1
|
Pan X, Xian P, Li Y, Zhao X, Zhang J, Song Y, Nan Y, Ni S, Hu K. Chemotaxis-driven hybrid liposomes recover intestinal homeostasis for targeted colitis therapy. J Control Release 2025; 380:829-845. [PMID: 39961435 DOI: 10.1016/j.jconrel.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
Inflammatory bowel disease (IBD) is closely linked to the dysregulation of intestinal homeostasis, accompanied by intestinal epithelial barrier destruction, dysbiosis of gut microbiota, subsequent inflammatory factor infiltration, and excessive oxidative stress. Conventional therapeutics focus on suppressing inflammation and often suffer from metabolic instability as well as limited targeting, thereby leading to suboptimal remission rates and severe side effects. Here, we designed bacterial outer membrane vesicle (OMV, from Stenotrophomonas maltophilia)-fused and borneol-modified liposomes (BO/OMV-lipo@LU) for targeted delivery of luteolin to recover intestinal homeostasis by alleviating inflammation and modulating dysregulated intestinal epithelial barrier, redox balance, and gut microbiota in IBD. In a Caco-2/HT29-MTX monolayer model, the OMV and borneol-bifunctionalized liposomes enhanced the uptake efficiency of unfunctionalized liposomes with a 2-fold increase. Owing to the chemotaxis-driven colon-targeting ability of OMVs and the ability of borneol to promote intestinal epithelial uptake, the hybrid liposomes successfully targeted the inflamed colon. In a colitis mouse model, BO/OMV-lipo@LU exhibited enhanced efficacy following oral administration. The BO/OMV-lipo@LU treatment increased the colon length and body weights of mice suffering colitis by 40 % and 15 %, respectively, with values comparable to the healthy control group. Notably, BO/OMV-lipo@LU alleviated proinflammatory markers, modulated redox balance, and restored the intestinal epithelial barrier. In addition, the formulation increased the abundance of beneficial microbiota while decreasing the abundance of harmful microbiota. These results demonstrated that this biomimetic nanoplatform could be exploited as a safe and effective gut-targeted delivery system in IBD treatment.
Collapse
Affiliation(s)
- Xier Pan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peng Xian
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yushu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxin Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yangjie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yunrong Nan
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuting Ni
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaili Hu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Fu M, Wang QW, Liu YR, Chen SJ. The role of the three major intestinal barriers in ulcerative colitis in the elderly. Ageing Res Rev 2025; 108:102752. [PMID: 40210198 DOI: 10.1016/j.arr.2025.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
With the unprecedented pace of global population aging, there has been a parallel epidemiological shift marked by increasing incidence rates of ulcerative colitis (UC) in geriatric populations, imposing a substantial disease burden on healthcare systems globally. The etiopathogenesis of UC in the elderly remains poorly delineated, while current therapeutic strategies require further optimization to accommodate the unique pathophysiological characteristics of elderly patients. This review systematically elucidates the three barrier dysfunction - encompassing the gut microbiota ecosystem, mucosal epithelial integrity, and immunoregulatory network - that collectively drives UC pathogenesis during biological senescence. We emphasize the therapeutic potential of barrier-targeted interventions, particularly highlighting emerging modalities including fecal microbiota transplantation, intestinal organoid regeneration techniques, mesenchymal stem cell-mediated immunomodulation, and precision-engineered Chimeric Antigen Receptor T-cell therapies. Through this multidimensional analysis, we propose a paradigm-shifting approach to UC management in the elderly, advocating for the development of tailored and evidence-based therapeutic interventions that address the complex interplay between age-related biological changes and intestinal barrier homeostasis in elderly patients.
Collapse
Affiliation(s)
- Min Fu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qi-Wen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ya-Ru Liu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Shu-Jie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
3
|
Chen Y, Li J, Zhang X, Li S, Cheng Y, Fu X, Li J, Zhu L. Mesenteric adipose-derived exosomal TINAGL1 enhances intestinal fibrosis in Crohn's Disease via SMAD4. J Adv Res 2025; 70:139-158. [PMID: 38750695 PMCID: PMC11976418 DOI: 10.1016/j.jare.2024.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Accepted: 05/11/2024] [Indexed: 03/23/2025] Open
Abstract
INTRODUCTION Crohn's Disease (CD) is a chronic inflammatory condition characterized by intestinal fibrosis, severely impacting patient quality of life. The molecular mechanisms driving this fibrosis remain inadequately understood. Recent evidence implicates mesenteric adipose tissue (MAT) in CD pathogenesis, particularly through its exosome secretion, which may influence fibrogenic pathways. Understanding the role of MAT-derived exosomes is crucial for unraveling these molecular processes. OBJECTIVES This study aims to elucidate the role of MAT-derived exosomes in CD-related intestinal fibrosis. We focus on investigating their molecular composition and the potential impact on fibrosis progression, with an emphasis on identifying novel therapeutic targets. METHODS We induced chronic intestinal inflammation in mice using dinitrobenzene sulfonic acid (DNBS), simulating CD-like fibrosis. Exosomes were isolated from DNBS-treated mice (MG) and normal controls (NG) for characterization using electron microscopy and proteomic analysis. Additionally, human colonic fibroblasts were exposed to exosomes from CD patients and healthy individuals, with subsequent assessment of fibrogenesis through proteomic and RNA sequencing analyses. RESULTS Proteomic analyses revealed a significant activation of the TGF-β signaling pathway in MG-treated mice compared to controls, correlating with enhanced intestinal fibrosis. In vitro experiments demonstrated that colonic fibroblasts exposed to CD patient-derived exosomes exhibited increased fibrogenic activity. Protein docking and co-immunoprecipitation studies suggested a critical interaction between TINAGL1 and SMAD4, enhancing fibrosis. Importantly, in vivo experiments corroborated that recombinant TINAGL1 protein exacerbated DNBS-induced intestinal fibrosis. CONCLUSION Our findings highlight the pivotal role of MAT-derived exosomes, particularly those carrying TINAGL1, in the progression of intestinal fibrosis in CD. The involvement of the TGF-β signaling pathway, especially the SMAD4 protein, offers new insights into the molecular mechanisms of CD-related fibrosis and presents potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yidong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junrong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopeng Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuang Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yiyu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoyu Fu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiamin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Lu H, Zhou Q, Li J, Xu S, Yu L, Zhu Y, Zhang H, Shi C, Zuo T, Xu M, Su M, Zhang Y, Hu R, Shubhra QTH, Deng H, Hu X, Cai X. CO-Releasing Polyoxometalates Nanozyme with Gut Mucosal Immunity and Microbiota Homeostasis Remodeling Effects for Restoring Intestinal Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500116. [PMID: 40079617 DOI: 10.1002/advs.202500116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/16/2025] [Indexed: 03/15/2025]
