1
|
Genio E, Lecca M, Ciccocioppo R, Errichiello E. CTLA4 Alteration and Neurologic Manifestations: A New Family with Large Phenotypic Variability and Literature Review. Genes (Basel) 2025; 16:306. [PMID: 40149457 PMCID: PMC11942126 DOI: 10.3390/genes16030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4), a member of the immunoglobulin superfamily, is an essential negative regulator of immune responses that is constitutively expressed on both regulatory (Treg) and activated T cells. To date, heterozygous germline variants in CTLA4, leading to haploinsufficiency, have been associated with several immunological disorders, including hypogammaglobulinemia, multi-organ autoimmunity, lymphoproliferative disorders, and enlarged lymphoid organs. Indeed, CTLA4 carriers display highly heterogeneous clinical manifestations with a phenotypic spectrum ranging from asymptomatic carrier status to fatal autoimmunity. Here, we describe a family with autoimmune phenotypes (Hashimoto thyroiditis, psoriasiform dermatitis, celiac disease/inflammatory bowel disease, and rheumatoid arthritis), segregating across three different generations due to a recurrent missense variant [c.436G>A, p.(Gly146Arg)] in the CTLA4 gene. Interestingly, the proband showed prominent neurological manifestations, including seizures, hydrocephalus, and demyelination, which are less frequently reported in individuals with pathogenic variants in CTLA4. A detailed literature review of neurologic features that have been reported so far in CTLA4 carriers is also provided.
Collapse
Affiliation(s)
- Edoardo Genio
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
| | - Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
| | - Rachele Ciccocioppo
- Gastroenterology and Endoscopic Unit, Department of Medicine and Ageing, University Gabriele D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (E.G.); (M.L.)
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
2
|
Su Q, Li J, Lu Y, Liang J, Huang S, Wu M, He Y, An Z, Ding J, Zhang Z. Spleen volume in relation to ulcerative colitis and Crohn's disease: a Mendelian randomization study. Sci Rep 2025; 15:6588. [PMID: 39994250 PMCID: PMC11850802 DOI: 10.1038/s41598-025-90104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Prior research has established the significance of spleen volume (SV) in the pathogenesis and advancement of ulcerative colitis (UC) and Crohn's disease (CD). Nevertheless, these investigations are predominantly observational, thereby leaving their causal associations ambiguous. Moreover, the breadth of existing research is constrained by various uncontrollable variables in clinical settings. This study aims to deduce the causal link between SV and the susceptibility to UC and CD through a genetic perspective. The objective of this study was to investigate the genetic association between SV and inflammatory bowel disease (IBD) risk using Mendelian randomization (MR) analysis. Single nucleotide polymorphisms (SNPs) associated with SV were used as instrumental variables. Genetic associations for UC and CD were extracted from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC), the FinnGen study, and other publicly available genome-wide association studies (GWAS). Methods such as inverse variance weighted, Bayesian weighted Mendelian randomization (BWMR), contamination mixture (ConMix), along with sensitivity analyses and the Steiger test were used in the study. A meta-analysis was conducted to synthesize the results. The study found that genetically predicted SV was associated with an increased risk of UC in the IIBDGC dataset (OR = 1. 223, 95% CI: 1. 055-1. 417, P = 0. 008), FinnGen (OR = 1. 169, 95% CI: 1. 003-1. 363, P = 0. 045), the GWAS study by Sakaue S (OR = 1. 188, 95% CI: 1. 008-1. 399, P = 0. 040), and in the meta-analysis (OR = 1. 115, 95% CI: 1. 014-1. 227, P = 0. 025). Similarly, genetically predicted SV was associated with an increased risk of CD in the IIBDGC dataset (OR = 1. 235, 95% CI: 1. 026-1. 488, P = 0. 026), FinnGen (OR = 1. 308, 95% CI: 1. 026-1. 667, P = 0. 030), the GWAS study by Zorina-Lichtenwalter K (OR = 1. 316, 95% CI: 1. 037-1. 670, P = 0. 024), and in the meta-analysis (OR = 1. 272, 95% CI: 1. 133-1. 428, P < 0. 001). According to the meta-analysis results, for each standard unit increase in SV, the risk of developing UC increases by 11. 5%, and the risk of developing CD increases by 27. 2%. This study presents findings that suggest a positive causal association between SV and the onset of IBD.
Collapse
Affiliation(s)
- Qiang Su
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jian Li
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yun Lu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Jiang Liang
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Rheumatology and Hematology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Song Huang
- Anorectal Surgery Department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Min Wu
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanli He
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Cadre health care, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Zhenxiang An
- First Clinical Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
- Department of Gastroenterology, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
| | - Jinbing Ding
- Dermatological department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| | - Zhizhong Zhang
- Dermatological department, Fenggang County Traditional Chinese Medicine Hospital, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Pilcher C, Buco PAV, Truong JQ, Ramsland PA, Smeets MF, Walkley CR, Holien JK. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS Lett 2025. [PMID: 39887712 DOI: 10.1002/1873-3468.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The Kelch protein superfamily is an evolutionary conserved family containing 63 alternate protein coding members. The superfamily is split into three subfamilies: Kelch like (KLHL), Kelch-repeat and bric-a-bracs (BTB) domain containing (KBTBD) and Kelch domain containing protein (KLHDC). The KLHDC subfamily is one of the smallest within the Kelch superfamily, containing 10 primary members. There is little known about the structures and functions of the subfamily; however, they are thought to be involved in several cellular and molecular processes. Recently, there have been significant structural and biochemical advances for KLHDC2, which has aided our understanding of other KLHDC family members. Furthermore, small molecules directly targeting KLHDC2 have been identified, which act as tools for targeted protein degradation. This review utilises this information, in conjunction with a thorough exploration of the structural aspects and potential biological functions to summarise the relationship between KLHDCs and human disease.
Collapse
Affiliation(s)
- Courtney Pilcher
- School of Science, STEM College, RMIT University, Melbourne, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Paula Armina V Buco
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
| | - Jia Q Truong
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, STEM College, RMIT University, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Australia
| | | | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
| |
Collapse
|
4
|
Obi ON, Saketkoo LA, Maier LA, Baughman RP. Developmental drugs for sarcoidosis. J Autoimmun 2024; 149:103179. [PMID: 38548579 DOI: 10.1016/j.jaut.2024.103179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/04/2023] [Accepted: 02/08/2024] [Indexed: 12/15/2024]
Abstract
Sarcoidosis is a multi-organ granulomatous inflammatory disease of unknown etiology. Over 50% of patients will require treatment at some point in their disease and 10%-30% will develop a chronic progressive disease with pulmonary fibrosis leading to significant morbidity and mortality. Recently published guidelines recommend immunosuppressive therapy for sarcoidosis patients at risk of increased disease-related morbidity and mortality, and in whom disease has negatively impacted quality of life. Prednisone the currently recommended first line therapy is associated with significant toxicity however none of the other guideline recommended steroid sparing therapy is approved by regulatory agencies for use in sarcoidosis, and data in support of their use is weak. For patients with severe refractory disease requiring prolonged therapy, treatment options are limited. The need for expanding treatment options in sarcoidosis has been emphasized. Well conducted large, randomized trials evaluating currently available therapeutic options as well as novel pathways for targeting disease are necessary to better guide treatment decisions. These trials will not be without significant challenges. Sarcoidosis is a rare disease with heterogenous presentation and variable progression and clinical outcome. There are no universally agreed upon biomarkers of disease activity and measurement of outcomes is confounded by the need to balance patient centric measures and objective measures of disease activity. Our paper provides an update on developmental drugs in sarcoidosis and outlines several novel pathways that may be targeted for future drug development. Currently available trials are highlighted and ongoing challenges to drug development and clinical trial design are briefly discussed.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Lesley Ann Saketkoo
- New Orleans Scleroderma and Sarcoidosis Patient Care and Research Center, New Orleans, USA; University Medical Center - Comprehensive Pulmonary Hypertension Center and Interstitial Lung Disease Clinic Programs, New Orleans, USA; Louisiana State University School of Medicine, Section of Pulmonary Medicine, New Orleans, LA, USA; Tulane University School of Medicine, Undergraduate Honors Department, New Orleans, LA, USA
| | - Lisa A Maier
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Health, Denver, CO, USA; Division of Pulmonary and Critical Care Sciences, Department of Medicine, University of Colorado School of Medicine, Denver, CO, USA
| | - Robert P Baughman
- Emeritus Professor of Medicine, Department of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
5
|
Podder V, Ranjan T, Margolin K, Maharaj A, Ahluwalia MS. Evaluating the Safety of Immune Checkpoint Inhibitors and Combination Therapies in the Management of Brain Metastases: A Comprehensive Review. Cancers (Basel) 2024; 16:3929. [PMID: 39682118 DOI: 10.3390/cancers16233929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Brain metastases (BM) are a frequent and severe complication in patients with lung cancer, breast cancer, and melanoma. Immune checkpoint inhibitors (ICIs) have become a crucial treatment option for BM, whether used alone or in combination with chemotherapy and stereotactic radiosurgery (SRS). However, ICIs are associated with immune-related adverse events (irAEs) that can affect multiple organ systems, complicating their use in BM patients. This review examines the mechanisms of irAEs and their effects on different organs and evaluates the safety of ICIs across various treatment strategies for BM. Our analysis indicates that ICIs significantly improve survival and disease control in BM patients, but their use increases the risk of irAEs, including dermatologic, gastrointestinal, endocrine, pulmonary, and neurologic toxicities. Neurotoxic events, particularly treatment-associated brain necrosis (TABN) and encephalitis, are more common in BM patients. While the overall incidence of irAEs is similar between patients with and without BM, the neurotoxicity risk is higher in the BM population. Combining ICIs with chemotherapy and SRS enhances efficacy but also heightens the risk of adverse events across organ systems. ICIs offer substantial benefits for BM patients but require careful management to mitigate the risks of irAEs. Close patient monitoring, individualized treatment protocols, and prompt intervention are essential for optimizing the outcomes. Future research should focus on refining combination strategies and improving the management of irAEs, particularly neurotoxicity, to maximize therapeutic benefits for BM patients.
