1
|
Chen S, Niu X, Zhang Y, Wen J, Bao M, Li Y, Gao Y, Wang X, Liu X, Yong Y, Yu Z, Ma X, Eun JB, Shim JH, El-Aty AMA, Ju X. Butyrolactone-I from marine fungi alleviates intestinal barrier damage caused by DSS through regulating Lactobacillus johnsonii and its metabolites in the intestine of mice. J Nutr Biochem 2024:109786. [PMID: 39447992 DOI: 10.1016/j.jnutbio.2024.109786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Butyrolactone-I (BTL-1), a secondary metabolite from the marine fungus Aspergillus terreus, exhibits numerous biological activities. Previous research has indicated that Butyrolactone-I alleviates intestinal epithelial inflammation via the TLR4/NF-κB and MAPK pathways. However, the mechanisms underlying its protection against intestinal barrier damage remain unclear. This study aims to further elucidate these mechanisms. We observed that BTL-1 administration increased the abundance of Lactobacillus johnsonii (LJ) in both in vivo and in vitro experiments, prompting an investigation into the effects of LJ and its metabolites on DSS-induced inflammatory bowel disease (IBD). The results demonstrated that BTL-1 significantly upregulated tight junction (TJ) and adherens junction (AJ) proteins, maintained intestinal barrier integrity, and alleviated DSS-induced IBD in mice. These effects were associated with the proliferation of LJ and its metabolites, such as butyric and propionic acids, and the inhibition of the MAPK signaling pathway in the colon. Interestingly, administering LJ alone produced a protective effect against DSS-induced IBD similar to that observed with BTL-1. Furthermore, butyric acid, a metabolite of LJ, also upregulated TJ/AJ proteins in intestinal epithelial cells through the MAPK signaling pathway. Our findings suggest that BTL-1 regulates intestinal flora, promotes LJ proliferation, protects intestinal barrier integrity, increases the concentrations of butyric and propionic acids, and ultimately inhibits the activation of the MAPK signaling pathway in mice to alleviate IBD. Therefore, BTL-1 could potentially be used as a natural drug to prevent IBD and maintain intestinal flora balance. IMPORTANCE: We explored how butyrolactone-I exerts a preventive effect on IBD through intestinal bacteria (Lactobacillus johnsonii).
Collapse
Affiliation(s)
- Shengwei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xueting Niu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yi Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiaying Wen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Minglong Bao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Yuan Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xinchen Wang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China
| | - Xiaoxi Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingbing Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jong-Bang Eun
- Department of Food Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory, Biotechnology Research Institute, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 500-757, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Shenzheng Institute of Guangdong Ocean University, Organization X, Shenzheng, China.
| |
Collapse
|
2
|
Lv Y, Peng J, Ma X, Liang Z, Salekdeh GH, Ke Q, Shen W, Yan Z, Li H, Wang S, Ding X. Network Analysis of Gut Microbial Communities Reveals Key Reason for Quercetin Protects against Colitis. Microorganisms 2024; 12:1973. [PMID: 39458282 PMCID: PMC11509604 DOI: 10.3390/microorganisms12101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
As one of the most representative natural products among flavonoids, quercetin (QUE) has been reported to exhibit beneficial effects on gut health in recent years. In this study, we utilized a dextran sulfate sodium (DSS)-induced colitis mice model to explore the protective effects and underlying mechanisms of QUE on colitis. Our data demonstrated that QUE oral gavage administration significantly ameliorates the symptoms and histopathological changes associated with colitis. Additionally, the concentration of mucin-2, the number of goblet cells, and the expression of tight junction proteins (such as ZO-1, Occludin, and Claudin-1) were all found to be increased. Furthermore, QUE treatment regulated the levels of inflammatory cytokines and macrophage polarization, as well as the oxidative stress-related pathway (Nrf2/HO-1) and associated enzymes. Additionally, 16S rDNA sequencing revealed that QUE treatment rebalances the alterations in colon microbiota composition (inlcuding Bacteroidaceae, Bacteroides, and Odoribacter) in DSS-induced colitis mice. The analysis of network dynamics reveals a significant correlation between gut microbial communities and microenvironmental factors associated with inflammation and oxidative stress, in conjunction with the previously mentioned findings. Collectively, our results suggest that QUE has the potential to treat colitis by maintaining the mucosal barrier, modulating inflammation, and reducing oxidation stress, which may depend on the reversal of gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Lv
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Jing Peng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xiaoyu Ma
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj 3135933151, Iran;
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Qunhua Ke
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Hongsheng Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Shengyi Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, China; (Y.L.); (J.P.); (X.M.); (Z.L.); (Q.K.); (W.S.); (Z.Y.); (H.L.)
| |
Collapse
|
3
|
Nie Y, Lin T, Yang Y, Liu W, Hu Q, Chen G, Huang L, Wu H, Kong C, Lei Z, Guo J. The downregulation of tight junction proteins and pIgR in the colonic epithelium causes the susceptibility of EpCAM +/- mice to colitis and gut microbiota dysbiosis. Front Mol Biosci 2024; 11:1442611. [PMID: 39188786 PMCID: PMC11345229 DOI: 10.3389/fmolb.2024.1442611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Background The genetic factors play important roles on the pathogenesis of inflammatory bowel disease (IBD). EpCAM is highly expressed in the intestinal epithelium. It is still unclear if the decrease or somatic mutation of EpCAM could cause IBD. Methods The WT and EpCAM+/- mice were administrated with DSS intermittently for nearly 8 weeks. The colon, liver and feces were harvested to check the morphological and histological changes, the expression of inflammatory genes and the gut microbiota via H&E staining, immunofluorescence, qPCR, western blot and 16S rDNA sequence assays. Results The DSS administration induced more serious inflammation in the colon of EpCAM+/- mice than WT mice. Compared to DSS-induced WT mice, the transcriptional levels of IL-6, F4/80, Ly6g, Ly6d and Igha were significantly higher in the colon of DSS-induced EpCAM+/- mice. The protein levels of MMP7 and MMP8 and the activation of JNK, ERK1/2 and p38 were significantly increased in the colon of DSS-induced EpCAM+/- mice. The protein levels of CLDN1, CLDN2, CLDN3, CLDN7, OCLD, ZO-1 and pIgR were significantly decreased in the colon of DSS-induced EpCAM+/- mice. The serum concentration of LPS was significantly higher in the DSS-induced EpCAM+/- mice which caused the acute inflammation in the liver of them. The expression of Pigr was significantly reduced in the liver of DSS-induced EpCAM+/- mice. The ratio of Firmicutes/Bacteroidetes at the phylum level was higher in the gut microbiota of EpCAM+/- mice than WT mice. Conclusion In conclusion, the heterozygous mutation of EpCAM increased the susceptibility to colitis, gut microbiota dysbiosis and liver injury.
Collapse
Affiliation(s)
- Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Ting Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Cunjie Kong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
Li Y, Wu L, Yong Y, Niu X, Gao Y, Zhou Q, Xie H, Liu X, Li Y, Yu Z, Abd El-Aty AM, Ju X. Enhancing gut barrier integrity: Upregulation of tight junction proteins by chitosan oligosaccharide through the ERK1/2 signaling pathway. Nutrition 2024; 124:112428. [PMID: 38663127 DOI: 10.1016/j.nut.2024.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 06/17/2024]
Abstract
OBJECTIVES This study aimed to explore the protective mechanism of chitosan oligosaccharide (COS) against lipopolysaccharide (LPS)-induced inflammatory responses in IEC-6 cells and dextran sodium sulfate (DSS)-induced colitis in mice. METHODS The cell inflammation model was constructed by LPS in vitro and enteritis model by DSS in vivo. RESULTS Following LPS exposure, IEC-6 cell proliferation significantly decreased, epithelial cell integrity was compromised, and TNF-α and IL-1β levels were increased. However, COS pretreatment reversed these changes. In vivo, DSS-treated mice exhibited evident pathological alterations, including heightened inflammatory levels and significantly decreased expression of tight junction proteins and critical proteins in the Mitogen activated proteins kinase signaling pathway. Nevertheless, COS administration notably reduced inflammatory levels and increased the expression of tight junction proteins and key proteins in the Mitogen activated proteins kinase signaling pathway. CONCLUSIONS Our findings suggest that COS safeguards gut barrier integrity by upregulating tight junction proteins through the ERK1/2 signaling pathway. Therefore, COS has emerged as a promising candidate for novel drug interventions against inflammatory bowel disease.
Collapse
Affiliation(s)
- Yin Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Lianyun Wu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Yuan Gao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Qiu Zhou
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Huili Xie
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China; Marine Medical Research and Development Centre, Shenzheng Institute of Guangdong Ocean University, Shenzheng, China.
| |
Collapse
|
5
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
6
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
7
|
Naser AN, Xing T, Tatum R, Lu Q, Boyer PJ, Chen YH. Colonic crypt stem cell functions are controlled by tight junction protein claudin-7 through Notch/Hippo signaling. Ann N Y Acad Sci 2024; 1535:92-108. [PMID: 38598500 PMCID: PMC11111361 DOI: 10.1111/nyas.15137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
The tight junction protein claudin-7 is essential for tight junction function and intestinal homeostasis. Cldn7 deletion in mice leads to an inflammatory bowel disease-like phenotype exhibiting severe intestinal epithelial damage, weight loss, inflammation, mucosal ulcerations, and epithelial hyperplasia. Claudin-7 has also been shown to be involved in cancer metastasis and invasion. Here, we test our hypothesis that claudin-7 plays an important role in regulating colonic intestinal stem cell function. Conditional knockout of Cldn7 in the colon led to impaired epithelial cell differentiation, hyperproliferative epithelium, a decrease in active stem cells, and dramatically altered gene expression profiles. In 3D colonoid culture, claudin-7-deficient crypts were unable to survive and form spheroids, emphasizing the importance of claudin-7 in stem cell survival. Inhibition of the Hippo pathway or activation of Notch signaling partially rescued the defective stem cell behavior. Concurrent Notch activation and Hippo inhibition resulted in restored colonoid survival, growth, and differentiation to the level comparable to those of wild-type derived crypts. In this study, we highlight the essential role of claudin-7 in regulating Notch and Hippo signaling-dependent colonic stem cell functions, including survival, self-renewal, and differentiation. These new findings may shed light on potential avenues to explore for drug development in colorectal cancer.