Abstract
Disruption of the intestinal epithelial barrier, driven by imbalances in gut mucosal immunity and microbial homeostasis, is central to the onset and progression of inflammatory bowel disease (IBD). This study introduces a CO-releasing polyoxometalates (POMs) nanozyme (PMC), synthesized by coordinating pentacarbonyl manganese bromide with molybdenum-based POM nanoclusters. PMC demonstrates targeted accumulation at IBD-affected sites, efficient scavenging of reactive oxygen species (ROS), and responsive CO release, resulting in multiple therapeutic effects. Extensive in vitro and in vivo studies have validated the exceptional capacity of PMC to repair intestinal barrier, attributed to their potent antioxidant and anti-inflammatory properties, thereby achieving significant therapeutic efficacy in ulcerative colitis treatment. 16S rRNA sequencing indicated that PMC efficiently remodeled the gut microbiota composition. Single-cell RNA sequencing indicates a reduction in pro-inflammatory M1 macrophages, alongside suppressed ROS and inflammatory signaling pathways. Concurrently, an increase in reparative M2 macrophages and intestinal stem cells is observed, in addition to significant activation of the VEGF signaling pathway in macrophages and the NOTCH pathway in stem cells, underscoring the potential of PMC to restore immune balance and promote tissue repair. This study positions PMC as a promising, multifunctional therapeutic agent for IBD treatment owing to its robust intestinal barrier-restoring capability.
Collapse
Affiliation(s)
- Hongyang Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Zhou
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, China
| | - Jiayu Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shengming Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Li Yu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yinci Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - He Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chengge Shi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tianci Zuo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengzhu Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mingli Su
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanmei Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Rongdang Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quazi T H Shubhra
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, Katowice, 40-006, Poland
| | - Hui Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaowen Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
5
|
Lv H, Luo H, Tan W, Zhong J, Xiong J, Liu Z, Wu Q, Lin S, Cao K. Kurarinone Mitigates LPS-Induced Inflammatory Osteolysis by Inhibiting Osteoclastogenesis Through the Reduction of ROS Levels and Suppression of the PI3K/AKT Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02244-1. [PMID: 39871069 DOI: 10.1007/s10753-025-02244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/29/2025]
Abstract
Inflammatory bone resorption represents a pathological condition marked by an increase in bone loss, commonly associated with chronic inflammatory conditions such as rheumatoid arthritis and periodontitis. Current therapies primarily focus on anti-inflammatory drugs and bisphosphonates; however, these treatments are limited due to side effects, inadequate efficacy, and unpredictable long-term complications. Kurarinone (KR), a bioactive compound isolated from the traditional Chinese herb Sophora flavescens, exhibits a range of biological activities, including anti-inflammatory, anticancer, and cardiovascular protective effects. To address the limitations of existing therapies and enhance drug utilization, this study explores the potential of KR as a therapeutic agent for inflammatory bone resorption and delineates its underlying mechanisms. In vitro experiments reveal that KR notably inhibits osteoclastogenesis and reduces the expression of osteoclastic markers. Additionally, KR decreases the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while downregulating NADPH oxidase 1 (NOX1) and Kelch-like ECH-associated protein 1 (Keap1) to diminish ROS production. Furthermore, KR activates the nuclear factor erythroid 2-related factor 2 (Nrf2), which enhances the activity of heme oxygenase-1 (HO-1) and catalase (CAT), facilitating the clearance of excess ROS. The compound also hinders osteoclast formation and functionality by inhibiting the PI3K/AKT/GSK-3β signaling pathway. Lentiviral knockdown of CAT can partially reverse these effects of KR. Meanwhile, in vivo experiments indicate that KR effectively mitigates bone loss in an LPS-induced inflammatory bone resorption model. In summary, KR is a promising new star in breaking through the limitations of previous drugs and treating inflammatory bone resorption.
Collapse
Affiliation(s)
- Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
| | - Wen Tan
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhiming Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qin Wu
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China
| | - Sijian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Kai Cao
- The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.
- Department of Orthopedics, Affiliated Rehabilitation Hospital of Nanchang University, Nanchang, 330002, China.
| |
Collapse
|
6
|
Wang X, Hu R, Lin F, Yang T, Lu Y, Sun Z, Li T, Chen J. Lactobacillus reuteri or Lactobacillus rhamnosus GG intervention facilitates gut barrier function, decreases corticosterone and ameliorates social behavior in LPS-exposed offspring. Food Res Int 2024; 197:115212. [PMID: 39593298 DOI: 10.1016/j.foodres.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Probiotic therapy with Lactobacillus reuteri and Lactobacillus rhamnosus (LGG) demonstrates potential as an adjunctive treatment for autism spectrum disorder (ASD). In a rat model of ASD induced by lipopolysaccharide (LPS) injection during pregnancy, we evaluated the effects of these probiotics on offspring. Administration of L. reuteri or LGG for three weeks post-birth improved social deficits and reduced anxiety in LPS-exposed rats. Additionally, probiotics significantly modified short-chain fatty acid profiles, increasing butyric acid levels and decreasing propionic acid levels. They also enhanced colonic barrier integrity by upregulating tight junction proteins, including ZO-1, Occludin, and Claudin4. RNA sequencing identified differential gene expression in pathways related to inflammation, the HPA axis, and reactive oxygen species metabolism, with NADPH oxidase 1 (NOX1) emerging as a crucial gene. Validation studies confirmed that Lactobacillus strains reduced inflammatory cytokines, inhibited corticosterone secretion, increased antioxidant levels, and suppressed the NF-κB/NOX1 pathway. In an H2O2-induced oxidative stress model using Caco-2 cells, pre-treatment with L. reuteri, LGG, or NF-κB inhibitors enhanced cellular antioxidants, inhibited NF-κB/NOX1 activation, and improved barrier function. Overall, L. reuteri and LGG administration improved social behavior, bolstered colonic barrier function, and mitigated HPA axis overactivation in LPS-exposed rats, while also alleviating oxidative stress in the colon and Caco-2 cells. These findings suggest that L. reuteri and LGG have substantial clinical potential for ASD treatment by targeting multiple pathophysiological mechanisms, including inflammation, HPA axis dysregulation, and oxidative stress, thereby presenting a promising adjunctive therapeutic strategy for enhancing social behavior and gut health in ASD.