Collapse
Affiliation(s)
- Vivek Podder
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Tulika Ranjan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | - Kim Margolin
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | - Arun Maharaj
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33186, USA
| | | |
Collapse
|
6
|
Lo JW, Schroeder JH, Roberts LB, Mohamed R, Cozzetto D, Beattie G, Omer OS, Ross EM, Heuts F, Jowett GM, Read E, Madgwick M, Neves JF, Korcsmaros T, Jenner RG, Walker LSK, Powell N, Lord GM. CTLA-4 expressing innate lymphoid cells modulate mucosal homeostasis in a microbiota dependent manner. Nat Commun 2024; 15:9520. [PMID: 39496592 PMCID: PMC11535242 DOI: 10.1038/s41467-024-51719-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2024] [Indexed: 11/06/2024] Open
Abstract
The maintenance of intestinal homeostasis is a fundamental process critical for organismal integrity. Sitting at the interface of the gut microbiome and mucosal immunity, adaptive and innate lymphoid populations regulate the balance between commensal micro-organisms and pathogens. Checkpoint inhibitors, particularly those targeting the CTLA-4 pathway, disrupt this fine balance and can lead to inflammatory bowel disease and immune checkpoint colitis. Here, we show that CTLA-4 is expressed by innate lymphoid cells and that its expression is regulated by ILC subset-specific cytokine cues in a microbiota-dependent manner. Genetic deletion or antibody blockade of CTLA-4 in multiple in vivo models of colitis demonstrates that this pathway plays a key role in intestinal homeostasis. Lastly, we have found that this observation is conserved in human IBD. We propose that this population of CTLA-4-positive ILC may serve as an important target for the treatment of idiopathic and iatrogenic intestinal inflammation.
Collapse
Affiliation(s)
- Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | | | - Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Rami Mohamed
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Gordon Beattie
- CRUK City of London Centre Single Cell Genomics Facility, UCL Cancer Institute, University College London, London, UK
- Genomics Translational Technology Platform, UCL Cancer Institute, University College London, London, UK
| | - Omer S Omer
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Ellen M Ross
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Frank Heuts
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
- Centre for Stem Cells & Regenerative Medicine, King's College London, London, UK
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Matthew Madgwick
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, T, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Richard G Jenner
- UCL Cancer Institute and CRUK City of London Centre, University College London, London, UK
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Pears Building, University College London Division of Infection and Immunity, Royal Free Campus, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Khavkin AI, Permyakova AA, Tsepilova MO, Kaplina AV, Sitkin SI, Surkov AN, Getmanov SD. Modern View on Very Early Onset and Early Onset Inflammatory Bowel Diseases in Children. CURRENT PEDIATRICS 2024; 23:145-151. [DOI: 10.15690/vsp.v23i3.2768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Nowadays, an urgent problem of pediatric gastroenterology is the study of inflammatory bowel diseases with very early onset (VEO-IBD), which have unique genetic, clinical, immunological, morphological, and laboratory sings. Early VEO-IBD is usually considered as monogenic disease, especially in combination with congenital immune defects, which leads to difficulties in diagnosis and management this pathology. Despite this, systematization of information about this group of nosological forms of IBD is practically not carried out. This article presents a review of the available information on etiological factors, course variants, and therapeutic options for VEO-IBD.
Collapse
Affiliation(s)
| | | | | | | | - Stanislav I. Sitkin
- Almazov National Medical Research Centre; North-Western State Medical University named after I.I. Mechnikov
| | - Andrey N. Surkov
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University
| | | |
Collapse
|
8
|
Duarte-Silva M, Parra RS, Feitosa MR, Nardini V, Maruyama SR, da Rocha JJR, Feres O, de Barros Cardoso CR. Leukocyte dysfunction and reduced CTLA-4 expression are associated with perianal Crohn's disease. Clin Exp Immunol 2024; 217:78-88. [PMID: 38517030 PMCID: PMC11188538 DOI: 10.1093/cei/uxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Although perianal Crohn's disease (PCD) is highly associated with the exacerbated inflammation, the molecular basis and immunological signature that distinguish patients who present a history of perianal lesions are still unclear. This paper aims to define immunological characteristics related to PCD. In this cross-sectional observational study, we enrolled 20 healthy controls and 39 CD patients. Blood samples were obtained for the detection of plasma cytokines and lipopolysaccharides (LPS). Peripheral blood mononuclear cells (PBMCs) were phenotyped by flow cytometry. Leukocytes were stimulated with LPS or anti-CD3/anti-CD28 antibodies. Our results show that CD patients had augmented plasma interleukin (IL)-6 and LPS. However, their PBMC was characterized by decreased IL-6 production, while patients with a history of PCD produced higher IL-6, IL-8, and interferon-γ, along with decreased tumor necrosis factor alpha (TNF). CD patients had augmented FoxP3 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulatory markers, though the PCD subjects presented a significant reduction in CTLA-4 expression. CTLA-4 as well as IL-6 and TNF responses were able to distinguish the PCD patients from those who did not present perianal complications. In conclusion, IL-6, TNF, and CTLA-4 exhibit a distinct expression pattern in CD patients with a history of PCD, regardless of disease activity. These findings clarify some mechanisms involved in the development of the perianal manifestations and may have a great impact on the disease management.
Collapse
Affiliation(s)
- Murillo Duarte-Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rogério Serafim Parra
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marley Ribeiro Feitosa
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Regina Maruyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - José Joaquim Ribeiro da Rocha
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Omar Feres
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
9
|
Villani AC. The evolving landscape of immune-related adverse events that follow immune checkpoint immunotherapy in cancer patients. Immunol Rev 2023; 318:4-10. [PMID: 37632320 DOI: 10.1111/imr.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Massachusetts, Boston, USA
- Mass General Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Massachusetts, Boston, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Massachusetts, Cambridge, USA
- Harvard Medical School, Massachusetts, Boston, USA
| |
Collapse
|
10
|
Desmedt V, Jauregui-Amezaga A, Fierens L, Aspeslagh S, Dekervel J, Wauters E, Peeters M, Sabino J, Crapé L, Somers M, Hoorens A, Dutré J, Lobatón T. Position statement on the management of the immune checkpoint inhibitor-induced colitis via multidisciplinary modified Delphi consensus. Eur J Cancer 2023; 187:36-57. [PMID: 37116287 DOI: 10.1016/j.ejca.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/30/2023]
Abstract
INTRODUCTION The use of immune checkpoint inhibitors (ICIs) in cancer immunotherapy has shown increased overall survival in a wide range of cancer types with the associated risk of developing severe immune-mediated adverse events, commonly involving the gastrointestinal tract. AIM The aim of this position statement is to provide an updated practice advice to the gastroenterologists and oncologists on the diagnosis and management of ICI-induced gastrointestinal toxicity. METHODOLOGY The evidence reviewed in this paper includes a comprehensive search strategy of English language publications. Consensus was reached using a three-round modified Delphi methodology and approved by the members of the Belgian Inflammatory Bowel Disease Research and Development Group (BIRD), Belgian Society of Medical Oncology (BSMO), Belgian group of Digestive Oncology (BGDO), and Belgian Respiratory Society (BeRS). CONCLUSIONS The management of ICI-induced colitis requires an early multidisciplinary approach. A broad initial assessment is necessary (clinical presentation, laboratory markers, endoscopic and histologic examination) to confirm the diagnosis. Criteria for hospitalisation, management of ICIs, and initial endoscopic assessment are proposed. Even if corticosteroids are still considered the first-line therapy, biologics are recommended as an escalation therapy and as early treatment in patients with high-risk endoscopic findings.
Collapse
Affiliation(s)
- Valérie Desmedt
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Belgium
| | - Aranzazu Jauregui-Amezaga
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics (LEMP), Division of Gastroenterology-Hepatology, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.
| | - Liselotte Fierens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), Catholic University of Leuven, Belgium
| | | | - Jeroen Dekervel
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Belgium
| | - Els Wauters
- Respiratory Oncology Unit (Pulmonology), University Hospitals KU Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marc Peeters
- Department of Digestive Oncology, University Hospital Antwerp, Belgium
| | - Joao Sabino
- Department of Gastroenterology and Hepatology, University Hospital Leuven, Belgium
| | - Lara Crapé
- Department of Gastroenterology, Algemeen Stedelijk Ziekenhuis Aalst, Belgium
| | - Michael Somers
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Belgium
| | - Anne Hoorens
- Department of Pathology, University Hospital Ghent, Belgium
| | - Joris Dutré
- Department of Gastroenterology, Ziekenhuis Netwerk Antwerpen Jan Palfijn, Belgium
| | - Triana Lobatón
- Department of Gastroenterology and Hepatology, University Hospital Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Levine AE, Mark D, Smith L, Zheng HB, Suskind DL. Pharmacologic Management of Monogenic and Very Early Onset Inflammatory Bowel Diseases. Pharmaceutics 2023; 15:969. [PMID: 36986830 PMCID: PMC10059893 DOI: 10.3390/pharmaceutics15030969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammatory bowel disease (IBD) is treated with a variety of immunomodulating and immunosuppressive therapies; however, for the majority of cases, these therapies are not targeted for specific disease phenotypes. Monogenic IBD with causative genetic defect is the exception and represents a disease cohort where precision therapeutics can be applied. With the advent of rapid genetic sequencing platforms, these monogenic immunodeficiencies that cause inflammatory bowel disease are increasingly being identified. This subpopulation of IBD called very early onset inflammatory bowel disease (VEO-IBD) is defined by an age of onset of less than six years of age. Twenty percent of VEO-IBDs have an identifiable monogenic defect. The culprit genes are often involved in pro-inflammatory immune pathways, which represent potential avenues for targeted pharmacologic treatments. This review will provide an overview of the current state of disease-specific targeted therapies, as well as empiric treatment for undifferentiated causes of VEO-IBD.
Collapse
Affiliation(s)
- Anne E. Levine
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Dominique Mark
- Department of Pharmacy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Laila Smith
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Hengqi B. Zheng
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - David L. Suskind
- Division of Gastroenterology, Seattle Children’s Hospital, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Barnet M, Masle-Farquhar E, Singh M, Burnett DL. Blood and guts: peripheral immune correlates of immunotherapy-induced colitis. Immunol Cell Biol 2023; 101:12-15. [PMID: 36326611 DOI: 10.1111/imcb.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia.,The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Etienne Masle-Farquhar
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Mandeep Singh
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Deborah L Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| |
Collapse
|
13
|
Germline genetic variation and predicting immune checkpoint inhibitor induced toxicity. NPJ Genom Med 2022; 7:73. [PMID: 36564402 PMCID: PMC9789157 DOI: 10.1038/s41525-022-00345-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of various cancer types. ICIs reinstate T-cell function to elicit an anti-cancer immune response. The resulting immune response can however have off-target effects which manifest as autoimmune type serious immune-related adverse events (irAE) in ~10-55% of patients treated. It is currently challenging to predict both who will experience irAEs and to what severity. Identification of patients at high risk of serious irAE would revolutionise patient care. While the pathogenesis driving irAE development is still unclear, host genetic factors are proposed to be key determinants of these events. This review presents current evidence supporting the role of the host genome in determining risk of irAE. We summarise the spectrum and timing of irAEs following treatment with ICIs and describe currently reported germline genetic variation associated with expression of immuno-modulatory factors within the cancer immunity cycle, development of autoimmune disease and irAE occurrence. We propose that germline genetic determinants of host immune function and autoimmune diseases could also explain risk of irAE development. We also endorse genome-wide association studies of patients being treated with ICIs to identify genetic variants that can be used in polygenic risk scores to predict risk of irAE.
