1
|
Damiano OM, Stevens AJ, Kenwright DN, Seddon AR. Chronic Inflammation to Cancer: The Impact of Oxidative Stress on DNA Methylation. FRONT BIOSCI-LANDMRK 2025; 30:26142. [PMID: 40152377 DOI: 10.31083/fbl26142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 03/29/2025]
Abstract
The genomic landscape of cancer cells is complex and heterogeneous, with aberrant DNA methylation being a common observation. Growing evidence indicates that oxidants produced from immune cells may interact with epigenetic processes, and this may represent a mechanism for the initiation of altered epigenetic patterns observed in both precancerous and cancerous cells. Around 20% of cancers are linked to chronic inflammatory conditions, yet the precise mechanisms connecting inflammation with cancer progression remain unclear. During chronic inflammation, immune cells release oxidants in response to stimuli, which, in high concentrations, can cause cytotoxic effects. Oxidants are known to damage DNA and proteins and disrupt normal signalling pathways, potentially initiating a sequence of events that drives carcinogenesis. While research on the impact of immune cell-derived oxidants on DNA methylation remains limited, this mechanism may represent a crucial link between chronic inflammation and cancer development. This review examines current evidence on inflammation-associated DNA methylation changes in cancers related to chronic inflammation.
Collapse
Affiliation(s)
- Olivia M Damiano
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Aaron J Stevens
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Diane N Kenwright
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
| | - Annika R Seddon
- Genetics and Epigenetics Research Group, Department of Pathology and Molecular Medicine, University of Otago, 6021 Wellington, New Zealand
- Mātai Hāora - Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, 8011 Christchurch, New Zealand
| |
Collapse
|
2
|
Evangelina R, Ganesan S, George M. The Epigenetic Landscape: From Molecular Mechanisms to Biological Aging. Rejuvenation Res 2025. [PMID: 40094262 DOI: 10.1089/rej.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Epigenetics, the study of heritable changes in gene expression that do not involve alterations to the deoxyribonucleic acid (DNA) sequence, plays a pivotal role in cellular function, development, and aging. This review explores key epigenetic mechanisms, including DNA methylation (DNAm), histone modifications, chromatin remodeling, RNA-based regulation, and long-distance chromosomal interactions. These modifications contribute to cellular differentiation and function, mediating the dynamic interplay between the genome and environmental factors. Epigenetic clocks, biomarkers based on DNAm patterns, have emerged as powerful tools to measure biological age and predict health span. This article highlights the evolution of epigenetic clocks, from first-generation models such as Horvath's multi-tissue clock to advanced second- and third-generation clocks such as DNAGrimAge and DunedinPACE, which incorporate biological parameters and clinical biomarkers for precise age estimation. Moreover, the role of epigenetics in aging and age-related diseases is discussed, emphasizing its impact on genomic stability, transcriptional regulation, and cellular senescence. Epigenetic dysregulation is implicated in cancer, genetic disorders, and neurodegenerative diseases, making it a promising target for therapeutic interventions. The reversibility of epigenetic modifications offers hope for mitigating age acceleration and enhancing health span through lifestyle changes and pharmacological approaches.
Collapse
Affiliation(s)
- Rachel Evangelina
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Subhashree Ganesan
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| | - Melvin George
- Centre for Clinical Pharmacology, SRM Medical College, Hospital and Research Centre, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
3
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
4
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Bayat M, Shirgir A, Kazemi Veisari A, Najjar Sadeghi R. Detection of CDH1 gene promoter hypermethylation in gastric cancer and chronic gastritis. Pract Lab Med 2024; 40:e00406. [PMID: 38883562 PMCID: PMC11180341 DOI: 10.1016/j.plabm.2024.e00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aim The current study aimed to assess the frequency of CDH1 promoter gene hypermethylation in gastric cancer and chronic gastritis and its correlation with clinicopathological aspects. Methods Methylation-specific PCR was used to detect CDH1 promoter gene hypermethylation in 53 chronic gastritis patients and 40 gastric cancer patients along with normal adjacent tissues. Results The chronic gastritis group comprised 29 males and 24 females with a mean age of 51.8 ± 12.96 years, and 49.1 % of them were positive for H. pylori infection. The frequency of CDH1 hypermethylation in gastritis lesions was 18.8 %. CDH1 hypermethylation showed a significant correlation with H. pylori infection (p = 0.039), but no significant association was observed with other clinical features. The gastric cancer group consisted of individuals with a mean age of 65.4 ± 10.6, among them, 77.5 % were male and 22.5 % were female, 62.5 % had PT3 tumors, 40 % had PN1 lymph node involvement, and the majority (47.5 %) of samples were obtained from body segment. CDH1 hypermethylation was significantly associated with depth of invasion (p = 0.017) and nodal invasion (p = 0.041) in this group. In both groups, normal adjacent specimens lacked CDH1 hypermethylation, and there was no statistically significant correlation between CDH1 hypermethylation and age at which the tumor was diagnosed, gender, activity level, or tumor location. Conclusion This study demonstrates that E-cadherin methylation is associated with some characteristics of chronic gastritis and gastric cancer. These findings support previous research indicating that CDH1 hypermethylation may play a significant role in the development of gastric cancer.
Collapse
Affiliation(s)
- Mitra Bayat
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Shirgir
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Kazemi Veisari
- Gut and Liver Research Center, Non-Communicable Disease Research Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rouhallah Najjar Sadeghi
- Faculty of Medicine, Department of Clinical Biochemistry, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Yildiz CB, Kundu T, Gehrmann J, Koesling J, Ravaei A, Wolff P, Kraft F, Maié T, Jakovcevski M, Pensold D, Zimmermann O, Rossetti G, Costa IG, Zimmer-Bensch G. EphrinA5 regulates cell motility by modulating Snhg15/DNA triplex-dependent targeting of DNMT1 to the Ncam1 promoter. Epigenetics Chromatin 2023; 16:42. [PMID: 37880732 PMCID: PMC10601256 DOI: 10.1186/s13072-023-00516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Cell-cell communication is mediated by membrane receptors and their ligands, such as the Eph/ephrin system, orchestrating cell migration during development and in diverse cancer types. Epigenetic mechanisms are key for integrating external "signals", e.g., from neighboring cells, into the transcriptome in health and disease. Previously, we reported ephrinA5 to trigger transcriptional changes of lncRNAs and protein-coding genes in cerebellar granule cells, a cell model for medulloblastoma. LncRNAs represent important adaptors for epigenetic writers through which they regulate gene expression. Here, we investigate a lncRNA-mediated targeting of DNMT1 to specific gene loci by the combined power of in silico modeling of RNA/DNA interactions and wet lab approaches, in the context of the clinically relevant use case of ephrinA5-dependent regulation of cellular motility of cerebellar granule cells. We provide evidence that Snhg15, a cancer-related lncRNA, recruits DNMT1 to the Ncam1 promoter through RNA/DNA triplex structure formation and the interaction with DNMT1. This mediates DNA methylation-dependent silencing of Ncam1, being abolished by ephrinA5 stimulation-triggered reduction of Snhg15 expression. Hence, we here propose a triple helix recognition mechanism, underlying cell motility regulation via lncRNA-targeted DNA methylation in a clinically relevant context.
