1
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
2
|
En A, Bogireddi H, Thomas B, Stutzman AV, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. Cell Rep 2024; 43:114284. [PMID: 38814785 PMCID: PMC11290591 DOI: 10.1016/j.celrep.2024.114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we test a prevailing hypothesis that NE ruptures trigger the pathological cGAS-STING cytosolic DNA-sensing pathway using a mouse model of Lamin cardiomyopathy. The reduction of Lamin A/C in cardio-myocyte of adult mice causes pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures are followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remains inactive. Deleting cGas or Sting does not rescue cardiomyopathy in the mouse model. The lack of cGAS-STING activation is likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling is activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Briana Thomas
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Alexis V Stutzman
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Sachie Ikegami
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Brigitte LaForest
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Omar Almakki
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA
| | - Peter Pytel
- Department of Pathology, the University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, the University of Chicago, Chicago, IL 60637, USA; Department of Pathology, the University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, the University of Chicago, Chicago, IL 60637, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
3
|
En A, Bogireddi H, Thomas B, Stutzman A, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555134. [PMID: 37693381 PMCID: PMC10491116 DOI: 10.1101/2023.08.28.555134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we tested a prevailing hypothesis that NE ruptures trigger pathological cGAS-STING cytosolic DNA-sensing pathway, using a mouse model of Lamin-cardiomyopathy. Reduction of Lamin A/C in cardiomyocytes of adult mice caused pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures were followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remained inactive. Deleting cGas or Sting did not rescue cardiomyopathy. The lack of cGAS-STING activation was likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling was activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin-cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Briana Thomas
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexis Stutzman
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Sachie Ikegami
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Brigitte LaForest
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Omar Almakki
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
West G, Sedighi S, Agnetti G, Taimen P. Intermediate filaments in the heart: The dynamic duo of desmin and lamins orchestrates mechanical force transmission. Curr Opin Cell Biol 2023; 85:102280. [PMID: 37972529 DOI: 10.1016/j.ceb.2023.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023]
Abstract
The intermediate filament (IF) cytoskeleton supports cellular structural integrity, particularly in response to mechanical stress. The most abundant IF proteins in mature cardiomyocytes are desmin and lamins. The desmin network tethers the contractile apparatus and organelles to the nuclear envelope and the sarcolemma, while lamins, as components of the nuclear lamina, provide structural stability to the nucleus and the genome. Mutations in desmin or A-type lamins typically result in cardiomyopathies and recent studies emphasized the synergistic roles of desmin and lamins in the maintenance of nuclear integrity in cardiac myocytes. Here we explore the emerging roles of the interdependent relationship between desmin and lamins in providing resilience to nuclear structure while transducing extracellular mechanical cues into the nucleus.
Collapse
Affiliation(s)
- Gun West
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland
| | - Sogol Sedighi
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
| | - Giulio Agnetti
- Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA; DIBINEM - University of Bologna, 40123, Bologna, Italy.
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku, 20520, Turku, Finland; Department of Pathology, Turku University Hospital, 20520, Turku, Finland.
| |
Collapse
|
5
|
Gregory EF, Kalra S, Brock T, Bonne G, Luxton GWG, Hopkins C, Starr DA. Caenorhabditis elegans models for striated muscle disorders caused by missense variants of human LMNA. PLoS Genet 2023; 19:e1010895. [PMID: 37624850 PMCID: PMC10484454 DOI: 10.1371/journal.pgen.1010895] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/07/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Striated muscle laminopathies caused by missense mutations in the nuclear lamin gene LMNA are characterized by cardiac dysfunction and often skeletal muscle defects. Attempts to predict which LMNA variants are pathogenic and to understand their physiological effects lag behind variant discovery. We created Caenorhabditis elegans models for striated muscle laminopathies by introducing pathogenic human LMNA variants and variants of unknown significance at conserved residues within the lmn-1 gene. Severe missense variants reduced fertility and/or motility in C. elegans. Nuclear morphology defects were evident in the hypodermal nuclei of many lamin variant strains, indicating a loss of nuclear envelope integrity. Phenotypic severity varied within the two classes of missense mutations involved in striated muscle disease, but overall, variants associated with both skeletal and cardiac muscle defects in humans lead to more severe phenotypes in our model than variants predicted to disrupt cardiac function alone. We also identified a separation of function allele, lmn-1(R204W), that exhibited normal viability and swimming behavior but had a severe nuclear migration defect. Thus, we established C. elegans avatars for striated muscle laminopathies and identified LMNA variants that offer insight into lamin mechanisms during normal development.