Collapse
|
14
|
Harada Y, Miyamoto K, Chida A, Okuzawa AT, Yoshimatsu Y, Kudo Y, Sujino T. Localization and movement of Tregs in gastrointestinal tract: a systematic review. Inflamm Regen 2022; 42:47. [PMID: 36329556 PMCID: PMC9632047 DOI: 10.1186/s41232-022-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The intestine is rich in food-derived and microbe-derived antigens. Regulatory T cells (Tregs) are an essential T-cell population that prevents systemic autoimmune diseases and inhibits inflammation by encountering antigens. Previously, it was reported that the functional loss of Tregs induces systemic inflammation, including inflammatory bowel disease and graft-versus-host disease in human and murine models. However, there is a dearth of information about how Tregs localize in different tissues and suppress effector cells. MAIN BODY The development of Tregs and their molecular mechanism in the digestive tract have been elucidated earlier using murine genetic models, infectious models, and human samples. Tregs suppress immune and other nonimmune cells through direct effect and cytokine production. The recent development of in vivo imaging technology allows us to visualize how Tregs localize and move in the settings of inflammation and homeostasis. This is important because, according to a recent report, Treg characterization and function are regulated by their location. Tregs located in the proximal intestine and its draining lymph nodes induce tolerance against food antigens, and those located in the distal intestine suppress the inflammation induced by microbial antigens. Taken together, various Tregs are induced in a location-specific manner in the gastrointestinal tract and influence the homeostasis of the gut. CONCLUSION In this review, we summarize how Tregs are induced in the digestive tract and the application of in vivo Treg imaging to elucidate immune homeostasis in the digestive tract.
Collapse
Affiliation(s)
- Yosuke Harada
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Miyamoto
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan.,Miyarisan Pharm. Co. Ltd, Tokyo, Japan
| | - Akihiko Chida
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Anna Tojo Okuzawa
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yusuke Yoshimatsu
- Department of Gastroenterology and Hepatology, School of Medicine, Keio University, Tokyo, Japan
| | - Yumi Kudo
- Department of Pediatric Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Tomohisa Sujino
- Center for the Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan.
| |
Collapse
|
15
|
Fox TA, Houghton BC, Petersone L, Waters E, Edner NM, McKenna A, Preham O, Hinze C, Williams C, de Albuquerque AS, Kennedy A, Pesenacker AM, Genovese P, Walker LSK, Burns SO, Sansom DM, Booth C, Morris EC. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14:eabn5811. [PMID: 36288278 DOI: 10.1126/scitranslmed.abn5811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Heterozygous mutations in CTLA-4 result in an inborn error of immunity with an autoimmune and frequently severe clinical phenotype. Autologous T cell gene therapy may offer a cure without the immunological complications of allogeneic hematopoietic stem cell transplantation. Here, we designed a homology-directed repair (HDR) gene editing strategy that inserts the CTLA-4 cDNA into the first intron of the CTLA-4 genomic locus in primary human T cells. This resulted in regulated expression of CTLA-4 in CD4+ T cells, and functional studies demonstrated CD80 and CD86 transendocytosis. Gene editing of T cells isolated from three patients with CTLA-4 insufficiency also restored CTLA-4 protein expression and rescued transendocytosis of CD80 and CD86 in vitro. Last, gene-corrected T cells from CTLA-4-/- mice engrafted and prevented lymphoproliferation in an in vivo murine model of CTLA-4 insufficiency. These results demonstrate the feasibility of a therapeutic approach using T cell gene therapy for CTLA-4 insufficiency.
Collapse
Affiliation(s)
- Thomas Andrew Fox
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
| | | | - Lina Petersone
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Erin Waters
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Natalie Mona Edner
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Alex McKenna
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Olivier Preham
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claudia Hinze
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Cayman Williams
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Adriana Silva de Albuquerque
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Anne Maria Pesenacker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Pietro Genovese
- Dana-Farber/Boston Children's Cancer and Blood Disorder Center, Boston, MA 02115, USA
| | - Lucy Sarah Kate Walker
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Siobhan Oisin Burns
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| | - David Michael Sansom
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
| | - Claire Booth
- UCL Great Ormond Street Institute of Child Health, UCL, London WC1N 1EH, UK
- Department of Paediatric Immunology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Emma Catherine Morris
- UCL Institute of Immunity and Transplantation, University College London, London, NW3 2PP, UK
- Department of Haematology, University College London NHS Foundation Trust, London, NW1 2BU UK
- University College London Hospital, National Institute for Health and Care Research Biomedical Research Centre, London W1T 7DN, UK
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, NW3 2QG, UK
| |
Collapse
|
16
|
Krausz M, Uhlmann A, Rump IC, Ihorst G, Goldacker S, Sogkas G, Posadas-Cantera S, Schmidt R, Feißt M, Alsina L, Dybedal I, Recher M, Warnatz K, Grimbacher B. The ABACHAI clinical trial protocol: Safety and efficacy of abatacept (s.c.) in patients with CTLA-4 insufficiency or LRBA deficiency: A non controlled phase 2 clinical trial. Contemp Clin Trials Commun 2022; 30:101008. [PMID: 36262801 PMCID: PMC9573884 DOI: 10.1016/j.conctc.2022.101008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency are both complex immune dysregulation syndromes with an underlying regulatory T cell dysfunction due to the lack of CTLA-4 protein. As anticipated, the clinical phenotypes of CTLA-4 insufficiency and LRBA deficiency are similar. Main manifestations include hypogammaglobulinemia, lymphoproliferation, autoimmune cytopenia, immune-mediated respiratory, gastrointestinal, neurological, and skin involvement, which can be severe and disabling. The rationale of this clinical trial is to improve clinical outcomes of affected patients by substituting the deficient CTLA-4 by administration of CTLA4-Ig (abatacept) as a causative personalized treatment. Objectives Our objective is to assess the safety and efficacy of abatacept for patients with CTLA-4 insufficiency or LRBA deficiency. The study will also investigate how treatment with abatacept affects the patients’ quality of life. Methods /Design: ABACHAI is a phase IIa prospective, non-randomized, open-label, single arm multi-center trial. Altogether 20 adult patients will be treated with abatacept 125 mg s.c. on a weekly basis for 12 months, including (1) patients already pretreated with abatacept, and (2) patients not pretreated, starting with abatacept therapy at the baseline study visit. For the evaluation of drug safety infection control during the trial, for efficacy, the CHAI-Morbidity Score will be used. Trial registration The trial is registered in the German Clinical Trials Register (Deutsches Register Klinischer Studien, DRKS) with the identity number DRKS00017736, registered: 6 July 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017736. Clinical trial for safety and efficacy of abatacept in CTLA-4 or LRBA deficiency. Substitution of CTLA4-deficiency by abatacept, a causative treatment approach. Primary endpoint: no. of episodes of failed infection control under trial treatment. Development of disease severity score.
Collapse
|
17
|
Fox TA, Houghton BC, Booth C. Gene Edited T Cell Therapies for Inborn Errors of Immunity. Front Genome Ed 2022; 4:899294. [PMID: 35783679 PMCID: PMC9244397 DOI: 10.3389/fgeed.2022.899294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a heterogeneous group of inherited disorders of the immune system. Many IEIs have a severe clinical phenotype that results in progressive morbidity and premature mortality. Over 450 IEIs have been described and the incidence of all IEIs is 1/1,000–10,000 people. Current treatment options are unsatisfactory for many IEIs. Allogeneic haematopoietic stem cell transplantation (alloHSCT) is curative but requires the availability of a suitable donor and carries a risk of graft failure, graft rejection and graft-versus-host disease (GvHD). Autologous gene therapy (GT) offers a cure whilst abrogating the immunological complications of alloHSCT. Gene editing (GE) technologies allow the precise modification of an organisms’ DNA at a base-pair level. In the context of genetic disease, this enables correction of genetic defects whilst preserving the endogenous gene control machinery. Gene editing technologies have the potential to transform the treatment landscape of IEIs. In contrast to gene addition techniques, gene editing using the CRISPR system repairs or replaces the mutation in the DNA. Many IEIs are limited to the lymphoid compartment and may be amenable to T cell correction alone (rather than haematopoietic stem cells). T cell Gene editing has the advantages of higher editing efficiencies, reduced risk of deleterious off-target edits in terminally differentiated cells and less toxic conditioning required for engraftment of lymphocytes. Although most T cells lack the self-renewing property of HSCs, a population of T cells, the T stem cell memory compartment has long-term multipotent and self-renewal capacity. Gene edited T cell therapies for IEIs are currently in development and may offer a less-toxic curative therapy to patients affected by certain IEIs. In this review, we discuss the history of T cell gene therapy, developments in T cell gene editing cellular therapies before detailing exciting pre-clinical studies that demonstrate gene editing T cell therapies as a proof-of-concept for several IEIs.
Collapse
Affiliation(s)
- T. A. Fox
- UCL Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - B. C. Houghton
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
| | - C. Booth
- Molecular and Cellular Immunology Section, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom
- *Correspondence: C. Booth,
| |
Collapse
|
18
|
Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022; 13:883733. [PMID: 35784333 PMCID: PMC9243421 DOI: 10.3389/fimmu.2022.883733] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint receptors are key players in regulating the immune response. They are responsible for both generating an immune response sufficient to kill invading pathogens, balancing the same response, and protecting against tissue destruction or the development of autoimmune events. The central role of the co-inhibitory receptors also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has become especially evident with the cancer treatments targeting these receptors. Blocking these pathways enhances the immune activity, resulting in both an increased chance of cancer clearance, at the same time induction of immune-related adverse events (irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies and symptoms, undistinguished from the naturally occurring diseases. This review will take advantage of the lessons learned from immune checkpoint blockade and relate this knowledge to our understanding of the same pathways in naturally occurring autoimmune diseases, mainly focusing on rheumatic diseases.
Collapse
Affiliation(s)
- Stinne R. Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Stinne R. Greisen,
| | - Maithri Aspari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Padron GT, Hernandez-Trujillo VP. Autoimmunity in Primary Immunodeficiencies (PID). Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08942-0. [PMID: 35648371 DOI: 10.1007/s12016-022-08942-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Primary immunodeficiency (PID) may impact any component of the immune system. The number of PID and immune dysregulation disorders is growing steadily with advancing genetic detection methods. These expansive recognition methods have changed the way we characterize PID. While PID were once characterized by their susceptibility to infection, the increase in genetic analysis has elucidated the intertwined relationship between PID and non-infectious manifestations including autoimmunity. The defects permitting opportunistic infections to take hold may also lead the way to the development of autoimmune disease. In some cases, it is the non-infectious complications that may be the presenting sign of PID autoimmune diseases, such as autoimmune cytopenia, enteropathy, endocrinopathies, and arthritis among others, have been reported in PID. While autoimmunity may occur with any PID, this review will look at certain immunodeficiencies most often associated with autoimmunity, as well as their diagnosis and management strategies.