Collapse
Affiliation(s)
- Amna N. Naser
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Tiaosi Xing
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Neural and Behavioral Science Department, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Rodney Tatum
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Philip J. Boyer
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Yan-Hua Chen
- Department of Anatomy and Cell Biology, University of South Carolina, Columbia, South Carolina, USA
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
8
|
Hensel IV, Éliás S, Steinhauer M, Stoll B, Benfatto S, Merkt W, Krienke S, Lorenz HM, Haas J, Wildemann B, Resnik-Docampo M. SLE serum induces altered goblet cell differentiation and leakiness in human intestinal organoids. EMBO Mol Med 2024; 16:547-574. [PMID: 38316934 PMCID: PMC10940301 DOI: 10.1038/s44321-024-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Human intestinal epithelial cells are the interface between luminal content and basally residing immune cells. They form a tight monolayer that constantly secretes mucus creating a multilayered protective barrier. Alterations in this barrier can lead to increased permeability which is common in systemic lupus erythematosus (SLE) patients. However, it remains unexplored how the barrier is affected. Here, we present an in vitro model specifically designed to examine the effects of SLE on epithelial cells. We utilize human colon organoids that are stimulated with serum from SLE patients. Combining transcriptomic with functional analyses revealed that SLE serum induced an expression profile marked by a reduction of goblet cell markers and changed mucus composition. In addition, organoids exhibited imbalanced cellular composition along with enhanced permeability, altered mitochondrial function, and an interferon gene signature. Similarly, transcriptomic analysis of SLE colon biopsies revealed a downregulation of secretory markers. Our work uncovers a crucial connection between SLE and intestinal homeostasis that might be promoted in vivo through the blood, offering insights into the causal connection of barrier dysfunction and autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Wolfgang Merkt
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Krienke
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
9
|
Mobbs CL, Darling NJ, Przyborski S. An in vitro model to study immune activation, epithelial disruption and stromal remodelling in inflammatory bowel disease and fistulising Crohn's disease. Front Immunol 2024; 15:1357690. [PMID: 38410518 PMCID: PMC10894943 DOI: 10.3389/fimmu.2024.1357690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
At present, preclinical models of inflammatory bowel disease (IBD) are insufficient, limiting translation between research and new therapeutics. This is especially true for fistulising Crohn's disease (CD), as the severe lack of relevant models hinders research progression. To address this, we present in vitro human IBD mucosal models that recapitulate multiple pathological hallmarks of IBD simultaneously in one model system - immune cell infiltration, stromal remodelling and epithelial disruption. Stimulation of models induces epithelial aberrations common in IBD tissue including altered morphology, microvilli abnormalities, claudin gene expression changes and increased permeability. Inflammatory biomarkers are also significantly increased including cytokines and chemokines integral to IBD pathogenesis. Evidence of extracellular matrix remodelling, including upregulated matrix-metalloproteinases and altered basement membrane components, suggests the models simulate pathological stromal remodelling events that closely resemble fistulising CD. Importantly, MMP-9 is the most abundant MMP and mimics the unique localisation observed in IBD tissue. The inflamed models were subsequently used to elucidate the involvement of TNF-α and IFN- γ in intestinal stromal remodelling, in which TNF-α but not IFN- γ induced MMP upregulation, specifically of MMP-3 and MMP-9. Collectively, our results demonstrate the potential of the IBD models for use in preclinical research in IBD, particularly for fistulising CD.
Collapse
Affiliation(s)
- Claire L. Mobbs
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| | - Nicole J. Darling
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom
- Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, United Kingdom
| |
Collapse
|
10
|
Wojcik-Grzybek D, Sliwowski Z, Kwiecien S, Ginter G, Surmiak M, Hubalewska-Mazgaj M, Chmura A, Wojcik A, Kosciolek T, Danielak A, Targosz A, Strzalka M, Szczyrk U, Ptak-Belowska A, Magierowski M, Bilski J, Brzozowski T. Alkaline Phosphatase Relieves Colitis in Obese Mice Subjected to Forced Exercise via Its Anti-Inflammatory and Intestinal Microbiota-Shaping Properties. Int J Mol Sci 2024; 25:703. [PMID: 38255781 PMCID: PMC10815191 DOI: 10.3390/ijms25020703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dagmara Wojcik-Grzybek
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Grzegorz Ginter
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Adrianna Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Malgorzata Strzalka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Urszula Szczyrk
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland;
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| |
Collapse
|
11
|
Hankan S, Pongkorpsakol P. Matrix metalloproteinase-7 and claudin-7 as novel identified therapeutic targets for restoration of intestinal epithelial barrier in inflammatory bowel diseases. Tissue Barriers 2024; 12:2182117. [PMID: 36803163 PMCID: PMC10832911 DOI: 10.1080/21688370.2023.2182117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/20/2023] Open
Abstract
Intestinal tight junction disruption and mucosal immune dysregulation contribute to pathogenesis and progression of inflammatory bowel diseases (IBD). A proteolytic enzyme matrix metalloproteinase 7 (MMP-7), which is highly expressed in intestinal tissue, is implicated to IBD and other immune overactivation-associated diseases. In the issue of the Frontiers in Immunology, Ying Xiao and colleagues demonstrate that MMP-7-mediated claudin-7 degradation promotes IBD pathogenesis and disease progression. Therefore, inhibition of MMP-7 enzymatic activity can be a therapeutic strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Sunisa Hankan
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
| | - Pawin Pongkorpsakol
- Laboratory of Epithelial Tight Junction Pathophysiology, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| |
Collapse
|
12
|
Ahmad R, Kumar B, Thapa I, Talmon GA, Salomon J, Ramer-Tait AE, Bastola DK, Dhawan P, Singh AB. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes 2023; 15:2282789. [PMID: 38010872 PMCID: PMC10730149 DOI: 10.1080/19490976.2023.2282789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology and the Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
13
|
Voutsadakis IA. Tight Junction Claudins and Occludin Are Differentially Regulated and Expressed in Genomically Defined Subsets of Colon Cancer. Curr Issues Mol Biol 2023; 45:8670-8686. [PMID: 37998722 PMCID: PMC10669963 DOI: 10.3390/cimb45110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Metastatic colon cancer remains incurable despite improvements in survival outcomes. New therapies based on the discovery of colon cancer genomic subsets could improve outcomes. Colon cancers from genomic studies with publicly available data were examined to define the expression and regulation of the major tight junction proteins claudins and occludin in genomic groups. Putative regulations of the promoters of tight junction genes by colon-cancer-deregulated pathways were evaluated in silico. The effect of claudin mRNA expression levels on survival of colon cancer patients was examined. Common mutations in colon-cancer-related genes showed variable prevalence in genomically identified groups. Claudin genes were rarely mutated in colon cancer patients. Genomically identified groups of colon cancer displayed distinct regulation of claudins and occludin at the mRNA level. Claudin gene promoters possessed clustered sites of binding sequences for transcription factors TCF4 and SMADs, consistent with a key regulatory role of the WNT and TGFβ pathways in their expression. Although an effect of claudin mRNA expression on survival of colon cancer patients as a whole was not prominent, survival of genomic subsets was significantly influenced by claudin mRNA expression. mRNA expression of the main tight junction genes showed differential regulation in various genomically defined subgroups of colon cancer. These data pinpoint a distinct role of claudins and pathways that regulate them in these subgroups and suggest that subgroups of colon cancer should be considered in future efforts to therapeutically target claudins.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste Marie, ON P6B 0A8, Canada; or
- Division of Clinical Sciences, Section of Internal Medicine, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
14
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
15
|
Ding P, Chen P, Ouyang J, Li Q, Li S. Clinicopathological and prognostic value of epithelial cell adhesion molecule in solid tumours: a meta-analysis. Front Oncol 2023; 13:1242231. [PMID: 37664060 PMCID: PMC10468606 DOI: 10.3389/fonc.2023.1242231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Background Malignant tumors, mainly solid tumors, are a significant obstacle to the improvement of life expectancy at present. Epithelial cell adhesion molecule (EpCAM), a cancer stem cell biomarker, showed widespread expression in most normal epithelial cells and most cancers. Although the clinical significance of EpCAM in various malignant solid tumors has been studied extensively, the latent relationships between EpCAM and pathological and clinical characteristics in solid tumors and differences in the roles of EpCAM among tumors have not been clearly determined. The destination point of this study was to analyze the value of EpCAM in solid tumors in clinicopathological and prognostic dimension using a meta-analysis approach. Method and materials A comprehensive and systematic search of the researches published up to March 7th, 2022, in PubMed, EMBASE, Web of Science, Cochrane library and PMC databases was performed. The relationships between EpCAM overexpression, clinicopathological characteristics, and survival outcomes were analyzed. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) and odds ratios (ORs) were estimated as indicators of the degree of correlation. This research was registered on PROSPERO (International prospective register of systematic reviews), ID: CRD42022315070. Results In total, 57 articles and 14184 cases were included in this study. High EpCAM expression had a significant coherence with a poorer overall survival (OS) (HR: 1.30, 95% CI: 1.08-1.58, P < 0.01) and a worse disease-free survival (DFS) (HR: 1.58, 95% CI: 1.28-1.95, P < 0.01), especially of gastrointestinal tumors' OS (HR: 1.50, 95% CI: 1.15-1.95, P < 0.01), and DFS (HR: 1.84, 95% CI: 1.52-2.33, P < 0.01). The DFS of head and neck tumors (HR: 2.33, 95% CI: 1.51-3.61, P < 0.01) was also associated with the overexpression of EpCAM. There were no positive relationships between the overexpression of EpCAM and sex (RR: 1.03, 95% CI: 0.99-1.07, P = 0.141), T classification (RR: 0.93, 95% CI: 0.82-1.06, P = 0.293), lymph node metastasis (RR: 0.85, 95% CI: 0.54-1.32, P = 0.461), distant metastasis (RR: 0.97, 95% CI: 0.84-1.10, P = 0.606), vascular infiltration (RR: 1.05, 95% CI: 0.85-1.29, P = 0.611), and TNM stage (RR: 0.93, 95% CI: 0.83-1.04, P = 0.187). However, the overexpression of EpCAM exhibited a significant association with the histological grades (RR: 0.88, 95% CI: 0.80-0.97, P < 0.01). Conclusion Based on pooled HRs, the positive expression of EpCAM was totally correlated to a worse OS and DFS in solid tumors. The expression of EpCAM was related to a worse OS in gastrointestinal tumors and a worse DFS in gastrointestinal tumors and head and neck tumors. Moreover, EpCAM expression was correlated with the histological grade. The results presented pointed out that EpCAM could serve as a prognostic biomarker for gastrointestinal and head and neck tumors. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022315070.