Collapse
Affiliation(s)
- Can Bora Yildiz
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany
| | - Tathagata Kundu
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Jannis Koesling
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Amin Ravaei
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy
| | - Philip Wolff
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Mira Jakovcevski
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Daniel Pensold
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Department of Neurology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Institute of Neuroscience and Medicine (INM-9)/Institute of Advanced Simulations (IAS-5), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Medical Faculty, 52074, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Institute of Zoology (Biology 2), Division of Neuroepigenetics, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
- Research Training Group 2416 Multi Senses - Multi Scales, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Zhang YL, Wang YW, He MJ, Chang JL. An updated meta-analysis investigating the association between DNMTs gene polymorphism andgastric cancer risk. PLoS One 2023; 18:e0293466. [PMID: 37878642 PMCID: PMC10599511 DOI: 10.1371/journal.pone.0293466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Gastric cancer (GC) is a prominent global health issue, as it ranks as the fifth most prevalent type of cancer and the fourth most significant cause of cancer-related mortality worldwide. Although H. pylori is known to play a role in the development of GC, genetic factors also play a role in its onset and progression. Recent studies have shown that genetic polymorphisms are strongly associated with the development of GC and that certain single nucleotide polymorphisms (SNPs) can be used as biomarkers for early diagnosis and prevention. Epigenetic disturbances, such as DNA methylation, are involved in the development of GC, and mutations in the DNA methyltransferase (DNMT) gene have been found to increase the risk of GC. However, previous findings on the association between DNMTs SNPs and GC risk have been inconsistent. In this study, an updated meta-analysis of three well-studied and controversial DNMTs polymorphic loci, DNMT1 rs16999593, DNMT3A rs1550117 and DNMT3B rs1569686, was performed to provide more reliable results. It was found that DNMT1 rs16999593 was not associated with GC, DNMT3A rs1550117 may have a positive association with GC risk, and DNMT3B rs1569686 may be a protective factor for GC. These findings may provide valuable information for early diagnosis and prevention of GC, but further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Yu-Long Zhang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, China
| | - Yu-Wei Wang
- Changzhi Medical College, Shanxi Province, Changzhi, China
| | - Ming-Jie He
- Changzhi Medical College, Shanxi Province, Changzhi, China
| | - Jian-Lan Chang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, China
| |
Collapse
|
8
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
9
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
10
|
Zhou S, Li C, Liu L, Yuan Q, Miao J, Wang H, Ding C, Guan W. Gastric microbiota: an emerging player in gastric cancer. Front Microbiol 2023; 14:1130001. [PMID: 37180252 PMCID: PMC10172576 DOI: 10.3389/fmicb.2023.1130001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Gastric cancer (GC) is a common cancer worldwide with a high mortality rate. Many microbial factors influence GC, of which the most widely accepted one is Helicobacter pylori (H. pylori) infection. H. pylori causes inflammation, immune reactions and activation of multiple signaling pathways, leading to acid deficiency, epithelial atrophy, dysplasia and ultimately GC. It has been proved that complex microbial populations exist in the human stomach. H. pylori can affect the abundance and diversity of other bacteria. The interactions among gastric microbiota are collectively implicated in the onset of GC. Certain intervention strategies may regulate gastric homeostasis and mitigate gastric disorders. Probiotics, dietary fiber, and microbiota transplantation can potentially restore healthy microbiota. In this review, we elucidate the specific role of the gastric microbiota in GC and hope these data can facilitate the development of effective prevention and therapeutic approaches for GC.
Collapse
Affiliation(s)
- Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chenxi Li
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hao Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Sheng C, Sun L, Lyu Z, Li L, Zhang Y, Zhang Y, Zhang Y, Dai H, Huang Y, Song F, Yuan Y, Chen K. Development of a modified ABC method among Helicobacter pylori infected but serum pepsinogen test-negative individuals. Helicobacter 2023; 28:e12966. [PMID: 36941759 DOI: 10.1111/hel.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Although the ABC method for gastric cancer (GC) screening has been widely adopted in Japan, it may not be suitable for other countries due to population heterogeneity and different tumor histology. We aim to develop a modified ABC method to improve GC screening performance, especially among Helicobacter pylori (Hp) infected but serum pepsinogen (sPG) test-negative individuals. METHODS A total of 4745 participants were recruited from Tianjin, China, and were classified into four groups by combined assay for Hp infection and sPG concentrations: Group A (Hp [-], PG [-]), Group B (Hp [+], PG [-]), Group C (Hp [+], PG [+]), and Group D (Hp [-], PG [+]). We used receiver-operating characteristic (ROC) curves analysis and minimum p value method to determine the optimal cutoff point for PG II in Group B. We performed logistic regressions to examine the risk of GC across different subgroups. In addition to the derivation set, the performance of the modified ABC method was also evaluated in an external set involving 16,292 participants from Liaoning, China. RESULTS In the modified ABC method, we further classified Group B as low-risk (Group B1) and high-risk subgroups (Group B2) using optimal sPG II cutoff point (20.0 ng/mL) by ROC curves analysis and minimum p value method. Compared with Group B1, Group B2 had a significantly higher risk of GC (adjusted OR = 2.54, 95% CI = 1.94-3.33). The modified ABC method showed good discrimination for GC (AUC = 0.61, 95% CI = 0.59-0.63) and improved risk reclassification (NRI = 0.11, p < .01). Similar results were observed in the validation dataset. CONCLUSIONS The modified ABC method can effectively identify high-risk population for GC among Hp-infected but sPG test-negative participants in China.
Collapse
Affiliation(s)
- Chao Sheng
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhangyan Lyu
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Limin Li
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yuhao Zhang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yacong Zhang
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yubei Huang
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Fengju Song
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Watson MM, van der Giezen M, Søreide K. Gut Microbiome Influence on Human Epigenetics, Health, and Disease. HANDBOOK OF EPIGENETICS 2023:669-686. [DOI: 10.1016/b978-0-323-91909-8.00012-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Naumann M, Ferino L, Sharafutdinov I, Backert S. Gastric Epithelial Barrier Disruption, Inflammation and Oncogenic Signal Transduction by Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:207-238. [PMID: 38231220 DOI: 10.1007/978-3-031-47331-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori exemplifies one of the most favourable bacterial pathogens worldwide. The bacterium colonizes the gastric mucosa in about half of the human population and constitutes a major risk factor for triggering gastric diseases such as stomach cancer. H. pylori infection represents a prime example of chronic inflammation and cancer-inducing bacterial pathogens. The microbe utilizes a remarkable set of virulence factors and strategies to control cellular checkpoints of inflammation and oncogenic signal transduction. This chapter emphasizes on the pathogenicity determinants of H. pylori such as the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system (T4SS), effector protein CagA, lipopolysaccharide (LPS) metabolite ADP-glycero-β-D-manno-heptose (ADP-heptose), cytotoxin VacA, serine protease HtrA, and urease, and how they manipulate various key host cell signaling networks in the gastric epithelium. In particular, we highlight the H. pylori-induced disruption of cell-to-cell junctions, pro-inflammatory activities, as well as proliferative, pro-apoptotic and anti-apoptotic responses. Here we review these hijacked signal transduction events and their impact on gastric disease development.
Collapse
Affiliation(s)
- Michael Naumann
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Lorena Ferino
- Institute of Experimental Internal Medicine, Medical Faculty, Otto Von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Irshad Sharafutdinov
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Steffen Backert
- Dept. Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
14
|
Zhou X, Matskova L, Zheng S, Wang X, Wang Y, Xiao X, Mo Y, Wölke M, Li L, Zheng Q, Huang G, Zhang Z, Ernberg I. Mechanisms of Anergic Inflammatory Response in Nasopharyngeal Carcinoma Cells Despite Ubiquitous Constitutive NF-κB Activation. Front Cell Dev Biol 2022; 10:861916. [PMID: 35938161 PMCID: PMC9353648 DOI: 10.3389/fcell.2022.861916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Commensal microbes cross talk with their colonized mucosa. We show that microbes and their cell wall components induce an inflammatory response in cultured human mucosal cells derived from the nonmalignant nasopharyngeal epithelium (NNE) cells in vitro. NNE cells show significant induction of NF-κB with nuclear shuttling and inflammatory gene response when exposed to Gram-positive bacteria (streptococci) or peptidoglycan (PGN), a component of the Gram-positive bacterial cell wall. This response is abrogated in nasopharyngeal carcinoma (NPC)–derived cell lines. The inflammatory response induced by NF-κB signaling was blocked at two levels in the tumor-derived cells. We found that NF-κB was largely trapped in lipid droplets (LDs) in the cytoplasm of the NPC-derived cells, while the increased expression of lysine-specific histone demethylase 1 (LSD1, a repressive nuclear factor) reduces the response mediated by remaining NF-κB at the promoters responding to inflammatory stimuli. This refractory response in NPC cells might be a consequence of long-term exposure to microbes in vivo during carcinogenic progression. It may contribute to the decreased antitumor immune responses in NPC, among others despite heavy T-helper cell infiltration, and thus facilitate tumor progression.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Yifang Wang
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Marleen Wölke
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Limei Li
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Qian Zheng
- Life Science Institute, Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Guangwu Huang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
- *Correspondence: Ingemar Ernberg,
| |
Collapse
|
15
|
Abstract
Like most solid tumours, the microenvironment of epithelial-derived gastric adenocarcinoma (GAC) consists of a variety of stromal cell types, including fibroblasts, and neuronal, endothelial and immune cells. In this article, we review the role of the immune microenvironment in the progression of chronic inflammation to GAC, primarily the immune microenvironment driven by the gram-negative bacterial species Helicobacter pylori. The infection-driven nature of most GACs has renewed awareness of the immune microenvironment and its effect on tumour development and progression. About 75-90% of GACs are associated with prior H. pylori infection and 5-10% with Epstein-Barr virus infection. Although 50% of the world's population is infected with H. pylori, only 1-3% will progress to GAC, with progression the result of a combination of the H. pylori strain, host susceptibility and composition of the chronic inflammatory response. Other environmental risk factors include exposure to a high-salt diet and nitrates. Genetically, chromosome instability occurs in ~50% of GACs and 21% of GACs are microsatellite instability-high tumours. Here, we review the timeline and pathogenesis of the events triggered by H. pylori that can create an immunosuppressive microenvironment by modulating the host's innate and adaptive immune responses, and subsequently favour GAC development.