Collapse
Affiliation(s)
- Grace T Padron
- Nicklaus Children's Hospital, Miami, FL, USA.
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA.
| | - Vivian P Hernandez-Trujillo
- Nicklaus Children's Hospital, Miami, FL, USA
- Allergy and Immunology Care Center of South Florida, Miami Lakes, FL, USA
| |
Collapse
|
20
|
Starskaia I, Laajala E, Grönroos T, Härkönen T, Junttila S, Kattelus R, Kallionpää H, Laiho A, Suni V, Tillmann V, Lund R, Elo LL, Lähdesmäki H, Knip M, Kalim UU, Lahesmaa R. Early DNA methylation changes in children developing beta cell autoimmunity at a young age. Diabetologia 2022; 65:844-860. [PMID: 35142878 PMCID: PMC8960578 DOI: 10.1007/s00125-022-05657-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes is a chronic autoimmune disease of complex aetiology, including a potential role for epigenetic regulation. Previous epigenomic studies focused mainly on clinically diagnosed individuals. The aim of the study was to assess early DNA methylation changes associated with type 1 diabetes already before the diagnosis or even before the appearance of autoantibodies. METHODS Reduced representation bisulphite sequencing (RRBS) was applied to study DNA methylation in purified CD4+ T cell, CD8+ T cell and CD4-CD8- cell fractions of 226 peripheral blood mononuclear cell samples longitudinally collected from seven type 1 diabetes-specific autoantibody-positive individuals and control individuals matched for age, sex, HLA risk and place of birth. We also explored correlations between DNA methylation and gene expression using RNA sequencing data from the same samples. Technical validation of RRBS results was performed using pyrosequencing. RESULTS We identified 79, 56 and 45 differentially methylated regions in CD4+ T cells, CD8+ T cells and CD4-CD8- cell fractions, respectively, between type 1 diabetes-specific autoantibody-positive individuals and control participants. The analysis of pre-seroconversion samples identified DNA methylation signatures at the very early stage of disease, including differential methylation at the promoter of IRF5 in CD4+ T cells. Further, we validated RRBS results using pyrosequencing at the following CpG sites: chr19:18118304 in the promoter of ARRDC2; chr21:47307815 in the intron of PCBP3; and chr14:81128398 in the intergenic region near TRAF3 in CD4+ T cells. CONCLUSIONS/INTERPRETATION These preliminary results provide novel insights into cell type-specific differential epigenetic regulation of genes, which may contribute to type 1 diabetes pathogenesis at the very early stage of disease development. Should these findings be validated, they may serve as a potential signature useful for disease prediction and management.
Collapse
Affiliation(s)
- Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Essi Laajala
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Taina Härkönen
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Roosa Kattelus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Henna Kallionpää
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Veronika Suni
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vallo Tillmann
- Children's Clinic of Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Espoo, Finland
| | - Mikael Knip
- Pediatric Research Center, Children's Hospital, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
21
|
Levine AE, Zheng HB, Suskind DL. Linking Genetic Diagnosis to Therapeutic Approach in Very Early Onset Inflammatory Bowel Disease: Pharmacologic Considerations. Paediatr Drugs 2022; 24:207-216. [PMID: 35467244 DOI: 10.1007/s40272-022-00503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is diagnosed in children < 6 years of age, and in rare cases may be due to an identifiable monogenic cause. Recent advances in genetic testing have allowed for more accurate diagnosis, with as many as 100 genes now known to be associated with monogenic inflammatory bowel disease. These genes are involved in many immune pathways and thus may represent potential avenues for targeted precision medicine with pharmacologic treatments aimed at these. This review describes the broad classifications of monogenic disorders known to cause VEO-IBD, as well as empiric and disease-specific medical therapies. These include immune-modulating or immunosuppressant medications, nutritional therapy, surgery, and hematopoietic stem cell transplantation. We aim to provide an overview of the current state of targeted therapy for VEO-IBD.
Collapse
Affiliation(s)
- Anne E Levine
- Division of Gastroenterology, Seattle Children's Hospital Inflammatory Bowel Disease Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Hengqi B Zheng
- Division of Gastroenterology, Seattle Children's Hospital Inflammatory Bowel Disease Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David L Suskind
- Division of Gastroenterology, Seattle Children's Hospital Inflammatory Bowel Disease Center, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Wilkins BJ, Kelsen JR, Conrad MA. A Pattern-based Pathology Approach to Very Early-onset Inflammatory Bowel Disease: Thinking Beyond Crohn Disease and Ulcerative Colitis. Adv Anat Pathol 2022; 29:62-70. [PMID: 34813528 PMCID: PMC8665089 DOI: 10.1097/pap.0000000000000327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very early-onset inflammatory bowel disease (VEO-IBD), IBD diagnosed in children younger than 6 years old, is phenotypically and genetically distinct from older onset IBD. Monogenic and digenic causative defects, particularly in primary immunodeficiency and intestinal epithelial barrier genes, have been identified in a subset of patients with VEO-IBD allowing for targeted therapies and improved outcomes. However, these findings are the minority, thus strategies to correctly diagnose patients, including identification of specific histopathologic findings with correlating clinical and laboratory features may provide critical and necessary insight into mechanisms of disease pathogenesis and subsequent therapeutic options. In this article, we review the pathologic findings seen in patients with VEO-IBD and outline a pattern-based approach to diagnosis using examples from primary immunodeficiencies with gastrointestinal manifestations.
Collapse
Affiliation(s)
- Benjamin J. Wilkins
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Judith R. Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Maire A. Conrad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
23
|
Gastric cancer, inflammatory bowel disease and polyautoimmunity in a 17-year-old boy: CTLA-4 deficiency successfully treated with Abatacept. Eur J Gastroenterol Hepatol 2021; 33:e1051-e1056. [PMID: 34034269 DOI: 10.1097/meg.0000000000002185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Gut involvement is frequent in immunologic disorders, especially with inflammatory manifestations but also with cancer. In the last years, advances in functional and genetic testing have improved the diagnostic and therapeutic approach to immune dysregulation syndromes. CTLA-4 deficiency is a rare disease with variable phenotype, ranging from absence of symptoms to severe multisystem manifestations and complications. We describe a rare case of CTLA-4 deficiency in a boy with gastric cancer, very early onset inflammatory bowel disease and polyautoimmunity, the second-ever reported in the literature with the same characteristics. A 17-year-old boy was referred to Bambino Gesù Children's Hospital of Rome, a tertiary care center, for a gastric mass and a long-term history of very early onset inflammatory bowel disease, diabetes mellitus type 1, polyarthritis and psoriasis. Histology of gastric biopsies revealed the presence of neoplastic signet ring cells. Imaging staging showed localized cancer; therefore, the patient underwent subtotal gastrectomy with termino-lateral gastro-jejunal anastomosis. Immunological work up and genetic testing by next-generation sequencing panels for primary immunodeficiencies led to the diagnosis of CTLA-4 deficiency. Good disease control was obtained with the administration of Abatacept. The patient experienced an asymptomatic SARS-CoV-2 infection without any concern. Eighteen months after treatment initiation, the patient is alive and well. Immunologic and genetic testing, such as next-generation sequencing, should always be part of the diagnostic approach to patients with complex immune dysregulation syndrome, severe clinical course, poor response to treatments or cancer. The early recognition of the monogenic disease is the key for disease management and targeted therapy.
Collapse
|
24
|
Liu X, Shi Y, Zhang D, Zhou Q, Liu J, Chen M, Xu Y, Zhao J, Zhong W, Wang M. Risk factors for immune-related adverse events: what have we learned and what lies ahead? Biomark Res 2021; 9:79. [PMID: 34732257 PMCID: PMC8565046 DOI: 10.1186/s40364-021-00314-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have heralded the advent of a new era in oncology by holding the promise of prolonged survival in severe and otherwise treatment-refractory advanced cancers. However, the remarkable antitumor efficacy of these agents is overshadowed by their potential for inducing autoimmune toxic effects, collectively termed immune-related adverse events (irAEs). These autoimmune adverse effects are often difficult to predict, possibly permanent, and occasionally fatal. Hence, the identification of risk factors for irAEs is urgently needed to allow for prompt therapeutic intervention. This review discusses the potential mechanisms through which irAEs arise and summarizes the existing evidence regarding risk factors associated with the occurrence of irAEs. In particular, we examined available data regarding the effect of a series of clinicopathological and demographic factors on the risk of irAEs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Yuequan Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Dongming Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Jia Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No 1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No 1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
| |
Collapse
|
25
|
Ouahed J. Expanding Contributions of Monogenic Very Early Onset Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:1870-1872. [PMID: 34525210 PMCID: PMC8528145 DOI: 10.1093/ibd/izab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/09/2022]
Abstract
Currently over 70 genes known to be causative in very early onset inflammatory bowel disease (VEOIBD) have been identified. In the current issue of Inflammatory Bowel Diseases, 2 articles describing monogenetic forms of VEOIBD are highlighted. One describes a patient with life-threatening VEOIBD and a mutation in ITGA6, illustrating the importance of the epithelial barrier in maintaining mucosal homeostasis. The other describes the presentation and management of 10 patients with VEOIBD secondary to damaging mutations in MVK, resulting in mevalonate kinase deficiency. Though most monogenic causes of VEOIBD remain "private," understanding the different categories of pathways affected in children with VEOIBD is critical and has already resulted in invaluable insight in the management of patients with VEOIBD and may hold strong implications for the care of IBD overall.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, Wong T, James K, Guidugli L, Agrawal PB, Genetti CA, Brownstein CA, Beggs AH, Löscher BS, Franke A, Boone B, Levy SE, Õunap K, Pajusalu S, Huentelman M, Ramsey K, Naymik M, Narayanan V, Veeraraghavan N, Billings P, Reese MG, Yandell M, Kingsmore SF. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med 2021; 13:153. [PMID: 34645491 PMCID: PMC8515723 DOI: 10.1186/s13073-021-00965-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. METHODS We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. RESULTS GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. CONCLUSIONS GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.