Collapse
Affiliation(s)
- Peiwen Ding
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Panyu Chen
- Operating Room, Sichuan University West China Hospital School of Nursing, Chengdu, China
| | - Jiqi Ouyang
- Department of Gastroenterology, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Qiang Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shijie Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Nikonova AS, Deneka AY, Silva FN, Pirestani S, Tricarico R, Kiseleva AA, Zhou Y, Nicolas E, Flieder DB, Grivennikov SI, Golemis EA. Loss of Pkd1 limits susceptibility to colitis and colorectal cancer. Oncogenesis 2023; 12:40. [PMID: 37542051 PMCID: PMC10403611 DOI: 10.1038/s41389-023-00486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers, with an annual incidence of ~135,000 in the US, associated with ~50,000 deaths. Autosomal dominant polycystic kidney disease (ADPKD), associated with mutations disabling the PKD1 gene, affects as many as 1 in 1000. Intriguingly, some studies have suggested that individuals with germline mutations in PKD1 have reduced incidence of CRC, suggesting a genetic modifier function. Using mouse models, we here establish that loss of Pkd1 greatly reduces CRC incidence and tumor growth induced by loss of the tumor suppressor Apc. Growth of Pkd1-/-;Apc-/- organoids was reduced relative to Apc-/- organoids, indicating a cancer cell-intrinsic activity, even though Pkd1 loss enhanced activity of pro-oncogenic signaling pathways. Notably, Pkd1 loss increased colon barrier function, with Pkd1-deficient animals resistant to DSS-induced colitis, associated with upregulation of claudins that decrease permeability, and reduced T cell infiltration. Notably, Pkd1 loss caused greater sensitivity to activation of CFTR, a tumor suppressor in CRC, paralleling signaling relations in ADPKD. Overall, these data and other data suggest germline and somatic mutations in PKD1 may influence incidence, presentation, and treatment response in human CRC and other pathologies involving the colon.
Collapse
Affiliation(s)
- Anna S Nikonova
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexander Y Deneka
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Flaviane N Silva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shabnam Pirestani
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Rossella Tricarico
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna A Kiseleva
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Emmanuelle Nicolas
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Douglas B Flieder
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sergei I Grivennikov
- Departments of Medicine and Biomedical Science, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica A Golemis
- Program in Cancer Signaling and Microenvironment, Fox Chase Cancer Center, Philadelphia, PA, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Nakamura C, Ishizuka N, Yokoyama K, Yazaki Y, Tatsumi F, Ikumi N, Hempstock W, Ikari A, Yoshino Y, Hayashi H. Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding. Sci Rep 2023; 13:10838. [PMID: 37407613 DOI: 10.1038/s41598-023-38024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (Isc) in vitro using an Ussing chamber technique. Glucose-induced Isc by SGLT1 was observed in the ileum, but little or no Isc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24-48 h, in addition to the ileum, robust glucose-induced Isc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced Isc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-D-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested.
Collapse
Affiliation(s)
- Chisato Nakamura
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanako Yokoyama
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuyu Yazaki
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Fumiya Tatsumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naotaka Ikumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
18
|
Di Vincenzo F, Nicoletti A, Negri M, Vitale F, Zileri Dal Verme L, Gasbarrini A, Ponziani FR, Cerrito L. Gut Microbiota and Antibiotic Treatments for the Main Non-Oncologic Hepato-Biliary-Pancreatic Disorders. Antibiotics (Basel) 2023; 12:1068. [PMID: 37370387 DOI: 10.3390/antibiotics12061068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The gut microbiota is a pivotal actor in the maintenance of the balance in the complex interconnections of hepato-biliary-pancreatic system. It has both metabolic and immunologic functions, with an influence on the homeostasis of the whole organism and on the pathogenesis of a wide range of diseases, from non-neoplastic ones to tumorigenesis. The continuous bidirectional metabolic communication between gut and hepato-pancreatic district, through bile ducts and portal vein, leads to a continuous interaction with translocated bacteria and their products. Chronic liver disease and pancreatic disorders can lead to reduced intestinal motility, decreased bile acid synthesis and intestinal immune dysfunction, determining a compositional and functional imbalance in gut microbiota (dysbiosis), with potentially harmful consequences on the host's health. The modulation of the gut microbiota by antibiotics represents a pioneering challenge with striking future therapeutic opportunities, even in non-infectious diseases. In this setting, antibiotics are aimed at harmonizing gut microbial function and, sometimes, composition. A more targeted and specific approach should be the goal to pursue in the future, tailoring the treatment according to the type of microbiota modulation to be achieved and using combined strategies.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Alberto Nicoletti
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marcantonio Negri
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Vitale
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
19
|
Perez-Diaz-Del-Campo N, Castelnuovo G, Ribaldone DG, Caviglia GP. Fecal and Circulating Biomarkers for the Non-Invasive Assessment of Intestinal Permeability. Diagnostics (Basel) 2023; 13:diagnostics13111976. [PMID: 37296827 DOI: 10.3390/diagnostics13111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The study of intestinal permeability is gaining growing interest due to its relevance in the onset and progression of several gastrointestinal and non-gastrointestinal diseases. Though the involvement of impaired intestinal permeability in the pathophysiology of such diseases is recognized, there is currently a need to identify non-invasive biomarkers or tools that are able to accurately detect alterations in intestinal barrier integrity. On the one hand, promising results have been reported for novel in vivo methods based on paracellular probes, i.e., methods that can directly assess paracellular permeability and, on the other hand, on fecal and circulating biomarkers able to indirectly assess epithelial barrier integrity and functionality. In this review, we aimed to summarize the current knowledge on the intestinal barrier and epithelial transport pathways and to provide an overview of the methods already available or currently under investigation for the measurement of intestinal permeability.
Collapse
|
20
|
Capaldo CT. Claudin Barriers on the Brink: How Conflicting Tissue and Cellular Priorities Drive IBD Pathogenesis. Int J Mol Sci 2023; 24:8562. [PMID: 37239907 PMCID: PMC10218714 DOI: 10.3390/ijms24108562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) are characterized by acute or chronic recurring inflammation of the intestinal mucosa, often with increasing severity over time. Life-long morbidities and diminishing quality of life for IBD patients compel a search for a better understanding of the molecular contributors to disease progression. One unifying feature of IBDs is the failure of the gut to form an effective barrier, a core role for intercellular complexes called tight junctions. In this review, the claudin family of tight junction proteins are discussed as they are a fundamental component of intestinal barriers. Importantly, claudin expression and/or protein localization is altered in IBD, leading to the supposition that intestinal barrier dysfunction exacerbates immune hyperactivity and disease. Claudins are a large family of transmembrane structural proteins that constrain the passage of ions, water, or substances between cells. However, growing evidence suggests non-canonical claudin functions during mucosal homeostasis and healing after injury. Therefore, whether claudins participate in adaptive or pathological IBD responses remains an open question. By reviewing current studies, the possibility is assessed that with claudins, a jack-of-all-trades is master of none. Potentially, a robust claudin barrier and wound restitution involve conflicting biophysical phenomena, exposing barrier vulnerabilities and a tissue-wide frailty during healing in IBD.