Collapse
Affiliation(s)
- Ellen F. Gregory
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Shilpi Kalra
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Trisha Brock
- InVivo Biosystems, Eugene, Oregon, United States of America
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - G. W. Gant Luxton
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | | | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| |
Collapse
|
6
|
Pande S, Ghosh DK. Nuclear proteostasis imbalance in laminopathy-associated premature aging diseases. FASEB J 2023; 37:e23116. [PMID: 37498235 DOI: 10.1096/fj.202300878r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Laminopathies are a group of rare genetic disorders with heterogeneous clinical phenotypes such as premature aging, cardiomyopathy, lipodystrophy, muscular dystrophy, microcephaly, epilepsy, and so on. The cellular phenomena associated with laminopathy invariably show disruption of nucleoskeleton of lamina due to deregulated expression, localization, function, and interaction of mutant lamin proteins. Impaired spatial and temporal tethering of lamin proteins to the lamina or nucleoplasmic aggregation of lamins are the primary molecular events that can trigger nuclear proteotoxicity by modulating differential protein-protein interactions, sequestering quality control proteins, and initiating a cascade of abnormal post-translational modifications. Clearly, laminopathic cells exhibit moderate to high nuclear proteotoxicity, raising the question of whether an imbalance in nuclear proteostasis is involved in laminopathic diseases, particularly in diseases of early aging such as HGPS and laminopathy-associated premature aging. Here, we review nuclear proteostasis and its deregulation in the context of lamin proteins and laminopathies.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Debasish Kumar Ghosh
- Enteric Disease Division, Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Chalazan B, Freeth E, Mohajeri A, Ramanathan K, Bennett M, Walia J, Halperin L, Roston T, Lazarte J, Hegele RA, Lehman A, Laksman Z. Genetic testing in monogenic early-onset atrial fibrillation. Eur J Hum Genet 2023; 31:769-775. [PMID: 37217627 PMCID: PMC10325969 DOI: 10.1038/s41431-023-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
A substantial proportion of atrial fibrillation (AF) cases cannot be explained by acquired AF risk factors. Limited guidelines exist that support routine genetic testing. We aim to determine the prevalence of likely pathogenic and pathogenic variants from AF genes with robust evidence in a well phenotyped early-onset AF population. We performed whole exome sequencing on 200 early-onset AF patients. Variants from exome sequencing in affected individuals were filtered in a multi-step process, prior to undergoing clinical classification using current ACMG/AMP guidelines. 200 AF individuals were recruited from St. Paul's Hospital and London Health Sciences Centre who were ≤ 60 years of age and without any acquired AF risk factors at the time of AF diagnosis. 94 of these AF individuals had very early-onset AF ( ≤ 45). Mean age of AF onset was 43.6 ± 9.4 years, 167 (83.5%) were male and 58 (29.0%) had a confirmed family history. There was a 3.0% diagnostic yield for identifying a likely pathogenic or pathogenic variant across AF genes with robust gene-to-disease association evidence. This study demonstrates the current diagnostic yield for identifying a monogenic cause for AF in a well-phenotyped early-onset AF cohort. Our findings suggest a potential clinical utility for offering different screening and treatment regimens in AF patients with an underlying monogenic defect. However, further work is needed to dissect the additional monogenic and polygenic determinants for patients without a genetic explanation for their AF despite the presence of specific genetic indicators such as young age of onset and/or positive family history.