Collapse
Affiliation(s)
- Francisco M. De La Vega
- Fabric Genomics Inc., Oakland, CA USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA USA
- Current Address: Tempus Labs Inc., Redwood City, CA 94065 USA
| | - Shimul Chowdhury
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | | | | - Edgar Javier Hernandez
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | - Terence Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Kiely James
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Lucia Guidugli
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Casie A. Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Braden Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Marcus Naymik
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | | | | | | | - Mark Yandell
- Fabric Genomics Inc., Oakland, CA USA
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | |
Collapse
|
27
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Tran NN, Setty M, Cham E, Chan AY, Ali S. CTLA-4 Haploinsufficiency Presenting as Extensive Enteropathy in a Patient With Very Early Onset Inflammatory Bowel Disease. JPGN REPORTS 2021; 2:e099. [PMID: 37205940 PMCID: PMC10191597 DOI: 10.1097/pg9.0000000000000099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/30/2021] [Indexed: 05/21/2023]
Abstract
Patients with very early onset inflammatory bowel disease (VEO-IBD) have a higher incidence of monogenic disease compared to older age groups. Age, alone, is a strong predictor for monogenic disease. We discuss a case of VEO-IBD in which the patient presented with severe and refractory enteropathy, leading to diagnosis of CTLA-4 haploinsufficiency. Genetic workup showed de novo heterozygous deletions of the CTLA-4 and ICOS genes. This case was unique, as the patient did not have the other manifestations commonly present with the disease. We advocate for early and routine genetic workup of VEO-IBD, as patients with monogenic IBD have high morbidity and mortality, if inadequately treated. Our patient did not respond to conventional treatment modalities and required targeted treatment with Abatacept, a CTLA-4 agonist.
Collapse
Affiliation(s)
- Ngoc N. Tran
- From the Department of Pediatrics, UCSF Benioff Children’s Hospital Oakland, Oakland, CA
| | - Mala Setty
- From the Department of Pediatrics, UCSF Benioff Children’s Hospital Oakland, Oakland, CA
- Division of Pediatric Gastroenterology
| | - Elaine Cham
- Department of Pathology and Laboratory Medicine, UCSF Benioff Children’s Hospital Oakland, Oakland, CA
| | - Alice Y. Chan
- Department of Pediatrics UCSF Benioff Children’s Hospital, San Francisco, CA
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplant
| | - Sabina Ali
- From the Department of Pediatrics, UCSF Benioff Children’s Hospital Oakland, Oakland, CA
- Division of Pediatric Gastroenterology
| |
Collapse
|
29
|
Lo YC, Price C, Blenman K, Patil P, Zhang X, Robert ME. Checkpoint Inhibitor Colitis Shows Drug-Specific Differences in Immune Cell Reaction That Overlap With Inflammatory Bowel Disease and Predict Response to Colitis Therapy. Am J Clin Pathol 2021; 156:214-228. [PMID: 33555016 DOI: 10.1093/ajcp/aqaa217] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Checkpoint inhibitor (CPI)-associated colitis can limit therapy and has resemblance to inflammatory bowel disease (IBD). Studies exploring mechanistic similarities between these colitides are limited, yet therapeutic targets for either disorder could emerge from shared pathophysiology. METHODS The morphology and inflammatory content of colonic biopsy specimens from anti-CTLA-4 and anti-PD-1/PD-L1 antibody-treated patients with CPI colitis were compared with initial biopsy specimens from patients with IBD. Predictors of the need for infliximab were sought in CPI patients. RESULTS Biopsy specimens from CPI patients showed significantly lower chronicity scores and similar activity scores compared with patients with IBD. Anti-CTLA-4 and IBD groups showed equivalent CD8, CD4, PD-1, and PD-L1 expression, while FoxP3 scores were lower and CD68 scores were higher in anti-CTLA-4 compared with IBD biopsy specimens. Anti-PD-1/PD-L1 group had lower scores for CD8, CD4, and PD-1 and equivalent scores for FoxP3, PD-L1, and CD68 compared with IBD. Anti-CTLA-4 biopsy specimens had higher scores for CD8, PD-1, PD-L1, and CD68 than anti-PD-1/PD-L1 biopsy specimens. CD8/FoxP3 ratios and CD68 scores were higher among CPI patients requiring infliximab therapy for colitis compared with those responding to steroids. CONCLUSIONS The proinflammatory immune phenotype of anti-CTLA-4-associated colitis has significant overlap with IBD. CD8/FoxP3 ratios may predict therapeutic response in CPI-associated colitis.
Collapse
Affiliation(s)
- Ying-Chun Lo
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Christina Price
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kim Blenman
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Pallavi Patil
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Marie E Robert
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Endocrine Disorders in Autoimmune Rheumatological Diseases: A Focus on Thyroid Autoimmune Diseases and on the Effects of Chronic Glucocorticoid Treatment. ENDOCRINES 2021. [DOI: 10.3390/endocrines2030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Autoimmune rheumatological diseases’ incidence and prevalence have risen over the last decades and they are becoming increasingly important worldwide. Thyroid autoimmune diseases share with them an imbalance in the immune system that lead to a pro-inflammatory environment. Usually this is the result of a multi-factorial process. In fact, it includes not only a possible genetic predisposition, but also environmental causes like microbiota dysbiosis, diet rich in processed foods, exposure to toxicants and infections. However, many aspects are currently under study. This paper aims to examine the factors that participate in the developing of rheumatological and thyroid autoimmune diseases. Moreover, as glucocorticoids still represent a leading treatment for systemic autoimmune rheumatological diseases, our secondary aim is to summarize the main effects of glucocorticoids treatment focusing on iatrogenic Cushing’s syndrome and glucocorticoids’ withdrawal syndrome.
Collapse
|
31
|
Egg D, Rump IC, Mitsuiki N, Rojas-Restrepo J, Maccari ME, Schwab C, Gabrysch A, Warnatz K, Goldacker S, Patiño V, Wolff D, Okada S, Hayakawa S, Shikama Y, Kanda K, Imai K, Sotomatsu M, Kuwashima M, Kamiya T, Morio T, Matsumoto K, Mori T, Yoshimoto Y, Dybedal I, Kanariou M, Kucuk ZY, Chapdelaine H, Petruzelkova L, Lorenz HM, Sullivan KE, Heimall J, Moutschen M, Litzman J, Recher M, Albert MH, Hauck F, Seneviratne S, Pachlopnik Schmid J, Kolios A, Unglik G, Klemann C, Snapper S, Giulino-Roth L, Svaton M, Platt CD, Hambleton S, Neth O, Gosse G, Reinsch S, Holzinger D, Kim YJ, Bakhtiar S, Atschekzei F, Schmidt R, Sogkas G, Chandrakasan S, Rae W, Derfalvi B, Marquart HV, Ozen A, Kiykim A, Karakoc-Aydiner E, Králíčková P, de Bree G, Kiritsi D, Seidel MG, Kobbe R, Dantzer J, Alsina L, Armangue T, Lougaris V, Agyeman P, Nyström S, Buchbinder D, Arkwright PD, Grimbacher B. Therapeutic options for CTLA-4 insufficiency. J Allergy Clin Immunol 2021; 149:736-746. [PMID: 34111452 DOI: 10.1016/j.jaci.2021.04.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Heterozygous germline mutations in cytotoxic T lymphocyte-associated antigen-4 (CTLA4) impair the immunomodulatory function of regulatory T cells. Affected individuals are prone to life-threatening autoimmune and lymphoproliferative complications. A number of therapeutic options are currently being used with variable effectiveness. OBJECTIVE Our aim was to characterize the responsiveness of patients with CTLA-4 insufficiency to specific therapies and provide recommendations for the diagnostic workup and therapy at an organ-specific level. METHODS Clinical features, laboratory findings, and response to treatment were reviewed retrospectively in an international cohort of 173 carriers of CTLA4 mutation. Patients were followed between 2014 and 2020 for a total of 2624 months from diagnosis. Clinical manifestations were grouped on the basis of organ-specific involvement. Medication use and response were recorded and evaluated. RESULTS Among the 173 CTLA4 mutation carriers, 123 (71%) had been treated for immune complications. Abatacept, rituximab, sirolimus, and corticosteroids ameliorated disease severity, especially in cases of cytopenias and lymphocytic organ infiltration of the gut, lungs, and central nervous system. Immunoglobulin replacement was effective in prevention of infection. Only 4 of 16 patients (25%) with cytopenia who underwent splenectomy had a sustained clinical response. Cure was achieved with stem cell transplantation in 13 of 18 patients (72%). As a result of the aforementioned methods, organ-specific treatment pathways were developed. CONCLUSION Systemic immunosuppressants and abatacept may provide partial control but require ongoing administration. Allogeneic hematopoietic stem cell transplantation offers a possible cure for patients with CTLA-4 insufficiency.