Collapse
Affiliation(s)
- Christopher T Capaldo
- College of Natural and Computer Sciences, Hawai'i Pacific University, Honolulu, HI 96813, USA
| |
Collapse
|
21
|
Hempstock W, Nagata N, Ishizuka N, Hayashi H. The effect of claudin-15 deletion on cationic selectivity and transport in paracellular pathways of the cecum and large intestine. Sci Rep 2023; 13:6799. [PMID: 37100833 PMCID: PMC10133298 DOI: 10.1038/s41598-023-33431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
The large intestine plays a pivotal role in water and electrolyte balance. Paracellular transport may play a role in ion transport mechanisms in the cecum and large intestine; however, these molecular mechanisms and their physiological roles have not been fully studied. Claudin-15 forms a cation channel in tight junctions in the small intestine, but its role in the cecum and large intestine has not been investigated. This study aimed to explore the physiological role of claudin-15 in the cecum and large intestine using claudin-15 (Cldn15) KO mice. Electrical conductance, short-circuit current, Na+ flux, and dilution potential were assessed in isolated tissue preparations mounted in Ussing chambers. The induced short-circuit current of short-chain fatty acids, which are fermentative products in the intestinal tract, was also measured. Compared to wild type mice, the electrical conductance and paracellular Na+ flux was decreased in the cecum, but not the middle large intestine, while in both the cecum and the middle large intestine, paracellular Na+ permeability was decreased in Cldn15 KO mice. These results suggest that claudin-15 is responsible for Na+ permeability in the tight junctions of the cecum and large intestine and decreased Na+ permeability in the cecum may cause impaired absorption function.
Collapse
Affiliation(s)
- Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Nozomi Nagata
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
22
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
23
|
Lu F, Leach LL, Gross JM. A CRISPR-Cas9-mediated F0 screen to identify pro-regenerative genes in the zebrafish retinal pigment epithelium. Sci Rep 2023; 13:3142. [PMID: 36823429 PMCID: PMC9950062 DOI: 10.1038/s41598-023-29046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Ocular diseases resulting in death of the retinal pigment epithelium (RPE) lead to vision loss and blindness. There are currently no FDA-approved strategies to restore damaged RPE cells. Stimulating intrinsic regenerative responses within damaged tissues has gained traction as a possible mechanism for tissue repair. Zebrafish possess remarkable regenerative abilities, including within the RPE; however, our understanding of the underlying mechanisms remains limited. Here, we conducted an F0 in vivo CRISPR-Cas9-mediated screen of 27 candidate RPE regeneration genes. The screen involved injection of a ribonucleoprotein complex containing three highly mutagenic guide RNAs per target gene followed by PCR-based genotyping to identify large intragenic deletions and MATLAB-based automated quantification of RPE regeneration. Through this F0 screening pipeline, eight positive and seven negative regulators of RPE regeneration were identified. Further characterization of one candidate, cldn7b, revealed novel roles in regulating macrophage/microglia infiltration after RPE injury and in clearing RPE/pigment debris during late-phase RPE regeneration. Taken together, these data support the utility of targeted F0 screens for validating pro-regenerative factors and reveal novel factors that could regulate regenerative responses within the zebrafish RPE.
Collapse
Affiliation(s)
- Fangfang Lu
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.452708.c0000 0004 1803 0208Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Lyndsay L. Leach
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jeffrey M. Gross
- grid.21925.3d0000 0004 1936 9000Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.89336.370000 0004 1936 9924Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
24
|
Zhong Y, Tu Y, Ma Q, Chen L, Zhang W, Lu X, Yang S, Wang Z, Zhang L. Curcumin alleviates experimental colitis in mice by suppressing necroptosis of intestinal epithelial cells. Front Pharmacol 2023; 14:1170637. [PMID: 37089942 PMCID: PMC10119427 DOI: 10.3389/fphar.2023.1170637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Curcumin, the primary bioactive substance in turmeric, exhibits potential therapeutic effects on ulcerative colitis. However, its mechanism for regulating necroptosis in colitis has not been fully elucidated. In this study, the effect of curcumin on experimental colitis-induced necroptosis of intestinal epithelial cells was investigated, and its molecular mechanism was further explored. We found that curcumin blocked necroptosis in a dose-dependent manner by inhibiting the phosphorylation of RIP3 and MLKL instead of RIP1 in HT-29 cells. Co-Immunoprecipitation assay showed that curcumin weakened the interaction between RIP1 and RIP3, possibly due to the direct binding of curcumin to RIP3 as suggested by drug affinity responsive target stability analysis. In a classical in vivo model of TNF-α and pan-caspase inhibitor-induced necroptosis in C57BL/6 mice, curcumin potently inhibited systemic inflammatory responses initiated by the necroptosis signaling pathway. Then, using a dextran sodium sulfate-induced colitis model in C57BL/6 mice, we found that curcumin inhibited the expression of p-RIP3 in the intestinal epithelium, reduced intestinal epithelial cells loss, improved the function of the intestinal tight junction barrier, and reduced local intestinal inflammation. Collectively, our findings suggest that curcumin is a potent targeted RIP3 inhibitor with anti-necroptotic and anti-inflammatory effects, maintains intestinal barrier function, and effectively alleviates colitis injury.
Collapse
Affiliation(s)
- Yuting Zhong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Qingshan Ma
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Shuo Yang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| | - Zhibin Wang
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, China
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Lichao Zhang, ; Zhibin Wang, ; Shuo Yang,
| |
Collapse
|
25
|
Liu H, Qian K, Zhang S, Yu Q, Du Y, Fu S. Lead exposure induces structural damage, digestive stress, immune response and microbiota dysbiosis in the intestine of silver carp (Hypophthalmichthys molitrix). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109464. [PMID: 36108998 DOI: 10.1016/j.cbpc.2022.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Lead (Pb) is one of the most common trace metals in water, and its high concentration in the environment can cause harm to aquatic animals and humans. In the present study, the effects of Pb exposure (3.84 mg/kg) on the morphology, digestive enzyme activity, immune function and microbiota structure of silver carp (Hypophthalmichthys molitrix) intestines within 96 h were detected. Moreover, the correlation between them was analyzed. The results showed that Pb exposure on the one hand severely impaired the intestinal morphology, including significantly shortening the intestinal villi's length, increasing the goblet cells' number, causing the intestinal leukocyte infiltration, and thickening the intestinal wall abnormally, on the other hand, increasing the activity of intestinal digestive enzyme (trypsin and lipase). In addition, the mRNA expressions of structure-related genes (Claudin-7 and villin-1) were down-regulated, and the immune factors genes (IL-8, IL-10 and TNF-α) were up-regulated after Pb exposure. Furthermore, data of the MiSeq sequencing showed that the abundance of membrane transport, immune system function and digestive system of silver carp intestinal microbiota all decreased, while cellular antigens increased. Finally, the canonical correlation analysis (CCA) showed that there were correlations between silver carp's intestinal microbiota and intestinal morphology and immune factors. In conclusion, it is speculated that the entry of Pb into the intestine leads the microbiota dysbiosis, affects the intestinal immunity and digestive function, and further damages the intestinal barrier of silver carp.