Collapse
Affiliation(s)
- Xinyuan Wang
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Riqiang Hu
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Fang Lin
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Ting Yang
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Yiwen Lu
- School of Medicine, Jianghan University, Wuhan, China
| | - Zhujun Sun
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Tingyu Li
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Jie Chen
- Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China.
| |
Collapse
|
7
|
Yu J, Lu Z, Chen B, He X, Zhao W, Cao H, Li Y, Peng G, Ou J, Ma Q, Yu L, Liu J. Liang-Ge-San protects against viral infection-induced acute lung injury through inhibiting α7nAChR-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156231. [PMID: 39566410 DOI: 10.1016/j.phymed.2024.156231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is the main cause of death in clinical respiratory virus infection. Liang-Ge-San (LGS), a famous traditional Chinese formula, has been proved to be effective in treating ALI caused by lipopolysaccharide. However, the effects of LGS on ALI induced by viral infections remain uncertain. PURPOSE To investigate the effect and mechanism of action of LGS on viral infection-induced ALI. METHODS The inhibitory effects of LGS on virus-induced inflammation in vitro were evaluated by qRT-PCR and ELISA. The protein expression of α7nAChR was examined by Western blotting. α7nAChR was inhibited by the transfection of siRNA or methyllycaconitine citrate (MLA, an α7nAChR inhibitor) to investigate the role of α7nAChR in the anti-inflammatory effect of LGS. Adoptive culture and co-culture systems of macrophages RAW264.7 and alveolar epithelial cells MLE-12 were established to mimic their interaction. Western blotting, immunofluorescence, flow cytometry and transmission electron microscopy were used to examine the effects of LGS on mitophagy inhibition. In vivo, ALI mouse models induced by SARS-CoV-2, H1N1 or Poly(I:C) infection were established to explore the therapeutic effect and mechanism of LGS. RESULTS LGS reduced the release of IL-6, TNF-α and IL-1β and increased the expression of α7nAChR in virus-infected RAW264.7 cells. The blockage of α7nAChR counteracted the anti-inflammatory effect of LGS. Moreover, LGS significantly inhibited autophagy in MLE-12 cells induced by Poly(I:C) in adoptive culture and co-culture systems of RAW264.7 and MLE-12 cells, which could be attenuated after the inhibition of α7nAChR in RAW264.7 cells by decreasing the secretion of IL-6, TNF-α and IL-1β. Further study showed that LGS suppressed TNF-α-induced mitochondrial damage and mitophagy by inhibiting the generation of ROS in MLE-12 cells. In vivo, LGS significantly prolonged the survival time, alleviated pathological injury and acute inflammation of ALI mice induced by SARS-CoV-2, H1N1 or Poly(I:C) infection which were associated with the inhibition of α7nAChR-mediated mitophagy. CONCLUSION This study first demonstrates that LGS inhibits virus infection-induced inflammation in RAW246.7 cells by increasing the expression of α7nAChR, thereby inhibiting mitophagy induction in MLE-12 cells to alleviate ALI. This work indicates that LGS may serve as a candidate drug for treating ALI/ARDS caused by viral infection.
Collapse
Affiliation(s)
- Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Bing Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Yuhua Li
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Gefei Peng
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Jinying Ou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China
| | - Qinhai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, PR China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China.
| |
Collapse
|
8
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
9
|
Adams CE, Rutherford DG, Jones GR, Ho GT. Immunometabolism and mitochondria in inflammatory bowel disease: a role for therapeutic intervention? Dis Model Mech 2024; 17:dmm050895. [PMID: 39415736 PMCID: PMC11512101 DOI: 10.1242/dmm.050895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Inflammatory bowel diseases (IBDs), incurable conditions characterised by recurrent episodes of immune-mediated gut inflammation and damage of unknown aetiology, are common. Current advanced therapies target key leukocyte-trafficking and cytokine-signalling hubs but are only effective in 50% of patients. With growing evidence of mitochondrial dysfunction in IBD and advances in our understanding of the role of metabolism in inflammation, we provide an overview of novel metabolic approaches to IBD therapy, challenging the current 'therapeutic ceiling', identifying critical pathways for intervention and re-imagining metabolic biomarkers for the 21st century.