Collapse
Affiliation(s)
- Brandon Chalazan
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Emma Freeth
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arezoo Mohajeri
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | - Matthew Bennett
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jagdeep Walia
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Laura Halperin
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Thomas Roston
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Julieta Lazarte
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine and Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Zachary Laksman
- Department of Medicine and The School of Biomedical Engineering, University of British Columbia and the Centre for Heart Lung Innovation, Vancouver, Canada.
| |
Collapse
|
8
|
Hu D, Barajas-Martinez H, Zhang ZH, Duan HY, Zhao QY, Bao MW, Du YM, Burashnikov A, Monasky MM, Pappone C, Huang CX, Antzelevitch C, Jiang H. Advances in basic and translational research in atrial fibrillation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220174. [PMID: 37122214 PMCID: PMC10150218 DOI: 10.1098/rstb.2022.0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
Atrial fibrillation (AF) is a very common cardiac arrhythmia with an estimated prevalence of 33.5 million patients globally. It is associated with an increased risk of death, stroke and peripheral embolism. Although genetic studies have identified a growing number of genes associated with AF, the definitive impact of these genetic findings is yet to be established. Several mechanisms, including electrical, structural and neural remodelling of atrial tissue, have been proposed to contribute to the development of AF. Despite over a century of exploration, the molecular and cellular mechanisms underlying AF have not been fully established. Current antiarrhythmic drugs are associated with a significant rate of adverse events and management of AF using ablation is not optimal, especially in cases of persistent AF. This review discusses recent advances in our understanding and management of AF, including new concepts of epidemiology, genetics and pathophysiological mechanisms. We review the current status of antiarrhythmic drug therapy for AF, new potential agents, as well as mechanism-based AF ablation. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hector Barajas-Martinez
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Zhong-He Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Hong-Yi Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Ming-Wei Bao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Yi-Mei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Alexander Burashnikov
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Michelle M. Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan 20097, Italy
- Vita-Salute San Raffaele University, Milan 20132, Italy
- Institute of Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan 20097, Italy
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, and Lankenau Heart Institute, Wynnwood, PA 19096, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19104, USA
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan 430060, People's Republic of China
| |
Collapse
|
9
|
Zhang B, Powers JD, McCulloch AD, Chi NC. Nuclear mechanosignaling in striated muscle diseases. Front Physiol 2023; 14:1126111. [PMID: 36960155 PMCID: PMC10027932 DOI: 10.3389/fphys.2023.1126111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Mechanosignaling describes processes by which biomechanical stimuli are transduced into cellular responses. External biophysical forces can be transmitted via structural protein networks that span from the cellular membrane to the cytoskeleton and the nucleus, where they can regulate gene expression through a series of biomechanical and/or biochemical mechanosensitive mechanisms, including chromatin remodeling, translocation of transcriptional regulators, and epigenetic factors. Striated muscle cells, including cardiac and skeletal muscle myocytes, utilize these nuclear mechanosignaling mechanisms to respond to changes in their intracellular and extracellular mechanical environment and mediate gene expression and cell remodeling. In this brief review, we highlight and discuss recent experimental work focused on the pathway of biomechanical stimulus propagation at the nucleus-cytoskeleton interface of striated muscles, and the mechanisms by which these pathways regulate gene regulation, muscle structure, and function. Furthermore, we discuss nuclear protein mutations that affect mechanosignaling function in human and animal models of cardiomyopathy. Furthermore, current open questions and future challenges in investigating striated muscle nuclear mechanosignaling are further discussed.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Joseph D. Powers
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
| | - Neil C. Chi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, United States
- Institute for Engineering in Medicine, University of California San Diego, La Jolla, CA, United States
- Department of Medicine, Division of Cardiovascular Medicine, University of California San Diego, La Jolla, CA, United States
- Institute of Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Wang Y, Dobreva G. Epigenetics in LMNA-Related Cardiomyopathy. Cells 2023; 12:cells12050783. [PMID: 36899919 PMCID: PMC10001118 DOI: 10.3390/cells12050783] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/18/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in the gene for lamin A/C (LMNA) cause a diverse range of diseases known as laminopathies. LMNA-related cardiomyopathy is a common inherited heart disease and is highly penetrant with a poor prognosis. In the past years, numerous investigations using mouse models, stem cell technologies, and patient samples have characterized the phenotypic diversity caused by specific LMNA variants and contributed to understanding the molecular mechanisms underlying the pathogenesis of heart disease. As a component of the nuclear envelope, LMNA regulates nuclear mechanostability and function, chromatin organization, and gene transcription. This review will focus on the different cardiomyopathies caused by LMNA mutations, address the role of LMNA in chromatin organization and gene regulation, and discuss how these processes go awry in heart disease.