Collapse
Affiliation(s)
- Haisu Liu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, PR China
| | - Kun Qian
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sanshan Zhang
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Qianxun Yu
- Hubei Institute of Product Quality Supervision and Inspection, Wuhan 430061, PR China
| | - Yudong Du
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
26
|
Higashi T, Saito AC, Fukazawa Y, Furuse M, Higashi AY, Ono M, Chiba H. EpCAM proteolysis and release of complexed claudin-7 repair and maintain the tight junction barrier. J Cell Biol 2022; 222:213688. [PMID: 36378161 PMCID: PMC9671161 DOI: 10.1083/jcb.202204079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
TJs maintain the epithelial barrier by regulating paracellular permeability. Since TJs are under dynamically fluctuating intercellular tension, cells must continuously survey and repair any damage. However, the underlying mechanisms allowing cells to sense TJ damage and repair the barrier are not yet fully understood. Here, we showed that proteinases play an important role in the maintenance of the epithelial barrier. At TJ break sites, EpCAM-claudin-7 complexes on the basolateral membrane become accessible to apical membrane-anchored serine proteinases (MASPs) and the MASPs cleave EpCAM. Biochemical data and imaging analysis suggest that claudin-7 released from EpCAM contributes to the rapid repair of damaged TJs. Knockout (KO) of MASPs drastically reduced barrier function and live-imaging of TJ permeability showed that MASPs-KO cells exhibited increased size, duration, and frequency of leaks. Together, our results reveal a novel mechanism of TJ maintenance through the localized proteolysis of EpCAM at TJ leaks, and provide a better understanding of the dynamic regulation of epithelial permeability.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan,Correspondence to Tomohito Higashi:
| | - Akira C. Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, Life Science Innovation Center, University of Fukui, Fukui, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan,Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Atsuko Y. Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Masahiro Ono
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
27
|
Zhao C, Bao L, Qiu M, Wu K, Zhao Y, Feng L, Xiang K, Zhang N, Hu X, Fu Y. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice. Cell Rep 2022; 41:111681. [DOI: 10.1016/j.celrep.2022.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
|
28
|
Xiao Y, Lian H, Zhong XS, Krishnachaitanya SS, Cong Y, Dashwood RH, Savidge TC, Powell DW, Liu X, Li Q. Matrix metalloproteinase 7 contributes to intestinal barrier dysfunction by degrading tight junction protein Claudin-7. Front Immunol 2022; 13:1020902. [PMID: 36275703 PMCID: PMC9581388 DOI: 10.3389/fimmu.2022.1020902] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPrevious studies implicated matrix metalloproteinases (MMPs), such as MMP-7, in inflammatory bowel diseases (IBD) by showing increased activity during inflammation of the gut. However, the pathophysiological roles of MMP-7 have not been clearly elucidated.MethodsThe expression of MMP-7 was assessed in colonic biopsies of patients with ulcerative colitis (UC), in rodents with experimental colitis, and in cell-based assays with cytokines. Wild-type and MMP-7-null mice treated with dextran sulfate sodium (DSS) or trinitrobenzene sulfonic acid were used for determining the pro-inflammatory function(s) of MMP-7 in vivo.ResultsMMP-7 was highly expressed in patients with UC and in rodents with experimental colitis. IL-1β, IL-4, IL-13, TNFα, or lipopolysaccharide enhanced MMP-7 expression in human colonic epithelial cells, rat colonic smooth muscle cells, and THP-1-derived macrophages. Active MMP-7 degraded tight junction protein Claudin-7 in epithelial cells, cleaved recombinant Claudin-7 in cell-free system, and increased Caco-2 monolayer permeability. Immunostaining of colon biopsies revealed up-regulation of MMP-7 and reduction of Claudin-7 in UC patients. Compared to wild-type mice, Mmp7-/- mice had significantly less inflammation in the colon upon DSS insult. DSS-induced alterations in junction proteins were mitigated in Mmp7-/- mice, suggesting that MMP-7 disrupts the intestinal barrier. MMP-7 antibody significantly ameliorated colonic inflammation and Claudin-7 reduction in 2 different rodent models of colitis.SummaryMMP-7 impairs intestinal epithelial barrier by cleavage of Claudin-7, and thus aggravating inflammation. These studies uncovered Claudin-7 as a novel substrate of MMP-7 in the intestinal epithelium and reinforced MMP-7 as a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Haifeng Lian
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiaoying S. Zhong
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Srikruthi S. Krishnachaitanya
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M College of Medicine, Houston, TX, United States
| | - Tor C. Savidge
- Texas Children’s Microbiome Center, Baylor College of Medicine, Houston, TX, United States
| | - Don W. Powell
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Xiaowei Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaowei Liu, ; Qingjie Li,
| | - Qingjie Li
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, United States
- *Correspondence: Xiaowei Liu, ; Qingjie Li,
| |
Collapse
|
29
|
Yang HL, Lai ZZ, Shi JW, Zhou WJ, Mei J, Ye JF, Zhang T, Wang J, Zhao JY, Li DJ, Li MQ. A defective lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting decidual macrophage residence. Autophagy 2022; 18:2459-2480. [PMID: 35220880 PMCID: PMC9542369 DOI: 10.1080/15548627.2022.2039000] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Massive infiltrated and enriched decidual macrophages (dMφ) have been widely regarded as important regulators of maternal-fetal immune tolerance and trophoblast invasion, contributing to normal pregnancy. However, the characteristics of metabolic profile and the underlying mechanism of dMφ residence remain largely unknown. Here, we observe that dMφ display an active glycerophospholipid metabolism. The activation of ENPP2-lysophosphatidic acid (LPA) facilitates the adhesion and retention, and M2 differentiation of dMφ during normal pregnancy. Mechanistically, this process is mediated through activation of the LPA receptors (LPAR1 and PPARG/PPARγ)-DDIT4-macroautophagy/autophagy axis, and further upregulation of multiple adhesion factors (e.g., cadherins and selectins) in a CLDN7 (claudin 7)-dependent manner. Additionally, poor trophoblast invasion and placenta development, and a high ratio of embryo loss are observed in Enpp2±, lpar1-/- or PPARG-blocked pregnant mice. Patients with unexplained spontaneous abortion display insufficient autophagy and cell residence of dMφ. In therapeutic studies, supplementation with LPA or the autophagy inducer rapamycin significantly promotes dMφ autophagy and cell residence, and improves embryo resorption in Enpp2± and spontaneous abortion mouse models, which should be dependent on the activation of DDIT4-autophagy-CLDN7-adhesion molecules axis. This observation reveals that inactivation of ENPP2-LPA metabolism and insufficient autophagy of dMφ result in resident obstacle of dMφ and further increase the risk of spontaneous abortion, and provides potential therapeutic strategies to prevent spontaneous abortion.Abbreviations: ACTB: actin beta; ADGRE1/F4/80: adhesion G protein-coupled receptor E1; Atg5: autophagy related 5; ATG13: autophagy related 13; BECN1: beclin 1; CDH1/E-cadherin: cadherin 1; CDH5/VE-cadherin: cadherin 5; CFSE: carboxyfluorescein succinimidyl ester; CLDN7: claudin 7; CSF1/M-CSF: colony stimulating factor 1; CSF2/GM-CSF: colony stimulating factor 2; Ctrl: control; CXCL10/IP-10: chemokine (C-X-C) ligand 10; DDIT4: DNA damage inducible transcript 4; dMφ: decidual macrophage; DSC: decidual stromal cells; ENPP2/ATX: ectonucleotide pyrophosphatase/phosphodiesterase 2; Enpp2±: Enpp2 heterozygous knockout mouse; ENPP2i/PF-8380: ENPP2 inhibitor; EPCAM: epithelial cell adhesion molecule; ESC: endometrial stromal cells; FGF2/b-FGF: fibroblast growth factor 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GPCPD1: glycerophosphocholine phosphodiesterase 1; HE: heterozygote; HIF1A: hypoxia inducible factor 1 subunit alpha; HNF4A: hepatocyte nuclear factor 4 alpha; HO: homozygote; ICAM2: intercellular adhesion molecule 2; IL: interleukin; ITGAV/CD51: integrin subunit alpha V; ITGAM/CD11b: integrin subunit alpha M; ITGAX/CD11b: integrin subunit alpha X; ITGB3/CD61: integrin subunit beta 3; KLRB1/NK1.1: killer cell lectin like receptor B1; KRT7/cytokeratin 7: keratin 7; LPA: lysophosphatidic acid; LPAR: lysophosphatidic acid receptor; lpar1-/-: lpar1 homozygous knockout mouse; LPAR1i/AM966: LPAR1 inhibitor; LY6C: lymphocyte antigen 6 complex, locus C1; LYPLA1: lysophospholipase 1; LYPLA2: lysophospholipase 2; Lyz2: lysozyme 2; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MARVELD2: MARVEL domain containing 2; 3-MA: 3-methyladenine; MBOAT2: membrane bound O-acyltransferase domain containing 2; MGLL: monoglyceride lipase; MRC1/CD206: mannose receptor C-type 1; MTOR: mechanistic target of rapamycin kinase; NP: normal pregnancy; PDGF: platelet derived growth factor; PLA1A: phospholipase A1 member A; PLA2G4A: phospholipase A2 group IVA; PLPP1: phospholipid phosphatase 1; pMo: peripheral blood monocytes; p-MTOR: phosphorylated MTOR; PPAR: peroxisome proliferator activated receptor; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; PPARGi/GW9662: PPARG inhibitor; PTPRC/CD45: protein tyrosine phosphatase receptor type, C; Rapa: rapamycin; RHEB: Ras homolog, mTORC1 binding; SA: spontaneous abortion; SELE: selectin E; SELL: selectin L; siCLDN7: CLDN7-silenced; STAT: signal transducer and activator of transcription; SQSTM1: sequestosome 1; TJP1: tight junction protein 1; VCAM1: vascular cell adhesion molecule 1; WT: wild type.