Collapse
Affiliation(s)
- Claire E. Adams
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Duncan G. Rutherford
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gareth R. Jones
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gwo-tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
10
|
Zou J, Jiang K, Chen Y, Ma Y, Xia C, Ding W, Yao M, Lin Y, Chen Y, Zhao Y, Gao F. Tofacitinib Citrate Coordination-Based Dual-Responsive/Scavenge Nanoplatform Toward Regulate Colonic Inflammatory Microenvironment for Relieving Colitis. Adv Healthc Mater 2024:e2401869. [PMID: 39180276 DOI: 10.1002/adhm.202401869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/16/2024] [Indexed: 08/26/2024]
Abstract
Ulcerative colitis is an inflammation of the colon characterized by immune dysregulation and intestinal inflammation. Developing safe oral nanomedicines that suppress intestinal inflammation, while modulating colonic inflammatory microenvironment by scavenging reactive oxygen species (ROS) and hydrogen sulfide (H2S) is crucial for the effective treatment of colitis. Here, the tofacitinib citrate and copper coordination-based nanoparticle (TF-Cu nanoparticle, T-C) to dual-scavenge ROS and H2S by coordination competition is synthesized. Moreover, the coordination of T-C using computer simulation is explored. To enhance the acid stability and inflammatory targeting of T-C, it is encapsulated with hyaluronic acid-modified chitosan, along with a calcium pectinate coating (T-C@HP). Owing to the dual pH/pectinase-responsive characteristics of T-C@HP, the nanoplatform can target inflamed colonic lesions, inhibiting phosphorylated Janus kinase 1. Furthermore, T-C@HP scavenges ROS and H2S, as well as increases NADPH levels, which is investigated by combining biosensor (HyPer7 and iNap1/c) and chemical probes. T-C@HP also alleviates colitis by regulating the colonic inflammatory microenvironment through multiple processes, including the modulation of apoptosis, macrophage polarization, tight junction, mucus layer, and intestinal flora. Complemented by satisfactory anti-inflammatory and biosafety results, this nanoplatform represents a promising, effective, and safe treatment option for colitis patients.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kun Jiang
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - You Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Yao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiting Lin
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanzuo Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100050, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
11
|
Yang S, Huang J, Tan W, Xia X, Gan D, Ren Y, Su H, Xiang M. Xiaoyankangjun tablet alleviates dextran sulfate sodium-induced colitis in mice by regulating gut microbiota and JAK2/STAT3 pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:44. [PMID: 39133435 PMCID: PMC11319580 DOI: 10.1007/s13659-024-00468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Suqin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Jingtao Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Wenjing Tan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiankun Xia
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Dali Gan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Yalei Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Hanwen Su
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Wang F, Xie L, Tang Y, Deng T. Unraveling Crucial Mitochondria-Related Genes in the Transition from Ulcerative Colitis to Colorectal Cancer. Drug Des Devel Ther 2024; 18:3175-3189. [PMID: 39071816 PMCID: PMC11283795 DOI: 10.2147/dddt.s455098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose To clarify the significance of mitochondria-related differentially expressed genes (MTDEGs) in UC carcinogenesis through a bioinformatics analysis and provide potential therapeutic targets for patients with UC associated colorectal cancer. Methods Microarray GSE37283 was utilized to investigate differentially expressed genes (DEGs) in UC and UC with neoplasia (UCN). MTDEGs were identified by intersecting DEGs with human mitochondrial genes. Utilizing LASSO and random forest analyses, we identified three crucial genes. Subsequently, using ROC curve to investigate the predictive ability of three key genes. Following, three key genes were confirmed in AOM/DSS mice model by Real-time PCR. Finally, single-sample gene set enrichment analysis (ssGSEA) was employed to explore the correlation between the hub genes and immune cells infiltration in UC carcinogenesis. Results The three identified hub MTDEGs (HMGCS2, MAVS, RDH13) may exhibit significant diagnostic specificity in the transition from UC to UCN. Real-time PCR assay further confirmed that the expressions of HMGCS2 and RDH13 were significantly downregulated in UCN mice than that in UC mice. ssGSEA analysis revealed the hub genes were highly associated with CD56dim natural killer cells. Conclusion RDH13, HMGCS2, and MAVS may become diagnostic indicators and potential biomarkers for UCN. Our research has the potential to enhance our understanding of the mechanisms underlying carcinogenesis in UC.
Collapse
Affiliation(s)
- Fanqi Wang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Limin Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Yuan Tang
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People’s Republic of China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| | - Tuo Deng
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, People’s Republic of China
| |
Collapse
|
13
|
Li C, Zhang P, Xie Y, Wang S, Guo M, Wei X, Zhang K, Cao D, Zhou R, Wang S, Song X, Zhu S, Pan W. Enterococcus-derived tyramine hijacks α 2A-adrenergic receptor in intestinal stem cells to exacerbate colitis. Cell Host Microbe 2024; 32:950-963.e8. [PMID: 38788722 DOI: 10.1016/j.chom.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory bowel disease (IBD) is characterized by dysbiosis of the gut microbiota and dysfunction of intestinal stem cells (ISCs). However, the direct interactions between IBD microbial factors and ISCs are undescribed. Here, we identify α2A-adrenergic receptor (ADRA2A) as a highly expressed GPCR in ISCs. Through PRESTO-Tango screening, we demonstrate that tyramine, primarily produced by Enterococcus via tyrosine decarboxylase (tyrDC), serves as a microbial ligand for ADRA2A. Using an engineered tyrDC-deficient Enterococcus faecalis strain and intestinal epithelial cell-specific Adra2a knockout mice, we show that Enterococcus-derived tyramine suppresses ISC proliferation, thereby impairing epithelial regeneration and exacerbating DSS-induced colitis through ADRA2A. Importantly, blocking the axis with an ADRA2A antagonist, yohimbine, disrupts tyramine-mediated suppression on ISCs and alleviates colitis. Our findings highlight a microbial ligand-GPCR pair in ISCs, revealing a causal link between microbial regulation of ISCs and colitis exacerbation and yielding a targeted therapeutic approach to restore ISC function in colitis.
