1
|
Dai Z, Wang Q, He B, Shi F, Chen W, Jiang Q, Zhou D, Xue Z, Yang B. Causal association of plasma n-3 PUFA with peptic ulcer disease: a two-sample Mendelian randomisation study. Br J Nutr 2024; 132:1014-1021. [PMID: 39523850 DOI: 10.1017/s0007114524001752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dietary n-3 PUFA may have potential benefits in preventing peptic ulcer disease (PUD). However, data from observational epidemiological studies are limited. Thus, we conducted a Mendelian randomisation analysis to reveal the causal impact of n-3 PUFA on PUD. Genetic variants strongly associated with plasma levels of total or individual n-3 PUFA including plant-derived α-linolenic acid and marine-derived EPA, DPA and DHA were enrolled as instrumental variables. Effect size estimates of the n-3 PUFA-associated genetic variants with PUD were evaluated using data from the UK biobank. Per one sd increase in the level of total n-3 PUFA in plasma was significantly associated with a lower risk of PUD (OR = 0·91; 95 % CI 0·85, 0·99; P = 0·020). The OR were 0·81 (95 % CI 0·67, 0·97) for EPA, 0·72 (95 % CI 0·58, 0·91) for DPA and 0·87 (95 % CI 0·80, 0·94) for DHA. Genetically predicted α-linolenic acid levels in plasma had no significant association with the risk of PUD (OR = 5·41; 95 % CI 0·70, 41·7). Genetically predicted plasma levels of n-3 PUFA were inversely associated with the risk of PUD, especially marine-based n-3 PUFA. Such findings may have offered an effective and feasible strategy for the primary prevention of PUD.
Collapse
Affiliation(s)
- Zebin Dai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qinjian Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bingbing He
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Fang Shi
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wei Chen
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qingxi Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Zhanxiong Xue
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, People's Republic of China
- Institute of Lipids Medicine, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
2
|
Sikaroudi MK, Ebrahimi Z, Darzi M, Shateri Z, Nouri M, Masoodi M, Hejazi M, Shidfar F. Does a High Ratio of Dietary Omega-6/Omega-3 Fatty Acids Increase the Risk of Helicobacter pylori Infection? A Case-Control Study. Clin Nutr Res 2024; 13:176-185. [PMID: 39165292 PMCID: PMC11333148 DOI: 10.7762/cnr.2024.13.3.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Helicobacter pylori infection is the cause of 90% of non-cardia gastric cancer. Several dietary elements have been identified as possible contributors to H. pylori infection and its advancement through various pathways. Based on the anti-inflammatory and anti-microbial effects of a diet low in omega-6 and high in omega-3 polyunsaturated fatty acids (PUFAs), this study aimed to assess the ratio of dietary omega-6 to omega-3 PUFAs and the risk of developing H. pylori. The present case-control study was conducted on 150 cases with H. pylori infection and 302 controls. The omega-6 to omega-3 ratio was calculated using food intake information sourced from a validated food frequency questionnaire. Physical activity and demographic data were collected through a related questionnaire. The association between the odds of H. pylori infection and the omega-6 to omega-3 ratio was evaluated using logistic regression models. A p value < 0.05 was considered statistically significant. The findings revealed that individuals in the third tertile had significantly higher odds of H. pylori (odds ratio [OR], 2.10; 95% confidence interval [CI], 1.30-3.40) in the crude model. Furthermore, even after adjusting the potential confounders including sex, age, body mass index, physical activity, energy intake, alcohol, and smoking status, this association remained significant (fully adjusted model: OR, 2.00; 95% CI, 1.17-3.34). Our study revealed a higher ratio of omega-6 to omega-3 was related to a higher likelihood of H. pylori infection. Therefore, it is advisable to maintain a balanced intake of PUFAs in the diet.
Collapse
Affiliation(s)
- Masoumeh Khalighi Sikaroudi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 141556117, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Zohreh Ebrahimi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Melika Darzi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zainab Shateri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Mehran Nouri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Mohsen Masoodi
- Colorectal Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Nutritional Sciences Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
3
|
Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Curr Opin Microbiol 2022; 70:102203. [PMID: 36156373 DOI: 10.1016/j.mib.2022.102203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023]
Abstract
Helicobacter pylori is an important human pathogen with increasing antimicrobial resistance to standard-of-care antibiotics. Treatment generally includes a combination of classical broad-spectrum antibiotics and a proton-pump inhibitor, which often leads to perturbation of the gut microbiome and the potential for the development of antibiotic resistance. In this review, we examine reports, primarily from the past decade, on the discovery of new anti-H. pylori therapeutics, including approaches to develop narrow-spectrum and mechanistically unique antibiotics to treat these infections in their gastric niche. Compound series that target urease, respiratory complex I, and menaquinone biosynthesis are discussed in this context, along with bivalent antibiotic approaches that suppress resistance development. With increases in the understanding of the unique physiology of H. pylori and technological advances in the field of antibacterial drug discovery, there is a clear promise that novel therapeutics can be developed to effectively treat H. pylori infections.
Collapse
|
4
|
Lammari N, Louaer M, Louaer O, Bensouici C, Zermane A, Elaissari A, Meniai AH. Nanoparticles encapsulating sesame seeds (Sesamum indicum) oil: Physicochemical, antioxidant and enzymatic inhibition properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Lee HR, Kwon SY, Choi SA, Lee JH, Lee HS, Park JB. Valorization of Soy Lecithin by Enzyme Cascade Reactions Including a Phospholipase A2, a Fatty Acid Double-Bond Hydratase, and/or a Photoactivated Decarboxylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10818-10825. [PMID: 36001340 DOI: 10.1021/acs.jafc.2c04012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A huge amount of phospholipids or lecithin is produced as a byproduct in the vegetable oil industry. However, most are just used as a feed additive. This study has focused on enzymatic valorization of lecithin. This was exploited by enzymatic transformation of soy lecithin into lysolecithin liposomes, including functional free fatty acids, hydroxy fatty acids, hydrocarbons, or secondary fatty alcohols. One of the representative examples was the preparation of lysolecithin liposomes containing secondary fatty alcohols [e.g., 9-Hydroxyheptadec-11-ene (9) and 9-heptadecanol (10)] by using a phospholipase A2 from Streptomyces violaceoruber, a fatty acid double-bond hydratase from Stenotrophomonas maltophilia, and a photoactivated decarboxylase from Chlorella variabilis NC64A. The engineered liposomes turned out to range ca. 144 nm in diameter by dynamic light scattering analysis. Thereby, this study will contribute to application of functional fatty acids and their derivatives as well as valorization of lecithin for the food and cosmetic industries.
Collapse
Affiliation(s)
- Hyo-Ran Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Seung-Yeon Kwon
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Su-Ah Choi
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jeong-Hoo Lee
- Docsmedi Co.,Ltd., 143 Gangseong-ro, Ilsanseo-gu, Goyang-si 10387, Gyeonggi-do, Republic of Korea
| | - Hye-Seong Lee
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Jin-Byung Park
- Department of Food Science and Biotechnology, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Mangiaterra S, Marker L, Cerquetella M, Galosi L, Marchegiani A, Gavazza A, Rossi G. Chronic Stress-Related Gastroenteric Pathology in Cheetah: Relation between Intrinsic and Extrinsic Factors. BIOLOGY 2022; 11:biology11040606. [PMID: 35453805 PMCID: PMC9028982 DOI: 10.3390/biology11040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022]
Abstract
Simple Summary The cheetah is the fastest land mammal. Habitat destruction, high mortality due to other predators, and illegal wildlife trade has led to a decrease in the wild population. Currently, the global adult population present in their natural habitat is estimated to be 7100 individuals. In captivity, the population suffers from limited reproduction and disease. Both the wild and captive populations have reduced genetic diversity from a historic bottleneck, leading to increased ecological and environmental vulnerability. Over the years, conservation programs have been developed for habitat protection, management of human–animal conflict, and the study of disease and genetics. Among these, the one with the greatest prevalence in captivity is chronic gastritis. This review analyzes the scientific literature on gastric pathology in cheetah, with the potential causes divided into “extrinsic factors”, such as living conditions and diet, and “intrinsic factors”, including the presence of Helicobacter-like organisms and the genetic predisposition. Abstract The rapid decline of cheetah (Acinonyx jubatus) throughout their range and long-term studies of captive breeding has increased conservation action for this species including the study of chronic diseases. Gastritis is one of the captive diseases that leads to high mortality presented with symptoms including vomiting, diarrhea, anorexia, and weight loss. The disease presents different histological lesions in the gastrointestinal tract that are characterized by inconstant and different clinical appearance in captive and free-range cheetahs. The aim of this review is to summarize the causes of chronic gastritis in the cheetah. Factors including diet, living conditions, infections with gastric Helicobacter-like organisms (GHLOs), the lack of genetic polymorphism and the cheetah’s specific-immunocompetence are analyzed. All studies on gastroenteric cheetah pathologies, conducted between 1991 (to the best of our knowledge, the first report on online databases) and 2021, are included in this review, highlighting the possible correlation between stress-related captive conditions and chronic gastric pathology.