Collapse
Affiliation(s)
- Hui-Li Yang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People’s Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China
| | - Jia-Wei Shi
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China
| | - Wen-Jie Zhou
- Center of Reproductive Medicine of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, People’s Republic of China
| | - Jie Mei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicine School, Nanjing, 210000, People’s Republic of China
| | - Jiang-Feng Ye
- Division of Obstetrics and Gynecology, KK Women’s and Children’s Hospital, 229899, Singapore
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People’s Republic of China
| | - Jian Wang
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China
| | - Jian-Yuan Zhao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai200433, People’s Republic of China,Institute of Metabolism and Integrative Biology (IMIB), School of Life Sciences, Fudan University, Shanghai200433, People’s Republic of China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080People’s Republic of China,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People’s Republic of China,CONTACT Ming-Qing Li ;Da-Jin Li Laboratory for Reproductive Immunology, NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai200080, People’s Republic of China
| |
Collapse
|
30
|
Li C, Xie J, Wang J, Cao Y, Pu M, Gong Q, Lu Q. Therapeutic effects and mechanisms of plant-derived natural compounds against intestinal mucositis. Front Pharmacol 2022; 13:969550. [PMID: 36210837 PMCID: PMC9533105 DOI: 10.3389/fphar.2022.969550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
Intestinal mucositis is a clinically related adverse reaction of antitumor treatment. Majority of patients receiving high-dose chemical therapy, radiotherapy, and bone-marrow transplant suffer from intestinal mucositis. Clinical manifestations of intestinal mucositis mainly include pain, body-weight reduction, inflammatory symptom, diarrhea, hemoproctia, and infection, which all affect regular nutritional input and enteric function. Intestinal mucositis often influences adherence to antitumor treatment because it frequently restricts the sufferer’s capacity to tolerate treatment, thus resulting in schedule delay, interruption, or premature suspension. In certain circumstances, partial and general secondary infections are found, increasing the expenditures on medical care and hospitalization. Current methods of treating intestinal mucositis are provided, which do not always counteract this disorder. Against this background, novel therapeutical measures are extremely required to prevent and treat intestinal mucositis. Plant-derived natural compounds have lately become potential candidates against enteric injury ascribed to the capacity to facilitate mucosal healing and anti-inflammatory effects. These roles are associated with the improvement of intestinal mucosal barrier, suppression of inflammatory response and oxidant stress, and modulation of gut microflora and immune system. The present article aims at systematically discussing the recent progress of plant-derived natural compounds as promising treatments for intestinal mucositis.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Cao
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Min Pu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qihai Gong, ; Qiang Lu,
| |
Collapse
|
31
|
Szabo R, Ward JM, Artunc F, Bugge TH. EPCAM and TROP2 share role in claudin stabilization and development of intestinal and extraintestinal epithelia in mice. Biol Open 2022; 11:275770. [PMID: 35730316 PMCID: PMC9294608 DOI: 10.1242/bio.059403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
EPCAM (Epithelial Cell Adhesion Molecule) is a transmembrane glycoprotein expressed on the surface of most epithelial and epithelium-derived tumor cells and reported to regulate stability of epithelial tight junction proteins, claudins. Despite its widespread expression, loss of EPCAM function has so far only been reported to prominently affect intestinal development, resulting in severe early onset enteropathy associated with impaired growth and decreased survival in both humans and mice. In this study, we show that the critical role of EPCAM is not limited to intestinal tissues and that it shares its essential function with its only known homolog, TROP2 (Trophoblast cell surface antigen 2). EPCAM-deficient mice show significant growth retardation and die within four weeks after birth. In addition to changes in small and large intestines, loss of EPCAM results in hyperkeratosis in skin and forestomach, hair follicle atrophy leading to alopecia, nephron hypoplasia in kidney, proteinuria, and altered production of digestive enzymes by pancreas. Expression of TROP2 partially, but not completely, overlaps with EPCAM in a number developing epithelia. Although loss of TROP2 had no gross impact on mouse development and survival, TROP2 deficiency generally compounded developmental defects observed in EPCAM-deficient mice, led to about 60% decrease in embryonic viability, and further shortened postnatal lifespan of born pups. Importantly, TROP2 was able to compensate for the loss of EPCAM in stabilizing claudin-7 expression and cell membrane localization in tissues that co-express both proteins. These findings identify overlapping functions of EPCAM and TROP2 as regulators of epithelial development in both intestinal and extraintestinal tissues.
Collapse
Affiliation(s)
- Roman Szabo
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | | - Ferruh Artunc
- Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen, Germany.,German Center for Diabetes Research (DZD) at the University Tübingen, Germany
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Schälter F, Frech M, Dürholz K, Lucas S, Sarter K, Lebon L, Esser-von Bieren J, Dubey LK, Voehringer D, Schett G, Harris NL, Zaiss MM. Acetate, a metabolic product of Heligmosomoides polygyrus, facilitates intestinal epithelial barrier breakdown in a FFAR2-dependent manner. Int J Parasitol 2022; 52:591-601. [PMID: 35671792 DOI: 10.1016/j.ijpara.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/05/2022]
Abstract
Approximately 2 billion people worldwide and a significant part of the domestic livestock are infected with soil-transmitted helminths, of which many establish chronic infections causing substantial economic and welfare burdens. Beside intensive research on helminth-triggered mucosal and systemic immune responses, the local mechanism that enables infective larvae to cross the intestinal epithelial barrier and invade mucosal tissue remains poorly addressed. Here, we show that Heligmosomoides polygyrus infective L3s secrete acetate and that acetate potentially facilitates paracellular epithelial tissue invasion by changed epithelial tight junction claudin expression. In vitro, impedance-based real-time epithelial cell line barrier measurements together with ex vivo functional permeability assays in intestinal organoid cultures revealed that acetate decreased intercellular barrier function via the G-protein coupled free fatty acid receptor 2 (FFAR2, GPR43). In vivo validation experiments in FFAR2-/- mice showed lower H. polygyrus burdens, whereas oral acetate-treated C57BL/6 wild type mice showed higher burdens. These data suggest that locally secreted acetate - as a metabolic product of the energy metabolism of H. polygyrus L3s - provides a significant advantage to the parasite in crossing the intestinal epithelial barrier and invading mucosal tissues. This is the first and a rate-limiting step for helminths to establish chronic infections in their hosts and if modulated could have profound consequences for their life cycle.
Collapse
Affiliation(s)
- Fabian Schälter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Dürholz
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sébastien Lucas
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luc Lebon
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Julia Esser-von Bieren
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Center of Allergy and Environment, Technical University of Munich and Helmholtz Zentrum München, Munich, Germany
| | - Lalit K Dubey
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Centre of Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nicola L Harris
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Department of Immunology, Monash University, Clayton, Victoria, Australia
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
33
|
Reiner J, Thiery J, Held J, Berlin P, Skarbaliene J, Vollmar B, Jaster R, Eriksson PO, Lamprecht G, Witte M. The dual GLP-1 and GLP-2 receptor agonist dapiglutide promotes barrier function in murine short bowel. Ann N Y Acad Sci 2022; 1514:132-141. [PMID: 35580981 DOI: 10.1111/nyas.14791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short bowel syndrome can occur after extensive intestinal resection, causing intestinal insufficiency or intestinal failure, which requires long-term parenteral nutrition. Glucagon-like peptide-2 (GLP-2) pharmacotherapy is now clinically used to reduce the disease burden of intestinal failure. However, many patients still cannot be weaned off from parenteral nutrition completely. The novel dual GLP-1 and GLP-2 receptor agonist dapiglutide has previously been shown to be highly effective in a preclinical murine short bowel model. Here, we studied the effects of dapiglutide on intestinal epithelial barrier function. In the jejunum, dapiglutide increased claudin-7 expression and tightened the paracellular tight junction leak pathway. At the same time, dapiglutide promoted paracellular tight junction cation size selectivity in the jejunum. This was paralleled by extension of the cation selective tight junction proteins claudin-2 and claudin-10b and preserved claudin-15 expression and localization along the crypt-villus axis in the jejunum. In the colon, no barrier effects from dapiglutide were observed. In the colon, dapiglutide attenuated the short bowel-associated, compensatorily increased epithelial sodium channel activity, likely secondary, by improved volume status. Future studies are needed to address the intestinal adaptation of the colon.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Johanna Thiery
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Jascha Held
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Peggy Berlin
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | | | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | | | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
34
|
Kang Y, Park H, Choe BH, Kang B. The Role and Function of Mucins and Its Relationship to Inflammatory Bowel Disease. Front Med (Lausanne) 2022; 9:848344. [PMID: 35602503 PMCID: PMC9120656 DOI: 10.3389/fmed.2022.848344] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Mucus is present throughout the gastrointestinal tract and is essential for regulating gut microbiota homeostasis and preventing disease by protecting the gastrointestinal barrier from microorganisms, pathogens and toxins or other irritants. Mucin (MUC)-2 is a secreted protein produced by epithelial goblet cells as the main component of mucus. Defects in the gastrointestinal tract, such as inflammation and ulcers, cause damage to the mucus barrier, which can worsen mucus quality and reduce mucus production. Therefore, we would like to review the characteristics of MUC2 and its role in intestinal disorders and highlight the importance of further studies. We also investigated whether the role of MUC2 differs between children and adults, ulcerative colitis (UC) and Crohn's disease (CD).
Collapse
Affiliation(s)
- Youra Kang
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyeonjeong Park
- Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byung-Ho Choe
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
- *Correspondence: Ben Kang
| |
Collapse
|
35
|
Inczefi O, Bacsur P, Resál T, Keresztes C, Molnár T. The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Front Nutr 2022; 9:718710. [PMID: 35548572 PMCID: PMC9082752 DOI: 10.3389/fnut.2022.718710] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
The leakage of the intestinal barrier and the disruption of the gut microbiome are increasingly recognized as key factors in different pathophysiological conditions, such as irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), chronic liver diseases, obesity, diabetes mellitus, types of cancer, and neuropsychiatric disorders. In this study, the mechanisms leading to dysbiosis and "leaky gut" are reviewed, and a short summary of the current knowledge regarding different diseases is provided. The simplest way to restore intestinal permeability and the microbiota could be ideal nutrition. Further therapeutic options are also available, such as the administration of probiotics or postbiotics or fecal microbiota transplantation.