Collapse
Affiliation(s)
- David Egg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Ina Caroline Rump
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Noriko Mitsuiki
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Jessica Rojas-Restrepo
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Maria-Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Annemarie Gabrysch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Sigune Goldacker
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yoshiaki Shikama
- Division of Infection, Immunology and Infection, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenji Kanda
- Department of Pediatrics, Hikone Municipal Hospital, Shiga, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Manabu Sotomatsu
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Makoto Kuwashima
- Department of Pediatrics, Kiryu Kosei General Hospital, Kiryū, Japan
| | - Takahiro Kamiya
- Department of Lifetime Clinical Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Matsumoto
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Mori
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Yuri Yoshimoto
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Ingunn Dybedal
- Department of Hematology, Oslo University Hospital, Oslo, Norway
| | - Maria Kanariou
- Department of Immunology and Histocompatibility, Center for Primary Immunodeficiencies-Paediatric Immunology, Aghia Sophia Children's Hospital, Athens, Greece
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hugo Chapdelaine
- Division of Clinical Immunology, Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | - Lenka Petruzelkova
- Department of Paediatrics, Motol University Hospital, Second Medical Faculty in Prague, Charles University, Prague, Czech Republic
| | - Hanns-Martin Lorenz
- Division of Rheumatology, Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Kathleen E Sullivan
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Jennifer Heimall
- The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Michel Moutschen
- Department of Infectious Diseases and General Internal Medicine, University Hospital of Liège
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Medical Faculty, Masaryk University, Brno, Czech Republic; Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Mike Recher
- Immunodeficiency Clinic, Medical Outpatient Unit and Immunodeficiency Lab, Department Biomedicine, University Hospital, Basel, Switzerland
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig Maximilians Universität München, Munich, Germany
| | - Suranjith Seneviratne
- Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gary Unglik
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, Australia
| | - Christian Klemann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Scott Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Lisa Giulino-Roth
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY
| | - Michael Svaton
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Sophie Hambleton
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, and Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, RECLIP, Spain
| | - Geraldine Gosse
- Montreal Clinical Research Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Steffen Reinsch
- Jena University Hospital, Pediatric Gastroenterology, Jena, Germany
| | - Dirk Holzinger
- Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Yae-Jean Kim
- Division of Infectious Diseases and Immunodeficiency, Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Shahrzad Bakhtiar
- Division of Stem Cell Transplantation and Immunology, Department of Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Faranaz Atschekzei
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Schmidt
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department for Clinical Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - William Rae
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, United Kingdom; Southampton National Institute for Health Research Clinical Research Facility, University Hospital Southampton NHSFT, Southampton, United Kingdom
| | - Beata Derfalvi
- Division of Immunology, IWK Health Centre and Dalhousie University, Department of Pediatrics, Halifax, Nova Scotia, Canada
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ahmet Ozen
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ayca Kiykim
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Elif Karakoc-Aydiner
- Marmara University School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Pavlína Králíčková
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Godelieve de Bree
- Department of Internal Medicine, Division of Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hemato-Oncology, Department of Pediatric and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Robin Kobbe
- Division of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Dantzer
- Division of Pediatric Allergy and Immunology, and Rheumatology, Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, Md
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu and Institut de Recerca Sant Joan de Déu, Barcelona; Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Thais Armangue
- Neuroimmunology Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Vassilios Lougaris
- Pediatric Neuroimmunology Unit, Neurology Department, Sant Joan de Déu Children's Hospital, University of Barcelona, Barcelona, Spain
| | - Philipp Agyeman
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Sofia Nyström
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - David Buchbinder
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter D Arkwright
- Division of Pediatric Hematology, Children's Hospital of Orange County, Orange, Calif
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center, Faculty of Medicine, Albert Ludwig University of Freiburg, Freiburg, Germany; Institute of Immunology and Transplantation, Royal Free Hospital, University College London, London, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Royal Manchester Children's Hospital, Manchester, United Kingdom; German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; Centre for Integrative Biological Signaling Studies, Albert Ludwig University of Freiburg, Freiburg, Germany; RESIST-Cluster of Excellence 2155 to Hannover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Karthikeyan A, Young KN, Moniruzzaman M, Beyene AM, Do K, Kalaiselvi S, Min T. Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics 2021; 13:484. [PMID: 33918207 PMCID: PMC8065662 DOI: 10.3390/pharmaceutics13040484] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing and remitting inflammatory disorder of the small intestine and colon. IBD includes ulcerative colitis (UC) and Crohn's disease (CD), and it is a major factor for the development of colon cancer, referred to as colitis-associated cancer (CAC). The current treatment of IBD mainly includes the use of synthetic drugs and monoclonal antibodies. However, these drugs have side effects over long-term use, and the high relapse rate restricts their application. In the recent past, many studies had witnessed a surge in applying plant-derived products to manage various diseases, including IBD. Curcumin is a bioactive component derived from a rhizome of turmeric (Curcuma longa). Numerous in vitro and in vivo studies show that curcumin may interact with many cellular targets (NF-κB, JAKs/STATs, MAPKs, TNF-γ, IL-6, PPARγ, and TRPV1) and effectively reduce the progression of IBD with promising results. Thus, curcumin is a potential therapeutic agent for patients with IBD once it significantly decreases clinical relapse in patients with quiescent IBD. This review aims to summarize recent advances and provide a comprehensive picture of curcumin's effectiveness in IBD and offer our view on future research on curcumin in IBD treatment.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Korea;
| | - Kim Na Young
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Anteneh Marelign Beyene
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| | - Senthil Kalaiselvi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) and Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea; (K.N.Y.); (M.M.); (A.M.B.); (K.D.)
| |
Collapse
|
33
|
Obi ON, Lower EE, Baughman RP. Biologic and advanced immunomodulating therapeutic options for sarcoidosis: a clinical update. Expert Rev Clin Pharmacol 2021; 14:179-210. [PMID: 33487042 DOI: 10.1080/17512433.2021.1878024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Sarcoidosis is a multi-organ disease with a wide range of clinical manifestations and outcomes. A quarter of sarcoidosis patients require long-term treatment for chronic disease. In this group, corticosteroids and cytotoxic agents be insufficient to control diseaseAreas covered: Several biologic agents have been studied for treatment of chronic pulmonary and extra-pulmonary disease. A review of the available literature was performed searching PubMed and an expert opinion regarding specific therapy was developed.Expert opinion: These agents have the potential of treating patients who have progressive disease. Many of these agents have different mechanisms of action, response rates, and toxicity profiles.
Collapse
Affiliation(s)
- Ogugua Ndili Obi
- Division of Pulmonary Critical Care and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Elyse E Lower
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Robert P Baughman
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
35
|
Frye BC, Rump IC, Uhlmann A, Schubach F, Ihorst G, Grimbacher B, Zissel G, Quernheim JM. Safety and efficacy of abatacept in patients with treatment-resistant SARCoidosis (ABASARC) - protocol for a multi-center, single-arm phase IIa trial. Contemp Clin Trials Commun 2020; 19:100575. [PMID: 32551397 PMCID: PMC7292904 DOI: 10.1016/j.conctc.2020.100575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Sarcoidosis is a granulomatous systemic disease that becomes chronic in approximately one third of affected patients resulting in quality of life and functional impairment. Immunosuppressive drugs other than steroids represent alternative therapeutic options, but side effects like liver and bone marrow toxicity or increased susceptibility to infections limit their use. Pathophysiological studies in sarcoidosis patients demonstrate altered regulatory T-cell functions with a reduced expression of CTLA-4 (CD152) and prolonged inflammation. Therefore, interfering with CTLA-4 using abatacept might be a therapeutic option in sarcoidosis similar to rheumatoid arthritis therapy. METHODS/DESIGN This is a multicenter prospective open-labeled single arm phase II study addressing the safety of abatacept in sarcoidosis patients. 30 patients with chronic sarcoidosis requiring immunosuppressive therapy beyond 5 mg prednisolone equivalent will be treated with abatacept in combination with corticosteroids for one year in two centers.The primary endpoint is the number and characterization of severe infectious complications under treatment with abatacept.Secondary endpoints are the rate of all infections, patient-related outcomes (assessed by questionnaires), lung function and immunological parameters including alveolar inflammation assessed by bronchoaveolar lavage. DISCUSSION This is the first trial of abatacept in patients with sarcoidosis. It is hypothesized that administration of abatacept is safe in patients with chronic sarcoidosis and can limit ongoing inflammation. Patients' wellbeing is assessed by established questionnaires. Immunological work-up will highlight the effect of abatacept on inflammatory pathways in sarcoidosis. TRIAL REGISTRATION The trial has been registered at the German Clinical Trial Registry (Deutsches Register Klinischer Studien, DRKS) with the identity number DRKS00011660.
Collapse
Key Words
- 18FDG-PET-CT, 18Fluor-Desoxy-Glucose positron-emission tomography combined with computer tomography
- Abatacept
- BAL, bronchoalveolar lavage
- CMV, cytomegaly-virus
- Chronic sarcoidosis
- EBV, Epstein-Barr-Virus
- FVC, forced vital capacity
- GHS, general health score
- IFN-γ, Interferon-γ
- IL, interleukin
- KSQ, King's sarcoidosis questionnaire
- King's sarcoidosis questionnaire
- Patient-reported outcome
- Regulatory T-cells
- TLC, total lung capacity
- TNF, tumor-necrosis factor
- TReg, regulatory T-cells
- Therapy
Collapse
Affiliation(s)
- Björn C. Frye
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ina Caroline Rump
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Fabian Schubach
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- DZIF – German Center for Infection Research, Satellite Center Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
- RESIST – Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Germany
| | - Gernot Zissel
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Joachim Müller Quernheim
- Department of Pneumology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
36
|
Comprehensive Targeted Sequencing Identifies Monogenic Disorders in Patients With Early-onset Refractory Diarrhea. J Pediatr Gastroenterol Nutr 2020; 71:333-339. [PMID: 32487952 DOI: 10.1097/mpg.0000000000002796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Causes of early-onset refractory diarrhea include exudative diarrhea associated with very early-onset inflammatory bowel diseases, osmotic or secretory diarrhea, and protein-losing enteropathy. Monogenic disorders are included in these diseases, yet a comprehensive genetic analysis has not been fully established. METHODS We established targeted gene panels covering all responsible genes for early-onset diarrhea. In total, 108 patients from 15 institutions were enrolled in this study. We collected clinical data from all patients. Seventy-three patients with exudative diarrhea, 4 with osmotic or secretory diarrhea and 8 with protein-losing enteropathy were subjected to genetic analysis. RESULTS A total of 15 out of the 108 enrolled patients (13.9%) were identified as monogenic. We identified 1 patient with RELA, 2 with TNFAIP3, 1 with CTLA4, 1 with SLCO2A1, 4 with XIAP, 3 with IL10RA, 1 with HPS1, 1 with FOXP3, and 1 with CYBB gene mutations. We also identified 1 patient with NFKB2 and 1 with TERT mutations from the gene panel for primary immunodeficiency syndromes. The patient with refractory diarrhea caused by heterozygous truncated RelA protein expression is the first case identified worldwide, and functional analysis revealed that the mutation affected nuclear factor kappa B signaling. Genotypes were significantly associated with the clinical and pathological findings in each patient. CONCLUSIONS We identified variable monogenic diseases in the patients and found that genes responsible for primary immunodeficiency diseases were frequently involved in molecular pathogenesis. Comprehensive genetic analysis was useful for accurate molecular diagnosis, understanding of underlying pathogenesis, and selecting the optimal treatment for patients with early-onset refractory diarrhea.An infographic for this article is available at: http://links.lww.com/MPG/B853.
Collapse
|
37
|
Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of severe gastrointestinal and hepatic toxicities from checkpoint inhibitors. Support Care Cancer 2020; 28:6129-6143. [PMID: 32856210 DOI: 10.1007/s00520-020-05707-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Immune-related adverse events (IrAEs) affecting the gastrointestinal (GI) tract and liver are among the most frequent and most severe inflammatory toxicities from contemporary immunotherapy. Inflammation of the colon and or small intestines (entero)colitis is the single most common GI IrAE and is an important cause of delay of discontinuation of immunotherapy. The severity of these GI IrAEs can range from manageable with symptomatic treatment alone to life-threatening complications, including perforation and liver failure. The frequency and severity of GI IrAEs is dependent on the specific immunotherapy given, with cytotoxic T lymphocyte antigen (CTLA)-4 blockade more likely to induce severe GI IrAEs than blockade of either programmed cell death protein 1 (PD-1) or PD-1 ligand (PD-L1), and combination therapy showing the highest rate of GI IrAEs, particularly in the liver. To date, we have minimal prospective data on the appropriate diagnosis and management of GI IrAEs, and recommendations are based largely on retrospective data and expert opinion. Although clinical diagnoses of GI IrAEs are common, biopsy is the gold standard for diagnosis of both immunotherapy-induced enterocolitis and hepatitis and can play an important role in excluding competing, though less common, diagnoses and ensuring optimal management. GI IrAEs typically respond to high-dose corticosteroids, though a significant fraction of patients requires secondary immune suppression. For colitis, both TNF-α blockade with infliximab and integrin inhibition with vedolizumab have proved highly effective in corticosteroid-refractory cases. Detailed guidelines have been published for the management of low-grade GI IrAEs. In the setting of more severe toxicities, involvement of a GI specialist is generally recommended. The purpose of this review is to survey the available literature and provide management recommendations focused on the GI specialist.
