1
|
Dhanasiri AK, Siciliani D, Kortner TM, Krogdahl Å. Epigenetic changes in pyloric caeca of Atlantic salmon fed diets containing increasing levels of lipids and choline. Epigenetics 2024; 19:2305079. [PMID: 38281164 PMCID: PMC10824149 DOI: 10.1080/15592294.2024.2305079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
An earlier study of ours investigating the effect of dietary lipid levels on the choline requirement of Atlantic salmon showed increasing severity of intestinal steatosis with increasing lipid levels. As choline is involved in epigenetic regulation by being the key methyl donor, pyloric caeca samples from the study were analysed for epigenetic effects of dietary lipid and choline levels. The diets varied in lipid levels between 16% and 28%, and choline levels between 1.9 and 2.3 g/kg. The diets were fed for 8 weeks to Atlantic salmon of 25 g of initial weight. Using reduced representation bisulfite sequencing (RRBS), this study revealed that increasing dietary lipid levels induced methylation differences in genes involved in membrane transport and signalling pathways, and in microRNAs important for the regulation of lipid homoeostasis. Increasing choline levels also affected genes involved in fatty acid biosynthesis and transport, lipolysis, and lipogenesis, as well as important immune genes. Our observations confirmed that choline is involved in epigenetic regulation in Atlantic salmon, as has been reported for higher vertebrates. This study showed the need for the inclusion of biomarkers of epigenetic processes in studies that must be conducted to define optimal choline levels in diets for Atlantic salmon.
Collapse
Affiliation(s)
- Anusha K.S. Dhanasiri
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Daphne Siciliani
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Trond M. Kortner
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Åshild Krogdahl
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
2
|
Wang L, Jia G, Fu R, Liang J, Xue W, Zheng J, Qin Y, Zhang M, Meng J. Hepatic miR-363 promotes nonalcoholic fatty liver disease by suppressing INSIG1. J Nutr Biochem 2024; 134:109717. [PMID: 39103107 DOI: 10.1016/j.jnutbio.2024.109717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) constitutes one of major worldwide health problem which typically progressively results in nonalcoholic steatohepatitis (NASH) and eventually cirrhosis and liver cancer. Liver-specific deletion of INSIG1 promotes SREBP1 nuclear translocation to activate downstream lipogenic genes expression, leading to lipid accumulation. However, the underlying pathogenesis of NAFLD, and particularly involved in miRNA participation are still to be thoroughly explored. Here, we found that miR-363-3p was significantly overexpressed in high-fat, high-cholesterol (HFHC) diet mice liver tissue and fatty acid-induced steatosis cells. miR-363-3p directly targets INSIG1 to inhibit its expression, thereby facilitating the cleavage of SREBP and nuclear translocation to activate subsequent transcription of lipogenic genes in vitro and in vivo. In addition, we identified apigenin, a natural flavonoid compound, inhibited miR-363-3p expression to up-regulate INSIG1 and suppress nuclear translocation of SREBP1, thereby down-regulated lipogenic genes expression in steatosis cells and HFHC diet mice liver tissues. Taken together, our results demonstrated that miR-363-3p as a key regulator of hepatic lipid homeostasis targeted INSIG1, and apigenin alleviated NAFLD through the miR-363-3p/INSIG1/SREBP1 pathway. This indicates that reduction of miR-363-3p levels as a possible treatment of hepatic steatosis and provides a potential new therapeutic strategy for targeting miRNA to ameliorate NAFLD.
Collapse
Affiliation(s)
- Lechen Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China
| | - Guotao Jia
- Department of Pathology, Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Rongrong Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China
| | - Jingjie Liang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China
| | - Wenqing Xue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China
| | - Juan Zheng
- Department of Pathology, Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China; China-Russia Agricultural Products Processing Joint Laboratory, Tianjin Agricultural University, Wuqing, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Binhai, Tianjin, China.
| |
Collapse
|
3
|
Carpi S, Daniele S, de Almeida JFM, Gabbia D. Recent Advances in miRNA-Based Therapy for MASLD/MASH and MASH-Associated HCC. Int J Mol Sci 2024; 25:12229. [PMID: 39596297 PMCID: PMC11595301 DOI: 10.3390/ijms252212229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a growing health concern worldwide, affecting more than 1 billion adults. It may progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC). Emerging evidence has demonstrated the role in this transition of microRNAs (miRNAs), which regulate the expression of genes associated with lipid metabolism, inflammation, fibrosis, and cell proliferation. Specific miRNAs have been identified to exacerbate or mitigate fibrotic and carcinogenic processes in hepatic cells. The modulation of these miRNAs through synthetic mimics or inhibitors represents a promising therapeutic strategy. Preclinical models have demonstrated that miRNA-based therapies can attenuate liver inflammation, reduce fibrosis, and inhibit tumorigenesis, thus delaying or preventing the onset of HCC. However, challenges such as delivery mechanisms, off-target effects, and long-term safety remain to be addressed. This review, focusing on recently published preclinical and clinical studies, explores the pharmacological potential of miRNA-based interventions to prevent MASLD/MASH and progression toward HCC.
Collapse
Affiliation(s)
- Sara Carpi
- Department of Health Sciences, University ‘Magna Græcia’ of Catanzaro, 88100 Catanzaro, Italy
- NEST (National Enterprise for nanoScience and nanoTechnology), Istituto Nanoscienze-CNR and Scuola Normale Superiore, 41125 Modena, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (S.D.); (J.F.M.d.A.)
| | | | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Wang X, Zhang C, Li R, Qiu Y, Ma Y, Wang S, Li Y, Guo S, Li C. Down-regulation of miR-29 improves lipid metabolism in fatty liver of dairy cows. Anim Biotechnol 2024; 35:2396414. [PMID: 39205627 DOI: 10.1080/10495398.2024.2396414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In this study, we conducted a thorough investigation into the mechanisms by which miR-29 influences lipid metabolism. Thirty-two cows were selected and categorized into distinct groups based on their liver triglyceride (TG) content: healthy, mild fatty liver, and moderate fatty liver groups. Dairy cows with moderate fatty liver showed higher levels of hepatic lipid accumulation, MDA content and serum AST, ALT and ALP contents and lower hepatic catalase CAT and SOD activities. Subsequently, hepatocytes isolated from healthy calves were exposed to sodium oleate (SO) in the presence or absence of pre-incubation with miR-29 inhibitor or inhibitor NC. Pre-transfection with miR-29 inhibitor resulted in reduced hepatocyte lipid accumulation and MDA levels, as well as decreased levels of AST, ALT, and ALP in the supernatant. In the miR-29 inhibitor + SO group, there was an increase in the expression of SREBP-1, FAS, SCD1, and Sirt1. Meanwhile, the expression of PPARα, CPT1, CPT2, PGC-1α, NRF-1, UCP2, and miR-29 were observed to be decreased. In comparison to the miR-29 inhibitor + SO group, some of the measured indicators showed partial reversal in the miR-29 inhibitor + siSirt1 + SO group. Collectively, these findings provide evidence that miR-29 may play a crucial role in the pathogenesis of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Rishun Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Innovative Research Team of Livestock Intelligent Breeding and Equipment, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun Jilin, China
| |
Collapse
|
5
|
Ma N, Tan J, Chen Y, Yang L, Li M, He Y. MicroRNAs in metabolic dysfunction-associated diseases: Pathogenesis and therapeutic opportunities. FASEB J 2024; 38:e70038. [PMID: 39250169 DOI: 10.1096/fj.202401464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Metabolic dysfunction-associated diseases often refer to various diseases caused by metabolic problems such as glucose and lipid metabolism disorders. With the improvement of living standards, the increasing prevalence of metabolic diseases has become a severe public health problem, including metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver disease (ALD), diabetes and obesity. These diseases are both independent and interdependent, with complex and diverse molecular mechanisms. Therefore, it is urgent to explore the molecular mechanisms and find effective therapeutic targets of these diseases. MicroRNAs (miRNAs) have emerged as key regulators of metabolic homoeostasis due to their multitargets and network regulatory properties within the past few decades. In this review, we discussed the latest progress in the roles of miRNA-mediated regulatory networks in the development and progression of MASLD, ALD, diabetes and obesity.
Collapse
Affiliation(s)
- Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Tan
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Li
- Laboratory of Cellular Immunity, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Krause C, Britsemmer JH, Bernecker M, Molenaar A, Taege N, Lopez-Alcantara N, Geißler C, Kaehler M, Iben K, Judycka A, Wagner J, Wolter S, Mann O, Pfluger P, Cascorbi I, Lehnert H, Stemmer K, Schriever SC, Kirchner H. Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity. eLife 2024; 12:RP92075. [PMID: 39037913 PMCID: PMC11262792 DOI: 10.7554/elife.92075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Background The development of obesity-associated comorbidities such as type 2 diabetes (T2D) and hepatic steatosis has been linked to selected microRNAs in individual studies; however, an unbiased genome-wide approach to map T2D induced changes in the miRNAs landscape in human liver samples, and a subsequent robust identification and validation of target genes are still missing. Methods Liver biopsies from age- and gender-matched obese individuals with (n=20) or without (n=20) T2D were used for microRNA microarray analysis. The candidate microRNA and target genes were validated in 85 human liver samples, and subsequently mechanistically characterized in hepatic cells as well as by dietary interventions and hepatic overexpression in mice. Results Here, we present the human hepatic microRNA transcriptome of type 2 diabetes in liver biopsies and use a novel seed prediction tool to robustly identify microRNA target genes, which were then validated in a unique cohort of 85 human livers. Subsequent mouse studies identified a distinct signature of T2D-associated miRNAs, partly conserved in both species. Of those, human-murine miR-182-5 p was the most associated with whole-body glucose homeostasis and hepatic lipid metabolism. Its target gene LRP6 was consistently lower expressed in livers of obese T2D humans and mice as well as under conditions of miR-182-5 p overexpression. Weight loss in obese mice decreased hepatic miR-182-5 p and restored Lrp6 expression and other miR-182-5 p target genes. Hepatic overexpression of miR-182-5 p in mice rapidly decreased LRP6 protein levels and increased liver triglycerides and fasting insulin under obesogenic conditions after only seven days. Conclusions By mapping the hepatic miRNA-transcriptome of type 2 diabetic obese subjects, validating conserved miRNAs in diet-induced mice, and establishing a novel miRNA prediction tool, we provide a robust and unique resource that will pave the way for future studies in the field. As proof of concept, we revealed that the repression of LRP6 by miR-182-5 p, which promotes lipogenesis and impairs glucose homeostasis, provides a novel mechanistic link between T2D and non-alcoholic fatty liver disease, and demonstrate in vivo that miR-182-5 p can serve as a future drug target for the treatment of obesity-driven hepatic steatosis. Funding This work was supported by research funding from the Deutsche Forschungsgemeinschaft (KI 1887/2-1, KI 1887/2-2, KI 1887/3-1 and CRC-TR296), the European Research Council (ERC, CoG Yoyo LepReSens no. 101002247; PTP), the Helmholtz Association (Initiative and Networking Fund International Helmholtz Research School for Diabetes; MB) and the German Center for Diabetes Research (DZD Next Grant 82DZD09D1G).