Collapse
|
16
|
Tan SYX, Zhang J, Tee WW. Epigenetic Regulation of Inflammatory Signaling and Inflammation-Induced Cancer. Front Cell Dev Biol 2022; 10:931493. [PMID: 35757000 PMCID: PMC9213816 DOI: 10.3389/fcell.2022.931493] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2022] [Indexed: 01/10/2023] Open
Abstract
Epigenetics comprise a diverse array of reversible and dynamic modifications to the cell’s genome without implicating any DNA sequence alterations. Both the external environment surrounding the organism, as well as the internal microenvironment of cells and tissues, contribute to these epigenetic processes that play critical roles in cell fate specification and organismal development. On the other hand, dysregulation of epigenetic activities can initiate and sustain carcinogenesis, which is often augmented by inflammation. Chronic inflammation, one of the major hallmarks of cancer, stems from proinflammatory cytokines that are secreted by tumor and tumor-associated cells in the tumor microenvironment. At the same time, inflammatory signaling can establish positive and negative feedback circuits with chromatin to modulate changes in the global epigenetic landscape. In this review, we provide an in-depth discussion of the interconnected crosstalk between epigenetics and inflammation, specifically how epigenetic mechanisms at different hierarchical levels of the genome control inflammatory gene transcription, which in turn enact changes within the cell’s epigenomic profile, especially in the context of inflammation-induced cancer.
Collapse
Affiliation(s)
- Shawn Ying Xuan Tan
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jieqiong Zhang
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee-Wei Tee
- Chromatin Dynamics and Disease Epigenetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Epigenetic Regulation: A Link between Inflammation and Carcinogenesis. Cancers (Basel) 2022; 14:cancers14051221. [PMID: 35267528 PMCID: PMC8908969 DOI: 10.3390/cancers14051221] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Epigenetics encompasses all the modifications that occur within cells that are independent of gene mutations. The environment is the main influencer of these alterations. It is well known that a proinflammatory environment can promote and sustain the carcinogenic process and that this environment induces epigenetic alterations. In this review, we will report how a proinflammatory microenvironment that encircles the tumor core can be responsible for the induction of epigenetic drift. Abstract Epigenetics encompasses a group of dynamic, reversible, and heritable modifications that occur within cells that are independent of gene mutations. These alterations are highly influenced by the environment, from the environment that surrounds the human being to the internal microenvironments located within tissues and cells. The ways that pigenetic modifications promote the initiation of the tumorigenic process have been widely demonstrated. Similarly, it is well known that carcinogenesis is supported and prompted by a strong proinflammatory environment. In this review, we introduce our report of a proinflammatory microenvironment that encircles the tumor core but can be responsible for the induction of epigenetic drift. At the same time, cancer cells can alter their epigenetic profile to generate a positive loop in the promotion of the inflammatory process. Therefore, an in-depth understanding of the epigenetic networks between the tumor microenvironment and cancer cells might highlight new targetable mechanisms that could prevent tumor progression.
Collapse
|
18
|
Kheirollahi M, Seyed Tabaei S, Vishteh M, Zeinalian M, Mamaghani A, Zolfaghari M, Mirzapour A, Barati M. Methylation and polymorphism in CDH1 gene promoter among patients with diffuse gastric cancer. Int J Prev Med 2022; 13:44. [PMID: 35529508 PMCID: PMC9069152 DOI: 10.4103/ijpvm.ijpvm_288_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The promoter methylation and single nucleotide polymorphisms (SNPs) affect the transcription activity of cancer-related genes in several cancers including diffuse gastric cancer (DGC). Here we aimed to evaluate the promoter methylation status and the rs16260 at the promoter region of the CDH1 gene in DGC. Methods: This case-control study was performed of 48 formalin-fixed paraffin-embedded (FFPE) blocks of DGC patients and 41 fresh frozen tissue samples of healthy individuals. Methylation status was evaluated using methylation-specific polymerase chain reaction (PCR) and the rs16260 at the promoter region of the CDH1 gene was assessed using PCR and sequencing method. Results: The occurrence of methylation at the promoter region of the CDH1 gene in DGC patients was significantly higher than control samples (P < 0.0001). The methylated status was significantly associated with the poor differentiated histological type of DGC (P = 0.0428). The frequency of AC genotype and the A allele in DGC patients was significantly higher than the control subjects (P = 0.006 and 0.003, respectively). Conclusions: Here we showed that methylation at the CDH1 promoter may contribute to the DGC development, and also the AC genotype was associated with the risk of DGC.
Collapse
|
19
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
20
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021. [PMID: 34728591 PMCID: PMC8550911 DOI: 10.1007/s12038-021-00215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
|
21
|
Sflomos G, Schipper K, Koorman T, Fitzpatrick A, Oesterreich S, Lee AV, Jonkers J, Brunton VG, Christgen M, Isacke C, Derksen PWB, Brisken C. Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions. Cancers (Basel) 2021; 13:5396. [PMID: 34771558 PMCID: PMC8582475 DOI: 10.3390/cancers13215396] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs.
Collapse
Affiliation(s)
- George Sflomos
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Koen Schipper
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (S.O.); (A.V.L.)
- Magee Women’s Cancer Research Institute, Pittsburgh, PA 15213, USA
- Cancer Biology Program, Women’s Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
| | - Valerie G. Brunton
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK;
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Clare Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| | - Patrick W. B. Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (T.K.); (P.W.B.D.)
| | - Cathrin Brisken
- ISREC—Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London SW3 6JB, UK; (K.S.); (A.F.); (C.I.)
| |
Collapse
|
22
|
Prashar A, Capurro MI, Jones NL. Under the Radar: Strategies Used by Helicobacter pylori to Evade Host Responses. Annu Rev Physiol 2021; 84:485-506. [PMID: 34672717 DOI: 10.1146/annurev-physiol-061121-035930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. Helicobacter pylori (Hp), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, Hp can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Akriti Prashar
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Mariana I Capurro
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Nicola L Jones
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; .,Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Paediatrics and Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Businello G, Angerilli V, Parente P, Realdon S, Savarino E, Farinati F, Grillo F, Vanoli A, Galuppini F, Paccagnella S, Pennelli G, Mastracci L, Saragoni L, Fassan M. Molecular Landscapes of Gastric Pre-Neoplastic and Pre-Invasive Lesions. Int J Mol Sci 2021; 22:9950. [PMID: 34576114 PMCID: PMC8468646 DOI: 10.3390/ijms22189950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric carcinoma (GC) represents one of the most common and most lethal malignancies worldwide. The histopathological characterization of GC precursor lesions has provided great knowledge about gastric carcinogenesis, with the consequent introduction of effective strategies of primary and secondary prevention. In recent years, a large amount of data about the molecular events in GC development is emerging, flanking the histomorphological descriptions. In this review, we describe the landscape of molecular alterations in gastric pre-invasive lesions with a glance at their potential use in the diagnostic and therapeutic decision-making process.
Collapse
Affiliation(s)
- Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Stefano Realdon
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (E.S.); (F.F.)
| | - Fabio Farinati
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35121 Padua, Italy; (E.S.); (F.F.)
| | - Federica Grillo
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, 16132 Genova, Italy; (F.G.); (L.M.)
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, 16132 Genova, Italy
| | - Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy;
| | - Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Silvia Paccagnella
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
| | - Luca Mastracci
- Anatomic Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DICS), University of Genova, 16132 Genova, Italy; (F.G.); (L.M.)
- Ospedale Policlinico San Martino, IRCCS for Oncology and Neuroscience, 16132 Genova, Italy
| | - Luca Saragoni
- UO Anatomia Patologica, Ospedale G.B. Morgagni-L. Pierantoni, 47121 Forlì, Italy;
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (V.A.); (F.G.); (S.P.); (G.P.)
- Veneto Institute of Oncology (IOV-IRCCS), 35128 Padua, Italy;
| |
Collapse
|
24
|
Baek SM, Kim N, Kwon YJ, Lee HS, Kim HY, Lee J, Yoon H, Shin CM, Park YS, Lee DH. Role of Serum Pepsinogen II and Helicobacter pylori Status in the Detection of Diffuse-Type Early Gastric Cancer in Young Individuals in South Korea. Gut Liver 2021; 14:439-449. [PMID: 31533397 PMCID: PMC7366145 DOI: 10.5009/gnl19091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background/Aims The utility of serum pepsinogen (sPG) I and the sPGI/II ratio as biomarkers for screening individuals with gastric cancer (GC) has not been established in Korea. The aim of this study was to define the role of sPG, especially sPGII, in GC screening. Methods This study enrolled 2,940 subjects, including patients with GC (n=1,124) or gastric dysplasia (n=353) and controls (n=1,463). Tests to determine sPG levels and Helicobacter pylori (HP) infection status were performed. Area under the curve and receiver operating characteristic curve were calculated to identify the optimal cutoff values for sPG. The usefulness of sPG levels for the detection of GC and gastric dysplasia was validated by multivariate logistic regression. Results The sPGI/II ratio was associated with the risk of gastric dysplasia and advanced-stage intestinal-type GC (IGC). In contrast, sPGII was associated with the risk of early-stage diffuse-type GC (DGC). Significantly higher risk was indicated by an sPGI/II ratio <3 for gastric dysplasia and advanced-stage IGC and by sPGII levels ≥20 µg/L for early-stage DGC. Positive HP status showed a stronger association with DGC than with IGC. When sPGII level and HP status were combined, the prevalence of DGC was higher in the ≥20 µg/L sPGII and HP-positive group. Age younger than 40 years was strongly related to early-stage DGC, especially in females (odds ratio, 21.00; p=0.006). Conclusions sPGII ≥20 ng/mL and positive HP status suggest a risk of early-stage DGC, particularly in young adult females in South Korea.