Collapse
Affiliation(s)
- Sara Mangiaterra
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
- Correspondence:
| | - Laurie Marker
- Cheetah Conservation Fund, Otjiwarongo 9000, Namibia;
| | - Matteo Cerquetella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
| | - Alessandra Gavazza
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy; (M.C.); (L.G.); (A.M.); (A.G.); (G.R.)
| |
Collapse
|
7
|
Markozannes G, Ntzani EE, Rizos EC. Correspondence on 'Impact of omega-3 supplement on metabolic syndrome and/or Helicobacter pylori-related risk of cardiovascular disease' by Kountouras et al. Heart 2022; 108:657-658. [PMID: 35140107 DOI: 10.1136/heartjnl-2022-320822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Georgios Markozannes
- Evidence-based Medicine Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Evangelia E Ntzani
- Evidence-based Medicine Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece.,Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Evangelos C Rizos
- School of Medicine, European University of Cyprus, Nicosia, Cyprus .,Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
8
|
White B, Sterrett JD, Grigoryan Z, Lally L, Heinze JD, Alikhan H, Lowry CA, Perez LJ, DeSipio J, Phadtare S. Characterization of gut microbiome and metabolome in Helicobacter pylori patients in an underprivileged community in the United States. World J Gastroenterol 2021; 27:5575-5594. [PMID: 34588753 PMCID: PMC8433610 DOI: 10.3748/wjg.v27.i33.5575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori), a bacterium that infects approximately half of the world’s population, is associated with various gastrointestinal diseases, including peptic ulcers, non-ulcer dyspepsia, gastric adenocarcinoma, and gastric lymphoma. As the burden of antibiotic resistance increases, the need for new adjunct therapies designed to facilitate H. pylori eradication and reduce negative distal outcomes associated with infection has become more pressing. Characterization of the interactions between H. pylori, the fecal microbiome, and fecal fatty acid metabolism, as well as the mechanisms underlying these interactions, may offer new therapeutic approaches.
AIM To characterize the gut microbiome and metabolome in H. pylori patients in a socioeconomically challenged and underprivileged inner-city community.
METHODS Stool samples from 19 H. pylori patients and 16 control subjects were analyzed. 16S rRNA gene sequencing was performed on normalized pooled amplicons using the Illumina MiSeq System using a MiSeq reagent kit v2. Alpha and beta diversity analyses were performed in QIIME 2. Non-targeted fatty acid analysis of the samples was carried out using gas chromatography-mass spectrometry, which measures the total content of 30 fatty acids in stool after conversion into their corresponding fatty acid methyl esters. Multi-dimensional scaling (MDS) was performed on Bray-Curtis distance matrices created from both the metabolomics and microbiome datasets and a Procrustes test was performed on the metabolomics and microbiome MDS coordinates.
RESULTS Fecal microbiome analysis showed that alpha diversity was lowest in H. pylori patients over 40 years of age compared to control subjects of similar age group. Beta diversity analysis of the samples revealed significant differences in microbial community structure between H. pylori patients and control subjects across all ages. Thirty-eight and six taxa had lower and higher relative abundance in H. pylori patients, respectively. Taxa that were enriched in H. pylori patients included Atopobium, Gemellaceae, Micrococcaceae, Gemellales and Rothia (R. mucilaginosa). Notably, relative abundance of the phylum Verrucomicrobia was decreased in H. pylori patients compared to control subjects. Procrustes analysis showed a significant relationship between the microbiome and metabolome datasets. Stool samples from H. pylori patients showed increases in several fatty acids including the polyunsaturated fatty acids (PUFAs) 22:4n6, 22:5n3, 20:3n6 and 22:2n6, while decreases were noted in other fatty acids including the PUFA 18:3n6. The pattern of changes in fatty acid concentration correlated to the Bacteroidetes:Firmicutes ratio determined by 16S rRNA gene analysis.
CONCLUSION This exploratory study demonstrates H. pylori-associated changes to the fecal microbiome and fecal fatty acid metabolism. Such changes may have implications for improving eradication rates and minimizing associated negative distal outcomes.
Collapse
Affiliation(s)
- Brian White
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| | - John D Sterrett
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Zoya Grigoryan
- Department of Internal Medicine, Lenox Hill Hospital, NYC, NY 10075, United States
| | - Lauren Lally
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Jared D Heinze
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Hyder Alikhan
- Department of Biological Sciences, Rowan University, Glassboro, NJ 08028, United States
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Lark J Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Joshua DeSipio
- Department of Gastroenterology, Cooper University Hospital, Camden, NJ 08103, United States
| | - Sangita Phadtare
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, United States
| |
Collapse
|
9
|
Das UN. Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Arch Med Sci 2021; 19:1327-1359. [PMID: 37732033 PMCID: PMC10507771 DOI: 10.5114/aoms/135703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 09/22/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, Battle Ground, WA, USA
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, Saint-Petersburg, Russia
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India
| |
Collapse
|
10
|
Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha. Polymers (Basel) 2021; 13:polym13071084. [PMID: 33805577 PMCID: PMC8036412 DOI: 10.3390/polym13071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.
Collapse
|
11
|
Asiri F, Chen CH, Hwangbo M, Shao Y, Chu KH. From Organic Wastes to Bioplastics: Feasibility of
Nonsterile Poly(3-hydroxybutyrate) Production by Zobellella
denitrificans ZD1. ACS OMEGA 2020; 5:24158-24168. [PMID: 33015431 PMCID: PMC7528165 DOI: 10.1021/acsomega.9b04002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
![]()
Poly(3-hydroxybutyrate)
(PHB)—a renewable and biodegradable
polymer—is a promising alternative to nonbiodegradable synthetic
plastics that are derived from petrochemicals. The methods currently
employed for PHB production are costly, in part, due to the expensive
cultivation feedstocks and the need to sterilize the culture medium,
which is energy-intensive. This study investigates the feasibility
of nonsterile PHB production from several saline organic wastes using
a salt-tolerant strain, Zobellella denitrificans ZD1 (referred to as strain ZD1). Factors such as the pH, salinity,
carbon/nitrogen (C/N) ratio, nitrogen source, and electron acceptor
that might affect the growth of strain ZD1 and its PHB production
were determined. Our results showed successful nonsterile PHB production
by growing the strain ZD1 on nonsterile synthetic crude glycerol,
high-strength saline wastewater, and real municipal wastewater-activated
sludge under saline conditions. The PHB production was significantly
enhanced when the levels of salts and nitrate-nitrogen in the culture
medium were increased. This study suggested a promising low-cost nonsterile
PHB production strategy from organic wastes using strain ZD1.
Collapse
Affiliation(s)
- Fahad Asiri
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Chih-Hung Chen
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
- Department
of Environmental Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Myung Hwangbo
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Yiru Shao
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Kung-Hui Chu
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
- . Tel: (979)-845-1403. Fax: (979)-862-1542
| |
Collapse
|
12
|
Zare Javid A, Maghsoumi-Norouzabad L, Bazyar H, Aghamohammadi V, Alavinejad P. Effects of Concurrent Omega-3 and Cranberry Juice Consumption Along with Standard Antibiotic Therapy on the Eradication of Helicobacter p ylori, Gastrointestinal Symptoms, Some Serum Inflammatory and Oxidative Stress Markers in Adults with Helicobacter p ylori Infection: A Study Protocol for a Randomized Controlled Trial. Infect Drug Resist 2020; 13:3179-3185. [PMID: 32982332 PMCID: PMC7508030 DOI: 10.2147/idr.s270057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It seems alternative treatments such as antioxidant intervention and anti-inflammatory intervention adjuvant to antibiotic regimens may enhance cancer prevention approaches and decrease adverse side effects related to therapeutic antibiotic regimens. So, we will evaluate the effects of concurrent omega-3 and cranberry juice supplementation along with standard antibiotic therapy on the eradication of Helicobacter pylori, gastrointestinal symptoms, some serum inflammatory and oxidative stress markers in adults with HP infection. METHODS We will conduct a 4-week double-blinded randomized clinical trial. The subjects will be randomly stratified according to sex and BMI using a permuted block randomization procedure by Random Allocation Software (RAS). They will be assigned to one of the four study groups: (1) cranberry juice fortified with omega-3 Intervention (n=23), (2) cranberry juice intervention group (n=23), (3) placebo beverage fortified with omega-3 intervention group (n=23), and (4) placebo beverage intervention (control group) (n=23). All statistical analyses will be performed using IBM SPSS Statistics software. DISCUSSION A combination of alternative therapies may have a synergistic effect compared to a single approach. It could potentially be more effective in promoting the efficacy of standard antibiotic therapy in eradicating HP infection. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT20151128025274N3, www.irct.ir/trial/28997). TRIAL STATUS This study is in the early stages of sampling.