Collapse
Affiliation(s)
- Chaoliang Li
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Panrui Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yadong Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng Guo
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaowei Wei
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dan Cao
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Rongbin Zhou
- Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shu Zhu
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Wen Pan
- Department of Digestive Disease, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Key Laboratory of immune response and immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
14
|
Long D, Mao C, Huang Y, Xu Y, Zhu Y. Ferroptosis in ulcerative colitis: Potential mechanisms and promising therapeutic targets. Biomed Pharmacother 2024; 175:116722. [PMID: 38729051 DOI: 10.1016/j.biopha.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Ulcerative colitis (UC) is a complex immune-mediated chronic inflammatory bowel disease. It is mainly characterized by diffuse inflammation of the colonic and rectal mucosa with barrier function impairment. Identifying new biomarkers for the development of more effective UC therapies remains a pressing task for current research. Ferroptosis is a newly identified form of regulated cell death characterized by iron-dependent lipid peroxidation. As research deepens, ferroptosis has been demonstrated to be involved in the pathological processes of numerous diseases. A growing body of evidence suggests that the pathogenesis of UC is associated with ferroptosis, and the regulation of ferroptosis provides new opportunities for UC treatment. However, the specific mechanisms by which ferroptosis participates in the development of UC remain to be more fully and thoroughly investigated. Therefore, in this review, we focus on the research advances in the mechanism of ferroptosis in recent years and describe the potential role of ferroptosis in the pathogenesis of UC. In addition, we explore the underlying role of the crosslinked pathway between ferroptosis and other mechanisms such as macrophages, neutrophils, autophagy, endoplasmic reticulum stress, and gut microbiota in UC. Finally, we also summarize the potential compounds that may act as ferroptosis inhibitors in UC in the future.
Collapse
Affiliation(s)
- Dan Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingtao Huang
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Yin Xu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Ying Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
15
|
Yu Y, Yang D, Lin B, Zhu L, Li C, Li X. Readily Available Oral Prebiotic Protein Reactive Oxygen Species Nanoscavengers for Synergistic Therapy of Inflammation and Fibrosis in Inflammatory Bowel Disease. ACS NANO 2024; 18:13583-13598. [PMID: 38740518 DOI: 10.1021/acsnano.3c13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dairong Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingru Lin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
16
|
Wang K, Wang Y, Yin K. Role played by MDSC in colitis-associated colorectal cancer and potential therapeutic strategies. J Cancer Res Clin Oncol 2024; 150:243. [PMID: 38717677 PMCID: PMC11078801 DOI: 10.1007/s00432-024-05755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Colitis-associated colorectal cancer has been a hot topic in public health issues worldwide. Numerous studies have demonstrated the significance of myeloid-derived suppressor cells (MDSCs) in the progression of this ailment, but the specific mechanism of their role in the transformation of inflammation to cancer is unclear, and potential therapies targeting MDSC are also unclear. This paper outlines the possible involvement of MDSC to the development of colitis-associated colorectal cancer. It also explores the immune and other relevant roles played by MDSC, and collates relevant targeted therapies against MDSC. In addition, current targeted therapies for colorectal cancer are analyzed and summarized.
Collapse
Affiliation(s)
- Kang Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China
| | - Yun Wang
- Department of Dermatology, The First People's Hospital of Changzhou, Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Jiefang Road No. 438, Zhenjiang, Jiangsu Province, 212000, China.
| |
Collapse
|
17
|
Li F, Wang Z, Cao Y, Pei B, Luo X, Liu J, Ge P, Luo Y, Ma S, Chen H. Intestinal Mucosal Immune Barrier: A Powerful Firewall Against Severe Acute Pancreatitis-Associated Acute Lung Injury via the Gut-Lung Axis. J Inflamm Res 2024; 17:2173-2193. [PMID: 38617383 PMCID: PMC11016262 DOI: 10.2147/jir.s448819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
The pathogenesis of severe acute pancreatitis-associated acute lung injury (SAP-ALI), which is the leading cause of mortality among hospitalized patients in the intensive care unit, remains incompletely elucidated. The intestinal mucosal immune barrier is a crucial component of the intestinal epithelial barrier, and its aberrant activation contributes to the induction of sustained pro-inflammatory immune responses, paradoxical intercellular communication, and bacterial translocation. In this review, we firstly provide a comprehensive overview of the composition of the intestinal mucosal immune barrier and its pivotal roles in the pathogenesis of SAP-ALI. Secondly, the mechanisms of its crosstalk with gut microbiota, which is called gut-lung axis, and its effect on SAP-ALI were summarized. Finally, a number of drugs that could enhance the intestinal mucosal immune barrier and exhibit potential anti-SAP-ALI activities were presented, including probiotics, glutamine, enteral nutrition, and traditional Chinese medicine (TCM). The aim is to offer a theoretical framework based on the perspective of the intestinal mucosal immune barrier to protect against SAP-ALI.
Collapse
Affiliation(s)
- Fan Li
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Zhengjian Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yinan Cao
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Boliang Pei
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Xinyu Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Jin Liu
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Peng Ge
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Yalan Luo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Shurong Ma
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| | - Hailong Chen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
- Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People’s Republic of China
| |
Collapse
|
18
|
Shi B, He E, Chang K, Xu G, Meng Q, Xu H, Chen Z, Wang X, Jia M, Sun W, Zhao W, Zhao H, Dong L, Cui H. Genistein prevents the production of hypospadias induced by Di-(2-ethylhexyl) phthalate through androgen signaling and antioxidant response in rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133537. [PMID: 38244450 DOI: 10.1016/j.jhazmat.2024.133537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Environmental estrogen exposure has increased dramatically over the past 50 years. In particular, prenatal exposure to estrogen causes many congenital diseases, among which reproductive system development disorders are extremely serious. In this study, the molecular mechanism of hypospadias and the therapeutic effect of genistein (GEN) were investigated through in vivo models prepared by Di-(2-ethylhexyl) phthalate (DEHP) exposure between 12 and 19 days of gestation. With increased DEHP concentrations, the incidence of hypospadias increased gradually. DEHP inhibited the key enzymes involved in steroid synthesis, resulting in decreasing testosterone synthesis. At the same time, DEHP increased reactive oxygen species (ROS) and produced inflammatory factors via NADPH oxidase-1 (NOX1) and NADPH oxidase-4 (NOX4) pathways. It also inhibited Steroid 5 α Reductase 2 (Srd5α2) and decreased dihydrotestosterone (DHT) synthesis. Additionally, DEHP inhibited the androgen receptor (AR), resulting in reduced DHT binding to the AR that ultimately retarded the development of the external reproductive system. GEN, a phytoestrogen, competes with DEHP for binding to estrogen receptor β (ERβ). This competition, along with GEN's antiestrogen and antioxidant properties, could potentially reverse impairments. The findings of this study provide valuable insights into the role of phytoestrogens in alleviating environmental estrogen-induced congenital diseases.