Collapse
Affiliation(s)
- Yinuo Wang
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), 68167 Mannheim, Germany
- Correspondence: (Y.W.); (G.D.)
| |
Collapse
|
11
|
Ghosh DK, Pande S, Kumar J, Yesodharan D, Nampoothiri S, Radhakrishnan P, Reddy CG, Ranjan A, Girisha KM. The E262K mutation in Lamin A links nuclear proteostasis imbalance to laminopathy-associated premature aging. Aging Cell 2022; 21:e13688. [PMID: 36225129 PMCID: PMC9649601 DOI: 10.1111/acel.13688] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Periyasamy Radhakrishnan
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research and Department of Reproductive Science, Manipal Academy of Higher Education, Manipal, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| |
Collapse
|
12
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
13
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
14
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
15
|
Resdal Dyssekilde J, Frederiksen TC, Christiansen MK, Hasle Sørensen R, Pedersen LN, Loof Møller P, Christensen LS, Larsen JM, Thomsen KK, Lindhardt TB, Böttcher M, Molsted S, Havndrup O, Fischer T, Møller DS, Henriksen FL, Johansen JB, Nielsen JC, Bundgaard H, Nygaard M, Jensen HK. Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause. J Am Heart Assoc 2022; 11:e025643. [PMID: 35470684 PMCID: PMC9238593 DOI: 10.1161/jaha.121.025643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown. Methods and Results Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death. Conclusions In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members.
Collapse
Affiliation(s)
| | - Tanja Charlotte Frederiksen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | | | | | | | | | | | | | | | - Tommi Bo Lindhardt
- Department of Cardiology Copenhagen University HospitalHerlev and Gentofte Hospital Hellerup Denmark
| | - Morten Böttcher
- Department of Cardiology Regional Hospital Herning Herning Denmark
| | - Stig Molsted
- Department of Clinical Research North Zealand Hospital Hillerød Denmark
| | - Ole Havndrup
- Department of Cardiology Zealand University Hospital Roskilde Denmark
| | | | | | | | | | - Jens Cosedis Nielsen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| | - Henning Bundgaard
- Department of Cardiology The Heart Center Rigshospitalet Copenhagen Denmark.,Department of Clinical Medicine University of Copenhagen Denmark
| | - Mette Nygaard
- Department of Biomedicine Health Aarhus University Aarhus Denmark.,Department of Health Science and Technology Aalborg Denmark
| | - Henrik Kjærulf Jensen
- Department of Cardiology Aarhus University Hospital Aarhus Denmark.,Department of Clinical Medicine Health Aarhus University Aarhus Denmark
| |
Collapse
|
16
|
Pessente GD, Sacilotto L, Calil ZO, Olivetti NQS, Wulkan F, de Oliveira TGM, Pedrosa AAA, Wu TC, Hachul DT, Scanavacca MI, Krieger JE, Darrieux FCDC, Pereira ADC. Effect of Occurrence of Lamin A/C (LMNA) Genetic Variants in a Cohort of 101 Consecutive Apparent “Lone AF” Patients: Results and Insights. Front Cardiovasc Med 2022; 9:823717. [PMID: 35449878 PMCID: PMC9016147 DOI: 10.3389/fcvm.2022.823717] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMutations in the Lamin A/C(LMNA) gene are commonly associated with cardiac manifestations, such as dilated cardiomyopathy (DCM) and conduction system disease. However, the overall spectrum and penetrance of rare LMNA variants are unknown. The present study described the presence of LMNAvariants in patients with “lone atrial fibrillation (AF)” as their sole clinical presentation.MethodsOne-hundred and one consecutive patients with “lone AF” criteria were initially screened by genetic testing. Genetic variants were classified according to the American College of Genetic and Genomic criteria. All subjects were evaluated through clinical and familial history, ECG, 24-h Holter monitoring, echocardiogram, cardiac magnetic resonance, treatment response, and the present relatives of LMNA carriers. In addition, whole-exome data from 49,960 UK Biobank (UKB) participants were analyzed to describe the overall penetrance of rare LMNA missense and loss of function (LOF) variants.ResultsThree missense variants in LMNA were identified in probands with AF as their first and unique clinical manifestation. Other five first-degree relatives, after the screening, also presented LMNA gene variants. Among 49,960 analyzed UKB participants, 331 carried rare LMNA missense or LOF variant. Participants who carried a rare LMNA variant were significantly associated with higher odds of arrhythmic events and of an abnormal ECG in the per-protocol ECG exam (p = 0.03 and p = 0.05, respectively).ConclusionAlthough a rare occurrence, our findings emphasize the possibility of an initial presentation of apparently “lone AF” in LMNA gene variant carriers.