Collapse
Affiliation(s)
- Christin Krause
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Jan H Britsemmer
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Anna Molenaar
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Natalie Taege
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| | - Nuria Lopez-Alcantara
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- Institute for Experimental Endocrinology, University of LübeckLübeckGermany
| | - Cathleen Geißler
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Katharina Iben
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Anna Judycka
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
| | - Jonas Wagner
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Stefan Wolter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Oliver Mann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Paul Pfluger
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
- Chair of Neurobiology of Diabetes, TUM School of Medicine, Technical University of MunichMunichGermany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus KielKielGermany
| | - Hendrik Lehnert
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
- University Hospital of Coventry and WarwickshireCoventryUnited Kingdom
| | - Kerstin Stemmer
- German Center for Diabetes Research (DZD)MunichGermany
- Molecular Cell Biology, Institute of Theoretical Medicine, Faculty of Medicine, University of AugsburgAugsburgGermany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD)MunichGermany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz CentreMunichGermany
| | - Henriette Kirchner
- Institute for Human Genetics, Division Epigenetics & Metabolism, University of LübeckLübeckGermany
- Center of Brain, Behaviour and Metabolism (CBBM), University of LübeckLübeckGermany
- German Center for Diabetes Research (DZD)MunichGermany
| |
Collapse
|
7
|
Hou A, Xu X, Zhang Y, He H, Feng Y, Fan W, Tan R, Gong L, Chen J. Excessive fatty acids activate PRMT5/MDM2/Drosha pathway to regulate miRNA biogenesis and lipid metabolism. Liver Int 2024; 44:1634-1650. [PMID: 38517158 DOI: 10.1111/liv.15906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Excessive fatty acids in the liver lead to the accumulation of lipotoxic lipids and then cellular stress to further evoke the related disease, like non-alcoholic fatty liver disease (NAFLD). As reported, fatty acid stimulation can cause some specific miRNA dysregulation, which caused us to investigate the relationship between miRNA biogenesis and fatty acid overload. METHODS Gene expression omnibus (GEO) dataset analysis, miRNA-seq, miRNA cleavage assay, RT-qPCR, western blotting, immunofluorescence and co-immunoprecipitation (co-IP) were used to reveal the change of miRNAs under pathological status and explore the relevant mechanism. High fat, high fructose, high cholesterol (HFHFrHC) diet-fed mice transfected with AAV2/8-shDrosha or AAV2/8-shPRMT5 were established to investigate the in vivo effects of Drosha or PRMT5 on NAFLD phenotype. RESULTS We discovered that the cleavage of miRNAs was inhibited by analysing miRNA contents and detecting some representative pri-miRNAs in multiple mouse and cell models, which was further verified by the reduction of the Microprocessor activity in the presence of palmitic acid (PA). In vitro, PA could induce Drosha, the core RNase III in the Microprocessor complex, degrading through the proteasome-mediated pathway, while in vivo, knockdown of Drosha significantly promoted NAFLD to develop to a more serious stage. Mechanistically, our results demonstrated that PA can increase the methyltransferase activity of PRMT5 to degrade Drosha through MDM2, a ubiquitin E3 ligase for Drosha. The above results indicated that PRMT5 may be a critical regulator in lipid metabolism during NAFLD, which was confirmed by the knocking down of PRMT5 improved aberrant lipid metabolism in vitro and in vivo. CONCLUSIONS We first demonstrated the relationship between miRNA dosage and NAFLD and proved that PA can activate the PRMT5-MDM2-Drosha signalling pathway to regulate miRNA biogenesis.
Collapse
Affiliation(s)
- Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Zhang
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxiu He
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yihan Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenhui Fan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Likun Gong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
9
|
Li Y, Ma L, Xiong Y, Shi J, Zhang F, Chai Q, Hu G, Liu Y. Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment. Curr Drug Deliv 2024; 21:431-437. [PMID: 37032506 DOI: 10.2174/1567201820666230407135026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ. METHODS To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis. RESULTS The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP. CONCLUSION This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.
Collapse
Affiliation(s)
- Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Feifeng Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qian Chai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gengshan Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| |
Collapse
|
10
|
Tzur Y, Winek K, Madrer N, Dubnov S, Bennett ER, Greenberg DS, Hanin G, Gammal A, Tam J, Arkin IT, Paldor I, Soreq H. Lysine tRNA fragments and miR-194-5p co-regulate hepatic steatosis via β-Klotho and perilipin 2. Mol Metab 2024; 79:101856. [PMID: 38141848 PMCID: PMC10805669 DOI: 10.1016/j.molmet.2023.101856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. METHODS Combined use of diet induced obese mice with human-derived oleic acid-exposed Hep G2 cells revealed new NAFLD roles of LysTTT-5'tRF and miR-194-5p. RESULTS Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 h. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. CONCLUSION Our findings highlight the different yet complementary roles of miR-194-5p and LysTTT-5'tRF and offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Yonat Tzur
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Katarzyna Winek
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Nimrod Madrer
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Serafima Dubnov
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Estelle R Bennett
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - David S Greenberg
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Geula Hanin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Asaad Gammal
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isaiah T Arkin
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel
| | - Iddo Paldor
- Shaare Zedek Medical Center, The Neurosurgery Department, Main Building, 10th Floor, 12 Shmu'el Bait Street, Jerusalem, 9103102 Israel
| | - Hermona Soreq
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel; The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
11
|
Ma L, Song H, Zhang CY, Hou D. MiR-192-5p Ameliorates Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease by Targeting Yy1. Biomolecules 2023; 14:34. [PMID: 38254634 PMCID: PMC10813355 DOI: 10.3390/biom14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive lipid accumulation in the liver. Clarifying the molecular mechanism of lipid metabolism is crucial for the treatment of NAFLD. We examined miR-192-5p levels in the livers of mice in which NAFLD was induced via a high-fat diet (HFD), as well as in mouse primary hepatocytes and human HepG2 cells treated with free fatty acids (FFAs). MiR-192-5p inhibitor was administered to NAFLD mice and hepatocytes to verify the specific function of miR-192-5p in NAFLD. We validated the target gene of miR-192-5p and further illustrated the effects of this miRNA on the regulation of triglyceride (TG) metabolism. We found that miR-192-5p was significantly increased in the livers of NAFLD mice and FFA-treated hepatocytes. Inhibition of miR-192-5p increased the accumulation of hepatic TGs and aggravated hepatic steatosis in NAFLD mice. In FFA-treated hepatocytes, miR-192-5p inhibitors markedly increased TG content, whereas overexpression of miR-192-5p reduced TG levels. Yin Yang 1 (Yy1) was identified as the target gene of miR-192-5p, which regulates TG synthesis via the YY1/fatty-acid synthase (FASN) pathway. Our results demonstrated that miR-192-5p should be considered a protective regulator in NAFLD that can inhibit hepatic TG synthesis by targeting Yy1.
Collapse
Affiliation(s)
- Lina Ma
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (L.M.); (H.S.)
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing 210023, China
| | - Huichen Song
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (L.M.); (H.S.)
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing 210023, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (L.M.); (H.S.)
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing 210023, China
| | - Dongxia Hou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; (L.M.); (H.S.)
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing 210023, China
| |
Collapse
|
12
|
Xu X, Yu C, He H, Pan X, Hou A, Feng J, Tan R, Gong L, Chen J, Ren J. MiR-337-3p improves metabolic-associated fatty liver disease through regulation of glycolipid metabolism. iScience 2023; 26:108352. [PMID: 38026196 PMCID: PMC10665915 DOI: 10.1016/j.isci.2023.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Epigenetic regulations play crucial roles in the pathogenesis of metabolic-associated fatty liver disease; therefore, elucidating the biological functions of differential miRNAs helps us to understand the pathogenesis. Herein, we discovered miR-337-3p was decreased in patients with NAFLD from Gene Expression Omnibus dataset, which was replicated in various cell and mouse models with lipid disorders. Subsequently, overexpression of miR-337-3p in vivo could ameliorate hepatic lipid accumulation, reduce fasting blood glucose, and improve insulin resistance. Meanwhile, we determined miR-337-3p might influence multiple genes involved in glycolipid metabolism through mass spectrometry detection, bioinformatics analysis, and experimental verification. Finally, we selected HMGCR as a representative example to investigate the molecular mechanism of miR-337-3p regulating these genes, where the seed region of miR-337-3p bound to 3'UTR of HMGCR to inhibit HMGCR translation. In conclusion, we discovered a new function of miR-337-3p in glycolipid metabolism and that might be a new therapeutic target of MAFLD.