Collapse
Affiliation(s)
- Orsolya Inczefi
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Péter Bacsur
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Resál
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Csilla Keresztes
- Department for Medical Communication and Translation Studies, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Molnár
- Department of Gastroenterology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary,*Correspondence: Tamás Molnár,
| |
Collapse
|
36
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
37
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
38
|
Laudisi F, Stolfi C, Bevivino G, Maresca C, Franzè E, Troncone E, Lolli E, Marafini I, Pietrucci D, Teofani A, Di Grazia A, Di Fusco D, Colantoni A, Ortenzi A, Desideri A, Monteleone I, Monteleone G. GATA6 Deficiency Leads to Epithelial Barrier Dysfunction and Enhances Susceptibility to Gut Inflammation. J Crohns Colitis 2022; 16:301-311. [PMID: 34374415 DOI: 10.1093/ecco-jcc/jjab145] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases [IBD], but the mechanisms that lead to such a defect are not fully understood. This study was aimed at characterising the factors involved in the defective barrier function in IBD. METHODS Transcriptome analysis was performed on colon samples taken from healthy controls [CTR] and IBD patients. Expression of GATA-binding factor 6 [GATA6], a transcription factor involved in intestinal epithelial cell differentiation, was evaluated in colon samples taken from CTR and IBD patients by real-time polymerase chain reaction [PCR] and immunohistochemistry. Intestinal sections of wild-type and Gata6del mice, which exhibit a conditional Gata6 deletion in intestinal epithelial cells and which are either left untreated or receive subcutaneous indomethacin or rectal trinitrobenzene sulphonic acid, were stained with haematoxylin and eosin. In parallel, some Gata6del mice received antibiotics to deplete intestinal flora. Mucosal inflammatory cell infiltration and cytokine production were evaluated by flow cytometry and real-time PCR, respectively, and tight junction proteins were examined by immunofluorescence. Intestinal barrier integrity was assessed by fluorescein isothiocyanate [FITC]-dextran assay. RESULTS Multiple genes involved in cell commitment/proliferation and wound healing were differentially expressed in IBD compared with CTR. Among these, GATA6 was significantly decreased in the IBD epithelium compared with CTR. In mice, conditional deletion of GATA6 in the intestinal epithelium induced primarily epithelial damage, diminished zonula occludens-1 expression, and enhanced intestinal permeability, ultimately resulting in bacteria-driven local immune response and enhanced susceptibility to gut inflammation. CONCLUSIONS Reduced expression of GATA6 promotes intestinal barrier dysfunction, thus amplifying intestinal inflammatory pathology.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Clinical Biochemistry and Clinical Molecular Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Lolli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Pietrucci
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department for Innovation in Biological, Agro-Food and Forest Systems, DIBAF, University of Tuscia, Viterbo, Italy
| | - Adelaide Teofani
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
39
|
Ding Y, Wang K, Xu C, Hao M, Li H, Ding L. Intestinal Claudin-7 deficiency impacts the intestinal microbiota in mice with colitis. BMC Gastroenterol 2022; 22:24. [PMID: 35039003 PMCID: PMC8762895 DOI: 10.1186/s12876-022-02100-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Background Intestinal epithelial cells form a physical barrier that protects the intestine against the intestinal microbiota through tight junctions (TJs) and adhesive junctions, while barrier disruption may lead to inflammatory bowel disease (IBD). Claudin-7 (Cldn7) has been implicated in this protection as an important member of TJs. Here, we experimentally study the effect of Cldn7 deletion on intestinal microbiota in colitis. Methods Colitis model was established based on inducible intestinal conditional Cldn7 gene knockout mice (Cldn7fl/fl; villin-CreERT2), by feeding with dextran sodium sulfate (DSS). AB-PAS staining and immunohistochemical staining of Muc2 mucin were used to detect the effect of Cldn7 deficiency on the mucus layer of mice with colitis, and fluorescence in situ hybridization was used to detect how Cldn7 promotes spatial separation of the gut microbiota from the host. The microbiota population was characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. Results Compared with the controls, Cldn7 knockout increased susceptibility to colitis, including greater degree of weight loss, colon shortening, and a significantly higher disease activity index score. DSS-treated Cldn7 knockout mice promoted the migration of bacteria to the intestinal epithelium to some extent by damaging the intestinal mucus layer. Sequencing of 16S rRNA showed that DSS-treated Cldn7 knockout mice reduced the gut microbiota diversity and had greater relative abundance of Escherichia coli. LEfSe analysis indicated that Escherichia coli may be the key bacteria in Cldn7 knockout mice during DSS-induced colitis. Furthermore, the Tax4Fun analysis predicted that DSS-treated Cldn7 knockout mice enriched for microbiota impacting infectious diseases, immune system and metabolic functions. Conclusions Our data suggests an association between intestinal Cldn7 knockout and microbiota dysbiosis during inflammatory events.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Chang Xu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China.,Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Tieyilu 10, Yangfangdian, Haidian District, Beijing, 100038, China.
| |
Collapse
|
40
|
Barany A, Oliva M, Gregório SF, Martínez-Rodríguez G, Mancera JM, Fuentes J. Dysregulation of Intestinal Physiology by Aflatoxicosis in the Gilthead Seabream ( Sparus aurata). Front Physiol 2022; 12:741192. [PMID: 34987413 PMCID: PMC8722709 DOI: 10.3389/fphys.2021.741192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a mycotoxin often present in food. This study aimed to understand the physiological effects of AFB1 on the seabream (Sparus aurata) gastrointestinal system. In a first in vitro approach, we investigated ion transport using the short-circuit current (Isc) technique in Ussing chambers in the anterior intestine (AI). Application of apical/luminal AFB1 concentrations of 8 and 16 μM to healthy tissues was without effect on tissue transepithelial electrical resistance (TER), and apparent tissue permeability (Papp) was measured using fluorescein FITC (4 kD). However, it resulted in dose-related effects on Isc. In a second approach, seabream juveniles fed with different AFB1 concentrations (1 and 2 mg AFB1 kg−1 fish feed) for 85 days showed significantly reduced gill Na+/K+-ATPase (NKA) and H+-ATPase (HA) activities in the posterior intestine (PI). Moreover, dietary AFB1 modified Isc in the AI and PI, significantly affecting TER in the AI. To understand this effect on TER, we analyzed the expression of nine claudins and three occludins as markers of intestinal architecture and permeability using qPCR. Around 80% of the genes presented significantly different relative mRNA expression between AI and PI and had concomitant sensitivity to dietary AFB1. Based on the results of our in vitro, in vivo, and molecular approaches, we conclude that the effects of dietary AFB1 in the gastrointestinal system are at the base of the previously reported growth impairment caused by AFB1 in fish.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Milagrosa Oliva
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Silvia Filipa Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cádiz, Cádiz, Spain
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|
41
|
Bamias G, Cominelli F. Exploring the Early Phase of Crohn's Disease. Clin Gastroenterol Hepatol 2021; 19:2469-2480. [PMID: 32949730 PMCID: PMC9217179 DOI: 10.1016/j.cgh.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
The development of Crohn's disease (CD) is characterized by a breakdown of homeostatic immune-bacterial communication, which takes place at the intestinal mucosa when environmental triggers impact genetically predisposed individuals. Converging lines of evidence support the hypothesis that this pathogenetic model develops through sequential, although inter-related, steps that indicate failure of mucosal defense mechanisms at various stages. In this context, immunologic phenomena that mediate the initial appearance of inflammatory lesions across the intestinal tissue may differ substantially from those that mediate and perpetuate chronic inflammatory responses. A compromise in the integrity of the epithelial barrier is among the earliest events and leads to accelerated influx of intraluminal antigens and intact microorganisms within the immunologically rich lamina propria. Inadequate clearance of invading microorganisms also may occur as a result of defects in innate immunity, preventing the timely and complete resolution of acute inflammatory responses. The final step is the development of persistent adaptive responses, which also differ between early and late Crohn's disease. Current progress in our ability to delineate single-cell transcriptomics and proteomics has allowed the discovery of cellular and molecular mechanisms that participate in each sequential step of CD development. This not only will advance our understanding of CD pathogenesis, but also facilitate the design of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI-Unit, 3 Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
42
|
Yu D, Meng X, de Vos WM, Wu H, Fang X, Maiti AK. Implications of Gut Microbiota in Complex Human Diseases. Int J Mol Sci 2021; 22:12661. [PMID: 34884466 PMCID: PMC8657718 DOI: 10.3390/ijms222312661] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Humans, throughout the life cycle, from birth to death, are accompanied by the presence of gut microbes. Environmental factors, lifestyle, age and other factors can affect the balance of intestinal microbiota and their impact on human health. A large amount of data show that dietary, prebiotics, antibiotics can regulate various diseases through gut microbes. In this review, we focus on the role of gut microbes in the development of metabolic, gastrointestinal, neurological, immune diseases and, cancer. We also discuss the interaction between gut microbes and the host with respect to their beneficial and harmful effects, including their metabolites, microbial enzymes, small molecules and inflammatory molecules. More specifically, we evaluate the potential ability of gut microbes to cure diseases through Fecal Microbial Transplantation (FMT), which is expected to become a new type of clinical strategy for the treatment of various diseases.
Collapse
Affiliation(s)
- Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Xin Meng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands;
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.M.); (X.F.)
| | - Amit K. Maiti
- Department of Genetics and Genomics, Mydnavar, 2645 Somerset Boulevard, Troy, MI 48084, USA
| |
Collapse
|
43
|
Alizadeh A, Akbari P, Garssen J, Fink-Gremmels J, Braber S. Epithelial integrity, junctional complexes, and biomarkers associated with intestinal functions. Tissue Barriers 2021; 10:1996830. [PMID: 34719339 PMCID: PMC9359365 DOI: 10.1080/21688370.2021.1996830] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
An intact intestinal barrier is crucial for immune homeostasis and its impairment activates the immune system and may result in chronic inflammation. The epithelial cells of the intestinal barrier are connected by tight junctions, which form an anastomosing network sealing adjacent epithelial cells. Tight junctions are composed of transmembrane and cytoplasmic scaffolding proteins. Transmembrane tight junction proteins at the apical-lateral membrane of the cell consist of occludin, claudins, junctional adhesion molecules, and tricellulin. Cytoplasmic scaffolding proteins, including zonula occludens, cingulin and afadin, provide a direct link between transmembrane tight junction proteins and the intracellular cytoskeleton. Each individual component of the tight junction network closely interacts with each other to form an efficient intestinal barrier. This review aims to describe the molecular structure of intestinal epithelial tight junction proteins and to characterize their organization and interaction. Moreover, clinically important biomarkers associated with impairment of gastrointestinal integrity are discussed.