Collapse
Affiliation(s)
- Sung Min Baek
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seongnam, Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
| | - Young Jae Kwon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyun Young Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jaebong Lee
- Division of Statistics in Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seongnam, Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
25
|
Zhao H, Hu H, Chen B, Xu W, Zhao J, Huang C, Xing Y, Lv H, Nie C, Wang J, He Y, Wang SQ, Chen XB. Overview on the Role of E-Cadherin in Gastric Cancer: Dysregulation and Clinical Implications. Front Mol Biosci 2021; 8:689139. [PMID: 34422902 PMCID: PMC8371966 DOI: 10.3389/fmolb.2021.689139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer is the fifth most common cancer and the third most common cause of cancer death all over the world. E-cadherin encoded by human CDH1 gene plays important roles in tumorigenesis as well as in tumor progression, invasion and metastasis. Full-length E-cadhrin tethered on the cell membrane mainly mediates adherens junctions between cells and is involved in maintaining the normal structure of epithelial tissues. After proteolysis, the extracellular fragment of the full-length E-cadhein is released into the extracellular environment and the blood, which is called soluble E-cadherin (sE-cadherin). sE-cadherin promots invasion and metastasis as a paracrine/autocrine signaling molecule in the progression of various types of cancer including gastric cancer. This review mainly summarizes the dysregulation of E-cadherin and the regulatory roles in the progression, invasion, metastasis, and drug-resistance, as well as its clinical applications in diagnosis, prognosis, and therapeutics of gastric cancer.
Collapse
Affiliation(s)
- Huichen Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Chen Huang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yishu Xing
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huifang Lv
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jianzheng Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Xiao-Bing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Watari J, Tomita T, Tozawa K, Oshima T, Fukui H, Miwa H. Preventing Metachronous Gastric Cancer after the Endoscopic Resection of Gastric Epithelial Neoplasia: Roles of Helicobacter pylori Eradication and Aspirin. Gut Liver 2021; 14:281-290. [PMID: 31547640 PMCID: PMC7234884 DOI: 10.5009/gnl19079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/11/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Whether Helicobacter pylori eradication actually reduces the risk of metachronous gastric cancer (MGC) development remains a controversial question. In this review, we addressed this topic by reviewing the results of clinical investigations and molecular pathological analyses of the roles of H. pylori eradication and aspirin administration in the prevention of MGC. In regard to the clinical studies, the results of meta-analyses and randomized control trials differ from those of retrospective studies: the former trials show that H. pylori eradication has a preventive effect on MGC, while the latter studies do not. This discrepancy may be at least partly attributable to differences in the follow-up periods: H. pylori eradication is more likely to prevent MGC over a long-term follow-up period (≥5 years) than over a short-term follow-up period. In addition, many studies have shown that aspirin may have an additive effect on MGC-risk reduction after H. pylori eradication has been achieved. Both H. pylori eradication and aspirin use induce molecular alterations in the atrophic gastritis mucosa but not in the intestinal metaplasia. Unfortunately, the molecular pathological analyses of these interventions have been limited by short follow-up periods. Therefore, a long-term prospective cohort is needed to clarify the changes in molecular events caused by these interventions.
Collapse
Affiliation(s)
- Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Katsuyuki Tozawa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
27
|
Purkait S, Patra S, Mitra S, Behera MM, Panigrahi MK, Kumar P, Kar M, Hallur V, Chandra Samal S. Elevated Expression of DNA Methyltransferases and Enhancer of Zeste Homolog 2 in Helicobacter pylori - Gastritis and Gastric Carcinoma. Dig Dis 2021; 40:156-167. [PMID: 33895728 DOI: 10.1159/000516478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
AIM The aim of this study was to study the role of key epigenetic regulators pertaining to DNA methylation and histone-modification systems in Helicobacter pylori (HP)-associated gastritis and gastric carcinogenesis. METHODS The expression of DNA methyltransferase (DNMT-1, 3A, and 3B) and the catalytic subunit of polycomb repressive complex-2 (enhancer of zeste homolog 2 [EZH2]) in gastric carcinomas (n = 104), mucosa adjacent to carcinoma (n = 104), HP-associated gastritis (n = 95), and histologically normal mucosa (n = 31) was assessed by immunohistochemistry and qRT-PCR. RESULTS The expression of all 3 DNMTs and EZH2 was significantly higher in HP-associated gastritis and carcinoma cases than in those with adjacent and normal mucosa. The expression of DNMT-1 and 3B was maximum in HP-associated gastritis. DNMT-3A showed higher expression in carcinoma-adjacent mucosa than in normal mucosa. Interestingly, the expression of EZH2 was higher in cases of HP-associated gastritis with metaplasia than in those without metaplasia and also in cases of intestinal type of adenocarcinoma. Significant positive correlation of EZH2 was identified with DNMT-1, DNMT-3A, and DNMT-3B. However, none of these markers was associated with survival outcome. CONCLUSION This study establishes an important role of the key epigenetic regulators in the pathogenesis of both HP-associated gastritis and gastric carcinoma. Higher expression of all the epigenetic markers in the gastritis and their persistence in the carcinoma point toward their implications in HP-driven gastric carcinogenesis. Further, an inter-relation between the 2 arms of epigenetics, namely, DNA methylation and histone-modification in the pathogenesis of gastric carcinoma, is also documented. Given the reversibility of epigenetic phenomenon, these molecules may be of important therapeutic use.
Collapse
Affiliation(s)
- Suvendu Purkait
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Susama Patra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suvradeep Mitra
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Minakshi M Behera
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Manas Kumar Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Pankaj Kumar
- Department of General Surgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Madhabananda Kar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vinaykumar Hallur
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Subash Chandra Samal
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
28
|
Ma Z, Liu X, Paul ME, Chen M, Zheng P, Chen H. Comparative investigation of early-onset gastric cancer. Oncol Lett 2021; 21:374. [PMID: 33777198 DOI: 10.3892/ol.2021.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Early-onset gastric cancer (EOGC) is a serious social burden. For patients with EOGC, typically considered as those aged <45 years, the underlying cause of the disease remains unclear. In addition, several misunderstandings of EOGC remain in clinical practice. Upon diagnosis, numerous patients with EOGC are already at an advanced stage (stage IV) of the disease and are unable to benefit from treatment. Moreover, several conclusions and data obtained from different EOGC studies appear to be to contradictory. The literature indicates that the incidence of EOGC is gradually rising, and that EOGC differs from traditional and familial gastric cancer in terms of clinicopathological characteristics. Patients with EOGC typically exhibit low survival rates, poor prognosis, rapid disease progression, a low degree of differentiation (signet-ring cell tumors are common) and rapid lymph node and distant metastasis, among other characteristics. The molecular genetic mechanisms of EOGC are also significantly different from those of traditional gastric cancer. An improved definition of EOCG may provide a reference for clinical diagnosis and treatment, and clear guidelines may serve as a basis for more accurate diagnosis and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Zhen Ma
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xiaolong Liu
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Maswikiti Ewetse Paul
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Mali Chen
- Department of Labor, Delivery and Recovery, Gansu Provincial Maternity and Childcare Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Peng Zheng
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
29
|
Kim HJ, Kim N, Kim HW, Park JH, Shin CM, Lee DH. Promising aberrant DNA methylation marker to predict gastric cancer development in individuals with family history and long-term effects of H. pylori eradication on DNA methylation. Gastric Cancer 2021; 24:302-313. [PMID: 32915372 DOI: 10.1007/s10120-020-01117-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE It remains unknown whether individuals with a family history (FH) of gastric cancer (GC) are associated with aberrant DNA methylation. The aim of this study was to investigate the association between aberrant DNA methylation and FH of GC. DESIGN Using quantitative MethyLight assay, MOS, miR124a-3, NKX6-1, EMX1, CDH1, and TWIST1 methylation levels in the noncancerous gastric mucosa was compared between subjects with and without FH based on GC and Helicobacter pylori (Hp) infection. Changes in the methylation levels were evaluated over time after Hp eradication. RESULTS In Hp-positive GC patients, MOS (P < 0.001), CDH1 (P < 0.001), and TWIST1 (P = 0.004) methylation were decreased in subjects with FH (n = 64) than in those without FH (n = 58). In Hp-positive controls, MOS methylation was lower in subjects with FH (n = 73) than in those without FH (n = 50) (P = 0.042), while miR124a-3 (P = 0.006), NKX6-1 (P < 0.001), and CDH1 (P < 0.001) methylation were higher in subjects with FH. CDH1 methylation constantly decreased from 2 years in GC patients and 3-4 years in controls after Hp eradication (all P < 0.001). A persistent decrease in methylation over time was not observed in other genes after eradication. CONCLUSION The methylation of MOS and CDH1 provided an association between aberrant DNA methylation and gastric carcinogenesis in FH of GC, a useful marker for GC risk in individuals with FH. Furthermore, CDH1 methylation decreased after Hp eradication.