Collapse
Affiliation(s)
- Xiaoding Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Chuwei Yu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Hongxiu He
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiangyu Pan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Aijun Hou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jianxun Feng
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Rongrong Tan
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Likun Gong
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Jin Ren
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
13
|
Wang YD, Wu LL, Mai YN, Wang K, Tang Y, Wang QY, Li JY, Jiang LY, Liao ZZ, Hu C, Wang YY, Liu JJ, Liu JH, Xiao XH. miR-32-5p induces hepatic steatosis and hyperlipidemia by triggering de novo lipogenesis. Metabolism 2023:155660. [PMID: 37451670 DOI: 10.1016/j.metabol.2023.155660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND AND OBJECTIVES MicroRNA-dependent regulation of hepatic lipid metabolism has been recognized recently as a key pathological mechanism contributing to the development of NAFLD. However, whether miR-32-5p (miR-32) plays a role in lipid metabolism or contributes to NAFLD remains unclear. METHODS AND RESULTS A marked increase in miR-32 expression was observed in liver samples from patients and mice with NAFLD, as well as in palmitate-induced hepatocytes. Hepatocyte-specific miR-32 knockout (miR-32-HKO) dramatically ameliorated hepatic steatosis and metabolic disorders in high-fat diet-fed mice. Conversely, hepatic miR-32 overexpression markedly exacerbated the progression of these abnormalities. Further, combinational analysis of transcriptomics and lipidomics suggested that miR-32 was a key trigger for de novo lipogenesis in the liver. Mechanistically, RNA sequencing, luciferase assay and adenovirus-mediated downstream gene rescue assay demonstrated that miR-32 directly bound to INSIG1 and subsequently activated sterol regulatory element binding protein-mediated lipogenic gene programs, thereby promoting hepatic lipid accumulation and metabolic disorders. Notably, pharmacological administration of miR-32 antagonist significantly inhibited PA-induced triglyceride deposition in hepatocytes and markedly mitigated hepatic steatosis and metabolic abnormalities in obesity-associated NAFLD mice. CONCLUSION miR-32 is an important checkpoint for lipogenesis in the liver, and targeting miR-32 could be a promising therapeutic approach for NAFLD treatment.
Collapse
Affiliation(s)
- Ya-Di Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- The First Affiliated Hospital, Department of Gastrointestinal Surgery, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yun-Ni Mai
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Kai Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi Tang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi-Yu Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiao-Yang Li
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Li-Yan Jiang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Can Hu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Jing Liu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xin-Hua Xiao
- The First Affiliated Hospital, Department of Metabolism and Endocrinology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
Yehuda H, Madrer N, Goldberg D, Soreq H, Meerson A. Inversely Regulated Inflammation-Related Processes Mediate Anxiety-Obesity Links in Zebrafish Larvae and Adults. Cells 2023; 12:1794. [PMID: 37443828 PMCID: PMC10341043 DOI: 10.3390/cells12131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.
Collapse
Affiliation(s)
- Hila Yehuda
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
| | - Nimrod Madrer
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Doron Goldberg
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| | - Hermona Soreq
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ari Meerson
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| |
Collapse
|
15
|
Li J, Song H, Chen Z, Yang Q, Yang Z, Yan C, Zhong C. MicroRNA-574-5p targeting HOXC6 expression inhibits the hepatocyte lipid uptake to alleviate non-alcoholic fatty liver disease. Exp Cell Res 2023; 428:113631. [PMID: 37150392 DOI: 10.1016/j.yexcr.2023.113631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of liver disease that has reached its last stage. Over the past few years, evidence for miRNAs' centrality in NAFLD pathogenesis has accumulated. According to some studies, miR-574-5p plays a role in lipid metabolism. However, research on the relationship between miR-574-5p and NAFLD is lacking. For in vivo experiments, we induced the NAFLD mice model with a high-fat diet (HFD). AgomiR-574-5p was injected intravenously into HFD-fed mice for eight weeks, and qPCR was used to identify the expression of miR-574-5p in the serum. In in vitro experiments, The treatment of L-O2 cells with a miR-574-5p mimic resulted in a significant reduction in lipid deposition, suggesting that miR-574-5p can inhibit lipid accumulation and lipid formation induced by OA. The dual-luciferase reporter gene assay revealed that miR-574-5p targets the 3' UTR region of HOXC6 directly. We discovered that OA-induced lipid accumulation in hepatocytes might be mediated through the miR-574-5p-HOXC6 signaling axis. Additional research is required in order to determine the specific mechanism by which HOXC6 downstream pathways are involved in the miR-574-5p induced lipid uptake.
Collapse
Affiliation(s)
- Jiayin Li
- College of Life Sciences and Health, Northeastern University, Shenyang, 110169, China; Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Haixu Song
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Zimeng Chen
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Qiumin Yang
- College of Life Sciences and Health, Northeastern University, Shenyang, 110169, China; Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Zheming Yang
- College of Life Sciences and Health, Northeastern University, Shenyang, 110169, China; Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Chongbin Zhong
- College of Life Sciences and Health, Northeastern University, Shenyang, 110169, China.
| |
Collapse
|
16
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
17
|
Zaiou M. Peroxisome Proliferator-Activated Receptor-γ as a Target and Regulator of Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Cells 2023; 12:cells12081205. [PMID: 37190114 DOI: 10.3390/cells12081205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) belongs to the superfamily of nuclear receptors that control the transcription of multiple genes. Although it is found in many cells and tissues, PPARγ is mostly expressed in the liver and adipose tissue. Preclinical and clinical studies show that PPARγ targets several genes implicated in various forms of chronic liver disease, including nonalcoholic fatty liver disease (NAFLD). Clinical trials are currently underway to investigate the beneficial effects of PPARγ agonists on NAFLD/nonalcoholic steatohepatitis. Understanding PPARγ regulators may therefore aid in unraveling the mechanisms governing the development and progression of NAFLD. Recent advances in high-throughput biology and genome sequencing have greatly facilitated the identification of epigenetic modifiers, including DNA methylation, histone modifiers, and non-coding RNAs as key factors that regulate PPARγ in NAFLD. In contrast, little is still known about the particular molecular mechanisms underlying the intricate relationships between these events. The paper that follows outlines our current understanding of the crosstalk between PPARγ and epigenetic regulators in NAFLD. Advances in this field are likely to aid in the development of early noninvasive diagnostics and future NAFLD treatment strategies based on PPARγ epigenetic circuit modification.
Collapse
Affiliation(s)
- Mohamed Zaiou
- Institut Jean-Lamour, Université de Lorraine, UMR 7198 CNRS, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
18
|
Yadav AK, Sata TN, Verma D, Sah AK, Mishra AK, Mrinalini, Hossain MM, Pant K, Venugopal SK. Free fatty acid-induced miR-22 inhibits gluconeogenesis via SIRT-1-mediated PGC-1α expression in nonalcoholic fatty liver disease. ILIVER 2023; 2:1-9. [DOI: 10.1016/j.iliver.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Elkhawaga SY, Ismail A, Elsakka EGE, Doghish AS, Elkady MA, El-Mahdy HA. miRNAs as cornerstones in adipogenesis and obesity. Life Sci 2023; 315:121382. [PMID: 36639051 DOI: 10.1016/j.lfs.2023.121382] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
In recent decades, obesity has extensively emerged to the level of pandemics. It's significantly associated with serious co-morbidities that could decrease life quality and even life expectancy. Obesity has several determinants, such as age, sex, endocrine, and genetic factors. The miRNAs have emerged as genetic factors affecting obesity. The miRNAs are small noncoding nucleic acids that can modify gene expression and hence, control biological processes. The miRNAs can greatly affect many biological processes in obesity, such as adipogenesis, lipid metabolism, and homeostasis. As a result, the entry of miRNAs in obesity therapeutic approaches has been strongly advised as miRNAs mimics, inhibitors, and stimulators. Hence, this review aims to point out a summarized and updated overview of miRNAs and their roles in obesity and its included processes, such as adipogenesis and lipid metabolism. Besides, we also review recent applications of miRNAs as a treatment approach for obesity.
Collapse
Affiliation(s)
- Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| |
Collapse
|
20
|
Yuan X, Li Y, Wen S, Xu C, Wang C, He Y, Zhou L. CircLDLR acts as a sponge for miR-667-5p to regulate SIRT1 expression in non-alcoholic fatty liver disease. Lipids Health Dis 2022; 21:127. [PMID: 36443854 PMCID: PMC9706878 DOI: 10.1186/s12944-022-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver (NAFLD) is a complex metabolic disease characterized by fatty degeneration of hepatocytes. Circular RNAs (circRNAs) have been reported to be essential for (NAFLD progression. The potential mechanism of circRNA low-density lipoprotein receptor (circLDLR) in the NAFLD was investigated in this study. METHODS Hepatocyte (Hepa1-6) cells treated with oleic acid/palmitic acid (OA/PA) were used as the in vitro NAFLD model, and C57BL/6 mice fed with high-fat diet (HFD) were used as the in vivo NAFLD model. The circLDLR, LDLR, and miR-667-5p expression were measured by quantitative real-time polymerase chain reaction (qRT-PCR), while the protein levels of Light Chain Microtubule-Associated Protein 3 (LC3) and Sequestosome-1(p62) was examined by western blot. The circLDLR location was confirmed using RNA fluorescence in situ hybridization. Oil red O staining was carried out to measure lipid deposition in cells. The secreted levels of triglyceride (TG) and total cholesterol (TC) were detected through Enzymatic. The existence of the circLDLR/miR-667-5p/sirtuin 1 (SIRT1) regulatory axis was validated by applying the dual-luciferase reporter assay. RESULTS The circLDLR expression showed a prominent down-regulation in OA/PA-treated Hepa1-6 cells, whereas the LDLR expression was up-regulated. Overexpression of circLDLR significantly attenuated lipid droplet accumulation in NAFLD models in vitro/vivo, reduced TG, TC, and p62 levels, and increased LC3-II levels and the amount of the green fluorescent protein (GFP)-LC3 puncta in cells. CircLDLR and SIRT1 are common targets of miR-667-5p to inhibit the TG and TC and promote the autophagy pathway. SIRT1 knockdown reversed the effects of circLDLR overexpression. CONCLUSIONS CircLDLR alleviated the development of NAFLD by inducing autophagic flux while modulating the miR-667-5p/SIRT1 axis reversed its effects, suggesting that targeting circLDLR/miR-667-5p/SIRT1 axis may be a promising therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Xinlu Yuan
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| | - Yanyan Li
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Song Wen
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Chenglin Xu
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Congcong Wang
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Yanju He
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Ligang Zhou
- Department of Endocrinology and Metabolic Diseases, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.