Collapse
|
38
|
Luoma AM, Suo S, Williams HL, Sharova T, Sullivan K, Manos M, Bowling P, Hodi FS, Rahma O, Sullivan RJ, Boland GM, Nowak JA, Dougan SK, Dougan M, Yuan GC, Wucherpfennig KW. Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy. Cell 2020; 182:655-671.e22. [PMID: 32603654 DOI: 10.1016/j.cell.2020.06.001] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/10/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
Checkpoint blockade with antibodies specific for the PD-1 and CTLA-4 inhibitory receptors can induce durable responses in a wide range of human cancers. However, the immunological mechanisms responsible for severe inflammatory side effects remain poorly understood. Here we report a comprehensive single-cell analysis of immune cell populations in colitis, a common and severe side effect of checkpoint blockade. We observed a striking accumulation of CD8 T cells with highly cytotoxic and proliferative states and no evidence of regulatory T cell depletion. T cell receptor (TCR) sequence analysis demonstrated that a substantial fraction of colitis-associated CD8 T cells originated from tissue-resident populations, explaining the frequently early onset of colitis symptoms following treatment initiation. Our analysis also identified cytokines, chemokines, and surface receptors that could serve as therapeutic targets for colitis and potentially other inflammatory side effects of checkpoint blockade.
Collapse
Affiliation(s)
- Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Shengbao Suo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Hannah L Williams
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA
| | - Tatyana Sharova
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Keri Sullivan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Michael Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Peter Bowling
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA; Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Osama Rahma
- Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA 02215, USA; Brigham and Women's Hospital and Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Molecular analysis of CTLA4 gene in patients with Behçet's disease from an Iranian Northwest Azeri population. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, Field M, Grushkin-Lerner L, Pai SY, Bousvaros A, Cho J, Argmann C, Schadt E, Mcgovern DPB, Mokry M, Nieuwenhuis E, Clevers H, Powrie F, Uhlig H, Klein C, Muise A, Dubinsky M, Snapper SB. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach With a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm Bowel Dis 2020; 26:820-842. [PMID: 31833544 PMCID: PMC7216773 DOI: 10.1093/ibd/izz259] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is defined as IBD presenting before 6 years of age. When compared with IBD diagnosed in older children, VEO-IBD has some distinct characteristics such as a higher likelihood of an underlying monogenic etiology or primary immune deficiency. In addition, patients with VEO-IBD have a higher incidence of inflammatory bowel disease unclassified (IBD-U) as compared with older-onset IBD. In some populations, VEO-IBD represents the age group with the fastest growing incidence of IBD. There are contradicting reports on whether VEO-IBD is more resistant to conventional medical interventions. There is a strong need for ongoing research in the field of VEO-IBD to provide optimized management of these complex patients. Here, we provide an approach to diagnosis and management of patients with VEO-IBD. These recommendations are based on expert opinion from members of the VEO-IBD Consortium (www.VEOIBD.org). We highlight the importance of monogenic etiologies, underlying immune deficiencies, and provide a comprehensive description of monogenic etiologies identified to date that are responsible for VEO-IBD.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Spencer
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Haunder Children’s Hospital, University Hospital, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Kowalik
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Kaiyue Peng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, Dr. Henry D. Janowitz Division of Gastroenterology, New York, NY, USA
| | - Carmen Argmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA,Sema4, Stamford, CT, USA
| | - Dermot P B Mcgovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Fiona Powrie
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK
| | - Christoph Klein
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada. Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Marla Dubinsky
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Address correspondence to: Scott B. Snapper, MD, PhD, Children's Hospital Boston, Boston, Massachusetts, USA.
| |
Collapse
|
41
|
Grover S, Ruan AB, Srivoleti P, Giobbie-Hurder A, Braschi-Amirfarzan M, Srivastava A, Buchbinder EI, Ott PA, Kehl KL, Awad MM, Hodi FS, Rahma OE. Safety of Immune Checkpoint Inhibitors in Patients With Pre-Existing Inflammatory Bowel Disease and Microscopic Colitis. JCO Oncol Pract 2020; 16:e933-e942. [PMID: 32401685 DOI: 10.1200/jop.19.00672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Enterocolitis is among the leading adverse events associated with immune checkpoint inhibitors (ICIs). There are limited retrospective data regarding the safety of ICIs in patients with inflammatory bowel disease (IBD; ulcerative colitis, Crohn's disease) because they have been generally excluded from clinical trials testing ICIs. Furthermore, there are no outcome data available in patients with microscopic colitis, a leading cause of chronic diarrhea. We aimed to study the safety of ICIs in patients with cancer with pre-existing IBD or microscopic colitis. METHODS We retrospectively reviewed the records of patients with cancer treated at our institution who received at least 1 dose of either a programmed cell death-1 (PD-1)/ PD-1 ligand inhibitor, cytotoxic T-lymphocyte-associated antigen 4 inhibitor, or both between 2011 and 2018. We identified patients with pre-existing IBD or microscopic colitis. RESULTS Of 548 patients with solid tumor treated with an ICI, we identified 25 with pre-existing colitis (21 IBD; 4 microscopic colitis). An enterocolitis flare occurred in 7 patients (28%): 3 of 4 patients (75%) with microscopic colitis and 4 of 21 (19%) with IBD. All were treated with systemic corticosteroids, 2 required an anti-tumor necrosis factor agent, and one required an anti-integrin agent and colectomy for treatment of refractory colitis. ICI therapy was discontinued in all patients who experienced an enterocolitis flare. CONCLUSION In our cohort, exacerbation of enterocolitis occurred in a notable percentage of patients with IBD and a majority of patients with microscopic colitis, leading to discontinuation of ICIs. Although these data suggest that patients with cancer with pre-existing IBD/microscopic colitis may be treated with ICIs, additional studies are needed to validate our results.
Collapse
Affiliation(s)
- Shilpa Grover
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Alex B Ruan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Padmavathi Srivoleti
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA
| | - Marta Braschi-Amirfarzan
- Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Amitabh Srivastava
- Harvard Medical School, Boston, MA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Elizabeth I Buchbinder
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| | - Kenneth L Kehl
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| | - Mark M Awad
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| | - F Stephen Hodi
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| | - Osama E Rahma
- Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Brookline, MA
| |
Collapse
|
42
|
Martins F, Sykiotis GP, Maillard M, Fraga M, Ribi C, Kuntzer T, Michielin O, Peters S, Coukos G, Spertini F, Thompson JA, Obeid M. New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. Lancet Oncol 2020; 20:e54-e64. [PMID: 30614479 DOI: 10.1016/s1470-2045(18)30828-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitors are reshaping the prognosis of many cancer and are progressively becoming the standard of care in the treatment of many tumour types. Immunotherapy is bringing new hope to patients, but also a whole new spectrum of toxicities for healthcare practitioners to manage. Oncologists and specialists involved in the pluridisciplinary management of patients with cancer are increasingly confronted with the therapeutic challenge of treating patients with severe and refractory immune-related adverse events. In this Personal View, we summarise the therapeutic strategies that have been used to manage such toxicities resulting from immune checkpoint inhibitor treatment. On the basis of current knowledge about their pathogenesis, we discuss the use of new biological and non-biological immunosuppressive drugs to treat severe and steroid refractory immune-related adverse events. Depending on the immune infiltrate type that is predominant, we propose a treatment algorithm for personalised management that goes beyond typical corticosteroid use. We propose a so-called shut-off strategy that aims at inhibiting key inflammatory components involved in the pathophysiological processes of immune-related adverse events, and limits potential adverse effects of drug immunosuppression on tumour response. This approach develops on current guidelines and challenges the step-by-step increase approach to drug immunosuppression.
Collapse
Affiliation(s)
- Filipe Martins
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerasimos P Sykiotis
- Service d'Endocrinologie, Diabétologie, et Métabolisme, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Michel Maillard
- Service de Gastro-entérologie et Hépatologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Crohn's and Colitis Center, Lausanne, Switzerland
| | - Montserrat Fraga
- Service de Gastro-entérologie et Hépatologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Camillo Ribi
- Service Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Kuntzer
- Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Olivier Michielin
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Solange Peters
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Georges Coukos
- Département d'Oncologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Epalinges, Switzerland
| | - Francois Spertini
- Service Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA; National Cancer Institute, Bethesda, MA, USA
| | - Michel Obeid
- Service Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Centre d'Immunothérapie et de Vaccinologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Faculté Médecine Paris Descartes, Université Paris Descartes, Paris, France.
| |
Collapse
|
43
|
Dougan M. Gastrointestinal and Hepatic Complications of Immunotherapy: Current Management and Future Perspectives. Curr Gastroenterol Rep 2020; 22:15. [PMID: 32185493 DOI: 10.1007/s11894-020-0752-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Checkpoint inhibitor (CPI) immunotherapy has transformed the treatment of multiple cancers over the past decade, leading to durable remissions, but also to severe inflammatory toxicities. These toxicities, termed immune-related adverse events (irAEs), can affect any organ system in the body, but commonly induce inflammation in barrier organs. Gastrointestinal (GI) and hepatic irAEs are among the most frequent and most severe from contemporary immunotherapies, with inflammation in the colon and or small intestines (entero)colitis as the single most common GI irAE. The aim of this review is to describe the evidence supporting our current understanding of CPI enterocolitis and hepatitis, as well as the management of these entities. RECENT FINDINGS Although most patients who develop enterocolitis recover without long-term GI sequelae, enterocolitis is still an important reason for treatment discontinuation, which, in patients with metastatic cancer, can be a life-threatening outcome. At present, we have almost no prospective, randomized data regarding the management of CPI enterocolitis, and current management algorithms are based on expert opinion and small retrospective studies with a high likelihood of bias. Retrospective studies have defined colonic ulceration as a predictor of colitis responsiveness to corticosteroids, and have defined microscopic colitis as a subtype of CPI enterocolitis with a distinct treatment response. Corticosteroids appear to be effective for 60-70% of patients with CPI enterocolitis, with about a third of patients requiring escalation to a biologic agent such as infliximab or vedolizumab. Yet proper sequencing of these treatments to minimize risk and maximize treatment benefit has not been established, and we do not know how treatment of colitis influences cancer outcomes. CPI enterocolitis and hepatitis are important causes of treatment interruption and discontinue, and significant morbidity in patients undergoing immunotherapy. As guidelines for diagnosis and management rely heavily on expert opinion, we have an urgent need for randomized and prospective trials that use both colitis and cancer outcomes to determine optimal management strategies.
