbridge
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| | - Hooman Rashidi
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, CA
| |
Collapse
|
29
|
Moor M, Rieck B, Horn M, Jutzeler CR, Borgwardt K. Early Prediction of Sepsis in the ICU Using Machine Learning: A Systematic Review. Front Med (Lausanne) 2021; 8:607952. [PMID: 34124082 PMCID: PMC8193357 DOI: 10.3389/fmed.2021.607952] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Sepsis is among the leading causes of death in intensive care units (ICUs) worldwide and its recognition, particularly in the early stages of the disease, remains a medical challenge. The advent of an affluence of available digital health data has created a setting in which machine learning can be used for digital biomarker discovery, with the ultimate goal to advance the early recognition of sepsis. Objective: To systematically review and evaluate studies employing machine learning for the prediction of sepsis in the ICU. Data Sources: Using Embase, Google Scholar, PubMed/Medline, Scopus, and Web of Science, we systematically searched the existing literature for machine learning-driven sepsis onset prediction for patients in the ICU. Study Eligibility Criteria: All peer-reviewed articles using machine learning for the prediction of sepsis onset in adult ICU patients were included. Studies focusing on patient populations outside the ICU were excluded. Study Appraisal and Synthesis Methods: A systematic review was performed according to the PRISMA guidelines. Moreover, a quality assessment of all eligible studies was performed. Results: Out of 974 identified articles, 22 and 21 met the criteria to be included in the systematic review and quality assessment, respectively. A multitude of machine learning algorithms were applied to refine the early prediction of sepsis. The quality of the studies ranged from "poor" (satisfying ≤ 40% of the quality criteria) to "very good" (satisfying ≥ 90% of the quality criteria). The majority of the studies (n = 19, 86.4%) employed an offline training scenario combined with a horizon evaluation, while two studies implemented an online scenario (n = 2, 9.1%). The massive inter-study heterogeneity in terms of model development, sepsis definition, prediction time windows, and outcomes precluded a meta-analysis. Last, only two studies provided publicly accessible source code and data sources fostering reproducibility. Limitations: Articles were only eligible for inclusion when employing machine learning algorithms for the prediction of sepsis onset in the ICU. This restriction led to the exclusion of studies focusing on the prediction of septic shock, sepsis-related mortality, and patient populations outside the ICU. Conclusions and Key Findings: A growing number of studies employs machine learning to optimize the early prediction of sepsis through digital biomarker discovery. This review, however, highlights several shortcomings of the current approaches, including low comparability and reproducibility. Finally, we gather recommendations how these challenges can be addressed before deploying these models in prospective analyses. Systematic Review Registration Number: CRD42020200133.
Collapse
Affiliation(s)
- Michael Moor
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bastian Rieck
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Max Horn
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Catherine R. Jutzeler
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Karsten Borgwardt
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich (ETH Zurich), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
30
|
Mansab F, Bhatti S, Goyal D. Performance of national COVID-19 'symptom checkers': a comparative case simulation study. BMJ Health Care Inform 2021; 28:e100187. [PMID: 33685943 PMCID: PMC7942238 DOI: 10.1136/bmjhci-2020-100187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Identifying those individuals requiring medical care is a basic tenet of the pandemic response. Here, we examine the COVID-19 community triage pathways employed by four nations, specifically comparing the safety and efficacy of national online 'symptom checkers' used within the triage pathway. METHODS A simulation study was conducted on current, nationwide, patient-led symptom checkers from four countries (Singapore, Japan, USA and UK). 52 cases were simulated to approximate typical COVID-19 presentations (mild, moderate, severe and critical) and COVID-19 mimickers (eg, sepsis and bacterial pneumonia). The same simulations were applied to each of the four country's symptom checkers, and the recommendations to refer on for medical care or to stay home were recorded and compared. RESULTS The symptom checkers from Singapore and Japan advised onward healthcare contact for the majority of simulations (88% and 77%, respectively). The USA and UK symptom checkers triaged 38% and 44% of cases to healthcare contact, respectively. Both the US and UK symptom checkers consistently failed to identify severe COVID-19, bacterial pneumonia and sepsis, triaging such cases to stay home. CONCLUSION Our results suggest that whilst 'symptom checkers' may be of use to the healthcare COVID-19 response, there is the potential for such patient-led assessment tools to worsen outcomes by delaying appropriate clinical assessment. The key features of the well-performing symptom checkers are discussed.