| |
Collapse
|
21
|
Konings MCJM, Baumgartner S, Mensink RP, Plat J. Investigating microRNAs to Explain the Link between Cholesterol Metabolism and NAFLD in Humans: A Systematic Review. Nutrients 2022; 14:nu14234946. [PMID: 36500981 PMCID: PMC9738374 DOI: 10.3390/nu14234946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by hepatic free cholesterol accumulation. In addition, microRNAs (miRNAs) might be involved in NAFLD development. Therefore, we systematically reviewed the literature to examine the link between miRNAs and cholesterol metabolism in NAFLD. Nineteen studies were retrieved by a systematic search in September 2022. From these papers, we evaluated associations between 13 miRNAs with NAFLD and cholesterol metabolism. Additionally, their diagnostic potential was examined. Four miRNAs (miR122, 34a, 132 and 21) were associated with cholesterol metabolism and markers for NAFLD. MiR122 was upregulated in serum of NAFLD patients, increased with disease severity and correlated with HDL-C, TAG, VLDL-C, AST, ALT, ALP, lobular inflammation, hepatocellular ballooning and NAFLD score. Serum and hepatic levels also correlated. Serum and hepatic miR34a levels were increased in NAFLD, and correlated with VLDL-C and TAG. Serum miR379 was also higher in NAFLD, especially in early stages, while miR21 gave ambiguous results. The diagnostic properties of these miRNAs were comparable to those of existing biomarkers. However, serum miR122 levels appeared to be elevated before increases in ALT and AST were evident. In conclusion, miR122, miR34a, miR21 and miR132 may play a role in the development of NAFLD via effects on cholesterol metabolism. Furthermore, it needs to be explored if miRNAs 122, 34a and 379 could be used as part of a panel in addition to established biomarkers in early detection of NAFLD.
Collapse
|
22
|
Qian G, Morral N. Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis. Hum Mol Genet 2022; 31:R4-R21. [PMID: 35417923 DOI: 10.1093/hmg/ddac088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 11/14/2022] Open
Abstract
Obesity and type 2 diabetes are major contributors to the growing prevalence of non-alcoholic fatty liver disease (NAFLD), a chronic liver condition characterized by the accumulation of fat in individuals without a significant amount of alcohol intake. The NAFLD spectrum ranges from simple steatosis (early stages, known as NAFL) to non-alcoholic steatohepatitis, which can progress to fibrosis and cirrhosis or hepatocellular carcinoma. Obesity, type 2 diabetes and NAFLD are strongly associated with insulin resistance. In the liver, insulin resistance increases hepatic glucose output, lipogenesis and very-low-density lipoprotein secretion, leading to a combination of hyperglycemia and hypertriglyceridemia. Aberrant gene expression is a hallmark of insulin resistance. Non-coding RNAs (ncRNAs) have emerged as prominent regulators of gene expression that operate at the transcriptional, post-transcriptional and post-translational levels. In the last couple of decades, a wealth of studies have provided evidence that most processes of liver metabolism are orchestrated by ncRNAs. This review focuses on the role of microRNAs, long non-coding RNAs and circular RNAs as coordinators of hepatic function, as well as the current understanding on how their dysregulation contributes to abnormal metabolism and pathophysiology in animal models of insulin resistance and NAFLD. Moreover, ncRNAs are emerging as useful biomarkers that may be able to discriminate between the different stages of NAFLD. The potential of ncRNAs as therapeutic drugs for NAFLD treatment and as biomarkers is discussed.
Collapse
Affiliation(s)
- Gene Qian
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Núria Morral
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
da Silva Nunes PC, Mazzarella R, da Silveira JC, Dellova DCAL. Evaluation of circulating extracellular vesicles and miRNA in neutered and obese female dogs. Sci Rep 2022; 12:16439. [PMID: 36180561 PMCID: PMC9525304 DOI: 10.1038/s41598-022-20523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue is a metabolic and endocrine organ, and its adipocytes can synthesize and secrete extracellular vesicles (EVs), thus allowing intercellular communication. EVs are nanoparticles that transport lipids, proteins, metabolites, and nucleic acids (mRNA and microRNAs). MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression. miR-132, miR-26b, and miR-155 are associated with obesity, lipid metabolism and adipogenesis. The aim of this study was to evaluate the enriched EVs fraction containing miRNAs (miR-132, miR-26b, and miR-155) in serum from obese female dogs. Thirty-two neutered females in good general condition were recruited, including 21 obese and 11 healthy controls. The initial evaluation of the females included a general physical examination and laboratory tests. Small EVs (sEVs) were isolated from whole blood by serial centrifugation and ultracentrifugation, and nanoparticle analysis was used to determine the size and concentration of serum sEVs. miRNAs were extracted from sEVs enriched fraction and analyzed by real-time polymerase chain reaction. Obese female dogs with hypertriglyceridemia showed an increase in the sEVs concentration and in the expression of miR-132 and miR-26b in sEVs enriched fraction. No changes were observed in the group of obese female dogs with normal serum biochemical profile and in relation to miR-155 expression. These results suggest that obese female dogs with hypertriglyceridemia may present alterations in sEVs and in the expression of miRNAs related to lipid metabolism and adipogenesis.
Collapse
Affiliation(s)
- Paola Caroline da Silva Nunes
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Rosane Mazzarella
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil
| | - Deise Carla Almeida Leite Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635-900, Brazil.
| |
Collapse
|
24
|
Genipin improves lipid metabolism and sperm parametersin obese mice via regulation of miR-132 expression. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1278-1288. [PMID: 36082932 PMCID: PMC9827900 DOI: 10.3724/abbs.2022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Obesity has now surpassed malnutrition and infectious diseases as the most significant contributor to health problems worldwide. In particular, obesity is associated with several metabolic disorders, including hyperlipidemia, hepatic steatosis, and subfertility. Genipin (GNP), the aglycone of geniposide, is isolated from the extract of the traditional Chinese medicine Gardenia jasminoides Ellis and has been used in traditional oriental medicine against several inflammation-driven diseases. However, the effect and molecular mechanism of GNP on obesity-associated dyslipidemia and sperm dysfunction still need to be explored. In this study, we detect the effects of GNP on hyperlipidemia, hepatic lipid accumulation and sperm function using a high-fat diet (HFD)-induced obese mouse model. We find that obese mice treated with GNP show an improvement in body weight, serum triglyceride levels, serum hormone levels, serum inflammatory cytokines, hepatic steatosis and sperm function. At the molecular level, HFD/GNP diversely regulates the expression of miR-132 in a tissue-specific manner. miR-132 further targets and regulates the expression of SREBP-1c in liver cells, as well as the expressions of SREBP-1c and StAR in Leydig cells in the testis, thus modifying lipogenesis and steroidogenesis, respectively. Collectively, our data demonstrate that GNP shows a broad effect on the improvement of HFD-induced metabolic disorder and sperm dysfunction in male mice by tissue-specific regulation of miR-132. Our findings reveal the function GNP in ameliorating hepatic lipid metabolism and sperm function and suggest that this compound is a versatile drug to treat metabolic disorders.
Collapse
|
25
|
Ding J, Xia C, Cen P, Li S, Yu L, Zhu J, Jin J. MiR-103-3p promotes hepatic steatosis to aggravate nonalcoholic fatty liver disease by targeting of ACOX1. Mol Biol Rep 2022; 49:7297-7305. [PMID: 35606603 PMCID: PMC9304065 DOI: 10.1007/s11033-022-07515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a major risk factor for hepatocellular carcinoma, and alterations in miRNA expression are related to the development of NAFLD. However, the role of miRNAs in regulating the development of NAFLD is still poorly understood. METHODS We used qRT-PCR to detect the level of miR-103-3p in both cell and mouse models of NAFLD. Biochemical assays, DCF-DA assays, Oil red O staining and HE staining were used to detect the role of miR-103-3p in NAFLD development. Target genes of miR-103-3p were predicted using the TargetScan database and verified by qRT-PCR, western blot and dual-luciferase assays. RESULTS The expression of miR-103-3p increased in both NAFLD model cells and liver tissues from the NAFLD mouse model. Inhibition of miR-103-3p significantly alleviated the accumulation of lipid droplets in free fatty acid-treated L02 cells and liver tissues from mice with NAFLD. Inhibition of miR-103-3p reduced the contents of H2O2, TG, ALT, and AST and ROS production while increasing the ATP content. Moreover, the miR-103-3p antagomir alleviated liver tissue lesions in mice with NAFLD. Further studies identified ACOX1, a key enzyme for the oxidation and decomposition of fatty acids, as a direct target of miR-103-3p. CONCLUSIONS These findings identified a negative regulatory mechanism between ACOX1 and miR-103-3p that promotes the pathogenesis of NAFLD and suggested that inhibition of miR-103-3p may be a potential treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Caixia Xia
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Panpan Cen
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Siying Li
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Lifei Yu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Jie Jin
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, Hangzhou, 310003, Zhejiang Province, China.
| |
Collapse
|
26
|
Sargazi S, Siddiqui B, Qindeel M, Rahdar A, Bilal M, Behzadmehr R, Mirinejad S, Pandey S. Chitosan nanocarriers for microRNA delivery and detection: A preliminary review with emphasis on cancer. Carbohydr Polym 2022; 290:119489. [DOI: 10.1016/j.carbpol.2022.119489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023]
|
27
|
Advances of microRNAs in regulating mitochondrial function: new potential application in NAFLD treatment. Mol Biol Rep 2022; 49:9841-9853. [PMID: 35612781 DOI: 10.1007/s11033-022-07503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases and closely associated with lipid disorder. Mitochondrion has been recognized to play a key role in lipid metabolism as the main site of energy metabolism in cells, and its dysfunction is involved in the progression of NAFLD. MicroRNAs (miRNAs), one of regulators in the pathogenesis of NAFLD, are discovered to modulate mitochondrial function by targeting mitochondrial proteins or mitochondrial-related factors, thereby improving or deteriorating NAFLD-associated pathologies. This review summarizes the differentially expressed miRNAs from clinical and experimental models of NAFLD with abilities in regulating mitochondrial function, expounds their underlying molecular mechanism and discusses their prospect and future research direction.