Collapse
Affiliation(s)
- Bowen Shi
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Enyang He
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaili Chang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Guodong Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Qingya Meng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Haihua Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Ziying Chen
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Xiaojia Wang
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Miao Jia
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wenjing Sun
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Hailan Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Liang Dong
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| | - Hualei Cui
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| |
Collapse
|
19
|
Shi Y, Luo S, Zhai J, Chen Y. A novel causative role of imbalanced kynurenine pathway in ulcerative colitis: Upregulation of KMO and KYNU promotes intestinal inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166929. [PMID: 37918679 DOI: 10.1016/j.bbadis.2023.166929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/14/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
The kynurenine pathway (KP) is the principal metabolic route for the essential amino acid tryptophan (TRP). Recent advances have highlighted a pivotal role for several KP metabolites in inflammatory diseases, including ulcerative colitis (UC). However, the alterations of KP enzymes and their functional impact in UC remain poorly defined. Here, we focused on kynurenine 3-monooxygenase (KMO) and kynureninase (KYNU), which serve as critical branching enzymes in the KP. We observed that dextran sodium sulfate (DSS)-induced colitis mice exhibited disturbed TRP metabolism along with KMO and KYNU upregulated. In patients with active UC, both the expression of KMO and KYNU were positively correlated with inflammatory factors TNF-α and IL-1β. Pharmacological blockade of KMO or genetic silencing of KYNU suppressed IL-1β-triggered proinflammatory cytokines expression in intestinal epithelial cells. Furthermore, blockage of KMO by selective inhibitor Ro 61-8048 alleviated the symptoms of DSS-induced colitis in mice, accompanied by an expanded NAD+ pool and redox balance restoration. The protective role of Ro 61-8048 may be partly due to its effect on KP regulation, particularly in enhancing kynurenic acid production. In summary, our study provides new evidence for the proinflammatory property of KMO and KYNU in intestinal inflammation, hinting at a promising therapeutic approach in UC through targeting these enzymes.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Jiang K, Cao X, Wu H, Xu Y, Liu L, Qian H, Miao Z, Wang H, Ma Y. 2D Nanozymes Modulate Gut Microbiota and T-Cell Differentiation for Inflammatory Bowel Disease Management. Adv Healthc Mater 2024; 13:e2302576. [PMID: 37897434 DOI: 10.1002/adhm.202302576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Intestinal commensal microbiota dysbiosis and immune dysfunction are significant exacerbating factors in inflammatory bowel disease (IBD). To address these problems, Pluronic F-127-coated tungsten diselenide (WSe2 @F127) nanozymes are developed by simple liquid-phase exfoliation. The abundant valence transitions of elemental selenium (Se2- /Se4+ ) and tungsten (W4+ /W6+ ) enable the obtained WSe2 @F127 nanozymes to eliminate reactive oxygen/nitrogen species. In addition, the released tungsten ions are capable of inhibiting the proliferation of Escherichia coli. In a model of dextran sodium sulfate-induced colitis, WSe2 @F127 nanozymes modulate the gut microbiota by increasing the abundance of bacteria S24-7 and significantly reducing the abundance of Enterobacteriaceae. Moreover, WSe2 @F127 nanozymes inhibit T-cell differentiation and improve intestinal immune barrier function in a model of Crohn's disease. The WSe2 @F127 nanozymes effectively alleviate IBD by reducing oxidative stress damage, modulating intestinal microbial populations, and remodeling the immune barrier.
Collapse
Affiliation(s)
- Kai Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiangjing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yifeng Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lulu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
21
|
Li S, Chen Z, Wang M, Yang F, Zhang S, Qiao C, Chu W, Yue W. Ultrasmall Cu 2O@His Nanozymes with RONS Scavenging Capability for Anti-inflammatory Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3116-3125. [PMID: 38224533 DOI: 10.1021/acsami.3c15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
High concentrations of reactive oxygen and nitrogen species (RONS) are key characteristics of inflammatory sites. Scavenging RONS at the site of inflammation is an effective therapeutic strategy. This study introduces ultrasmall Cu2O@His nanoparticles with RONS-scavenging ability for the treatment of inflammatory bowel disease (IBD) in mice. The strong coordination between the nitrogen atom in histidine (His) and copper enhances the dispersion and stability of Cu2O@His. Due to their small size and large surface area, Cu2O@His exhibits outstanding RONS-clearing ability. Importantly, Cu2O@His can target mitochondrial sites and repair damaged mitochondria. With excellent dispersion and scavenging RONS ability, Cu2O@His demonstrates good efficacy in treating mouse IBD. This work provides a new paradigm for developing nanozymes with an ultrasmall size and multiple scavenging RONS abilities.
Collapse
Affiliation(s)
- Shuaiwen Li
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zihui Chen
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Minyu Wang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Yang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shuqi Zhang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Cairong Qiao
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, People's Republic of China
| |
Collapse
|
22
|
Prado-Acosta M, Jeong S, Utrero-Rico A, Goncharov T, Webster JD, Holler E, Morales G, Dellepiane S, Levine JE, Rothenberg ME, Vucic D, Ferrara JLM. Inhibition of RIP1 improves immune reconstitution and reduces GVHD mortality while preserving graft-versus-leukemia effects. Sci Transl Med 2023; 15:eadf8366. [PMID: 38117900 PMCID: PMC11157567 DOI: 10.1126/scitranslmed.adf8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Graft-versus-host disease (GVHD) remains the major cause of morbidity and nonrelapse mortality (NRM) after hematopoietic cell transplantation (HCT). Inflammatory cytokines mediate damage to key GVHD targets such as intestinal stem cells (ISCs) and also activate receptor interacting protein kinase 1 (RIP1; RIPK1), a critical regulator of apoptosis and necroptosis. We therefore investigated the role of RIP1 in acute GVHD using samples from HCT patients, modeling GVHD damage in vitro with both human and mouse gastrointestinal (GI) organoids, and blocking RIP1 activation in vivo using several well-characterized mouse HCT models. Increased phospho-RIP1 expression in GI biopsies from patients with acute GVHD correlated with tissue damage and predicted NRM. Both the genetic inactivation of RIP1 and the RIP1 inhibitor GNE684 prevented GVHD-induced apoptosis of ISCs in vivo and in vitro. Daily administration of GNE684 for 14 days reduced inflammatory infiltrates in three GVHD target organs (intestine, liver, and spleen) in mice. Unexpectedly, GNE684 administration also reversed the marked loss of regulatory T cells in the intestines and liver during GVHD and reduced splenic T cell exhaustion, thus improving immune reconstitution. Pharmacological and genetic inhibition of RIP1 improved long-term survival without compromising the graft-versus-leukemia (GVL) effect in lymphocytic and myeloid leukemia mouse models. Thus, RIP1inhibition may represent a nonimmunosuppressive treatment for GVHD.