Collapse
Affiliation(s)
- Fatma Mansab
- Postgraduate School of Medicine, Department of Public Health, Gibraltar Health Authority, Gibraltar, Gibraltar
- University of Gibraltar, Gibraltar, Gibraltar
| | - Sohail Bhatti
- Postgraduate School of Medicine, Department of Public Health, Gibraltar Health Authority, Gibraltar, Gibraltar
| | - Daniel Goyal
- Postgraduate School of Medicine, Department of Public Health, Gibraltar Health Authority, Gibraltar, Gibraltar
- Deparment of Medicine, Gibraltar Health Authority, Gibraltar, Gibraltar
- Department of Health Systems, University of Gibraltar, Gibraltar, Gibraltar
| |
Collapse
|
31
|
Giacobbe DR, Signori A, Del Puente F, Mora S, Carmisciano L, Briano F, Vena A, Ball L, Robba C, Pelosi P, Giacomini M, Bassetti M. Early Detection of Sepsis With Machine Learning Techniques: A Brief Clinical Perspective. Front Med (Lausanne) 2021; 8:617486. [PMID: 33644097 PMCID: PMC7906970 DOI: 10.3389/fmed.2021.617486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a major cause of death worldwide. Over the past years, prediction of clinically relevant events through machine learning models has gained particular attention. In the present perspective, we provide a brief, clinician-oriented vision on the following relevant aspects concerning the use of machine learning predictive models for the early detection of sepsis in the daily practice: (i) the controversy of sepsis definition and its influence on the development of prediction models; (ii) the choice and availability of input features; (iii) the measure of the model performance, the output, and their usefulness in the clinical practice. The increasing involvement of artificial intelligence and machine learning in health care cannot be disregarded, despite important pitfalls that should be always carefully taken into consideration. In the long run, a rigorous multidisciplinary approach to enrich our understanding in the application of machine learning techniques for the early recognition of sepsis may show potential to augment medical decision-making when facing this heterogeneous and complex syndrome.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Filippo Del Puente
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Sara Mora
- Department of Informatics Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Luca Carmisciano
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Federica Briano
- Infectious Diseases Unit, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Lorenzo Ball
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anaesthesia and Intensive Care, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Mauro Giacomini
- Department of Informatics Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital – IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
32
|
Arenas M, Boseman GM, Coppin JD, Lukey J, Jinadatha C, Navarathna DH. Asynchronous Testing of 2 Specimen-Diversion Devices to Reduce Blood Culture Contamination: A Single-Site Product Supply Quality Improvement Project. J Emerg Nurs 2021; 47:256-264.e6. [PMID: 33431137 DOI: 10.1016/j.jen.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/13/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Blood culture contamination above the national threshold has been a consistent clinical issue in the ED setting. Two commercially available devices were examined that divert an initial small volume of the specimen before the collection of blood culture to reduce skin contamination. METHODS Prospectively, 2 different blood culture-diversion devices were made available in the unit supplies to ED clinicians at a single site during 2 different periods of time as a follow-up strategy to an ongoing quality improvement project. Blood samples were collected in the emergency department over a period of 16 months. A retrospective record review study was conducted comparing the use of the 2 specimen-diversion devices with no device (control group) for blood culture contamination rates. The main outcome of monthly blood culture contamination per device was tested using a Bayesian Poisson multilevel regression model. RESULTS A total of 4030 blood samples were collected and analyzed from November 2017 to February 2019. The model estimated that the mean incidence of contaminated blood draws in the device A group was 0.29 (0.14-0.55) times the incidence of contaminated draws in the control group. The mean incidence of contaminated blood draws in the device B group was 0.23 (0.13-0.37) times the incidence of contaminated draws in the control group, suggesting that initial-diversion methods reduced blood culture contamination. CONCLUSION Initial specimen-diversion devices supplement present standard phlebotomy protocols to bring down the blood culture contamination rate.