Collapse
Affiliation(s)
- Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Maghsoumi-Norouzabad
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Bazyar
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Pejman Alavinejad
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Sulijaya B, Takahashi N, Yamazaki K. Lactobacillus-Derived Bioactive Metabolites for the Regulation of Periodontal Health: Evidences to Clinical Setting. Molecules 2020; 25:molecules25092088. [PMID: 32365716 PMCID: PMC7248875 DOI: 10.3390/molecules25092088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
Background: Gut microbiota plays a pivotal role in regulating host metabolism that affects the systemic health. To date, several studies have confirmed the fact that microbiota interacts with host, modulating immunity, controlling the homeostasis environment, and maintaining systemic condition. Recent studies have focused on the protective function of poly unsaturated fatty acids, 10-oxo-trans-11-oxadecenoic acid (KetoC) and 10-hydroxy-cis-12-octadecenoic acid (HYA), generated by gut microbiota on periodontal disease. Nevertheless, the mechanism remains unclear as investigations are limited to in vivo and in vitro studies. In this present review, we found that the administration of metabolites, KetoC and HYA, by a probiotic gut microbiota Lactobacillus plantarum from linoleic acid is found to inhibit the oxidation process, possess an antimicrobial function, and prevent the inflammation. These findings suggest the promising use of functional lipids for human health. Conclusion: Protective modalities of bioactive metabolites may support periodontal therapy by suppressing bacterial dysbiosis and regulating periodontal homeostasis in the clinical setting.
Collapse
Affiliation(s)
- Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia; or
| | - Naoki Takahashi
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Kazuhisa Yamazaki
- Research Unit for Oral-Systemic Connection, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Correspondence: ; Tel.: +81-25-227-0744
| |
Collapse
|
14
|
Unique responses of Helicobacter pylori to exogenous hydrophobic compounds. Chem Phys Lipids 2020; 229:104908. [PMID: 32259519 DOI: 10.1016/j.chemphyslip.2020.104908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
Abstract
Helicobacter pylori is a pathogen responsible for peptic ulcers and gastric cancers in human. One of the unique biological features of this bacterium is a membrane lipid composition significantly differed from that of typical Gram-negative bacteria. Due to its unique lipid composition, the responses of H. pylori to various exogenous lipophilic compounds significantly differ from the responses of typical Gram-negative bacteria to the same lipophilic compounds. For instance, some steroidal compounds are incorporated into the biomembranes of H. pylori through the intermediation of the myristoyl-phosphatidylethanolamine (PE). In addition, H. pylori shows high susceptibility to bacteriolytic action of lipids such as 3-carbonyl steroids, vitamin D, and indene compounds. These lipids are also considered to interact with myristoyl-PE of H. pylori membranes, and to ultimately confer the bactericidal action to this bacterium. In this study we summarize the lipids concerned with H. pylori and suggest the possibility of the development of chemotherapeutic medicines that act on the membrane lipid component of H. pylori.
Collapse
|
15
|
Sulijaya B, Yamada‐Hara M, Yokoji‐Takeuchi M, Matsuda‐Matsukawa Y, Yamazaki K, Matsugishi A, Tsuzuno T, Sato K, Aoki‐Nonaka Y, Takahashi N, Kishino S, Ogawa J, Tabeta K, Yamazaki K. Antimicrobial function of the polyunsaturated fatty acid KetoC in an experimental model of periodontitis. J Periodontol 2019; 90:1470-1480. [DOI: 10.1002/jper.19-0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Benso Sulijaya
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Department of PeriodontologyFaculty of DentistryUniversitas Indonesia Jakarta Indonesia
| | - Miki Yamada‐Hara
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Mai Yokoji‐Takeuchi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yumi Matsuda‐Matsukawa
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kyoko Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Aoi Matsugishi
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Takahiro Tsuzuno
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Keisuke Sato
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Yukari Aoki‐Nonaka
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Naoki Takahashi
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
- Research Center for Advanced Oral ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Shigenobu Kishino
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Jun Ogawa
- Division of Applied Life SciencesGraduate School of AgricultureKyoto University Kyoto Japan
| | - Koichi Tabeta
- Division of PeriodontologyDepartment of Oral Biological ScienceNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| | - Kazuhisa Yamazaki
- Research Unit for Oral‐Systemic ConnectionDivision of Oral Science for Health PromotionNiigata University Graduate School of Medical and Dental Sciences Niigata Japan
| |
Collapse
|
16
|
Huang Y, Hang X, Jiang X, Zeng L, Jia J, Xie Y, Li F, Bi H. In Vitro and In Vivo Activities of Zinc Linolenate, a Selective Antibacterial Agent against Helicobacter pylori. Antimicrob Agents Chemother 2019; 63:e00004-19. [PMID: 30936098 PMCID: PMC6535540 DOI: 10.1128/aac.00004-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is a major global pathogen, and its infection represents a key factor in the etiology of various gastric diseases, including gastritis, peptic ulcers, and gastric carcinoma. The efficacy of current standard treatment for H. pylori infection including two broad-spectrum antibiotics is compromised by toxicity toward the gut microbiota and the development of drug resistance, which will likely only be resolved through novel and selective antibacterial strategies. Here, we synthesized a small molecule, zinc linolenate (ZnLla), and investigated its therapeutic potential for the treatment of H. pylori infection. ZnLla showed effective antibacterial activity against standard strains and drug-resistant clinical isolates of H. pyloriin vitro with no development of resistance during continuous serial passaging. The mechanisms of ZnLla action against H. pylori involved the disruption of bacterial cell membranes and generation of reactive oxygen species. In mouse models of multidrug-resistant H. pylori infection, ZnLla showed in vivo killing efficacy comparable and superior to the triple therapy approach when use as a monotherapy and a combined therapy with omeprazole, respectively. Moreover, ZnLla treatment induces negligible toxicity against normal tissues and causes minimal effects on both the diversity and composition of the murine gut microbiota. Thus, the high degree of selectivity of ZnLla for H. pylori provides an attractive candidate for novel targeted anti-H. pylori treatment.
Collapse
Affiliation(s)
- Yanqiang Huang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueqing Jiang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liping Zeng
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Jia
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Xie
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Garcia-So J, Zhang X, Yang X, Rubinstein MR, Mao DY, Kitajewski J, Liu K, Han YW. Omega-3 fatty acids suppress Fusobacterium nucleatum-induced placental inflammation originating from maternal endothelial cells. JCI Insight 2019; 4:e125436. [PMID: 30728337 PMCID: PMC6413831 DOI: 10.1172/jci.insight.125436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is an oral anaerobe prevalent in intrauterine infection associated with a wide spectrum of adverse pregnancy outcomes. We demonstrate here that F. nucleatum triggers placental inflammation through maternal, rather than paternal, TLR4-mediated signaling. Elimination of TLR4 from maternal endothelial cells alleviated placental inflammation and reduced fetal and neonatal death, while elimination of TLR4 in the hematopoietic cells had no effect. The placental inflammatory response followed a spatiotemporal pattern, with NF-κB activation observed first in the maternal endothelial cells and then in the decidual cells surrounding the endothelium, followed by induction of inflammatory cytokines and chemokines. Supplementation of pregnant mice with fish oil as a source of omega-3 fatty acids suppressed placental inflammation, reduced F. nucleatum proliferation in the placenta, and increased fetal and neonatal survival. In vitro analysis illustrates that omega-3 fatty acids inhibit bacterial-induced inflammatory responses from human umbilical cord endothelial cells. Our study therefore reveals a mechanism by which microbial infections affect pregnancy and identifies a prophylactic therapy to protect against intrauterine infections.
Collapse
Affiliation(s)
- Jeewon Garcia-So
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Xinwen Zhang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaohua Yang
- Department of Periodontics, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mara Roxana Rubinstein
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - De Yu Mao
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacology
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kang Liu
- Department of Microbiology and Immunology, and
| | - Yiping W. Han
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Division of Periodontics, College of Dental Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Microbiology and Immunology, and
- Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Baker LY, Hobby CR, Siv AW, Bible WC, Glennon MS, Anderson DM, Symes SJ, Giles DK. Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence. BMC Microbiol 2018; 18:117. [PMID: 30217149 PMCID: PMC6137939 DOI: 10.1186/s12866-018-1259-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022] Open
Abstract
Background Pseudomonas aeruginosa, a common opportunistic pathogen, is known to cause infections in a variety of compromised human tissues. An emerging mechanism for microbial survival is the incorporation of exogenous fatty acids to alter the cell’s membrane phospholipid profile. With these findings, we show that exogenous fatty acid exposure leads to changes in bacterial membrane phospholipid structure, membrane permeability, virulence phenotypes and consequent stress responses that may influence survival and persistence of Pseudomonas aeruginosa. Results Thin-layer chromatography and ultra performance liquid chromatography / ESI-mass spectrometry indicated alteration of bacterial phospholipid profiles following growth in the presence of polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation). The exogenously supplied fatty acids were incorporated into the major bacterial phospholipids phosphatidylethanolamine and phosphatidylglycerol. The incorporation of fatty acids increased membrane permeability as judged by both accumulation and exclusion of ethidium bromide. Individual fatty acids were identified as modifying resistance to the cyclic peptide antibiotics polymyxin B and colistin, but not the beta-lactam imipenem. Biofilm formation was increased by several PUFAs and significant fluctuations in swimming motility were observed. Conclusions Our results emphasize the relevance and complexity of exogenous fatty acids in the membrane physiology and pathobiology of a medically important pathogen. P. aeruginosa exhibits versatility with regard to utilization of and response to exogenous fatty acids, perhaps revealing potential strategies for prevention and control of infection. Electronic supplementary material The online version of this article (10.1186/s12866-018-1259-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lyssa Y Baker
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea R Hobby
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Andrew W Siv
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - William C Bible
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Michael S Glennon
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Derek M Anderson
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology, and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA.