Collapse
Affiliation(s)
- Hee Jin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea. .,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea.
| | - Hyoung Woo Kim
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University, Seoul, South Korea.,Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
30
|
Rajeev R, Dwivedi AP, Sinha A, Agarwaal V, Dev RR, Kar A, Khosla S. Epigenetic interaction of microbes with their mammalian hosts. J Biosci 2021; 46:94. [PMID: 34728591 PMCID: PMC8550911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/11/2023]
Abstract
The interaction of microbiota with its host has the ability to alter the cellular functions of both, through several mechanisms. Recent work, from many laboratories including our own, has shown that epigenetic mechanisms play an important role in the alteration of these cellular functions. Epigenetics broadly refers to change in the phenotype without a corresponding change in the DNA sequence. This change is usually brought by epigenetic modifications of the DNA itself, the histone proteins associated with the DNA in the chromatin, non-coding RNA or the modifications of the transcribed RNA. These modifications, also known as epigenetic code, do not change the DNA sequence but alter the expression level of specific genes. Microorganisms seem to have learned how to modify the host epigenetic code and modulate the host transcriptome in their favour. In this review, we explore the literature that describes the epigenetic interaction of bacteria, fungi and viruses, with their mammalian hosts.
Collapse
Affiliation(s)
- Ramisetti Rajeev
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Ambey Prasad Dwivedi
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Anunay Sinha
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology (RCB), Faridabad, India
| | - Viplove Agarwaal
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | - Anjana Kar
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
- Institute of Microbial Technology (IMTech), Chandigarh, India
| |
Collapse
|
31
|
Effect of DNMT3A polymorphisms on CpG island hypermethylation in gastric mucosa. BMC MEDICAL GENETICS 2020; 21:205. [PMID: 33066747 PMCID: PMC7562764 DOI: 10.1186/s12881-020-01142-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023]
Abstract
Background CpG methylation of tumor suppressor genes occurs in the early stage of carcinogenesis. Detecting risk factors for aberrant CpG methylation is clinically important for predicting cancer development. DNA methyltransferase (DNMT) 3a is considered to play critical roles in the DNA methylation process during pathogenesis. In this study, we evaluated the association between DNMT3A polymorphisms (rs6733868 and rs13428812) and CpG methylation status in non-cancerous gastric mucosa. Methods We determined the DNMT3A genotype and CpG methylation status of 4 genes (p14ARF, p16INK4a, DAPK, and CDH1) in 510 subjects without gastric cancer. Helicobacter pylori (HP) infection status was determined by the rapid urease test, urea breath test, speculum examination, or serum antibody test. We determined the DNMT3A genotype using polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP). CpG methylation status was determined by methylation-specific polymerase chain reaction (MSP). When the methylated band was stronger than 10 ng/μL according to the DNA marker, we judged CpG island hypermethylation (CIHM) to be present. Associations between genotypes and susceptibilities were assessed by logistic regression analysis. Results The minor allele frequencies of both polymorphisms (rs6733868 and rs13428812) were lower in the CpG methylated groups of each of the 4 genes (p14ARF, p16INK4a, DAPK, and CDH1). Using a dominant genetic model, rs6733868 was significantly associated with the hypermethylation of each gene, whereas rs13428812 was associated with the methylation of 3 genes (all except p14ARF). When low-CIHM was defined as 1 or 2 CpG islands methylated and high-CIHM was defined as 3 or more CpG islands methylated, carrying the minor allele of rs6733868 was associated with both decreased low- and high-CIHM, and that of rs13428812 also was associated with a decrease. Comparing low-CIHM with high-CIHM, carrying the minor alleles of rs6733868 or rs13428812 was related to decreased susceptibility to high-CIHM. In HP-infected subjects, carrying the minor alleles of rs6733868 or rs13428812 had a significantly greater association with decreased susceptibility to high-CIHM. Conclusions Our study indicates that polymorphisms of DNMT3A are associated with the accumulation of gene methylation in gastric mucosa. Carrying the minor alleles of rs6733868 or rs13428812 inhibits aberrant gene methylations, which are typically enhanced by HP infection.
Collapse
|
32
|
Barros SP, Hefni E, Fahimipour F, Kim S, Arora P. Maintaining barrier function of infected gingival epithelial cells by inhibition of DNA methylation. J Periodontol 2020; 91 Suppl 1:S68-S78. [PMID: 32633810 DOI: 10.1002/jper.20-0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/14/2020] [Accepted: 06/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Infection and inflammation induce epigenetic changes that alter gene expression. In periodontal disease, inflammation, and microbial dysbiosis occur, which can lead to compromised barrier function of the gingival epithelia. Here, we tested the hypotheses that infection of cultured human gingival epithelial (HGEp) cells with Porphyromonas gingivalis disrupts barrier function by inducing epigenetic alterations and that these effects can be blocked by inhibitors of DNA methylation. METHODS Primary HGEp cells were infected with P. gingivalis either in the presence or absence of the non-nucleoside DNA methyltransferase (DNMT) inhibitors RG108, (-) epigallocatechin-3-gallate (EGCG), or curcumin. Barrier function was assessed as transepithelial electrical resistance (TEER). DNA methylation and mRNA abundance were quantified for genes encoding components of three cell-cell junction complexes, CDH1, PKP2, and TJP1. Cell morphology and the abundance of cell-cell junction proteins were evaluated by confocal microscopy. RESULTS Compared to non-infected cells, P. gingivalis infection decreased TEER (P < 0.0001) of HGEp cells; increased methylation of the CDH1, PKP2, and TJP1 (P < 0.0001); and reduced their expression (mRNA abundance) (P < 0.005). Pretreatment with DNMT inhibitors prevented these infection-induced changes in HGEp cells, as well as the altered morphology associated with infection. CONCLUSION Pathogenic infection induced changes in DNA methylation and impaired the barrier function of cultured primary gingival epithelial cells, which suggests a mechanism for systemic consequences of periodontal disease. Inhibition of these events by non-nucleoside DNMT inhibitors represents a potential strategy to treat periodontal disease.
Collapse
Affiliation(s)
- Silvana P Barros
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eman Hefni
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Farahnaz Fahimipour
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Steven Kim
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
33
|
Darwiche N. Epigenetic mechanisms and the hallmarks of cancer: an intimate affair. Am J Cancer Res 2020; 10:1954-1978. [PMID: 32774995 PMCID: PMC7407342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023] Open
Abstract
Epigenetic mechanisms comprising DNA methylation, histone modifications, and noncoding RNAs affect chromatin structure and regulate gene expression. These mechanisms control normal embryonic development and adult life and their deregulation contributes to several diseases including cancer. The process of tumorigenesis is complex and results from the evolution of different "hallmarks of cancer". Hanahan and Weinberg presented in 2000 and 2011 seminal contributions in the cancer field, first the six hallmarks of cancer and a decade later two additional hallmarks and two enabling characteristics were added. Here, we surmise that epigenetic mechanisms regulate and contribute to every single hallmark in cancer, and thus represent the hallmark of hallmarks in tumorigenesis. Focusing on epigenetics as a major hallmark in cancer formation has profound preventive, therapeutic, and clinical implications.
Collapse
Affiliation(s)
- Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut Beirut, Lebanon
| |
Collapse
|
34
|
Kumar P, Sebastian A, Verma K, Dixit R, Kumari S, Singh J, Tiwary SK, Narayan G. mRNA Expression Analysis of E-Cadherin, VEGF, and MMPs in Gastric Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:85-92. [PMID: 33994733 DOI: 10.1007/s13193-020-01096-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/07/2020] [Indexed: 01/29/2023] Open
Abstract
Gastric cancer (GC) is a serious fatal cancer on a global scale because of its presentation at advanced stage. The expressions of vascular endothelial growth factor (VEGF), E-cadherin, and matrix metalloproteinases (MMPs) in other cancers have been reported. However, its expression and underlying mechanisms are little known in gastric cancer in Indian context. In this study, we detected mRNA expression of VEGF, E-cadherin, and MMPs (MMP-1, MMP-2, and MMP-9) in 73 gastric cancer tissues and 27 normal controls by reverse-transcriptase polymerase chain reaction (RT-PCR). Receiver operator characteristics analysis was done for determining the diagnostic utility of VEGF, MMPs and E-cadherin with respect to the sensitivity and specificity. The association of VEGF, MMPs, and E-cadherin expression with the clinicopathological characteristics and the prognosis was subsequently analyzed. The mRNA expression results showed that E-cadherin was significantly downregulated in 47.9% of GC in comparison to control. There was no change in VEGF expression observed in 90.4% GC cases. MMP-1, MMP-2, and MMP-9 were overexpressed in 13.7%, 28.8%, and 11% of GC, respectively, with significant change in MMP-2 (p ≤ 0.0001) and MMP-9 (p = 0.027) in comparison to control. Our results strengthen the necessity of more studies to elucidate the prophetic role of these genes in the development of gastric cancer.