Collapse
|
33
|
Coronavirus Disease 2019 Calls for Predictive Analytics Monitoring-A New Kind of Illness Scoring System. Crit Care Explor 2020; 2:e0294. [PMID: 33364604 PMCID: PMC7752690 DOI: 10.1097/cce.0000000000000294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 can lead to sudden and severe respiratory failure that mandates endotracheal intubation, a procedure much more safely performed under elective rather than emergency conditions. Early warning of rising risk of this event could benefit both patients and healthcare providers by reducing the high risk of emergency intubation. Current illness severity scoring systems, which usually update only when clinicians measure vital signs or laboratory values, are poorly suited for early detection of this kind of rapid clinical deterioration. We propose that continuous predictive analytics monitoring, a new approach to bedside management, is more useful. The principles of this new practice anchor in analysis of continuous bedside monitoring data, training models on diagnosis-specific paths of deterioration using clinician-identified events, and continuous display of trends in risks rather than alerts when arbitrary thresholds are exceeded.
Collapse
|
34
|
Burdick H, Pino E, Gabel-Comeau D, McCoy A, Gu C, Roberts J, Le S, Slote J, Pellegrini E, Green-Saxena A, Hoffman J, Das R. Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals. BMJ Health Care Inform 2020; 27:e100109. [PMID: 32354696 PMCID: PMC7245419 DOI: 10.1136/bmjhci-2019-100109] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/25/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Severe sepsis and septic shock are among the leading causes of death in the USA. While early prediction of severe sepsis can reduce adverse patient outcomes, sepsis remains one of the most expensive conditions to diagnose and treat. OBJECTIVE The purpose of this study was to evaluate the effect of a machine learning algorithm for severe sepsis prediction on in-hospital mortality, hospital length of stay and 30-day readmission. DESIGN Prospective clinical outcomes evaluation. SETTING Evaluation was performed on a multiyear, multicentre clinical data set of real-world data containing 75 147 patient encounters from nine hospitals across the continental USA, ranging from community hospitals to large academic medical centres. PARTICIPANTS Analyses were performed for 17 758 adult patients who met two or more systemic inflammatory response syndrome criteria at any point during their stay ('sepsis-related' patients). INTERVENTIONS Machine learning algorithm for severe sepsis prediction. OUTCOME MEASURES In-hospital mortality, length of stay and 30-day readmission rates. RESULTS Hospitals saw an average 39.5% reduction of in-hospital mortality, a 32.3% reduction in hospital length of stay and a 22.7% reduction in 30-day readmission rate for sepsis-related patient stays when using the machine learning algorithm in clinical outcomes analysis. CONCLUSIONS Reductions of in-hospital mortality, hospital length of stay and 30-day readmissions were observed in real-world clinical use of the machine learning-based algorithm. The predictive algorithm may be successfully used to improve sepsis-related outcomes in live clinical settings. TRIAL REGISTRATION NUMBER NCT03960203.
Collapse
Affiliation(s)
- Hoyt Burdick
- Cabell Huntington Hospital, Huntington, West Virginia, USA
- Marshall University School of Medicine, Huntington, West Virginia, USA
| | - Eduardo Pino
- Cabell Huntington Hospital, Huntington, West Virginia, USA
- Marshall University School of Medicine, Huntington, West Virginia, USA
| | | | - Andrea McCoy
- Cape May Regional Medical Center, Cape May Court House, New Jersey, USA
| | - Carol Gu
- Dascena Inc, Oakland, California, USA
| | | | - Sidney Le
- Dascena Inc, Oakland, California, USA
| | | | | | | | | | | |
Collapse
|