| |
Collapse
|
19
|
Westerik N, Reid G, Sybesma W, Kort R. The Probiotic Lactobacillus rhamnosus for Alleviation of Helicobacter pylori-Associated Gastric Pathology in East Africa. Front Microbiol 2018; 9:1873. [PMID: 30154777 PMCID: PMC6102400 DOI: 10.3389/fmicb.2018.01873] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
The probiotic Lactobacillus rhamnosus GG (LGG) can play a role in establishing a harmless relationship with Helicobacter pylori and reduce gastric pathology in East African populations. H. pylori has the ability to inhabit the surface of the mucous layer of the human stomach and duodenum. In the developing world, an estimated 51% of the population is carrier of H. pylori, while in some Western countries these numbers dropped below 20%, which is probably associated with improved sanitation and smaller family sizes. Colonization by H. pylori can be followed by inflammation of the gastric mucus layer, and is a risk factor in the development of atrophic gastritis, peptic ulcers and gastric cancer. Notwithstanding the higher prevalence of H. pylori carriers in developing countries, no equal overall increase in gastric pathology is found. This has been attributed to a less pro-inflammatory immune response to H. pylori in African compared to Caucasian populations. In addition, a relatively low exposure to other risk factors in certain African populations may play a role, including the use of non-steroidal anti-inflammatory drugs, smoking, and diets without certain protective factors. A novel approach to the reduction of H. pylori associated gastric pathology is found in the administration of the probiotic bacterium Lactobacillus rhamnosus yoba 2012 (LRY), the generic variant of LGG. This gastro-intestinal isolate inhibits H. pylori by competition for substrate and binding sites as well as production of antimicrobial compounds such as lactic acid. In addition, it attenuates the host's H. pylori-induced apoptosis and inflammation responses and stimulates angiogenesis in the gastric and duodenal epithelium. The probiotic LRY is not able to eradicate H. pylori completely, but its co-supplementation in antibiotic eradication therapy has been shown to relieve side effects of this therapy. In Uganda, unlike other African countries, gastric pathology is relatively common, presumably resulting from the lack of dietary protective factors in the traditional diet. Supplementation with LRY through local production of probiotic yogurt, could be a solution to establish a harmless relationship with H. pylori and reduce gastric pathology and subsequent eradication therapy treatment.
Collapse
Affiliation(s)
- Nieke Westerik
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
| | - Gregor Reid
- Canadian R&D Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, and Surgery, Western University, London, ON, Canada
| | | | - Remco Kort
- Department of Molecular Cell Biology, VU University Amsterdam, Amsterdam, Netherlands
- Yoba for Life Foundation, Amsterdam, Netherlands
- Department of Microbiology and Systems Biology, Netherlands Organization for Applied Scientific Research, Zeist, Netherlands
- ARTIS-Micropia, Amsterdam, Netherlands
| |
Collapse
|
20
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018; 19:E1114. [PMID: 29642500 PMCID: PMC5979495 DOI: 10.3390/ijms19041114] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
21
|
Yoon BK, Jackman JA, Valle-González ER, Cho NJ. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications. Int J Mol Sci 2018. [PMID: 29642500 DOI: 10.3390/ijms19041114.pmid:29642500;pmcid:pmc5979495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Joshua A Jackman
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Elba R Valle-González
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering and Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
22
|
Han YM, Kim KJ, Jeong M, Park JM, Go EJ, Kang JX, Hong SP, Hahm KB. Suppressed Helicobacter pylori-associated gastric tumorigenesis in Fat-1 transgenic mice producing endogenous ω-3 polyunsaturated fatty acids. Oncotarget 2018; 7:66606-66622. [PMID: 27528223 PMCID: PMC5341824 DOI: 10.18632/oncotarget.11261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Dietary approaches to preventing Helicobacter pylori (H. pylori)-associated gastric carcinogenesis are widely accepted because surrounding break-up mechanisms are mandatory for cancer prevention, however, eradication alone has been proven to be insufficient. Among these dietary interventions, omega-3-polyunsaturated-fatty acids (ω-3 PUFAs) are often the first candidate selected. However, there was no trial of fatty acids in preventing H. pylori-associated carcinogenesis and inconclusive results have been reported, likely based on inconsistent dietary administration. In this study, we developed an H. pylori initiated-, high salt diet promoted-gastric tumorigenesis model and conducted a comparison between wild-type (WT) and Fat-1-transgenic (TG)-mice. Gross and pathological lesions in mouse stomachs were evaluated at 16, 24, 32, and 45 weeks after H. pylori infection, and the underlying molecular changes to explain the cancer preventive effects were investigated. Significant changes in: i) ameliorated gastric inflammations at 16 weeks of H. pylori infection, ii) decreased angiogenic growth factors at 24 weeks, iii) attenuated atrophic gastritis and tumorigenesis at 32 weeks, and iv) decreased gastric cancer at 45 weeks were all noted in Fat-1-TG-mice compared to WT-mice. While an increase in the expression of Cyclooxygenase (COX)-2, and reduced expression of the tumor suppressive 15-PGDH were observed in WT-mice throughout the experimental periods, the expression of Hydroxyprostaglandin dehydrogenase (15-PGDH) was preserved in Fat-1-TG-mice. Using a comparative protein array, attenuated expressions of proteins implicated in proliferation and inflammation were observed in Fat-1-TG-mice compared to WT-mice. Conclusively, long-term administration of ω-3 PUFAs can suppress H. pylori-induced gastric tumorigenesis through a dampening of inflammation and reduced proliferation in accordance with afforded rejuvenation.
Collapse
Affiliation(s)
- Young-Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea
| | - Kyung-Jo Kim
- Department of Gastroenterology, University of Ulsan, Seoul Asan Medical Center, Seoul, Korea
| | - Migyeung Jeong
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea
| | - Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea
| | - Eun-Jin Go
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Sung Pyo Hong
- Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul, Korea.,Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
23
|
Eichenseher J. Peptic Ulcer Disease. Integr Med (Encinitas) 2018. [DOI: 10.1016/b978-0-323-35868-2.00043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species. Appl Environ Microbiol 2017; 83:AEM.01415-17. [PMID: 28864654 DOI: 10.1128/aem.01415-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 01/24/2023] Open
Abstract
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
Collapse
|
25
|
Eder AE, Munir SA, Hobby CR, Anderson DM, Herndon JL, Siv AW, Symes SJK, Giles DK. Exogenous polyunsaturated fatty acids (PUFAs) alter phospholipid composition, membrane permeability, biofilm formation and motility in Acinetobacter baumannii. MICROBIOLOGY-SGM 2017; 163:1626-1636. [PMID: 29058654 DOI: 10.1099/mic.0.000556] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acinetobacter baumannii is a ubiquitous multidrug-resistant bacteria that is found on a variety of surfaces, including skin, hair and soil. During the past decade, A. baumannii has emerged as a significant cause of nosocomial infections in the United States. Recent studies have highlighted the ability of some bacteria to utilize a wide variety of fatty acids as a membrane remodelling strategy. Considering this, we hypothesized that fatty acids may have an effect on the emerging pathogen A. baumannii. Thin-layer chromatography indicated structural alterations to major phospholipids. Liquid chromatography/mass spectrometry confirmed the assimilation of numerous exogenous polyunsaturated fatty acids (PUFAs) into the phospholipid species of A. baumannii. The incorporation of fatty acids affected several bacterial phenotypes, including membrane permeability, biofilm formation, surface motility and antimicrobial peptide resistance.