Collapse
Affiliation(s)
- Mariano Prado-Acosta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seihwan Jeong
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Utrero-Rico
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Joshua D. Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Ernst Holler
- Department of Hematology and Oncology, University of Regensburg, Regensburg 93042, Germany
| | - George Morales
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Dellepiane
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E. Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Domagoj Vucic
- Immunology Discovery, Genentech, South San Francisco, CA 94080, USA
| | - James L. M. Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Wang M, Huang Q, Liu M, Zhao T, Song X, Chen Q, Yang Y, Nan Y, Liu Z, Zhang Y, Wu W, Ai K. Precisely Inhibiting Excessive Intestinal Epithelial Cell Apoptosis to Efficiently Treat Inflammatory Bowel Disease with Oral Pifithrin-α Embedded Nanomedicine (OPEN). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309370. [PMID: 37747308 DOI: 10.1002/adma.202309370] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/22/2023] [Indexed: 09/26/2023]
Abstract
The increased incidence of inflammatory bowel disease (IBD) has seriously affected the life quality of patients. IBD develops due to excessive intestinal epithelial cell (IEC) apoptosis, disrupting the gut barrier, colonizing harmful bacteria, and initiating persistent inflammation. The current therapeutic approaches that reduce inflammation are limited. Although IBD can be treated significantly by directly preventing IEC apoptosis, achieving this therapeutic approach remains challenging. Accordingly, the authors are the first to develop an oral pifithrin-α (PFTα, a highly specific p53 inhibitor) embedded nanomedicine (OPEN) to effectively treat IBD by inhibiting excessive IEC apoptosis. As a major hub for various stressors, p53 is a central determinant of cell fate, and its inhibition can effectively reduce excessive IEC apoptosis. The tailored OPEN can precisely inhibit the off-target and inactivation resulting from PFTα entry into the bloodstream. Subsequently, it persistently targets IBD lesions with high specificity to inhibit the pathological events caused by excessive IEC apoptosis. Eventually, OPEN exerts a significant curative effect compared with the clinical first-line drugs 5-aminosalicylic acid (5-ASA) and dexamethasone (DEX). Consequently, the OPEN therapeutic strategy provides new insights into comprehensive IBD therapy.
Collapse
Affiliation(s)
- Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, 750002, China
| | - Zerun Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Yuntao Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
24
|
Ward J, Zhang S, Sikora A, Michalski R, Yin Y, D'Alessio A, McLoughlin RM, Jaquet V, Fieschi F, Knaus UG. VEO-IBD NOX1 variant highlights a structural region essential for NOX/DUOX catalytic activity. Redox Biol 2023; 67:102905. [PMID: 37820403 PMCID: PMC10571032 DOI: 10.1016/j.redox.2023.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.
Collapse
Affiliation(s)
- Josie Ward
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Suisheng Zhang
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radoslaw Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Yuting Yin
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Aurora D'Alessio
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Vincent Jaquet
- Department of Pathology and Immunology and READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France; Institut Universitaire de France (IUF), Paris, France.
| | - Ulla G Knaus
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
25
|
Abstract
Inflammatory bowel disease (IBD) represents a spectrum of disease, which is characterized by chronic gastrointestinal inflammation. Monogenic mutations driving IBD pathogenesis are more highly represented in early-onset compared to adult-onset disease. The pathogenic genes which dysregulate host immune responses in monogenic IBD affect both the innate (ie, intestinal barrier, phagocytes) and adaptive immune systems (ie, T cells, B cells). Advanced genomic and targeted functional testing can improve clinical decision making and present increased opportunities for precision medicine approaches in this important patient population.
Collapse
Affiliation(s)
- Atiye Olcay Bilgic Dagci
- Division of Pediatric Rheumatology, University of Michigan, C.S Mott Children's Hospital, 1500 East Medical Center Drive Medical Professional Building Floor 2, Ann Arbor, MI 48109-5718, USA.
| | - Kelly Colleen Cushing
- Division of Gastroenterology, U-M Inflammatory Bowel Disease Program, University of Michigan, 3912 Taubman Center, 1500 East Medical Center Drive, SPC 5362, Ann Arbor, MI 48109-5362, USA
| |
Collapse
|
26
|
Yang WJ, Han FH, Gu YP, Qu H, Liu J, Shen JH, Leng Y. TGR5 agonist inhibits intestinal epithelial cell apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway and ameliorates dextran sulfate sodium-induced ulcerative colitis. Acta Pharmacol Sin 2023; 44:1649-1664. [PMID: 36997665 PMCID: PMC10374578 DOI: 10.1038/s41401-023-01081-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.