Collapse
|
28
|
Wu B, Xu C, Tian Y, Zeng Y, Yan F, Chen A, Zhao J, Chen L. Aerobic exercise promotes the expression of ATGL and attenuates inflammation to improve hepatic steatosis via lncRNA SRA. Sci Rep 2022; 12:5370. [PMID: 35354841 PMCID: PMC8968712 DOI: 10.1038/s41598-022-09174-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
The role of aerobic exercise in preventing and improving non-alcoholic fatty liver has been widely established. SRA is a long non-coding RNA, which has received increasing attention due to its important role in lipid metabolism. However, it is unclear whether aerobic exercise can prevent and treat hepatic lipid accumulation via SRA. The mice were randomly divided into four groups as follows, normal control group, normal aerobic exercise group, high-fat diet group (HFD), and high-fat diet plus aerobic exercise (8 weeks, 6 days/week, 18 m/min for 50 min, 6% slope) group (HAE). After 8 weeks, the mice in the HAE group showed significant improvement in hepatic steatosis. Body weight as well as blood TC, LDL-C, and liver TG levels were significantly lower in the HAE group than in the HFD group. Compared with the HFD group, the expression of SRA was markedly suppressed and the expression of ATGL was significantly increased in the HAE group. Additionally, the JNK/P38 signaling was inhibited, the pro-inflammatory factors were down-regulated, and the anti-inflammatory factor was increased. In addition to this, the same results were shown in experiments with overexpression of SRA. The results of this study provided new support for aerobic exercise to improve hepatic lipid metabolism via lncRNA.
Collapse
|
29
|
Cui J, Wang Y, Xue H. Long non-coding RNA GAS5 contributes to the progression of nonalcoholic fatty liver disease by targeting the microRNA-29a-3p/NOTCH2 axis. Bioengineered 2022; 13:8370-8381. [PMID: 35322757 PMCID: PMC9161890 DOI: 10.1080/21655979.2022.2026858] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely recognized as critical players in the development of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent liver diseases globally. In this study, we established a HFD-induced NAFLD mouse model and explored the role of lncRNA GAS5 in NAFLD progression and its possible underlying mechanisms. We showed that NAFLD activity score was elevated in the HFD mice. GAS5 knockdown attenuated HFD-induced hepatic steatosis and lipid accumulation and reduced NAFLD activity score in HFD mice. In addition, GAS5 knockdown reduced serum triglyceride cholesterol levels and inhibited alanine aminotransferase and aspartate aminotransferase activities in HFD mice. Moreover, GAS5 overexpression enhanced NOTCH2 levels in liver cells and promoted NAFLD progression by sponging miR-29a-3p in vivo. Furthermore, miR-29a-3p inhibited NAFLD progression by targeting NOTCH2 in vivo. Overall, our results indicated that GAS5 acts as a sponge of miR-29a-3p to increase NOTCH2 expression and facilitate NAFLD progression by targeting the miR-29a-3p/NOTCH2 axis and demonstrated a new GAS5-mediated mechanism underlying NAFLD development, suggesting that GAS5 could be a potential therapeutic target of NAFLD. Abbreviations: Alanine aminotransferase: ALT; Aspartate aminotransferase: AST; Enzyme linked immunosorbent assay: ELISA; Hepatocellular carcinoma: HCC; High-fat diet: HFD; Long non-coding RNA: Lnc RNA; Long non-coding RNA GAS5: GAS5; MicroRNAs: MiRNAs; Nonalcoholic fatty liver disease: NAFLD; Quantitative reverse transcription PCRs: RT-qPCRs; siRNA negative control: si-NC; Total cholesterol: TC; Triglyceride: TG
Collapse
Affiliation(s)
- Juanjuan Cui
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Yang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P. R. China
| | - Haowei Xue
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
30
|
Morales‐Roselló J, Loscalzo G, García‐Lopez EM, García‐Gimenez JL, Perales‐Marín A. MicroRNA-132 is overexpressed in fetuses with late-onset fetal growth restriction. Health Sci Rep 2022; 5:e558. [PMID: 35317418 PMCID: PMC8922531 DOI: 10.1002/hsr2.558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/25/2021] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims To evaluate the expression of microRNA 132 (miR-132) in fetuses with normal growth and in fetuses with late-onset growth restriction (FGR). Methods In a prospective cohort study, 48 fetuses (24 with late-onset FGR and 24 with normal growth) were scanned with Doppler ultrasound after 34 weeks to measure the umbilical artery and middle cerebral artery pulsatility indices and followed until birth. Subsequently, blood samples from the umbilical cord were collected to evaluate the expression of miR-132 by means of Real-time quantitative polymerase chain reaction, determining the existence of normality cut-offs and associations with birth weight (BW) centile, cerebroplacental ratio multiples of the median (CPR MoM), and intrapartum fetal compromise (IFC). Results In comparison with normal fetuses, late-onset FGR fetuses showed upregulation of miR-132 (33.94 ± 45.04 vs. 2.88 ± 9.32 2-ddC t, p < 0.001). Using 5 as a cut-off we obtained a sensitivity of 50% and a specificity of 96% for the diagnosis of FGR, while for IFC these values were respectively 27% and 73%. Expression of miR-132 was associated with BW centile but not with CPR MoM. Finally, the best detection of IFC was achieved combining miR-132 expression and CPR MoM (AUC = 0.69, p < 0.05). Conclusion Fetuses with late-onset FGR show upregulation of miR-132. Further studies are needed to investigate the role of miR-132 in the management of late-onset FGR.
Collapse
Affiliation(s)
- José Morales‐Roselló
- Servicio de Obstetricia y GinecologíaHospital Universitario y Politécnico La FeValenciaSpain
- Departamento de Pediatría, Obstetricia y GinecologíaUniversidad de ValenciaValenciaSpain
| | - Gabriela Loscalzo
- Servicio de Obstetricia y GinecologíaHospital Universitario y Politécnico La FeValenciaSpain
| | - Eva María García‐Lopez
- EpiDisease SL, and Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER)Institute of Health Carlos IIIValenciaSpain
| | - José Luis García‐Gimenez
- EpiDisease SL, and Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER)Institute of Health Carlos IIIValenciaSpain
- Departamento de FisiologíaUniversidad de ValenciaValenciaSpain
| | - Alfredo Perales‐Marín
- Servicio de Obstetricia y GinecologíaHospital Universitario y Politécnico La FeValenciaSpain
- Departamento de Pediatría, Obstetricia y GinecologíaUniversidad de ValenciaValenciaSpain
| |
Collapse
|
31
|
Wu R, Zhou S, Liu M, An H, Wang Z, Liu T. Clinical Significance of miR-21-5p in Predicting Occurrence and Progression of Uremic Vascular Calcification in Patients with End-Stage Renal Disease. Yonsei Med J 2022; 63:252-258. [PMID: 35184427 PMCID: PMC8860934 DOI: 10.3349/ymj.2022.63.3.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Vascular calcification (VC) is a common complication of end-stage renal disease (ESRD). This study aimed to examine changes in the expression of miR-21-5p in ESRD patients with VC and to explore its clinical value in predicting the occurrence and progression of uremic VC. MATERIALS AND METHODS 120 ESRD patients were divided into patients without VC group (n=38) and patients with VC group (n=82). All patients were followed up for 2 years to evaluate VC progression. qRT-PCR was used to detect serum miR-21-5p levels. Receiver operating characteristic curves were constructed to assess diagnostic value. Kaplan-Meier and log-rank methods were utilized to calculate associations between VC progression and risk factors. RESULTS Serum miR-21-5p levels were significantly higher in ESRD patients with VC than in those without VC and increased progressively with increasing disease severity. Serum miR-21-5p levels were able to distinguish patients with VC from those without VC, with an area under the curve value of 0.883, a sensitivity of 81.7%, and a specificity of 84.2%. After 2 years of follow-up, miR-21-5p expression had increased in patients with worse VC severity, compared with those with stable VC severity. Patients with high miR-21-5p levels were more likely to develop more severe VC, indicating an association between miR-21-5p and VC progression (log-rank p=0.002). Multivariable Cox regression analysis suggested that serum miR-21-5p is an independent predictive factor of VC progression in ESRD patients (hazard ratio=2.064, 95% confidence interval=1.225-3.478, p=0.006). CONCLUSION miR-21-5p is overexpressed in the serum of ESRD patients with VC. Our results suggest that overexpression of miR-21-5p is closely associated with VC progression.
Collapse
Affiliation(s)
- Rong Wu
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Sen Zhou
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Minglong Liu
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haiqian An
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhe Wang
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Tianxi Liu
- Department of Nephropathy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
32
|
Abstract
An extensive literature base combined with advances in sequencing technologies demonstrate microRNA levels correlate with various metabolic diseases. Mechanistic studies also establish microRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. This review highlights research progress on the roles and regulation of microRNAs in the peripheral tissues that confer insulin sensitivity. We discuss sequencing technologies used to comprehensively define the target spectrum of microRNAs in metabolic disease that complement studies reporting physiologic roles for microRNAs in the regulation of glucose and lipid metabolism in animal models. We also discuss the emerging roles of exosomal microRNAs as endocrine signals to regulate lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- Kang Ho Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Sean M. Hartig, PhD, Baylor College of Medicine, One Baylor Plaza, BCM185, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Cholinergic blockade of neuroinflammation – from tissue to RNA regulators. Neuronal Signal 2022; 6:NS20210035. [PMID: 35211331 PMCID: PMC8837817 DOI: 10.1042/ns20210035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs (miRs) and transfer RNA fragments (tRFs) may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood–brain barrier (BBB) protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body–brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammation-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.