Collapse
Affiliation(s)
- Adrianna E Eder
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Saba A Munir
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Chelsea R Hobby
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Derek M Anderson
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Joshua L Herndon
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Andrew W Siv
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Steven J K Symes
- Department of Chemistry and Physics, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - David K Giles
- Department of Biology, Geology and Environmental Science, The University of Tennessee at Chattanooga, Chattanooga, TN, USA
| |
Collapse
|
26
|
Tran LTC, Gueutin C, Frebourg G, Burucoa C, Faivre V. Erythromycin encapsulation in nanoemulsion-based delivery systems for treatment of Helicobacter pylori infection: Protection and synergy. Biochem Biophys Res Commun 2017; 493:146-151. [PMID: 28917836 DOI: 10.1016/j.bbrc.2017.09.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
Abstract
Poorly water-soluble and unstable compounds are difficult to develop as drug products using conventional formulation techniques. The aim of the present study was to develop and evaluate a nanoformulation prepared by a hot high-pressure homogenization method, which was a scalable and solvent-free process. We successfully prepared stable nanodispersions to protect a labile antibiotic, erythromycin. The mean diameter of the dispersed droplets was approximately 150 nm, and size distribution was unimodal. Dispersion was physically stable at room temperature for over six months. Using erythromycin as a model compound, we studied its antimicrobial activity in vitro on Helicobacter pylori. Results showed that drug encapsulation improves API stability in an acidic environment and is conducive to a synergistic effect between the drug and the formulation.
Collapse
Affiliation(s)
- Le Tuyet Chau Tran
- Institut Galien Paris-Sud, CNRS, Université Paris-Saclay, Univ. Paris-Sud, 5, rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France
| | - Claire Gueutin
- Institut Galien Paris-Sud, CNRS, Université Paris-Saclay, Univ. Paris-Sud, 5, rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France
| | - Ghislaine Frebourg
- Institut de Biologie Paris-Seine (IBPS), Université Pierre et Marie CURIE, SME-9 Quai St Bernard, 75252 Paris Cedex 05, France
| | - Christophe Burucoa
- EA 4331 LITEC, Université de Poitiers, CHU de Poitiers, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Vincent Faivre
- Institut Galien Paris-Sud, CNRS, Université Paris-Saclay, Univ. Paris-Sud, 5, rue Jean-Baptiste Clément, Châtenay-Malabry 92296, France.
| |
Collapse
|
27
|
Ikezaki H, Furusyo N, Jacques PF, Shimizu M, Murata M, Schaefer EJ, Urita Y, Hayashi J. Higher dietary cholesterol and ω-3 fatty acid intakes are associated with a lower success rate of Helicobacter pylori eradication therapy in Japan. Am J Clin Nutr 2017; 106:581-588. [PMID: 28659302 DOI: 10.3945/ajcn.116.144873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 06/01/2017] [Indexed: 11/14/2022] Open
Abstract
Background:Helicobacter pylori infection is a known risk factor for duodenal ulcers, gastritis, and gastric cancer. The eradication of H. pylori is successful in treating these disorders; however, the success rate of eradication therapy is declining. There may be an interaction with nutrient intake to account for this decline.Objective: We investigated the influence of food and nutrient intake on H. pylori eradication therapy.Design: In this study, 4014 subjects underwent endoscopy, were tested for serum antibodies to H. pylori (2046 positive; 51.0%), and had their food intake assessed with the use of a food-frequency questionnaire (FFQ). Of the positive subjects, endoscopies showed that 389 (19.0%) had gastritis and/or duodenal ulcers and were also positive for a 13C-urea breath test (UBT). These 389 subjects received 1-wk H. pylori eradication therapy with lansoprazole, amoxicillin, and clarithromycin and a second UBT 8 wk after treatment. Complete demographic characteristics, serum lipid, insulin, glycated hemoglobin, C-reactive protein (CRP), and creatinine concentrations as well as complete FFQs were available for 352 subjects. Multivariate logistic regression analyses were performed to determine factors that were associated with successful H. pylori eradication therapy.Results: The success rate of eradication therapy was 60.4% (235 of 389). Factors associated with the failure of eradication therapy included increased age (P = 0.02), higher CRP concentrations (P < 0.01), higher dietary cholesterol (P < 0.01) or egg intake (P < 0.01), higher ω-3 (n-3) fatty acid (P = 0.02) or fish intake (P = 0.01), and higher vitamin D intake (P = 0.02). Moreover, the higher vitamin D intake was strongly linked to higher fish intake. A limitation of the study is that we did not assess the antibiotic resistance of H. pyloriConclusions: Our results indicate that higher egg and fish intake may be negatively correlated with successful H. pylori eradication therapy in H. pylori-positive subjects with gastritis and/or duodenal ulcers.
Collapse
Affiliation(s)
- Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan; .,Kyushu General Internal Medicine Center, Hara-Doi Hospital, Fukuoka, Japan
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Motohiro Shimizu
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Ernst J Schaefer
- Cardiovascular Nutrition Laboratory, Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA
| | - Yoshihisa Urita
- Department of General Medicine and Emergency Care, Toho University School of Medicine Omori Hospital, Tokyo, Japan; and
| | - Jun Hayashi
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan.,Kyushu General Internal Medicine Center, Hara-Doi Hospital, Fukuoka, Japan
| |
Collapse
|
28
|
Chadolias D, Zissimopoulos A, Nena E, Agathokleous MN, Drakopoulos V, Constantinidis TC, Kouklakis G. Association of occupational exposures and work characteristics with the occurrence of gastrointestinal disorders. Hippokratia 2017; 21:74-79. [PMID: 30455559 PMCID: PMC6239092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Work is a daily activity with various conditions, exposures, and habits that may affect health either positively or negatively. Aim of this study was to investigate the relationship between occupational factors and conditions, and the occurrence of gastrointestinal disorders. METHODS We enrolled in this study a sample of 891 consecutive individuals, who were examined by standard colonoscopy and gastroscopy and interviewed regarding their working conditions and exposures. Consecutively, data were statistically analyzed to explore possible associations. RESULTS Peptic ulcer diagnosis was associated with reports of muscle pain/headache [odds ratio (OR): 3.656, 95 % confidence interval (95% CI): 1.898-7.043], with working in shifts (OR: 2.463, 95% CI: 1.058-5.731), and with the presence of occupational stress (OR: 2.283, 95% CI: 1.162-4.486). Gastritis was associated with muscle pain/headache (OR: 2.258, 95% CI: 1.096-4.652), shift work (OR: 3.535, 95% CI: 1.345-9.29), occupational stress (OR: 2.182, 95% CI: 1.072-4.444), and sedentary work (OR 0.275 lower risk 95% CI: 0.113-0.671). Ulcerative colitis was associated with muscle pain/headache (OR: 6.211, 95% CI: 2.162-17.840) and occupational stress (OR: 6.418, 95% CI: 2.243-18.361), while Crohn's disease diagnosis with muscle pain/headache (OR: 3.554, 95% CI: 1.628-7.759), frequent ordering food at work (OR: 4.928, 95% CI: 2.3-10.559), occupational stress (OR: 3.023, 95% CI: 1.413-6.469), work with intense physical activity (OR: 0.665 lower risk, 95% CI: 0.252-0.758). Colon cancer diagnosis was associated with frequent ordering food at work (OR: 2.739, 95% CI: 1.268-5.916) and occupational stress (OR: 3.175, 95% CI: 1.384-7.286), while stomach cancer diagnosis with ordering food at work (OR: 2.794, 95% CI: 1.154-6.763) and exposure to dust (OR: 5.650, 95% CI: 1.551-20.582). Finally, presence of polyps was associated with ordering food at work (OR: 2.154, 95% CI: 1.135-4.091), and constipation with ordering food at work (OR: 2.869, 95% CI: 1.451-5.672), occupational stress (OR: 2.112, 95% CI: 1.097-4.066), and occupational noise (OR: 0.248, 95% CI: 0.084-0.737). CONCLUSION The incidence of the gastrointestinal diseases is affected by occupational exposures and related lifestyle habits. HIPPOKRATIA 2017, 21(2): 74-79.