Collapse
Affiliation(s)
- Gabrielle D'Arezzo Pessente
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Luciana Sacilotto
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Zaine Oliveira Calil
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Fanny Wulkan
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | - Théo Gremen Mimary de Oliveira
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Tan Chen Wu
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Denise Tessariol Hachul
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - Maurício Ibrahim Scanavacca
- Arrhythmia Unit - Heart Institute (Institute Coração), University of São Paulo Medical School, São Paulo, Brazil
| | - José Eduardo Krieger
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology (LGMC) - Heart Institute (Institute Coração, University of São Paulo Medical School, São Paulo, Brazil
- *Correspondence: Alexandre da Costa Pereira
| |
Collapse
|
17
|
Nakamura K, Matsuda T, Hanaoka T, Goto K, Matsubara E. [A case of laminopathy with the mutation of LMNA gene identified by the exome analysis of disease-related genes]. Rinsho Shinkeigaku 2021; 61:663-670. [PMID: 34565751 DOI: 10.5692/clinicalneurol.cn-001610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Laminopathy, caused by mutations in the LMNA gene, include a variety of diseases, such as Emery-Dreifuss muscular dystrophy. A Japanese woman developed progressive muscle weakness, muscle atrophy and joint contractures of upper and lower limbs after the age of two years old. She had restrictive respiratory dysfunction, and developed both supraventricular and ventricular arrhythmias after the fourth decade of life. At 55 years old, she had tracheostomy, required mechanical ventilation and was implanted with the implantable cardioverter defibrillator. The serum level of creatine kinase was within normal range. Electromyography showed polyphasic or large motor unit potentials and reduced interference pattern, while relatively normal recruitment. The exome analysis of disease-related genes revealed a heterozygous pathogenic variant c.1072G>A (p.E358K) in the LMNA gene, which contributed to the diagnosis of laminopathy.
Collapse
Affiliation(s)
| | - Takao Matsuda
- Department of Reproductive Medicine and Genetics, Nishibeppu National Hospital
| | - Takuya Hanaoka
- Department of Neurology, Nishibeppu National Hospital.,Department of Neurology, Faculty of Medicine, Oita University
| | | | | |
Collapse
|
18
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
19
|
Altered microtubule structure, hemichannel localization and beating activity in cardiomyocytes expressing pathologic nuclear lamin A/C. Heliyon 2020; 6:e03175. [PMID: 32021920 PMCID: PMC6992992 DOI: 10.1016/j.heliyon.2020.e03175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Given the clinical effect of laminopathies, understanding lamin mechanical properties will benefit the treatment of heart failure. Here we report a mechano-dynamic study of LMNA mutations in neonatal rat ventricular myocytes (NRVM) using single cell spectroscopy with Atomic Force Microscopy (AFM) and measured changes in beating force, frequency and contractile amplitude of selected mutant-expressing cells within cell clusters. Furthermore, since beat-to-beat variations can provide clues on the origin of arrhythmias, we analyzed the beating rate variability using a time-domain method which provides a Poincaré plot. Data were further correlated to cell phenotypes. Immunofluorescence and calcium imaging analysis showed that mutant lamin changed NRVMs beating force and frequency. Additionally, we noted an altered microtubule network organization with shorter filament length, and defective hemichannel membrane localization (Connexin 43). These data highlight the interconnection between nucleoskeleton, cytoskeleton and sarcolemmal structures, and the transcellular consequences of mutant lamin protein in the pathogenesis of the cardiac laminopathies.
Collapse
|
20
|
Abstract
Emery-Dreifuss muscular dystrophy (EDMD), clinically characterized by scapulo-humero-peroneal muscle atrophy and weakness, multi-joint contractures with spine rigidity and cardiomyopathy with conduction defects, is associated with structural/functional defect of genes that encode the proteins of nuclear envelope, including lamin A and several lamin-interacting proteins. This paper presents clinical aspects of EDMD in context to causative genes, genotype-phenotype correlation and its emplacement within phenotypic spectrum of skeletal muscle diseases associated with envelopathies.