Collapse
|
34
|
Yu Y, He C, Tan S, Huang M, Guo Y, Li M, Zhang Q. MicroRNA-137-3p Improves Nonalcoholic Fatty Liver Disease through Activating AMPK α. Anal Cell Pathol (Amst) 2021; 2021:4853355. [PMID: 35004133 PMCID: PMC8731301 DOI: 10.1155/2021/4853355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide and can develop to nonalcoholic steatohepatitis and later hepatic cirrhosis with a high prevalence to hepatocellular carcinoma. Oxidative stress and chronic hepatic inflammation are implicated in the pathogenesis of NAFLD. MicroRNA-137-3p (miR-137-3p) are associated with oxidative stress and inflammation; however, its role and mechanism in NAFLD remain unclear. Mice were fed with a high-fat diet (HFD) for 24 weeks to establish the NAFLD model. To overexpress or suppress hepatic miR-137-3p expression, mice were intraperitoneally injected with the agomir, antagomir, or respective controls of miR-137-3p at a dose of 100 mg/kg weekly for 6 consecutive weeks before the mice were sacrificed. To validate the involvement of AMP-activated protein kinase alpha (AMPKα) or cAMP-specific phosphodiesterase 4D (PDE4D), HFD mice were intraperitoneally injected with 20 mg/kg compound C or 0.5 mg/kg rolipram every other day for 8 consecutive weeks before the mice were sacrificed. Hepatic miR-137-3p expression was significantly decreased in mice upon HFD stimulation. miR-137-3p agomir alleviated, while miR-137-3p antagomir facilitated HFD-induced oxidative stress, inflammation, and hepatic dysfunction in mice. Mechanistically, we revealed that miR-137-3p is directly bound to the 3'-untranslated region of PDE4D and subsequently increased hepatic cAMP level and protein kinase A activity, thereby activating the downstream AMPKα pathway. In summary, miR-137-3p improves NAFLD through activating AMPKα and it is a promising therapeutic candidate to treat NAFLD.
Collapse
Affiliation(s)
- Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Chunping He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Mengjun Huang
- Department of Nutrition, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Yitian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ming Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
- Hubei Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Qian Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
35
|
Loscalzo G, Scheel J, Ibañez-Cabellos JS, García-Lopez E, Gupta S, García-Gimenez JL, Mena-Mollá S, Perales-Marín A, Morales-Roselló J. Overexpression of microRNAs miR-25-3p, miR-185-5p and miR-132-3p in Late Onset Fetal Growth Restriction, Validation of Results and Study of the Biochemical Pathways Involved. Int J Mol Sci 2021; 23:ijms23010293. [PMID: 35008715 PMCID: PMC8745308 DOI: 10.3390/ijms23010293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022] Open
Abstract
In a prospective study, 48 fetuses were evaluated with Doppler ultrasound after 34 weeks and classified, according to the cerebroplacental ratio (CPR) and estimated fetal weight (EFW), into fetuses with normal growth and fetuses with late-onset fetal growth restriction (LO-FGR). Overexpression of miRNAs from neonatal cord blood belonging to LO-FGR fetuses, was validated by real-time PCR. In addition, functional characterization of overexpressed miRNAs was performed by analyzing overrepresented pathways, gene ontologies, and prioritization of synergistically working miRNAs. Three miRNAs: miR-25-3p, miR-185-5p and miR-132-3p, were significantly overexpressed in cord blood of LO-FGR fetuses. Pathway and gene ontology analysis revealed over-representation of certain molecular pathways associated with cardiac development and neuron death. In addition, prioritization of synergistically working miRNAs highlighted the importance of miR-185-5p and miR-25-3p in cholesterol efflux and starvation responses associated with LO-FGR phenotypes. Evaluation of miR-25-3p; miR-132-3p and miR-185-5p might serve as molecular biomarkers for the diagnosis and management of LO-FGR; improving the understanding of its influence on adult disease.
Collapse
Affiliation(s)
- Gabriela Loscalzo
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Correspondence: (G.L.); (J.S.)
| | - Julia Scheel
- Department of Systems Biology and Bioinformatics, University Rostock, 18055 Rostock, Germany;
- Correspondence: (G.L.); (J.S.)
| | - José Santiago Ibañez-Cabellos
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Carrer d’Alvaro de Bazan, 10, 46010 Valencia, Spain
| | - Eva García-Lopez
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
| | - Shailendra Gupta
- Department of Systems Biology and Bioinformatics, University Rostock, 18055 Rostock, Germany;
| | - José Luis García-Gimenez
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Carrer d’Alvaro de Bazan, 10, 46010 Valencia, Spain
- Institute of Health Carlos III, Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Salvador Mena-Mollá
- EpiDisease S.L, Parc Científic, University of Valencia, 46980 Paterna, Spain; (J.S.I.-C.); (E.G.-L.); (J.L.G.-G.); (S.M.-M.)
- Institute of Health Carlos III, Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Alfredo Perales-Marín
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - José Morales-Roselló
- Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.P.-M.); (J.M.-R.)
- Department of Obstetrics and Gynecology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
36
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Zhang Y, Mao Q, Xia Q, Cheng J, Huang Z, Li Y, Chen P, Yang J, Fan X, Liang Y, Lin H. Noncoding RNAs link metabolic reprogramming to immune microenvironment in cancers. J Hematol Oncol 2021; 14:169. [PMID: 34654454 PMCID: PMC8518176 DOI: 10.1186/s13045-021-01179-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Altered metabolic patterns in tumor cells not only meet their own growth requirements but also shape an immunosuppressive microenvironment through multiple mechanisms. Noncoding RNAs constitute approximately 60% of the transcriptional output of human cells and have been shown to regulate numerous cellular processes under developmental and pathological conditions. Given their extensive action mechanisms based on motif recognition patterns, noncoding RNAs may serve as hinges bridging metabolic activity and immune responses. Indeed, recent studies have shown that microRNAs, long noncoding RNAs and circRNAs are widely involved in tumor metabolic rewiring, immune cell infiltration and function. Hence, we summarized existing knowledge of the role of noncoding RNAs in the remodeling of tumor metabolism and the immune microenvironment, and notably, we established the TIMELnc manual, which is a free and public manual for researchers to identify pivotal lncRNAs that are simultaneously correlated with tumor metabolism and immune cell infiltration based on a bioinformatic approach.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhengze Huang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, China.
| | - Yuelong Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
38
|
Hu MJ, Long M, Dai RJ. Acetylation of H3K27 activated lncRNA NEAT1 and promoted hepatic lipid accumulation in non-alcoholic fatty liver disease via regulating miR-212-5p/GRIA3. Mol Cell Biochem 2021; 477:191-203. [PMID: 34652536 PMCID: PMC8517567 DOI: 10.1007/s11010-021-04269-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 12/30/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) was a world-wide health burden. H3K27 acetylation, long non-coding RNA (lncRNA), and miRNA were all implicated in NAFLD regulation, yet the detailed regulatory mechanism was not well understood. LncRNA NEAT1, miR-212-5p, and GRIA3 expression were detected both in high fatty acid-treated hepatocytes cells and NAFLD patients. Lipid droplets were stained and analyzed by oil red O staining. Expression of fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), and GRIA3 was detected by qRT-PCR and western blot. RNA level of lncRNA NEAT1 and miR-212-5p was analyzed by qRT-PCR. The binding sequences of lncRNA NEAT1/miR-212-5p and miR-212-5p/GRIA3 were predicted bioinformatically and validated through luciferase assay. ChIP was performed to analyze H3K27 acetylation on the promoter of lncRNA NEAT1. LncRNA NEAT1 and GRIA3 was upregulated, while miR-212-5p was downregulated in NAFLD patients. FFA promoted lncRNA NEAT1 and GRIA3 expression while suppressing miR-212-5p and promoted lipid accumulation as indicated by increased oil red O staining and FAS and ACC expression. ChIP indicated enrichment of H3K27 on NEAT1 promoter. Inhibition of H3K27 acetylation suppressed lncRNA NEAT1 level. Luciferase results indicated direct interaction of NEAT1/miR-212-5p (which was confirmed by RIP) and miR-212-5p/GRIA3. LncRNA NEAT1 knockdown upregulated miR-212-5p level and inhibited FFA-induced lipid accumulation while suppressing GRIA3 expression. Such function was antagonized by miR-212-5p inhibition and GRIA3 knockdown counteracted with miR-212-5p inhibition. H3K27 acetylation was enriched within the promoter of lncRNA NEAT1 and promoted lncRNA NEAT1 transcription. LncRNA NEAT1 could then interact with miR-212-5p and suppress its cellular concentration.