Collapse
Affiliation(s)
- D Chadolias
- Laboratory of Hygiene and Environmental Protection, University General Hospital of Alexandroupolis Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - A Zissimopoulos
- Nuclear Medicine Department, University General Hospital of Alexandroupolis, University General Hospital of Alexandroupolis Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - E Nena
- Laboratory of Hygiene and Environmental Protection, University General Hospital of Alexandroupolis Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - M N Agathokleous
- Laboratory of Hygiene and Environmental Protection, University General Hospital of Alexandroupolis Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - V Drakopoulos
- Hellenic Institute of Health and Safety in Work, Athens, Greece
| | - T C Constantinidis
- Laboratory of Hygiene and Environmental Protection, University General Hospital of Alexandroupolis Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - G Kouklakis
- First Department of Internal Medicine, University General Hospital of Alexandroupolis, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
- Gastrointestinal Endoscopy Unit, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| |
Collapse
|
29
|
Seabra CL, Nunes C, Gomez-Lazaro M, Correia M, Machado JC, Gonçalves IC, Reis CA, Reis S, Martins MCL. Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against Helicobacter pylori. Int J Pharm 2017; 519:128-137. [DOI: 10.1016/j.ijpharm.2017.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 02/06/2023]
|
30
|
Tsukanov VV, Kasparov EV, Tonkikh JL, Shtygasheva OV, Butorin NN, Amelchugova OS, Vasyutin AV, Bronnikova EP, Fassan M, Rugge M. Peptic Ulcer Disease and Helicobacter pylori Infection in Different Siberian Ethnicities. Helicobacter 2017; 22. [PMID: 27265879 DOI: 10.1111/hel.12322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The high prevalence of Helicobacter pylori (H. pylori) infection in eastern Siberia is consistently established. In the same geographic area, however, fragmentary information is available on the epidemiology of the peptic ulcer disease (PUD). AIM To assess the prevalence of H. pylori infection (including CagA status) and PUD in different eastern Siberian ethnicities. PATIENTS AND METHODS An endoscopy population of 3149 eastern Siberian dyspeptic patients was considered [1727 Europoids and 1422 Mongoloids (Evenks = 792; Khakases = 630)]. H. pylori status was assessed by urease test and/or serum anti-H. pylori IgG and/or histology. CagA status was serologically assessed (anti-CagA antibodies). RESULTS All the Siberian ethnicities featured high rates of H. pylori infection (Europoids = 87.1%, Evenks = 88.6%, Khakases = 85.4%). Among the 1504 H. pylori-positive Europoids, the prevalence of CagA-positive status (68.7%) was significantly higher than that featured by the 1240 H. pylori-positive Mongoloid ethnicities (46.9%; p < .001 for both comparisons). Peptic ulcer disease significantly prevailed among Europoids (prevalence among Europoid Evenks and Khakases: 8.9% and 8.3%, respectively; prevalence among Mongoloid Evenks and Khakases = 1.0% and 4.4%, respectively). CONCLUSIONS eastern Siberian populations feature consistent high rates of H. pylori infection, but different prevalence of peptic ulcer disease. In particular, Europoids featured a prevalence of both CagA-positive status and peptic ulcer disease significantly higher than that of the Mongoloid ethnicities. These results suggest that both environmental factors (coexisting with the H. pylori infection) and host-related variables modulate the clinicopathological expression of the H. pylori -associated gastric diseases.
Collapse
Affiliation(s)
- Vladislav V Tsukanov
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Edward V Kasparov
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Julia L Tonkikh
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Olga V Shtygasheva
- Department of Internal Medicine, Khakass State University, Abakan, Russia
| | - Nikolay N Butorin
- Department of Internal Medicine, Khakass State University, Abakan, Russia.,Endoscopy Department, Khakass Republican Hospital, Abakan, Russia
| | - Olga S Amelchugova
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Alexander V Vasyutin
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Elena P Bronnikova
- Gastroenterology Department, Federal State Budgetary Scientific Institution "Scientific research institute of medical problems of the North", Krasnoyarsk, Russia
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Massimo Rugge
- Department of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy.,Veneto Cancer Registry, Padua, Italy
| |
Collapse
|
31
|
Rezaeimanesh N, Farzi N, Pirmanesh S, Emami S, Yadegar A. Management of multi-drug resistant Helicobacter pylori infection by supplementary, complementary and alternative medicine; a review. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:S8-S14. [PMID: 29511465 PMCID: PMC5838174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/18/2017] [Indexed: 12/02/2022]
Abstract
Helicobacter pylori is recognized as the most common bacterial pathogens colonizing the gastric epithelium of nearly half of the world's population. This bacterium is the main etiological cause of gastroduodenal ulcers, and more importantly as the substantial risk factor for development of gastric cancer. The emergence and rapid increase in the prevalence of multi-drug resistant phenotypes have posed major pitfalls in effectiveness of various treatment regimens and eradication strategies against H. pylori infections. Several natural products and supplementary food components have been reported to have established anti-H. pylori activity. Herein, we review the application and efficacy of some specific natural products and foodstuffs such as milk, bee products (honey and propolis), fish oil, vitamins C and E, and also a nickel free-diet used as anti-H. pylori alternative treatment regimens.
Collapse
Affiliation(s)
- Nasim Rezaeimanesh
- Students Research Committee, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Farzi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Pirmanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Emami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Sabry Othm A. Bactericidal Efficacy of Omega-3 Fatty Acids and Esters Present in Moringa oleifera and Portulaca oleracea Fixed Oils Against Oral and Gastro Enteric Bacteria. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2017.44.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Narrow-spectrum inhibitors targeting an alternative menaquinone biosynthetic pathway of Helicobacter pylori. J Infect Chemother 2016; 22:587-92. [DOI: 10.1016/j.jiac.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/13/2016] [Accepted: 05/29/2016] [Indexed: 01/14/2023]
|
34
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
35
|
Diet and Helicobacter pylori infection. GASTROENTEROLOGY REVIEW 2016; 11:150-154. [PMID: 27713775 PMCID: PMC5047973 DOI: 10.5114/pg.2016.61487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/24/2015] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori infection has accompanied man for thousands of years. In some infected patients, a complex and dynamic pathogen-host reaction triggers pathogenic pathways resulting in development, inter alia, of atrophic gastritis, peptic ulcer disease (both gastric and duodenal), gastric adenocarcinoma, and MALT lymphoma. Large-scale eradication therapy is associated with a rapid increase in antibiotic resistance, gut flora composition disturbances, and increased risk of development, inter alia, of paediatric infectious diarrhoeas, atopic diseases, and oesophageal adenocarcinoma. Our diet contains many substances with potent antibacterial activity against H. pylori. Dietary interventions enable a decrease in H. pylori colonisation and result in a decrease in gastritis prevalence, thus potentially lowering the risk of gastric adenocarcinoma development.
Collapse
|
36
|
Jung SW, Lee SW. The antibacterial effect of fatty acids on Helicobacter pylori infection. Korean J Intern Med 2016; 31:30-5. [PMID: 26767854 PMCID: PMC4712431 DOI: 10.3904/kjim.2016.31.1.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/09/2015] [Indexed: 02/06/2023] Open
Abstract
Eradication of Helicobacter pylori is recommended for the management of various gastric diseases, including peptic ulcers and mucosa-associated lymphoid tissue lymphoma. Because of the increasing prevalence of antibiotic resistance, the eradication rates of antibiotic-based therapies have decreased. Therefore, alternative treatments should be considered. The antibacterial properties of fatty acids (FAs) have been investigated in various organisms, including H. pylori. Some FAs, particularly polyunsaturated FAs, have been shown to have bactericidal activity against H. pylori in vitro; however, their antibacterial effects in vivo remain controversial. Poor solubility and delivery of FAs may be important reasons for this discrepancy. Recently, a series of studies demonstrated the antibacterial effects of a liposomal formulation of linolenic acid against H. pylori, both in vitro and in vivo. Further research is needed to improve the bioavailability of FAs and apply them in clinical use.
Collapse
Affiliation(s)
- Sung Woo Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Correspondence to Sang Woo Lee, M.D. Department of Internal Medicine, Institute of Digestive Disease and Nutrition, Korea University Ansan Hospital, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Korea Tel: +82-31-412-5580 Fax: +82-31-8099-6373 E-mail:
| |
Collapse
|
37
|
Omega-3 Polyunsaturated Fatty Acids Intake to Regulate Helicobacter pylori-Associated Gastric Diseases as Nonantimicrobial Dietary Approach. BIOMED RESEARCH INTERNATIONAL 2015; 2015:712363. [PMID: 26339635 PMCID: PMC4538587 DOI: 10.1155/2015/712363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), commonly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been acknowledged as essential long-chain fatty acids imposing either optimal health promotion or the rescuing from chronic inflammatory diseases such as atherosclerosis, fatty liver, and various inflammatory gastrointestinal diseases. Recent studies dealing with EPA and DHA have sparked highest interests because detailed molecular mechanisms had been documented with the identification of its receptor, G protein coupled receptor, and GPR120. In this review article, we have described clear evidences showing that n-3 PUFAs could reduce various Helicobacter pylori- (H. pylori-) associated gastric diseases and extended to play even cancer preventive outcomes including H. pylori-associated gastric cancer by influencing multiple targets, including proliferation, survival, angiogenesis, inflammation, and metastasis. Since our previous studies strongly concluded that nonantimicrobial dietary approach for reducing inflammation, for instance, application of phytoceuticals, probiotics, natural products including Korean red ginseng, and walnut plentiful of n-3 PUFAs, might be prerequisite step for preventing H. pylori-associated gastric cancer as well as facilitating the rejuvenation of precancerous atrophic gastritis, these beneficial lipids can restore or modify inflammation-associated lipid distortion and correction of altered lipid rafts to send right signaling to maintain healthy stomach even after chronic H. pylori infection.
Collapse
|
38
|
Fahey JW, Stephenson KK, Wallace AJ. Dietary amelioration of Helicobacter infection. Nutr Res 2015; 35:461-73. [PMID: 25799054 PMCID: PMC4465045 DOI: 10.1016/j.nutres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
We review herein the basis for using dietary components to treat and/or prevent Helicobacter pylori infection, with emphasis on (a) work reported in the last decade, (b) dietary components for which there is mechanism-based plausibility, and (c) components for which clinical results on H pylori amelioration are available. There is evidence that a diet-based treatment may reduce the levels and/or the virulence of H pylori colonization without completely eradicating the organism in treated individuals. This concept was endorsed a decade ago by the participants in a small international consensus conference held in Honolulu, Hawaii, USA, and interest in such a diet-based approach has increased dramatically since then. This approach is attractive in terms of cost, treatment, tolerability, and cultural acceptability. This review, therefore, highlights specific foods, food components, and food products, grouped as follows: bee products (eg, honey and propolis); probiotics; dairy products; vegetables; fruits; oils; essential oils; and herbs, spices, and other plants. A discussion of the small number of clinical studies that are available is supplemented by supportive in vitro and animal studies. This very large body of in vitro and preclinical evidence must now be followed up with rationally designed, unambiguous human trials.