Collapse
Affiliation(s)
- Puneet Kumar
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Arun Sebastian
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Khushi Verma
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ruhi Dixit
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Soni Kumari
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India.,Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Juhi Singh
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Satyendra Kumar Tiwary
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
35
|
Crimi E, Benincasa G, Cirri S, Mutesi R, Faenza M, Napoli C. Clinical epigenetics and multidrug-resistant bacterial infections: host remodelling in critical illness. Epigenetics 2020; 15:1021-1034. [PMID: 32290755 DOI: 10.1080/15592294.2020.1748918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The inappropriate use of antibiotics in man is driving to insurgence of pathogenic bacteria resistant to multiple drugs (MDR) representing a challenge in critical illness. The interaction of MDR bacteria with host cells can guide molecular perturbations of host transcriptional programmes involving epigenetic-sensitive mechanisms, mainly DNA methylation, histone modifications, and non-coding RNAs leading to pathogen survival. Clinical evidence of epigenetic manipulation from MDR bacteria mainly arises from Mycobacterium tuberculosis as well as Helicobacter pylori, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, and Legionella pneumophila infection suggesting possible biomarkers of disease. For example, DNA hypermethylation of E-cadherin (CDH1), upstream transcription factor 1/2 (USF1/2), WW domain containing oxidoreductase (WWOX), and mutL homolog 1 (MLH1) genes in gastric mucosa is correlated with malignancy suggesting useful biomarkers of early disease state. Moreover, upregulated circulating miR-361-5p, miR-889, miR-576-3p may be useful biomarkers to discriminate tuberculosis patients. Moreover, Listeria monocytogenes can indirectly induce H3 hyperacetylation leading to inflammation in human endothelial cells whereas Pseudomonas aeruginosa excretes QS 2-AA to directly induce H3 deacetylation leading to bacterial persistence in human monocytes. Remarkably, epigenetic-sensitive drugs may aid to counteract MDR in clinical setting. Trichostatin A, a histone deacetyltransferase inhibitor (HDACi), leads to AMP β-defensin 2 (HBD2) gene up-regulation in human epithelial cells suggesting a useful 'epi-therapy' for Escherichia coli-induced intestinal diseases. We update on the most current clinical studies focusing on epigenetic changes involved in bacterial-host interactions and their putative role as biomarkers or drug targets to improve precision medicine and personalized therapy in critical illness and transplantation setting.
Collapse
Affiliation(s)
- Ettore Crimi
- College of Medicine, University of Central Florida , Orlando, FL, USA.,Department of Anesthesiology and Critical Care Medicine, Ocala Health , Ocala, FL, USA
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Silvia Cirri
- Division of Anesthesiology and Intensive Care, Cardiothoracic Department, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato , Milan, Italy
| | - Rebecca Mutesi
- College of Medicine, University of Central Florida , Orlando, FL, USA
| | - Mario Faenza
- Multidisciplinary Department of Medical and Dental Specialties, Plastic Surgery Unit, University of Campania "Luigi Vanvitelli" , Naples, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli" , Naples, Italy.,IRCCS Foundation SDN , Naples, Italy
| |
Collapse
|
36
|
Piotrowski I, Kulcenty K, Suchorska W. Interplay between inflammation and cancer. Rep Pract Oncol Radiother 2020; 25:422-427. [PMID: 32372882 PMCID: PMC7191124 DOI: 10.1016/j.rpor.2020.04.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-promoting inflammation is one of the hallmarks of cancer. It has been shown that cancer development is strongly influenced by both chronic and acute inflammation process. Progress in research on inflammation revealed a connection between inflammatory processes and neoplastic transformation, the progression of tumour, and the development of metastases and recurrences. Moreover, the tumour invasive procedures (both surgery and biopsy) affect the remaining tumour cells by increasing their survival, proliferation and migration. One of the concepts explaining this phenomena is an induction of a wound healing response. While in normal tissue it is necessary for tissue repair, in tumour tissue, induction of adaptive and innate immune response related to wound healing, stimulates tumour cell survival, angiogenesis and extravasation of circulating tumour cells. It has become evident that certain types of immune response and immune cells can promote tumour progression more than others. In this review, we focus on current knowledge on carcinogenesis and promotion of cancer growth induced by inflammatory processes.
Collapse
Key Words
- ANGPTL4, angiopoietin-like 4
- CDH1, cadherin 1
- COX, cyclooxygenase
- Cancer
- EMT, epithelail to mesenchymal transition
- EP, receptor - prostaglandin receptor
- GI, gastrointensinal cancer
- IL-6, interleukin 6
- Inflammation
- MPO, myeloperoxidase
- NADPH, nicotynamide adenine dinucleotide phosphate hydrogen
- NFκB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NK, natural killer cells
- NO, nitric oxide
- NSAIDs, non-steroidal anti-inflammatory drugs
- PGE2, prostaglandin E2
- PTHrP, parathyroid hormone related protein
- RNS, reactive nitrogen species
- ROS, reactive oxigen species
- STAT3, signal transducer and activator of transcription 3
- TGF-β, transforming growth factor β
- TGFBRII, transforming growth factor, beta receptor II
- TNF-α, tumour necrosis factor α
- TNFR1, Tumor necrosis factor receptor 1
- TNFR2, Tumor necrosis factor receptor 2
- Tumor reccurence
- VEGF, vascular endothelail growth factor
- bFGF, fibroblast growth factor
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Electroradiology, University of Medical Sciences, Garbary 15 Street, 61-866 Poznań, Poland
| | - Wiktoria Suchorska
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland.,Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznań, Poland
| |
Collapse
|
37
|
Anauate AC, Leal MF, Calcagno DQ, Gigek CO, Karia BTR, Wisnieski F, dos Santos LC, Chen ES, Burbano RR, Smith MAC. The Complex Network between MYC Oncogene and microRNAs in Gastric Cancer: An Overview. Int J Mol Sci 2020; 21:ijms21051782. [PMID: 32150871 PMCID: PMC7084225 DOI: 10.3390/ijms21051782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the advancements in cancer treatments, gastric cancer is still one of the leading causes of death worldwide. In this context, it is of great interest to discover new and more effective ways of treating this disease. Accumulated evidences have demonstrated the amplification of 8q24.21 region in gastric tumors. Furthermore, this is the region where the widely known MYC oncogene and different microRNAs are located. MYC deregulation is key in tumorigenesis in various types of tissues, once it is associated with cell proliferation, survival, and drug resistance. microRNAs are a class of noncoding RNAs that negatively regulate the protein translation, and which deregulation is related with gastric cancer development. However, little is understood about the interactions between microRNAs and MYC. Here, we overview the MYC role and its relationship with the microRNAs network in gastric cancer aiming to identify potential targets useful to be used in clinic, not only as biomarkers, but also as molecules for development of promising therapies.
Collapse
Affiliation(s)
- Ana Carolina Anauate
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Departamento de Patologia, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Bruno Takao Real Karia
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Disciplina de Gastroenterologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil
| | - Leonardo Caires dos Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
| | - Rommel Rodríguez Burbano
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém PA 66075-110, Brazil; (D.Q.C.); (R.R.B.)