Collapse
Affiliation(s)
- Wen-Ji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Hui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yi-Pei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian-Hua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Chang Y, Wu X, Lu S, Du J, Long Y, Zhu Y, Qin H. Engineered procyanidin-Fe nanoparticle alleviates intestinal inflammation through scavenging ROS and altering gut microbiome in colitis mice. Front Chem 2023; 11:1089775. [PMID: 37065822 PMCID: PMC10090317 DOI: 10.3389/fchem.2023.1089775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease characterized by inflammation, intestinal barrier injury, and imbalance of gut microbiota. Excess accumulation of reactive oxygen species (ROS) is closely correlated with the development and reoccurrence of IBD. Previous researches demonstrate that procyanidin, as a natural antioxidant, exhibits strong ability of eliminating ROS, thus showing good therapeutic effects in the inflammation-related diseases. Non-etheless, its poor stability and solubility always limits the therapeutic outcomes. Here, we typically designed an antioxidant coordination polymer nanoparticle using the engineering of procyanidin (Pc) and free iron (Fe), named Pc-Fe nanozyme, for effectively scavenging ROS and further inhibiting inflammation while altering the gut microbiome for the treatment of colitis. Furthermore, in vitro experiments uncover that Pc-Fe nanoparticles exert strong multi biomimic activities, including peroxidase, and glutathione peroxidase, for the scavenging of ROS and protecting cells from oxidative injury. In addition, the colon accumulation of Pc-Fe nanozyme effectively protects the intestinal mucosa from oxidative damage while significantly downregulates pro-inflammatory factors, repairs the intestinal barriers and alternates gut microbiome after orally administrated in sodium dextran sulfate (DSS) induced colitis mice. The results collectively illustrate that the multienzyme mimicking Pc-Fe nanozyme owns high potential for treating IBD through scavenging ROS, inhibiting inflammation, repairing gut barriers and alternating gut microbiome, which further promising its clinical translation on IBD treatment and other ROS induced intestinal diseases.
Collapse
Affiliation(s)
- Yongliang Chang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiawei Wu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Shengwei Lu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiahao Du
- Medical School of Nantong University, Nantong, China
| | - Yixiu Long
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Yefei Zhu
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Huanlong Qin
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- Medical School of Nantong University, Nantong, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| |
Collapse
|
28
|
Cohen-Kedar S, Shaham Barda E, Rabinowitz KM, Keizer D, Abu-Taha H, Schwartz S, Kaboub K, Baram L, Sadot E, White I, Wasserberg N, Wolff-Bar M, Levy-Barda A, Dotan I. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front Immunol 2023; 14:1142492. [PMID: 36969163 PMCID: PMC10030769 DOI: 10.3389/fimmu.2023.1142492] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Background Intestinal epithelial cells (IECs) are the first to encounter luminal microorganisms and actively participate in intestinal immunity. We reported that IECs express the β-glucan receptor Dectin-1, and respond to commensal fungi and β-glucans. In phagocytes, Dectin-1 mediates LC3-associated phagocytosis (LAP) utilizing autophagy components to process extracellular cargo. Dectin-1 can mediate phagocytosis of β-glucan-containing particles by non-phagocytic cells. We aimed to determine whether human IECs phagocytose β-glucan-containing fungal particles via LAP. Methods Colonic (n=18) and ileal (n=4) organoids from individuals undergoing bowel resection were grown as monolayers. Fluorescent-dye conjugated zymosan (β-glucan particle), heat-killed- and UV inactivated C. albicans were applied to differentiated organoids and to human IEC lines. Confocal microscopy was used for live imaging and immuno-fluorescence. Quantification of phagocytosis was carried out with a fluorescence plate-reader. Results zymosan and C. albicans particles were phagocytosed by monolayers of human colonic and ileal organoids and IEC lines. LAP was identified by LC3 and Rubicon recruitment to phagosomes and lysosomal processing of internalized particles was demonstrated by co-localization with lysosomal dyes and LAMP2. Phagocytosis was significantly diminished by blockade of Dectin-1, actin polymerization and NAPDH oxidases. Conclusions Our results show that human IECs sense luminal fungal particles and internalize them via LAP. This novel mechanism of luminal sampling suggests that IECs may contribute to the maintenance of mucosal tolerance towards commensal fungi.
Collapse
Affiliation(s)
- Sarit Cohen-Kedar
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- *Correspondence: Iris Dotan, ; Sarit Cohen-Kedar,
| | - Efrat Shaham Barda
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Keren Masha Rabinowitz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Danielle Keizer
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanan Abu-Taha
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shoshana Schwartz
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kawsar Kaboub
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liran Baram
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Eran Sadot
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Ian White
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Wasserberg
- Division of Surgery, Rabin Medical Center, Petah-Tikva, Israel
| | - Meirav Wolff-Bar
- Department of Pathology, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Iris Dotan, ; Sarit Cohen-Kedar,
| |
Collapse
|
29
|
Liang B, Wu C, Wang C, Sun W, Chen W, Hu X, Liu N, Xing D. New insights into bacterial mechanisms and potential intestinal epithelial cell therapeutic targets of inflammatory bowel disease. Front Microbiol 2022; 13:1065608. [PMID: 36590401 PMCID: PMC9802581 DOI: 10.3389/fmicb.2022.1065608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The global incidence of inflammatory bowel disease (IBD) has increased rapidly in recent years, but its exact etiology remains unclear. In the past decade, IBD has been reported to be associated with dysbiosis of gut microbiota. Although not yet proven to be a cause or consequence of IBD, the common hypothesis is that at least some alterations in the microbiome are protective or pathogenic. Furthermore, intestinal epithelial cells (IECs) serve as a protective physical barrier for gut microbiota, essential for maintaining intestinal homeostasis and actively contributes to the mucosal immune system. Thus, dysregulation within the intestinal epithelium increases intestinal permeability, promotes the entry of bacteria, toxins, and macromolecules, and disrupts intestinal immune homeostasis, all of which are associated with the clinical course of IBD. This article presents a selective overview of recent studies on bacterial mechanisms that may be protective or promotive of IBD in biological models. Moreover, we summarize and discuss the recent discovery of key modulators and signaling pathways in the IECs that could serve as potential IBD therapeutic targets. Understanding the role of the IECs in the pathogenesis of IBD may help improve the understanding of the inflammatory process and the identification of potential therapeutic targets to help ameliorate this increasingly common disease.
Collapse
Affiliation(s)
- Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changhao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenshe Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaokun Hu
- Intervention Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Liu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Ning Liu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China,School of Life Sciences, Tsinghua University, Beijing, China,*Correspondence: Ning Liu, ; Dongming Xing,
| |
Collapse
|