Collapse
Affiliation(s)
- Jed W Fahey
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology & Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Human Nutrition, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Katherine K Stephenson
- Lewis B. and Dorothy Cullman Chemoprotection Center, Department of Pharmacology & Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alison J Wallace
- New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| |
Collapse
|
39
|
Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PLoS One 2015; 10:e0116519. [PMID: 25793403 PMCID: PMC4368202 DOI: 10.1371/journal.pone.0116519] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023] Open
Abstract
Helicobacter pylori infects approximately half of the world population and is a major cause of gastritis, peptic ulcer, and gastric cancer. Moreover, this bacterium has quickly developed resistance to all major antibiotics. Recently, we developed a novel liposomal linolenic acid (LipoLLA) formulation, which showed potent bactericidal activity against several clinical isolated antibiotic-resistant strains of H. pylori including both the spiral and coccoid form. In addition, LipoLLA had superior in vivo efficacy compared to the standard triple therapy. Our data showed that LipoLLA associated with H. pylori cell membrane. Therefore, in this study, we investigated the possible antibacterial mechanism of LipoLLA against H. pylori. The antibacterial activity of LipoLLA (C18:3) was compared to that of liposomal stearic acid (LipoSA, C18:0) and oleic acid (LipoOA, C18:1). LipoLLA showed the most potent bactericidal effect and completely killed H. pylori within 5 min. The permeability of the outer membrane of H. pylori increased when treated with LipoOA and LipoLLA. Moreover, by detecting released adenosine triphosphate (ATP) from bacteria, we found that bacterial plasma membrane of H. pylori treated with LipoLLA exhibited significantly higher permeability than those treated with LipoOA, resulting in bacteria cell death. Furthermore, LipoLLA caused structural changes in the bacterial membrane within 5 min affecting membrane integrity and leading to leakage of cytoplasmic contents, observed by both transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Our findings showing rapid bactericidal effect of LipoLLA suggest it is a very promising new, effective anti-H. pylori agent.
Collapse
|
40
|
Yamashita S, Igarashi M, Hayashi C, Shitara T, Nomoto A, Mizote T, Shibasaki M. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori. MICROBIOLOGY-SGM 2015; 161:1231-9. [PMID: 25767109 DOI: 10.1099/mic.0.000077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from H. pylori growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the H. pylori growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di-O-methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-(Z)-tetradecenoic acid [7-(Z)-TDA]. Although several fatty acids had been identified in H. pylori, these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the H. pylori strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-(Z)-TDA might play important roles in the survival of H. pylori in human stomach epithelial cells.
Collapse
Affiliation(s)
- Shinpei Yamashita
- 1Department of Human Nutrition, Yamaguchi Prefectural University, Yamaguchi, Japan
| | | | | | - Tetsuo Shitara
- 2Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Akio Nomoto
- 2Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Tomoko Mizote
- 1Department of Human Nutrition, Yamaguchi Prefectural University, Yamaguchi, Japan
| | | |
Collapse
|
41
|
Khandouzi N, Shidfar F, Agah S, Hosseini AF, Dehnad A. Comparison of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Eradication of Helicobacter pylori Infection, Serum Inflammatory Factors and Total Antioxidant Capacity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:149-57. [PMID: 25561921 PMCID: PMC4277628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Helicobacter pylori infection, the most common chronic bacterial infection in the world, and an important cause of gastrointestinal disorders, may be involved in the pathogenesis of some extra-gastrointestinal disturbances, as well as an increase in blood levels of certain inflammatory markers. Anti-bacterial activity against Helicobacter pylori and anti-inflammatory properties of omega-3 fatty acids have been studied in several research studies. The purpose of the present study was the comparison of the effects of Eicosapentaenoic Acid and Docosahexaenoic Acid supplementation on Helicobacter pylori eradication, serum levels of some inflammatory markers and total antioxidant capacity. In a randomized, double-blind, placebo-controlled clinical trial, 97 Helicobacter pylori positive patients (64 patients in the two intervention groups and 33 in the control group), received 2 grams daily of Eicosapentaenoic Acid, Docosahexaenoic Acid or Medium Chain Triglyceride oil as placebo, along with conventional tetra-drug Helicobacter pylori eradication regimen, for 12 weeks. Helicobacter pylori eradication test and measurement of concentration of interleukine-6, interleukine-8, high-sensitivity C-reactive protein and total antioxidant capacity were performed after the intervention. There was no significant difference in eradication rate of the infection, levels of interleukine-6 and total antioxidant capacity among the three groups, while the levels of interleukine-8 and high-sensitivity C-reactive protein were statistically different. Eicosapentaenoic Acid or Docosahexaenoic Acid supplementation had no significant differential impact on the eradication of Helicobacter pylori infection, and serum levels of interleukine-6 and total antioxidant capacity. However, it had a desirable effect on the levels of interleukine-8 and high-sensitivity C-reactive protein in Helicobacter pylori positive patients.
Collapse
Affiliation(s)
- Nafiseh Khandouzi
- Department of Nutrition and Biochemistry, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran. ,E-mail:
| | - Agha Fatemeh Hosseini
- Department of Math and Statistics, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Afsaneh Dehnad
- Department of Foreign Languages, School ofHealth Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Park JM, Kwon SH, Han YM, Hahm KB, Kim EH. Omega-3 polyunsaturated Fatty acids as potential chemopreventive agent for gastrointestinal cancer. J Cancer Prev 2014; 18:201-8. [PMID: 25337547 PMCID: PMC4189468 DOI: 10.15430/jcp.2013.18.3.201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), has been acknowledged as essential very long-chain fatty acids contributing to either achieving optimal health or protection against diseases, and even longevity. Recent high impact studies dealing with EPA and DHA have sparked a renewed interest in using n-3 PUFAs for cancer prevention and cancer treatment, for which n-3 PUFAs may exert their anticancer actions by influencing multiple targets implicated in various stages of cancer development, including cell proliferation, cell survival, angiogenesis, inflammation, and metastasis against various cancers. However, gastrointestinal cancers develop implicated with the close connection between inflammation and cancer and n-3 PUFAs especially imposed excellent actions of antiinflammation and antioxidation as well as their restorative actions. In detail, these beneficial lipids can restore or modify inflammation-associated lipid distorsion and alteration of lipid rafts. Although the chemopreventive effect of n-3 PUFAs has been studied in various experimental models, our understanding regarding the underlying mechanisms of n-3 PUFAs against GI cancer is still limited. In this review article, we described the in-detailed perspective and underlying mechanism of n-3 PUFAs application for GI cancers and added in vivo efficacy of n-3 PUFAs with Fat-1 transgenic mice experience. We suggest that future work should consider the n-6/n-3 FA ratio, combination treatment of other nutritions and alteration of lipid rafts to be a key element in experimental design and analysis.
Collapse
Affiliation(s)
- Jong-Min Park
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul
| | - Sung-Hun Kwon
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul
| | - Young-Min Han
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; College of Pharmacy, CHA University, Pocheon
| | - Ki-Baik Hahm
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; Department of Gastroenterology, CHA Bundang Medical Center, Seongnam, Korea
| | - Eun-Hee Kim
- CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University, Seoul ; College of Pharmacy, CHA University, Pocheon
| |
Collapse
|
43
|
Hauerlandová I, Lorencová E, Buňka F, Navrátil J, Janečková K, Buňková L. The influence of fat and monoacylglycerols on growth of spore-forming bacteria in processed cheese. Int J Food Microbiol 2014; 182-183:37-43. [PMID: 24859188 DOI: 10.1016/j.ijfoodmicro.2014.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
Abstract
Highly undesirable microbial contaminants of processed cheese are endospore-forming bacteria of the genera Bacillus and Clostridium. Survival of Bacillus subtilis, B. cereus, Clostridium butyricum and C. sporogenes was examined in model processed cheese samples supplemented with monoacylglycerols. In processed cheese samples, monoacylglycerols of undecanoic, undecenoic, lauric and adamantane-1-carboxylic acid at concentration of 0.15% w/w prevented the growth and multiplication of both Bacillus species throughout the storage period. The two species of Clostridium were less affected by monoacylglycerols in processed cheese samples and only partial inhibition was observed. The effect of milk fat content on microbial survival in processed cheese was also evaluated. The growth of Bacillus sp. was affected by the fat level of processed cheese while population levels of Clostridium sp. did not differ in processed cheese samples with 30, 40 and 50% fat in dry matter.