Collapse
Affiliation(s)
- Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Peyman Akbari
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Immunology, Danone Nutricia Research, Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
44
|
Chen S, Zhang Y, Niu X, Mohyuddin SG, Wen J, Bao M, Yu T, Wu L, Hu C, Yong Y, Liu X, Abd El-Aty AM, Ju X. Coral-Derived Endophytic Fungal Product, Butyrolactone-I, Alleviates Lps Induced Intestinal Epithelial Cell Inflammatory Response Through TLR4/NF-κB and MAPK Signaling Pathways: An in vitro and in vivo Studies. Front Nutr 2021; 8:748118. [PMID: 34660669 PMCID: PMC8517189 DOI: 10.3389/fnut.2021.748118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Herein, we assessed the anti-inflammatory and intestinal barrier protective effects of butyrolactone-I (BTL-1), derived from the coral-derived endophytic fungus (Aspergillus terreus), using the LPS-induced IPEC-J2 inflammation model and the DSS-induced IBD model in mice. In IPEC-J2 cells, pretreatment with BTL-I significantly inhibited TLR4/NF-κB signaling pathway and JNK phosphorylation, resulting in the decrease of IL-1β and IL-6 expression. Interestingly, BTL-1 pretreatment activated the phosphorylation of ERK and P38, which significantly enhanced the expression of TNF-α. Meanwhile, BTL-1 pretreatment upregulated tight junction protein expression (ZO-1, occludin, and claudin-1) and maintained intestinal barrier and intestinal permeability integrity. In mice, BTL-1 significantly alleviated the intestinal inflammatory response induced by DSS, inhibited TLR4/NF-κB signaling pathway, and MAPK signaling pathway, thus reducing the production of IL-1, IL-6, and TNF-α. Further, the expression of tight junction proteins (ZO-1, occludin, and claudin-1) was upregulated in BTL-1 administrated mice. Therefore, it has been suggested that butyrolactone-I alleviates inflammatory responses in LPS-stimulated IPEC-J2 and DSS-induced murine colitis by TLR4/NF-κB and MAPK signal pathway. Thereby, BTL-1 might potentially be used as an ocean drug to prevent intestinal bowel disease.
Collapse
Affiliation(s)
- Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yi Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Sahar Ghulam Mohyuddin
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jiayin Wen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Minglong Bao
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Tianyue Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Lianyun Wu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Canyin Hu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xiaoxi Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - A M Abd El-Aty
- State Key Laboratory of Bio Based Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
45
|
Lei H, Crawford MS, McCole DF. JAK-STAT Pathway Regulation of Intestinal Permeability: Pathogenic Roles and Therapeutic Opportunities in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2021; 14:840. [PMID: 34577540 PMCID: PMC8466350 DOI: 10.3390/ph14090840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The epithelial barrier forms the interface between luminal microbes and the host immune system and is the first site of exposure to many of the environmental factors that trigger disease activity in chronic inflammatory bowel disease (IBD). Disruption of the epithelial barrier, in the form of increased intestinal permeability, is a feature of IBD and other inflammatory diseases, including celiac disease and type 1 diabetes. Variants in genes that regulate or belong to the JAK-STAT signaling pathway are associated with IBD risk. Inhibitors of the JAK-STAT pathway are now effective therapeutic options in IBD. This review will discuss emerging evidence that JAK inhibitors can be used to improve defects in intestinal permeability and how this plays a key role in resolving intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Declan F. McCole
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; (H.L.); (M.S.C.)
| |
Collapse
|
46
|
Ye L, Lin Y, Fan XD, Chen Y, Deng Z, Yang Q, Lei X, Mao J, Cui C. Identify Inflammatory Bowel Disease-Related Genes Based on Machine Learning. Front Cell Dev Biol 2021; 9:722410. [PMID: 34381790 PMCID: PMC8352440 DOI: 10.3389/fcell.2021.722410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
The patients of Inflammatory bowel disease (IBD) are increasing worldwide. IBD has the characteristics of recurring and difficult to cure, and it is also one of the high-risk factors for colorectal cancer (CRC). The occurrence of IBD is closely related to genetic factors, which prompted us to identify IBD-related genes. Based on the hypothesis that similar diseases are related to similar genes, we purposed a SVM-based method to identify IBD-related genes by disease similarities and gene interactions. One hundred thirty-five diseases which have similarities with IBD and their related genes were obtained. These genes are considered as the candidates of IBD-related genes. We extracted features of each gene and implemented SVM to identify the probability that it is related to IBD. Ten-cross validation was applied to verify the effectiveness of our method. The AUC is 0.93 and AUPR is 0.97, which are the best among four methods. We prioritized the candidate genes and did case studies on top five genes.
Collapse
Affiliation(s)
- Lili Ye
- Daycare Chemotherapy Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongwei Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xing-di Fan
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zengli Deng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotian Lei
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jizong Mao
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Li J. Context-Dependent Roles of Claudins in Tumorigenesis. Front Oncol 2021; 11:676781. [PMID: 34354941 PMCID: PMC8329526 DOI: 10.3389/fonc.2021.676781] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The barrier and fence functions of the claudin protein family are fundamental to tissue integrity and human health. Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation. Studies have uncovered that claudins engage in nearly all aspects of tumor biology and steps of tumor development, suggesting their promise as targets for treatment or biomarkers for diagnosis and prognosis. However, claudins can be either tumor promoters or tumor suppressors depending on the context, which emphasizes the importance of taking various factors, including organ type, environmental context and genetic confounders, into account when studying the biological functions and targeting of claudins in cancer. This review discusses the complicated roles and intrinsic and extrinsic determinants of the context-specific effects of claudins in cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|
48
|
Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, Hamaamen JA, Lewis KB, Yang J, Liu Q, Kaji I, Means AL, Beauchamp RD. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G936-G957. [PMID: 33759564 PMCID: PMC8285585 DOI: 10.1152/ajpgi.00053.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFβ signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFβ and intestinal barrier function. Here, we examine the role of TGFβ signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFβ1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFβ signaling, and TGFβ-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFβ signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFβ family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.
Collapse
Affiliation(s)
- Paula Marincola Smith
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yash A. Choksi
- 3Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,4Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nicholas O. Markham
- 3Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N. Hanna
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J. Weaver
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jalal A. Hamaamen
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keeli B. Lewis
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Yang
- 7Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee,8Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- 7Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee,8Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna L. Means
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,9Vanderbilt Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee,10Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R. Daniel Beauchamp
- 1Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee,2Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,5Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee,6Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,9Vanderbilt Ingram Cancer Center, Vanderbilt University
Medical Center, Nashville, Tennessee,10Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
49
|
The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. J Immunol Res 2021; 2021:5516035. [PMID: 34095319 PMCID: PMC8140847 DOI: 10.1155/2021/5516035] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.
Collapse
|
50
|
Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology 2021; 10:1923910. [PMID: 34026335 PMCID: PMC8118418 DOI: 10.1080/2162402x.2021.1923910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intestinal epithelial barrier protects intestine from infection and injury, while chronic inflammation is a trigger for tumorigenesis. As a member of tight junctions (TJs) family, Claudin-7 (Cldn-7) is dedicated to maintaining cell polarity and TJs barrier integrity, and closely related to the development of inflammation and tumors. However, potential roles of Cldn-7 in intestinal inflammation and colitis-associated colorectal cancer (CAC) have not been well characterized in vivo. Here, we analyzed the expression profile of Cldn-7 in inflammatory bowel disease (IBD) and CAC. Colitis and colitis-cancer transformation models were established based on inducible intestinal conditional Cldn-7 gene knockout mice (Cldn7fl/fl;villin-CreERT2), by intraperitoneal injection of azomethane (AOM) and dextran sodium sulfate (DSS) feeding. Cldn-7 knockout promoted susceptibility to colitis and CAC, aggravated clinical symptoms, severely damaged intestinal epithelium, increased mucosal inflammation accompanied dysregulated cell proliferation-apoptosis. Epithelial barrier integrity was destroyed, and intercellular permeability was increased. After AOM/DSS induction, tumor burden and volume were increased, characterized by enhanced proliferation and activation of Wnt/β-catenin signaling pathway. Mechanistically, Cldn-7 deficiency promoted colitis and subsequently malignant transformation by destroying TJs integrity and increasing inflammatory cascade. Overall, based on Cldn-7 knockout mouse model, we have first demonstrated the key roles of Cldn-7 in maintaining intestinal homeostasis and preventing IBD and consequent CAC. Abbreviations: AJs: adherens junctions; AOM: azomethane; Cldn-7: Claudin-7; CRC: colorectal cancer; CAC: colitis-associated colorectal cancer; CD: Crohn's disease; DSS: dextran sodium sulfate; DAI: disease activity index; EMT: epithelial-mesenchymal transition; FITC: fluorescence isothiocyanate; HB: hemoglobin; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; ISCs: intestinal stem cells; PLT: platelet; RBC: red blood cell; ROS: reactive oxygen species; TAM: tamoxifen; TJs: tight junctions; TCF/LEF: T-cell factor/lymphoid enhancer factor; UC: ulcerative colitis; WBC: white blood cell.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Yuhan Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Chang Xu
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Hepato-Pancreato-Biliary Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mengdi Hao
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Huimin Li
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| | - Lei Ding
- Department of Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Department of Oncology Surgery, Ninth School of Clinical Medicine, Peking University, Beijing, China
| |
Collapse
|