Collapse
Affiliation(s)
- Min-Jie Hu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan Province, People's Republic of China
| | - Mei Long
- Department of Rheumatology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan Province, People's Republic of China
| | - Rong-Juan Dai
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421000, Hunan Province, People's Republic of China.
| |
Collapse
|
39
|
Momen-Heravi F, Catalano D, Talis A, Szabo G, Bala S. Protective effect of LNA-anti-miR-132 therapy on liver fibrosis in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:155-167. [PMID: 34458001 PMCID: PMC8368790 DOI: 10.1016/j.omtn.2021.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022]
Abstract
microRNAs (miRs) are small regulatory RNAs that are frequently deregulated in liver disease. Liver fibrosis is characterized by excessive scarring caused by chronic inflammatory processes. In this study, we determined the functional role of miR-132 using a locked nucleic acid (LNA)-anti-miR approach in liver fibrosis. A significant induction in miR-132 levels was found in mice treated with CCl4 and in patients with fibrosis/cirrhosis. Inhibition of miR-132 in mice with LNA-anti-miR-132 caused decreases in CCl4-induced fibrogenesis and inflammatory phenotype. An attenuation in collagen fibers, α SMA, MCP1, IL-1β, and Cox2 was found in LNA-anti-miR-132-treated mice. CCl4 treatment increased caspase 3 activity and extracellular vesicles (EVs) in control but not in anti-miR-132-treated mice. Inhibition of miR-132 was associated with augmentation of MMP12 in the liver and Kupffer cells. In vivo and in vitro studies suggest miR-132 targets SIRT1 and inflammatory genes. Using tumor cancer genome atlas data, an increase in miR-132 was found in hepatocellular carcinoma (HCC). Increased miR-132 levels were associated with fibrogenic genes, higher tumor grade and stage, and unfavorable survival in HCC patients. Therapeutic inhibition of miR-132 might be a new approach to alleviate liver fibrosis, and treatment efficacy can be monitored by observing EV shedding.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Division of Periodontics, Section of Oral, Diagnostic, and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Austin Talis
- Cancer Biology and Immunology Laboratory, College of Dental Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Division of Periodontics, Section of Oral, Diagnostic, and Rehabilitation Sciences, Columbia University College of Dental Medicine, New York, NY, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.,KASA BIO, 10405 Old Alabama Road Connector, Suite 201, Alpharetta, GA 30022, USA
| |
Collapse
|
40
|
Yang L, Xu X, Chen Z, Zhang Y, Chen H, Wang X. miR-511-3p promotes hepatic sinusoidal obstruction syndrome by activating hedgehog pathway via targeting Ptch1. Am J Physiol Gastrointest Liver Physiol 2021; 321:G344-G354. [PMID: 34287088 DOI: 10.1152/ajpgi.00081.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As a major complication of hematopoietic stem cell transplantation, the incidence of hepatic sinusoidal obstruction syndrome (HSOS) is as high as 70%. Previous evidence has demonstrated that miR-511-3p was involved in HSOS, but the mechanism remains unclear. This study aims to examine the mechanism underlying miR-511-3p regulating HSOS. Monocrotaline (MCT) was used to create an HSOS rat model and to treat liver sinusoidal endothelial cells (LSECs). Hematoxylin & eosin (H&E) and Masson staining were used to detect pathological changes in liver tissue. The expression of miR-511-3p and Hedgehog pathway-related proteins was assessed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of miR-511-3p in regulating HSOS was investigated by 3-(4,5)-dimethylthiahiazo-2)-3,5-diphenytetrazoliumromide (MTT), enzyme-linked immunosorbent assay (ELISA) assay, and flow cytometry. Finally, the interaction between miR-511-3p and patched1 (Ptch1) was determined by luciferase reporter assay. The rats showed a typical HSOS phenotype, including LSEC damage, liver injury, and fibrosis after MCT administration. miR-511-3p was upregulated in hepatic tissue of rat HSOS model and MCT-induced LSECs. miR-511-3p directly targeted Ptch1 and suppressed Ptch1 expression to activate the Hedgehog signaling pathway. Depletion of miR-511-3p showed a protective effect against MCT-induced HSOS, as evidenced by decreased HSOS pathogenesis factors, matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9), tumor necrosis factor-α (TNF-α), and interleukin 1 β (IL-1β), and decreased LSEC apoptosis rates. Nevertheless, knockdown of Ptch1 reversed the protective effect of miR-511-3p depletion against MCT-induced LSEC injury and apoptosis. miR-511-3p aggravates HSOS by activating the Hedgehog signaling pathway through targeting Ptch1, and miR-511-3p may develop as the potential therapy for the treatment of HSOS.NEW & NOTEWORTHY miR-511-3p is upregulated in HSOS in vivo and in vitro models. miR-511-3p activates the Hedgehog pathway by directly targeting Ptch1. Knockdown of miR-511-3p shows a protective effect against LSEC injury and apoptosis via Hedgehog signaling pathway. Inhibition of Ptch1 reserves the effect of miR-511-3p knockdown on LSEC damage and apoptosis.
Collapse
Affiliation(s)
- Li Yang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Zhiyuan Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Yu Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Hui Chen
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| | - Xiangyang Wang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
41
|
Eikelis N, Dixon JB, Lambert EA, Hanin G, Tzur Y, Greenberg DS, Soreq H, Marques FZ, Fahey MT, Head GA, Schlaich MP, Lambert GW. MicroRNA-132 may be associated with blood pressure and liver steatosis-preliminary observations in obese individuals. J Hum Hypertens 2021; 36:911-916. [PMID: 34453104 DOI: 10.1038/s41371-021-00597-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
Recent findings in experimental models have shown that the microRNA miR-132 (mir-132) is an important regulator of liver homeostasis and lipid metabolism. We aimed to assess miR-132 expression in liver and fat tissues of obese individuals and examine its association with blood pressure (BP) and hepatic steatosis. We examined obese individuals undergoing bariatric surgery for weight loss (n = 19). Clinical and demographic information was obtained. Quantitative PCR was performed to determine tissue expression of miR-132 in liver and subcutaneous and visceral fat biopsies obtained during bariatric surgery. Liver biopsies were read by a single liver pathologist and graded for steatosis, inflammation and fibrosis. Participants (aged 39 ± 8.1 years) had a body mass index (BMI) of 42 ± 4.5 kg/m2 and presented with 2.2 ± 1.2 metabolic abnormalities. Supine BP was 127 ± 16/74 ± 11 mmHg. Hepatic and visceral fat expression of miR-132 were correlated (r = 0.59, P = 0.033). There was no correlation between subcutaneous and visceral expression of miR-132 (r = -0.31, P = 0.20). Hepatic and visceral fat miR-132 expression were associated with BMI (r = 0.62 and r = 0.68, P = 0.049 respectively) and degree of liver steatosis (r = 0.60 and r = 0.55, P < 0.05, respectively). Subcutaneous fat miRNA-132 expression was correlated to office systolic BP (r = 0.46, P < 0.05), several aspects of 24 h BP (24 h systolic BP: r = 0.52; day systolic BP: r = 0.59, P < 0.05 for all), plasma triglycerides (r = 0.51, P < 0.01) and liver enzymes (ALT: r = -0.52; AST: r = -0.48, P < 0.05 for all). We found an association between miR-132 and markers of cardiovascular and metabolic disease. Reduction of miR-132 may be a target for the regulation of liver lipid homeostasis and control of obesity-related blood pressure.
Collapse
Affiliation(s)
- Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - John B Dixon
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Elisabeth A Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Geula Hanin
- Department of Genetics, University of Cambridge, Cambridge, UK.,The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David S Greenberg
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC, Australia
| | - Michael T Fahey
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - Markus P Schlaich
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.,Dobney Hypertension Centre, School of Medicine-Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Gavin W Lambert
- Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia. .,Baker Heart & Diabetes Institute, Melbourne, VIC, Australia.
| |
Collapse
|
42
|
The Role of microRNAs in Cholangiocarcinoma. Int J Mol Sci 2021; 22:ijms22147627. [PMID: 34299246 PMCID: PMC8306241 DOI: 10.3390/ijms22147627] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), an aggressive malignancy, is typically diagnosed at an advanced stage. It is associated with dismal 5-year postoperative survival rates, generating an urgent need for prognostic and diagnostic biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are associated with cancer regulation, including modulation of cell cycle progression, apoptosis, metastasis, angiogenesis, autophagy, therapy resistance, and epithelial–mesenchymal transition. Several miRNAs have been found to be dysregulated in CCA and are associated with CCA-related risk factors. Accumulating studies have indicated that the expression of altered miRNAs could act as oncogenic or suppressor miRNAs in the development and progression of CCA and contribute to clinical diagnosis and prognosis prediction as potential biomarkers. Furthermore, miRNAs and their target genes also contribute to targeted therapy development and aid in the determination of drug resistance mechanisms. This review aims to summarize the roles of miRNAs in the pathogenesis of CCA, their potential use as biomarkers of diagnosis and prognosis, and their utilization as novel therapeutic targets in CCA.
Collapse
|
43
|
Li J, Kong D, Gao X, Tian Z, Wang X, Guo Q, Wang Z, Zhang Q. TSH attenuates fatty acid oxidation in hepatocytes by reducing the mitochondrial distribution of miR-449a/449b-5p/5194. Mol Cell Endocrinol 2021; 530:111280. [PMID: 33862186 DOI: 10.1016/j.mce.2021.111280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
The elevated thyroid-stimulating hormone (TSH) levels contribute to the abnormal expression/activity of several key hepatic lipid metabolism enzymes. Although miRNAs have been shown to play key roles in hepatic lipid metabolism and are found in isolated mitochondria, very little is known about the pathological and physiological significance of their mitochondrial distributions in regulating liver lipid metabolism. Here, we found that TSH significantly reduced the distribution of some miRNAs in mitochondria of hepatocytes, especially miR-449a, miR-449b-5p, and miR-5194. These three miRNAs inhibited their target genes PGC1B, ABCD1, ADIPOR1 and the downstream molecule PPARA. These effects synergistically suppressed fatty acid (FA) β-oxidation in mitochondria and peroxisomes and decreased the translocation of cytosolic very long chain fatty acids to peroxisomes, which noticeably reduced FA catabolism and promoted triglyceride accumulation in hepatocytes. This study reveals the functional significance of changed miRNA mitochondrial-cytoplasmic distribution in the regulation of hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Danxia Kong
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China
| | - Xueying Gao
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China
| | - Zhenyu Tian
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Qianqian Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Zhe Wang
- Division of Geriatrics, Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Shandong Institute of Endocrine and Metabolic Disease, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, China.