Collapse
Affiliation(s)
- Iva Hauerlandová
- Department of Fat, Tenside and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic
| | - Eva Lorencová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic
| | - František Buňka
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic
| | - Jan Navrátil
- Department of Fat, Tenside and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic
| | - Kristýna Janečková
- Department of Fat, Tenside and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic
| | - Leona Buňková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 275, 76272 Zlín, Czech Republic.
| |
Collapse
|
44
|
Anti-inflammatory mechanism of polyunsaturated fatty acids in Helicobacter pylori-infected gastric epithelial cells. Mediators Inflamm 2014; 2014:128919. [PMID: 24987192 PMCID: PMC4060060 DOI: 10.1155/2014/128919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/16/2014] [Indexed: 01/29/2023] Open
Abstract
Helicobacter pylori is an important risk factor for gastric inflammation, which is mediated by multiple signaling pathways. The aim of this study was to investigate the effects of polyunsaturated fatty acids (PUFAs), such as linoleic acid (LA), alpha-linolenic acid (ALA), and docosahexaenoic acid (DHA), on the expression of the proinflammatory chemokine interleukin-8 (IL-8) in H. pylori-infected gastric epithelial AGS cells. To investigate whether PUFAs modulate H. pylori-induced inflammatory signaling, we determined the activation of epidermal growth factor receptor (EGFR), protein kinase C-δ (PKC δ), mitogen-activated protein kinases (MAPKs), nuclear factor-kappa B (NF- κB), and activator protein-1 (AP-1) as well as IL-8 expression in H. pylori-infected gastric epithelial cells that had been treated with or without PUFAs. We found that PUFAs inhibited IL-8 mRNA and protein expression in H. pylori-infected cells. ω-3 fatty acids (ALA, and DHA) suppressed the activation of EGFR, PKC δ, MAPK, NF- κB, and AP-1 in these infected cells. LA did not prevent EGFR transactivation and exhibited a less potent inhibitory effect on IL-8 expression than did ALA and DHA. In conclusion, PUFAs may be beneficial for prevention of H. pylori-associated gastric inflammation by inhibiting proinflammatory IL-8 expression.
Collapse
|
45
|
Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid. Int J Med Microbiol 2014; 304:314-20. [DOI: 10.1016/j.ijmm.2013.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
|
46
|
Nontraditional therapies to treat Helicobacter pylori infection. J Microbiol 2014; 52:259-72. [PMID: 24682990 DOI: 10.1007/s12275-014-3603-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022]
Abstract
The Gram-negative pathogen Helicobacter pylori is increasingly more resistant to the three major antibiotics (metronidazole, clarithromycin and amoxicillin) that are most commonly used to treat infection. As a result, there is an increased rate of treatment failure; this translates into an overall higher cost of treatment due to the need for increased length of treatment and/or the requirement for combination or sequential therapy. Given the rise in antibiotic resistance, the complicated treatment regime, and issues related to patient compliance that stem from the duration and complexity of treatment, there is clearly a pressing need for the development of novel therapeutic strategies to combat H. pylori infection. As such, researchers are actively investigating the utility of antimicrobial peptides, small molecule inhibitors and naturopathic therapies. Herein we review and discuss each of these novel approaches as a means to target this important gastric pathogen.
Collapse
|
47
|
Parreira P, Fátima Duarte M, Reis CA, Martins MCL. Helicobacter pylori infection: A brief overview on alternative natural treatments to conventional therapy. Crit Rev Microbiol 2014; 42:94-105. [PMID: 24606042 DOI: 10.3109/1040841x.2014.892055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori is a human gastric pathogen considered as the etiologic agent of several gastric disorders, that may range from chronic gastritis to more severe outcomes, including gastric cancer. The current therapeutic scheme relies on the combination of several pharmacological substances, namely antibiotics and proton pump inhibitors. However, the cure rates obtained have been declining over the years, mostly due to bacterial resistance to antibiotics. In this context, the use of non-antibiotic substances is of the utmost importance regarding H. pylori eradication. In this review, we present different classes of compounds obtained from natural sources that have shown to present anti-H. pylori potential; we briefly highlight their possible use in the context of developing new therapeutic approaches.
Collapse
Affiliation(s)
- Paula Parreira
- a Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo , Rua Pedro Soares, Beja , Portugal
| | - M Fátima Duarte
- a Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo , Rua Pedro Soares, Beja , Portugal
| | - Celso A Reis
- b Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal .,c Faculdade de Medicina , Universidade do Porto , Porto , Portugal .,d Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal , and
| | - M Cristina L Martins
- d Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal , and.,e Instituto de Engenharia Biomédica, Universidade do Porto , Porto , Portugal
| |
Collapse
|
48
|
Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol 2000 2013; 64:161-97. [DOI: 10.1111/j.1600-0757.2012.00458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
49
|
Manna D, Grewal JS, Sarkar B, Maiti S, Lohia A. Polyunsaturated fatty acids induce polarized submembranous F-actin aggregates and killEntamoeba histolytica. Cytoskeleton (Hoboken) 2013; 70:260-8. [PMID: 23568815 DOI: 10.1002/cm.21105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/26/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Dipak Manna
- Department of Biochemistry; Bose Institute; Kolkata; West Bengal; India
| | | | - Bidyut Sarkar
- Department of Chemical Sciences; Tata Institute of Fundamental Research; Mumbai; Maharashtra; India
| | - Sudipta Maiti
- Department of Chemical Sciences; Tata Institute of Fundamental Research; Mumbai; Maharashtra; India
| | - Anuradha Lohia
- Department of Biochemistry; Bose Institute; Kolkata; West Bengal; India
| |
Collapse
|
50
|
Correia M, Michel V, Osório H, El Ghachi M, Bonis M, Boneca IG, De Reuse H, Matos AA, Lenormand P, Seruca R, Figueiredo C, Machado JC, Touati E. Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid. PLoS One 2013; 8:e60657. [PMID: 23577140 PMCID: PMC3618039 DOI: 10.1371/journal.pone.0060657] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/01/2013] [Indexed: 12/12/2022] Open
Abstract
H. pylori colonizes half of the world's population leading to gastritis, ulcers and gastric cancer. H. pylori strains resistant to antibiotics are increasing which raises the need for alternative therapeutic approaches. Docosahexaenoic acid (DHA) has been shown to decrease H. pylori growth and its associated-inflammation through mechanisms poorly characterized. We aimed to explore DHA action on H. pylori-mediated inflammation and adhesion to gastric epithelial cells (AGS) and also to identify bacterial structures affected by DHA. H. pylori growth and metabolism was assessed in liquid cultures. Bacterial adhesion to AGS cells was visualized by transmission electron microscopy and quantified by an Enzyme Linked Immunosorbent Assay. Inflammatory proteins were assessed by immunoblotting in infected AGS cells, previously treated with DHA. Bacterial total and outer membrane protein composition was analyzed by 2-dimensional gel electrophoresis. Concentrations of 100 µM of DHA decreased H. pylori growth, whereas concentrations higher than 250 µM irreversibly inhibited bacteria survival. DHA reduced ATP production and adhesion to AGS cells. AGS cells infected with DHA pre-treated H. pylori showed a 3-fold reduction in Interleukin-8 (IL-8) production and a decrease of COX2 and iNOS. 2D electrophoresis analysis revealed that DHA changed the expression of H. pylori outer membrane proteins associated with stress response and metabolism and modified bacterial lipopolysaccharide phenotype. As conclusions our results show that DHA anti-H. pylori effects are associated with changes of bacteria morphology and metabolism, and with alteration of outer membrane proteins composition, that ultimately reduce the adhesion of bacteria and the burden of H. pylori-related inflammation.
Collapse
Affiliation(s)
- Marta Correia
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Al. Hernani Monteiro, Porto, Portugal
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - Valérie Michel
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Al. Hernani Monteiro, Porto, Portugal
| | - Meriem El Ghachi
- Institut Pasteur, G5 Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM, Group AVENIR, 75724 Paris, France
| | - Mathilde Bonis
- Institut Pasteur, G5 Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM, Group AVENIR, 75724 Paris, France
| | - Ivo G. Boneca
- Institut Pasteur, G5 Biologie et Génétique de la Paroi Bactérienne, Paris, France
- INSERM, Group AVENIR, 75724 Paris, France
| | - Hilde De Reuse
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
| | - António A. Matos
- Anatomia Patológica, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM/FCUL) – Faculdade de Ciências da Universidade de Lisboa and Centro de Investigação Interdisciplinar Egas Moniz (CiiEM) Campo Grande, Lisboa, Portugal
| | | | - Raquel Seruca
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Al. Hernani Monteiro, Porto, Portugal
| | - Ceu Figueiredo
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Al. Hernani Monteiro, Porto, Portugal
| | - Jose Carlos Machado
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Al. Hernani Monteiro, Porto, Portugal
| | - Eliette Touati
- Institut Pasteur, Unité de Pathogenèse de Helicobacter, Paris, France
- * E-mail:
| |
Collapse
|