Collapse
Affiliation(s)
- Michael Dougan
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kelsen JR, Sullivan KE, Rabizadeh S, Singh N, Snapper S, Elkadri A, Grossman AB. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Paper on the Evaluation and Management for Patients With Very Early-onset Inflammatory Bowel Disease. J Pediatr Gastroenterol Nutr 2020; 70:389-403. [PMID: 32079889 DOI: 10.1097/mpg.0000000000002567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rate of pediatric inflammatory bowel disease (IBD) has been increasing over the last decade and this increase has occurred most rapidly in the youngest children diagnosed <6 years, known as very early-onset inflammatory bowel disease (VEO-IBD). These children can present with more extensive and severe disease than older children and adults. The contribution of host genetics in this population is underscored by the young age of onset and the distinct, aggressive phenotype. In fact, monogenic defects, often involving primary immunodeficiency genes, have been identified in children with VEO-IBD and have led to targeted and life-saving therapy. This position paper will discuss the phenotype of VEO-IBD and outline the approach and evaluation for these children and what factors should trigger concern for an underlying immunodeficiency. We will then review the immunological assays and genetic studies that can facilitate the identification of the underlying diagnosis in patients with VEO-IBD and how this evaluation may lead to directed therapies. The position paper will also aid the pediatric gastroenterologist in recognizing when a patient should be referred to a center specializing in the care of these patients. These guidelines are intended for pediatricians, allied health professionals caring for children, pediatric gastroenterologists, pediatric pathologists, and immunologists.
Collapse
Affiliation(s)
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shervin Rabizadeh
- Division of Gastroenterology, Hepatology, and Nutrition, Cedar-Sinai Medical Center, Los Angeles, CA
| | - Namita Singh
- Division of Gastroenterology, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School
- Division of Gastroenterology, Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Abdul Elkadri
- Division of Gastroenterology, Hepatology, and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
45
|
Abu-Sbeih H, Faleck DM, Ricciuti B, Mendelsohn RB, Naqash AR, Cohen JV, Sellers MC, Balaji A, Ben-Betzalel G, Hajir I, Zhang J, Awad MM, Leonardi GC, Johnson DB, Pinato DJ, Owen DH, Weiss SA, Lamberti G, Lythgoe MP, Manuzzi L, Arnold C, Qiao W, Naidoo J, Markel G, Powell N, Yeung SCJ, Sharon E, Dougan M, Wang Y. Immune Checkpoint Inhibitor Therapy in Patients With Preexisting Inflammatory Bowel Disease. J Clin Oncol 2020; 38:576-583. [PMID: 31800340 PMCID: PMC7030892 DOI: 10.1200/jco.19.01674] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The risk of immune checkpoint inhibitor therapy-related GI adverse events in patients with cancer and inflammatory bowel disease (IBD) has not been well described. We characterized GI adverse events in patients with underlying IBD who received immune checkpoint inhibitors. PATIENTS AND METHODS We performed a multicenter, retrospective study of patients with documented IBD who received immune checkpoint inhibitor therapy between January 2010 and February 2019. Backward selection and multivariate logistic regression were conducted to assess risk of GI adverse events. RESULTS Of the 102 included patients, 17 received therapy targeting cytotoxic T-lymphocyte antigen-4, and 85 received monotherapy targeting programmed cell death 1 or its ligand. Half of the patients had Crohn's disease, and half had ulcerative colitis. The median time from last active IBD episode to immunotherapy initiation was 5 years (interquartile range, 3-12 years). Forty-three patients were not receiving treatment of IBD. GI adverse events occurred in 42 patients (41%) after a median of 62 days (interquartile range, 33-123 days), a rate higher than that among similar patients without underlying IBD who were treated at centers participating in the study (11%; P < .001). GI events among patients with IBD included grade 3 or 4 diarrhea in 21 patients (21%). Four patients experienced colonic perforation, 2 of whom required surgery. No GI adverse event-related deaths were recorded. Anti-cytotoxic T-lymphocyte antigen-4 therapy was associated with increased risk of GI adverse events on univariable but not multivariable analysis (odds ratio, 3.19; 95% CI, 1.8 to 9.48; P = .037; and odds ratio, 4.72; 95% CI, 0.95 to 23.53; P = .058, respectively). CONCLUSION Preexisting IBD increases the risk of severe GI adverse events in patients treated with immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Biagio Ricciuti
- Dana-Farber Cancer Institute, Boston, MA,University of Perugia, Perugia, Italy
| | | | | | - Justine V. Cohen
- Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Maclean C. Sellers
- Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Giulia C. Leonardi
- University of Perugia, Perugia, Italy,University of Catania, Catania, Italy
| | | | - David J. Pinato
- Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | | | | | - Giuseppe Lamberti
- Policlinico di Sant'Orsola University Hospital, Bologna University, Bologna, Italy
| | - Mark P. Lythgoe
- Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Lisa Manuzzi
- Policlinico di Sant'Orsola University Hospital, Bologna University, Bologna, Italy
| | | | - Wei Qiao
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Nick Powell
- Kings College London, London, United Kingdom
| | | | | | - Michael Dougan
- Massachusetts General Hospital, Boston, MA,Harvard Medical School, Boston, MA
| | - Yinghong Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX,Yinghong Wang, MD, PhD, Department of Gastroenterology, Hepatology, and Nutrition, Unit 1466, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; e-mail:
| |
Collapse
|
46
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
47
|
Ureshino H, Koarada S, Kamachi K, Yoshimura M, Yokoo M, Kubota Y, Ando T, Ichinohe T, Morio T, Kimura S. Immune dysregulation syndrome with de novo CTLA4 germline mutation responsive to abatacept therapy. Int J Hematol 2020; 111:897-902. [DOI: 10.1007/s12185-020-02834-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
|
48
|
Dougan M, Pietropaolo M. Time to dissect the autoimmune etiology of cancer antibody immunotherapy. J Clin Invest 2020; 130:51-61. [PMID: 31895048 PMCID: PMC6934191 DOI: 10.1172/jci131194] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has transformed the treatment landscape for a wide range of human cancers. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that block the immune-regulatory "checkpoint" receptors CTLA-4, PD-1, or its ligand PD-L1, can produce durable responses in some patients. However, coupled with their success, these treatments commonly evoke a wide range of immune-related adverse events (irAEs) that can affect any organ system and can be treatment-limiting and life-threatening, such as diabetic ketoacidosis, which appears to be more frequent than initially described. The majority of irAEs from checkpoint blockade involve either barrier tissues (e.g., gastrointestinal mucosa or skin) or endocrine organs, although any organ system can be affected. Often, irAEs resemble spontaneous autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid disease, type 1 diabetes mellitus (T1D), and autoimmune pancreatitis. Yet whether similar molecular or pathologic mechanisms underlie these apparent autoimmune adverse events and classical autoimmune diseases is presently unknown. Interestingly, evidence links HLA alleles associated with high risk for autoimmune disease with ICI-induced T1D and colitis. Understanding the genetic risks and immunologic mechanisms driving ICI-mediated inflammatory toxicities may not only identify therapeutic targets useful for managing irAEs, but may also provide new insights into the pathoetiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Sharifi A, Vahedi H, Honarvar MR, Alipoor B, Nikniaz Z, Rafiei H, Hosseinzadeh-Attar MJ. Vitamin D Increases CTLA-4 Gene Expression in Patients with Mild to Moderate Ulcerative Colitis. Middle East J Dig Dis 2019; 11:199-204. [PMID: 31824622 PMCID: PMC6895856 DOI: 10.15171/mejdd.2019.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/14/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disorder of the large intestine. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a member of the immunoglobulin superfamily, which binds B7-1 and B7-2 on APCs (antigen-presenting cells), and induces APCs to produce an inhibitory signal to T cells. The aim of this study was to investigate the effect of vitamin D on CTLA-4 gene expression in whole blood samples of patients with UC. METHODS 90 patients with mild to moderate UC were randomized to receive either a single injection of 7.5 mg vitamin D3 or 1 mL normal saline. 90 days following the intervention fold changes in CTLA-4 mRNA expression were determined and statistical comparisons between the two groups were performed. RESULTS Serum vitamin D increased significantly only in the vitamin D group. CTLA-4 fold changes were significantly higher in the vitamin D group compared with the placebo group (median ± IQR: 1.21 ± 2.3 vs. 1.00 ± 1.5, respectively; p = 0.007). CONCLUSION The results of this study revealed that vitamin D administration in patients with UC enhances the CTLA-4 gene expression.
Collapse
Affiliation(s)
- Amrollah Sharifi
- Assistant Professor; Golestan Research Center of Gastroenterology and Hepatology (GRCGH), Faculty of health, Golestan University of Medical Sciences (GOUMS), Gorgan, Iran
| | - Homayoon Vahedi
- Associate Professor; Digestive Disease Research Center, Digestive Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Honarvar
- Assistant Professor, Health Management and Social Development Research Center, Faculty of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Behnam Alipoor
- Assistant Professor; Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Zeinab Nikniaz
- Assistant Professor; Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Rafiei
- Faculty of Health and Social Development, College of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Mohammad Javad Hosseinzadeh-Attar
- Professor; Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev 2019; 287:33-49. [PMID: 30565239 DOI: 10.1111/imr.12721] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator constitutively expressed on regulatory T (Treg) cells and upregulated on activated T cells. CTLA-4 inhibits T cell activation by various suppressive functions including competition with CD28, regulation of the inhibitory function of Treg cells, such as transendocytosis, and the control of adhesion and motility. Intrinsic CTLA-4 signaling has been controversially discussed, but so far no distinct signaling pathway has been identified. The CTLA-4-mediated Treg suppression plays an important role in the maintenance of peripheral tolerance and the prevention of autoimmune diseases. Human CTLA-4 insufficiency is caused by heterozygous germline mutations in CTLA4 and characterized by a complex immune dysregulation syndrome. Clinical studies on CTLA4 mutation carriers showed a reduced penetrance and variable expressivity, suggesting modifying factor(s). One hundred and forty-eight CTLA4 mutation carriers have been reported; patients showed hypogammaglobulinemia, recurrent infectious diseases, various autoimmune diseases, and lymphocytic infiltration into multiple organs. The CTLA-4 expression level in Treg cells was reduced, while the frequency of Treg cells was increased in CTLA-4-insufficient patients. The transendocytosis assay is a specific functional test for the assessment of newly identified CTLA4 gene variants. Immunoglobulin substitution, corticosteroids, immunosuppressive therapy, and targeted therapy such as with CTLA-4 fusion proteins and mechanistic target of rapamycin (mTOR) inhibitors were applied; patients with life-threatening, treatment-resistant symptoms underwent hematopoietic stem cell transplantation. The fact that in humans CTLA-4 insufficiency causes severe disease taught us that the amount of CTLA-4 molecules present in/on T cells matters for immune homeostasis. However, whether the pathology-causing activated T lymphocytes in CTLA-4-insufficient patients are antigen-specific is an unsolved question. CTLA-4, in addition, has a role in autoimmune diseases and cancer. Anti-CTLA-4 drugs are employed as checkpoint inhibitors to target various forms of cancer. Thus, clinical research on human CTLA-4 insufficiency might provide us a deeper understanding of the mechanism(s) of the CTLA-4 molecule and immune dysregulation disorders.
Collapse
Affiliation(s)
- Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|