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
44
|
Cai C, Song X, Yu C. Identification of genes in hepatocellular carcinoma induced by non-alcoholic fatty liver disease. Cancer Biomark 2021; 29:69-78. [PMID: 32623384 PMCID: PMC7685598 DOI: 10.3233/cbm-190169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND: Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. In recent years, the incidence of HCC induced by NAFLD is growing rapidly. OBJECTIVE: To screen for new pathogenic genes and related pathways both in NAFLD and HCC, and to explore the pathogenesis of progression from NAFLD to HCC. METHODS: Gene expression microarrays (GSE74656, GSE62232) were used for identifying differentially expressed genes (DEGs). Functional enrichment and pathway enrichment analyses indicated that these DEGs were related to cell cycle and extracellular exosome, which were closely related to NAFLD and HCC development. We then used the Search Tool for the Retrieval of Interacting Genes (STRING) to establish the protein-protein interaction (PPI) network and visualized them in Cytoscape. And the overall survival (OS) analysis and gene expression validation in TCGA of hub genes was performed. RESULTS: Seven hub genes, including CDK1, HSP90AA1, MAD2L1, PRKCD, ITGB3BP, CEP192, and RHOB were identified. Finally, we verified the expression level of ITGB3BP and CEP192 by quantitative real-time PCR in vitro. CONCLUSIONS: The present study implied possible DEGs, especially the new gene CEP192, in the progression of NAFLD developing to HCC. Further rigorous experiments are required to verify the above results.
Collapse
Affiliation(s)
| | | | - Chaohui Yu
- Corresponding author: Chaohui Yu, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. E-mail:
| |
Collapse
|
45
|
Zhao J, Song Y, Zeng Y, Chen L, Yan F, Chen A, Wu B, Wang Y. Improvement of hyperlipidemia by aerobic exercise in mice through a regulatory effect of miR-21a-5p on its target genes. Sci Rep 2021; 11:11966. [PMID: 34099844 PMCID: PMC8184843 DOI: 10.1038/s41598-021-91583-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Hyperlipidemia is a risk factor for cardiovascular disease, and miR-21a-5p plays an important role in the occurrence and progression of hyperlipidemia. Here, we aimed to investigate the mechanism of aerobic exercise improved hyperlipidemia through enhancing miR-21a-5p expression. In this study, high-fat/high-cholesterol diet mice received 8 weeks of aerobic exercise intervention, then we collected plasma and liver samples, we found that there had a notable improvement in weight gain, blood lipid level, and liver steatosis in hyperlipidemia mice after 8 weeks of aerobic exercise intervention. Besides, aerobic exercise significantly up-regulated the expression of miR-21a-5p and provoked favorable changes in the expression of target genes. Knockdown of miR-21a-5p resulted in dysregulation of lipid metabolism and increased expression of FABP7, HMGCR, ACAT1, and OLR1. While aerobic exercise could alleviate miR-21a-5p knock-down induced lipid metabolism disorder. Taken together, these results demonstrated that aerobic exercise improved hyperlipidemia through miR-21a-5p-induced inhibition of target genes FABP7, HMGCR, ACAT1, and OLR1.
Collapse
Affiliation(s)
- Jinfeng Zhao
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Yicun Song
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Yu Zeng
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Longchang Chen
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Feng Yan
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Anping Chen
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China
| | - Baoai Wu
- School of Physical Education, Shanxi University, Taiyuan, Shanxi, China.
| | - Yaxin Wang
- Department of Exercise Physiology, Beijing Sports University, Beijing, China.
| |
Collapse
|
46
|
Batkai S, Genschel C, Viereck J, Rump S, Bär C, Borchert T, Traxler D, Riesenhuber M, Spannbauer A, Lukovic D, Zlabinger K, Hašimbegović E, Winkler J, Garamvölgyi R, Neitzel S, Gyöngyösi M, Thum T. CDR132L improves systolic and diastolic function in a large animal model of chronic heart failure. Eur Heart J 2021; 42:192-201. [PMID: 33089304 PMCID: PMC7813625 DOI: 10.1093/eurheartj/ehaa791] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Aims Cardiac miR-132 activation leads to adverse remodelling and pathological hypertrophy. CDR132L is a synthetic lead-optimized oligonucleotide inhibitor with proven preclinical efficacy and safety in heart failure (HF) early after myocardial infarction (MI), and recently completed clinical evaluation in a Phase 1b study (NCT04045405). The aim of the current study was to assess safety and efficacy of CDR132L in a clinically relevant large animal (pig) model of chronic heart failure following MI. Methods and results In a chronic model of post-MI HF, slow-growing pigs underwent 90 min left anterior descending artery occlusion followed by reperfusion. Animals were randomized and treatment started 1-month post-MI. Monthly intravenous (IV) treatments of CDR132L over 3 or 5 months (3× or 5×) were applied in a blinded randomized placebo-controlled fashion. Efficacy was evaluated based on serial magnetic resonance imaging, haemodynamic, and biomarker analyses. The treatment regime provided sufficient tissue exposure and CDR132L was well tolerated. Overall, CDR132L treatment significantly improved cardiac function and reversed cardiac remodelling. In addition to the systolic recovery, diastolic function was also ameliorated in this chronic model of HF. Conclusion Monthly repeated dosing of CDR132L is safe and adequate to provide clinically relevant exposure and therapeutic efficacy in a model of chronic post-MI HF. CDR132L thus should be explored as treatment for the broad area of chronic heart failure. ![]()
Collapse
Affiliation(s)
- Sandor Batkai
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Celina Genschel
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Janika Viereck
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Steffen Rump
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Tobias Borchert
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany
| | - Denise Traxler
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Dominika Lukovic
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Ena Hašimbegović
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Johannes Winkler
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Rita Garamvölgyi
- Department of Diagnostic Imaging and Oncoradiology, University of Kaposvár, Guba S. Street 40, Kaposvár 7400, Hungary
| | - Sonja Neitzel
- Axolabs GmbH, Fritz-Hornschuch-Straße 9, Kulmbach 95326, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Thomas Thum
- CARDIOR Pharmaceuticals GmbH, Feodor-Lynen-Str. 15, Hannover 30625, Germany.,Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
47
|
Fang Z, Dou G, Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Biol Sci 2021; 17:1851-1863. [PMID: 33994867 PMCID: PMC8120467 DOI: 10.7150/ijbs.59588] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), or, more accurately, metabolic associated fatty liver disease, accounts for a large proportion of chronic liver disorders worldwide and is closely associated with other conditions such as cardiovascular disease, obesity, and type 2 diabetes mellitus. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH) and can progress to cirrhosis and, eventually, also hepatocellular carcinoma. The morbidity and mortality associated with NAFLD are increasing rapidly year on year. Consequently, there is an urgent need to understand the etiology and pathogenesis of NAFLD and identify effective therapeutic targets. MicroRNAs (miRNAs), important epigenetic factors, have recently been proposed to participate in NAFLD pathogenesis. Here, we review the roles of miRNAs in lipid metabolism, inflammation, apoptosis, fibrosis, hepatic stellate cell activation, insulin resistance, and oxidative stress, key factors that contribute to the occurrence and progression of NAFLD. Additionally, we summarize the role of miRNA-enriched extracellular vesicles in NAFLD. These miRNAs may comprise suitable therapeutic targets for the treatment of this condition.
Collapse
Affiliation(s)
- Zhiqiang Fang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guorui Dou
- Department of Ophthalmology, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
48
|
Parnell AA, De Nobrega AK, Lyons LC. Translating around the clock: Multi-level regulation of post-transcriptional processes by the circadian clock. Cell Signal 2021; 80:109904. [PMID: 33370580 PMCID: PMC8054296 DOI: 10.1016/j.cellsig.2020.109904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
The endogenous circadian clock functions to maintain optimal physiological health through the tissue specific coordination of gene expression and synchronization between tissues of metabolic processes throughout the 24 hour day. Individuals face numerous challenges to circadian function on a daily basis resulting in significant incidences of circadian disorders in the United States and worldwide. Dysfunction of the circadian clock has been implicated in numerous diseases including cancer, diabetes, obesity, cardiovascular and hepatic abnormalities, mood disorders and neurodegenerative diseases. The circadian clock regulates molecular, metabolic and physiological processes through rhythmic gene expression via transcriptional and post-transcriptional processes. Mounting evidence indicates that post-transcriptional regulation by the circadian clock plays a crucial role in maintaining tissue specific biological rhythms. Circadian regulation affecting RNA stability and localization through RNA processing, mRNA degradation, and RNA availability for translation can result in rhythmic protein synthesis, even when the mRNA transcripts themselves do not exhibit rhythms in abundance. The circadian clock also targets the initiation and elongation steps of translation through multiple pathways. In this review, the influence of the circadian clock across the levels of post-transcriptional, translation, and post-translational modifications are examined using examples from humans to cyanobacteria demonstrating the phylogenetic conservation of circadian regulation. Lastly, we briefly discuss chronotherapies and pharmacological treatments that target circadian function. Understanding the complexity and levels through which the circadian clock regulates molecular and physiological processes is important for future advancement of therapeutic outcomes.
Collapse
Affiliation(s)
- Amber A Parnell
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Aliza K De Nobrega
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lisa C Lyons
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Alkhouri N, Reddy GK, Lawitz E. Oligonucleotide-Based Therapeutics: An Emerging Strategy for the Treatment of Chronic Liver Diseases. Hepatology 2021; 73:1581-1593. [PMID: 32978989 DOI: 10.1002/hep.31569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Naim Alkhouri
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - G Kesava Reddy
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
50
|
Greenberg DS, Tzur Y, Soreq H. The Use of Gapmers for In Vivo Suppression of Hepatic mRNA Targets. Methods Mol Biol 2021; 2176:177-184. [PMID: 32865791 DOI: 10.1007/978-1-0716-0771-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter describes the use of locked nucleic acid (LNA) GapmeRs for the in vivo knockdown of specific mRNAs in the mouse liver and phenotype analysis. LNA GapmeRs may be tested for efficacy by transfection in cultured cells. They are delivered into mice in vivo by intravenous tail injection .
Collapse
Affiliation(s)
- David S Greenberg
- The Life Sciences Institute and The Edmond and Lili Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonat Tzur
- The Life Sciences Institute and The Edmond and Lili Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and The Edmond and Lili Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|