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém PA 66075-110, Brazil
- Laboratório de Biologia Molecular, Hospital Ophir Loyola, Belém PA 66063-240, Brazil
| | - Marília Arruda Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, São Paulo SP 04023-062, Brazil; (A.C.A.); (M.F.L.); (C.O.G.); (B.T.R.K.); (F.W.); (L.C.d.S.); (E.S.C.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
38
|
Pero R, Angrisano T, Brancaccio M, Falanga A, Lombardi L, Natale F, Laneri S, Lombardo B, Galdiero S, Scudiero O. Beta-defensins and analogs in Helicobacter pylori infections: mRNA expression levels, DNA methylation, and antibacterial activity. PLoS One 2019; 14:e0222295. [PMID: 31537016 PMCID: PMC6752957 DOI: 10.1371/journal.pone.0222295] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides can protect the gastric mucosa from bacteria, but Helicobacter pylori (H. pylori) can equally colonize the gastric apparatus. To understand beta-defensin function in H. pylori-associated chronic gastritis, we investigated susceptibility, human beta-defensin mRNA expression, and DNA methylation changes to promoters in the gastric mucosa with or without H. pylori infection. We studied the expression of HBD2 (gene name DEFB4A), HBD3 (DEFB103A), and HBD4 (DEFB104) using real-time PCR in 15 control and 10 H. pylori infection patient gastric specimens. This study demonstrates that H. pylori infection is related to gastric enhancement of inducible HBD2, but inducible HBD3 and HBD4 expression levels remained unchanged. HBD2 gene methylation levels were overall higher in H. pylori-negative samples than in H. pylori-positive samples. We also assessed antimicrobial susceptibility using growth on blood agar. The H. pylori strain Tox+ was susceptible to all defensins tested and their analogs (3N, 3NI). These results show that HBD2 is involved in gastritis development driven by H. pylori, which facilitates the creation of an epigenetic field during H. pylori-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- * E-mail: (RP); (OS)
| | - Tiziana Angrisano
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Mariarita Brancaccio
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Annarita Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Lucia Lombardi
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Natale
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
| | - Stefania Galdiero
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
- * E-mail: (RP); (OS)
| |
Collapse
|
39
|
Abstract
An organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed, mainly for the alimentary tract. As representative diseases, gastroesophageal reflux disease, chronic gastritis and inflammatory bowel disease (ulcerative colitis and Crohn’s disease of the colitis type) were adopted for this discussion. Tissue remodeling is such an important part of tumorigenesis in this sequence that an organ-specific chronic inflammation–remodeling–carcinoma sequence has been proposed in detail. Chronic inflammation accelerates the cycle of tissue injury and regeneration; in other words, cell necrosis (or apoptosis) and proliferation result in tissue remodeling in long-standing cases of inflammation. Remodeling encompasses epithelial cell metaplasia and stromal fibrosis, and modifies epithelial–stromal cell interactions. Further, the accumulation of genetic, epigenetic and molecular changes—as well as morphologic disorganization—also occurs during tissue remodeling. The expression of mucosal tissue adapted to chronic inflammatory injury is thought to occur at an early stage. Subsequently, dysplasia and carcinoma develop on a background of remodeling due to continuous, active inflammation. Accordingly, organ-specific chronic inflammation should be ameliorated or well controlled with appropriate monitoring if complete healing is unachievable.
Collapse
|
40
|
Prediction of onset of remnant gastric cancer by promoter DNA methylation of CDO1/ HOPX/ Reprimo/ E-cadherin. Oncotarget 2019; 10:2423-2434. [PMID: 31069006 PMCID: PMC6497431 DOI: 10.18632/oncotarget.26814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Early detection of remnant gastric cancer (RGC) is required to reduce the risk of death, but long-term endoscopic surveillance is difficult after gastrectomy. In this study, data for the methylation status of 4 methylation genes (CDO1, HOPX, Reprimo, and E-cadherin) to predict the onset of RGC are presented. Results The 4 genes showed hypermethylation in RGC tumors in contrast to the corresponding non-cancerous mucosa tissues. The methylation level in the non-cancerous mucosa tissues of the initial surgery was obviously high in initial malignant disease for CDO1 (P = 0.0001), while in initial benign one for E-cadherin (P = 0.003). Promoter DNA methylation status in the remnant non-cancerous mucosa tissues together with the basic clinical data in turn predicted either initial malignant disease or initial benign disease with a high AUC score of 0.94, suggesting that methylation events are differentially recognized between the initial malignant and benign disease. We then finally confirmed that 4 genes hypermethylation of the non-cancerous tissues by biopsy prior to onset of RGC could predict terms until RGC occurred (P < 0.0001). Methods A total of 58 RGC patients were used to establish the model. The 4 genes promoter methylation were analyzed for DNA obtained from the patient's specimens using quantitative methylation specific polymerase chain reaction. Conclusions This risk model would help provide guidance for endoscopic surveillance plan of RGC after gastrectomy.
Collapse
|
41
|
Muhammad JS, Eladl MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:23. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
42
|
Chlamydia psittaci in Ocular Adnexal MALT Lymphoma: a Possible Causative Agent in the Pathogenesis of This Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018. [DOI: 10.1007/s40588-018-0108-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Alvarez MC, Fernandes J, Michel V, Touati E, Ribeiro ML. Effect of Helicobacter pylori Infection on GATA-5 and TFF1 Regulation, Comparison Between Pediatric and Adult Patients. Dig Dis Sci 2018; 63:2889-2897. [PMID: 30083861 DOI: 10.1007/s10620-018-5223-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 07/23/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND GATA factors, which constitute a family of transcription regulatory proteins, participate in gastrointestinal development. Trefoil factor 1 (TFF1) plays a crucial role in mucosal defense and healing, and evidence suggests that GATA-5 mediated its regulation. Gastric cancer is a multiple-step process triggered by Helicobacter pylori and is characterized by accumulation of molecular and epigenetic alteration. The aim of this study was to evaluate the effect of H. pylori infection on the regulation of GATA-5 and TFF1 in vitro and in vivo. RESULTS Infected cells exhibited upregulation of GATA-5 and TFF1 after 48 h. An increase in GATA-5 and TFF1 mRNA levels was also found in mice samples after 6 and 12 months of infection, respectively. In human samples, we found an association between H. pylori infection and GATA-5 upregulation. In fact, among H. pylori-infected patients, hypermethylation was observed in 45.5% of pediatric samples, in 62.6% of chronic gastritis samples, and in 63% of gastric cancer samples. Regarding TFF1, the expression levels were similar in pediatrics and adults patients, and were independent of H. pylori infection, and the expression of these factors was downregulated in gastric cancer samples. GATA-5 promoter methylation was associated with a decrease in TFF1 mRNA levels. CONCLUSIONS Our results suggest that the upregulation of GATA-5 and TFF1 observed in vitro and in vivo may be correlated with a protective effect of the mucosa in response to infection. The epigenetic inactivation of GATA-5 observed in human biopsies from infected patients may suggest that this alteration is an early event occurring in association with H. pylori infection.
Collapse
Affiliation(s)
- Marisa Claudia Alvarez
- Programa de Pos Graduacao em Ciencias da Saude, Universidade São Francisco, Av. São Francisco de Assis, 218. Jd. São José, Bragança Paulista, SP, 12196-900, Brazil.,Programa de Pós Graduação em Genética e Biologia Molecular, UNICAMP, Campinas, SP, Brazil
| | - Julien Fernandes
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Valérie Michel
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Eliette Touati
- Unité de Pathogenése de Helicobacter, Institut Pasteur, Paris, France
| | - Marcelo Lima Ribeiro
- Programa de Pos Graduacao em Ciencias da Saude, Universidade São Francisco, Av. São Francisco de Assis, 218. Jd. São José, Bragança Paulista, SP, 12196-900, Brazil. .,Programa de Pós Graduação em Genética e Biologia Molecular, UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
44
|
Ge Y, Wu Q, Ma G, Shao W, Liu H, Zhang Q, Xin J, Xue Y, Du M, Zhao Q, Wang M, Chu H, Zhang Z. Hypermethylation of EIF4E promoter is associated with early onset of gastric cancer. Carcinogenesis 2018; 39:66-71. [PMID: 29342273 DOI: 10.1093/carcin/bgx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Although gastric cancer (GC) in young adults (≤ 45 years) accounts for fewer than 10% of newly diagnosed cases, the young patients are more likely to have advanced disease at presentation compared with elderly patients. Previous studies have identified that the DNA methylation of genomes are different during aging. Our study aimed to explore the association between DNA methylation and the onset of GC. We applied Illumina HumanMethylation450 BeadChip to examine methylation expression profiles and compared methylation expression patterns in five early onset GC patients and seven elderly patients. Additionally, we evaluated the associations of methylation expression with different clinicopathological characteristics of GC. Our results showed that the pattern of genome-wide methylation expression was significantly different between early onset and elderly GC. The top 10 hypomethylation and hypermethylation CpG sites were selected for further analyses in The Cancer Genome Atlas (TCGA) database. We found that the hypermethylation of cg11037477, located at the promoter of EIF4E, was significantly associated with age at diagnosis and the expression of EIF4E. Besides, GC patients with high level of cg11037477 were more likely to have advance disease with T3/T4 invasion and III/IV stage. The cg11037477 hypermethylation and EIF4E down-expression were significantly related to poor survival of GC patients. Our study provides new insights into the molecular mechanism of early onset patients with GC and suggests that methylation of cg11037477 and expression of EIF4E may act as prognostic markers in GC.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qin Wu
- Department of Medical Technology, Yancheng Insititute of Health Sciences, Yancheng, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Long-term effects of H. pylori eradication on epigenetic alterations related to gastric carcinogenesis. Sci Rep 2018; 8:14369. [PMID: 30254207 PMCID: PMC6156585 DOI: 10.1038/s41598-018-32717-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The risk of gastric cancer (GC) remains in precancerous conditions, including atrophic mucosa and intestinal mucosa (IM), even after H. pylori treatment. To define the molecular changes following H. pylori eradication, molecular alterations in the gastric mucosa with and without GC were evaluated in a long-term follow-up study. A total of 232 biopsy specimens from 78 consecutive patients, including atrophic gastritis patients with follow-up ≥3 y after successful H. pylori eradication (AG group), patients who developed early GC after successful eradication (≥3 y) (GC group), and patients with H. pylori-positive atrophic gastritis (Hp group), were analyzed. H. pylori eradication was associated with significant reductions of methylation of several genes/loci in atrophic mucosa (non-IM), but not in IM. In contrast, the incidence of CpG island methylator phenotype (CIMP) in IM was significantly higher in the GC group than in the AG group. miR-124a-3 methylation and miR-34c methylation were more frequently identified in IM, with very few in non-IM mucosa among the three groups. H. pylori eradication can reverse methylation only in non-IM mucosa. CIMP in IM may have potential as a surrogate maker of GC development, and methylation of miR-124a-3 and miR-34c is a molecular event in IM that may not be associated with GC development.
Collapse
|
46
|
Bahnassy AA, Helal TEA, El-Ghazawy IM, Samaan GF, Galal El-Din MM, Abdellateif MS, Desouky E, Zekri ARN. The role of E-cadherin and Runx3 in Helicobacter Pylori - Associated gastric carcinoma is achieved through regulating P21waf and P27 expression. Cancer Genet 2018; 228-229:64-72. [PMID: 30553475 DOI: 10.1016/j.cancergen.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/08/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We assessed the role of E-cadherin (CDH1), runt-related transcription factor 3, p21waf and p27 promoter methylation (PM) and protein expression in Helicobacter pylori (HP)-associated gastric carcinomas (GCs) and adjacent non-neoplastic tissues (ANNTs). PATIENTS AND METHODS 192 cases were assessed for PM and protein expression of CDH1, RUNX3, p21waf and p27 by methylation-specific PCR (MSP) and immunohistochemistry. The CagA gene was also assessed. RESULTS In GCs, 66 (34.4%) and 84 (43.8%) cases showed CDH1-PM and reduced expression. It is significantly affected in GCs rather than in non-neoplastic groups (p < 0.001). In ANNTs, 108 (56.3%) cases showed CDH1-PM and all cases revealed preserved protein expression. RUNX3-PM was detected in 78 GCs (40.6%) and 69 ANNTs (35.9%), whereas reduced protein expression was detected in 99 (51.65%) GC compared to ANNTs 90 (46.9%). p21WAF and p27 showed PM in (48.4% and 45.3%) GCs and ANNTs; respectively. p21waf protein was reduced in 90 (46.9%) cases and 91 ANNTs (47.4%). p27 was reduced in 86 (44.8%) cases and 87 ANNTs (45.3%). CDH1 aberrations correlated with HP in tumors and ANNTs and with diffuse/intestinal tumors (p = 0.014, p = 0.014 and p = 0.02). RUNX3 aberrations associated with HP (p = 0.04), high grade (p = 0.04), and advanced stage (p = 032). Tumor grade associated with RUNX3-PM, CDH, p21 and p27 protein (p < 0.05 for all). Tumor stage associated significantly with PM and reduced protein expression of all markers. Positive lymph nodes associated significantly with p27PM (p < 0.001). CONCLUSIONS HP plays an important role in the development and progression of GC through silencing of CDH1, RUNX3, p21WAF and p27 expression.
Collapse
Affiliation(s)
- Abeer A Bahnassy
- Tissue Culture and Cytogenetics Unit, Pathology Department, NCI, Cairo University, Egypt.
| | - Thanaa El-A Helal
- Pathology Department, Faculty of Medicine, Ain Shams University, Egypt
| | | | - Gamal F Samaan
- Clinical Pathology Department, Mataryia Teaching Hospital, Cairo, Egypt
| | | | - Mona S Abdellateif
- Molecular Virology and Immunology Unit, Cancer Biology Department, NCI, Cairo University, Egypt.
| | - Eman Desouky
- Epidemiology and Biostatistics Department, NCI, Cairo University, Egypt
| | - Abdel-Rahman N Zekri
- Molecular Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
47
|
Gao Y, Li S, Bao X, Luo C, Yang H, Wang J, Zhao S, Zheng N. Transcriptional and Proteomic Analysis Revealed a Synergistic Effect of Aflatoxin M1 and Ochratoxin A Mycotoxins on the Intestinal Epithelial Integrity of Differentiated Human Caco-2 Cells. J Proteome Res 2018; 17:3128-3142. [DOI: 10.1021/acs.jproteome.8b00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanan Gao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Songli Li
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Xiaoyu Bao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Chaochao Luo
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Huaigu Yang
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Jiaqi Wang
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Shengguo Zhao
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| | - Nan Zheng
- Milk and Dairy Product Inspection Center of the Ministry of Agriculture, Beijing 100193, PR China
| |
Collapse
|
48
|
Zhang X, Shi D, Liu YP, Chen WJ, Wu D. Effects of the Helicobacter pylori Virulence Factor CagA and Ammonium Ion on Mucins in AGS Cells. Yonsei Med J 2018; 59:633-642. [PMID: 29869461 PMCID: PMC5990679 DOI: 10.3349/ymj.2018.59.5.633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/17/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the effects of Helicobacter pylori (H. pylori)-CagA and the urease metabolite NH₄⁺ on mucin expression in AGS cells. MATERIALS AND METHODS AGS cells were transfected with CagA and/or treated with different concentrations of NH₄CL. Mucin gene and protein expression was assessed by qPCR and immunofluorescence assays, respectively. RESULTS CagA significantly upregulated MUC5AC, MUC2, and MUC5B expression in AGS cells, but did not affect E-cadherin and MUC6 expression. MUC5AC, MUC6, and MUC2 expression in AGS cells increased with increasing NH₄⁺ concentrations until reaching a peak level at 15 mM. MUC5B mRNA expression in AGS cells (NH₄⁺ concentration of 15 mM) was significantly higher than that at 0, 5, and 10 mM NH₄⁺. No changes in E-cadherin expression in AGS cells treated with NH₄⁺ were noted, except at 20 mM. The expression of MUC5AC, MUC2, and MUC6 mRNA in CagA-transfected AGS cells at an NH₄⁺ concentration of 15 mM was significantly higher than that at 0 mM, and decreased at higher concentrations. The expression of MUC5B mRNA increased with increases in NH₄⁺ concentration, and was significantly higher compared to that in untreated cells. No significant change in the expression of E-cadherin mRNA in CagA-transfected AGS cells was observed. Immunofluorescence assays confirmed the observed changes. CONCLUSION H. pylori may affect the expression of MUC5AC, MUC2, MUC5B, and MUC6 in AGS cells via CagA and/or NH₄⁺, but not E-cadherin.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastroenterology, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ding Shi
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, China.
| | - Yong Pan Liu
- Department of Gastroenterology, the First People's Hospital of Yuhang District, Hangzhou, China
| | - Wu Jie Chen
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, China
| | - Dong Wu
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
49
|
Zhang Y, Li D, Dai Y, Li R, Gao Y, Hu L. The Role of E-cadherin in Helicobacter pylori-Related Gastric Diseases. Curr Drug Metab 2018; 20:23-28. [PMID: 29938616 DOI: 10.2174/1389200219666180625113010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori)-related gastric diseases are a series of gastric mucosal disorders associated with H. pylori infection. Gastric cancer (GC) is widely believed to evolve from gastritis and gastric ulcer. As an important adhesion molecule of epithelial cells, E-cadherin plays a key role in the development of gastric diseases. In this review, we aim to seek the characteristic of E-cadherin expression at different stages of gastric diseases. METHODS We searched plenty of databases for research literature about E-cadherin expression in H. pylori-related gastric diseases, and reviewed the relationship of E-cadherin and H. pylori, and the role of E-cadherin at different stages of gastric diseases. RESULTS H. pylori was shown to decrease E-cadherin expression by various ways in vitro, while most of clinical studies have not found the relationship between H. pylori and E-cadherin expression. It is defined that poor outcome of GC is related to loss expression of E-cadherin, but it is still unclear when qualitative change of E-cadherin expression in gastric mucosa emerges. CONCLUSION Expression level of E-cadherin in gastric cells may be a consequence of injury factors and body's selfrepairing ability. More studies on E-cadherin expression in gastric mucosa with precancerous lesions need to be performed, which may be potential and useful for early detection, prevention and treatment of GC.
Collapse
Affiliation(s)
- Yunzhan Zhang
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Danyan Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yunkai Dai
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ruliu Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yong Gao
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ling Hu
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
50
|
β-Catenin gene promoter hypermethylation by reactive oxygen species correlates with the migratory and invasive potentials of colon cancer cells. Cell Oncol (Dordr) 2018; 41:569-580. [DOI: 10.1007/s13402-018-0391-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 12/16/2022] Open
|