Collapse
Affiliation(s)
- Agnieszka Madej-Pilarczyk
- a Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw , Poland
| |
Collapse
|
21
|
Cellular and Animal Models of Striated Muscle Laminopathies. Cells 2019; 8:cells8040291. [PMID: 30934932 PMCID: PMC6523539 DOI: 10.3390/cells8040291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023] Open
Abstract
The lamin A/C (LMNA) gene codes for nuclear intermediate filaments constitutive of the nuclear lamina. LMNA has 12 exons and alternative splicing of exon 10 results in two major isoforms—lamins A and C. Mutations found throughout the LMNA gene cause a group of diseases collectively known as laminopathies, of which the type, diversity, penetrance and severity of phenotypes can vary from one individual to the other, even between individuals carrying the same mutation. The majority of the laminopathies affect cardiac and/or skeletal muscles. The underlying molecular mechanisms contributing to such tissue-specific phenotypes caused by mutations in a ubiquitously expressed gene are not yet well elucidated. This review will explore the different phenotypes observed in established models of striated muscle laminopathies and their respective contributions to advancing our understanding of cardiac and skeletal muscle-related laminopathies. Potential future directions for developing effective treatments for patients with lamin A/C mutation-associated cardiac and/or skeletal muscle conditions will be discussed.
Collapse
|
22
|
Khromova NV, Perepelina KI, Ivanova OA, Malashicheva AB, Kostareva AA, Dmitrieva RI. R482L Mutation of the LMNA Gene Affects Dynamics of C2C12 Myogenic Differentiation and Stimulates Formation of Intramuscular Lipid Droplets. BIOCHEMISTRY (MOSCOW) 2019; 84:241-249. [DOI: 10.1134/s0006297919030064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Han M, Zhao M, Cheng C, Huang Y, Han S, Li W, Tu X, Luo X, Yu X, Liu Y, Chen Q, Ren X, Wang QK, Ke T. Lamin A mutation impairs interaction with nucleoporin NUP155 and disrupts nucleocytoplasmic transport in atrial fibrillation. Hum Mutat 2018; 40:310-325. [PMID: 30488537 DOI: 10.1002/humu.23691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Here, we show the identification and functional characterization of one AF-associated mutation p.Arg399Cys in lamin A/C. Co-immunoprecipitation and GST pull-down assays demonstrate that lamin A/C interacts with NUP155, which is a nucleoporin and causes AF when mutated. Lamin A/C mutation p.Arg399Cys impairs the interaction between lamin A/C and NUP155, and increases extractability of NUP155 from the nuclear envelope (NE). Mutation p.Arg399Cys leads to aggregation of lamin A/C in the nucleus, although it does not impair the integrity of NE upon cellular stress. Mutation p.Arg399Cys inhibits the export of HSP70 mRNA and the nuclear import of HSP70 protein. Electrophysiological studies show that mutation p.Arg399Cys decreases the peak cardiac sodium current by decreasing the cell surface expression level of cardiac sodium channel Nav 1.5, but does not affect IKr potassium current. In conclusion, our results indicate that lamin A/C mutation p.Arg399Cys weakens the interaction between nuclear lamina (lamin A/C) and the nuclear pore complex (NUP155), leading to the development of AF. The findings provide a novel molecular mechanism for the pathogenesis of AF.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Miao Zhao
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chen Cheng
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, P. R. China
| | - Shengna Han
- Department of Pharmacology, Basic Medical College, Zhengzhou University, Zhengzhou, P. R. China
| | - Wenjuan Li
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xin Tu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xuan Luo
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaoling Yu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yinan Liu
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Xiang Ren
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qing Kenneth Wang
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Tie Ke
- The Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
24
|
van Tienen FHJ, Lindsey PJ, Kamps MAF, Krapels IP, Ramaekers FCS, Brunner HG, van den Wijngaard A, Broers JLV. Assessment of fibroblast nuclear morphology aids interpretation of LMNA variants. Eur J Hum Genet 2018; 27:389-399. [PMID: 30420677 DOI: 10.1038/s41431-018-0294-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 01/26/2023] Open
Abstract
The phenotypic heterogeneity of Lamin A/C (LMNA) variants renders it difficult to classify them. As a consequence, many LMNA variants are classified as variant of unknown significance (VUS). A number of studies reported different types of visible nuclear abnormalities in LMNA-variant carriers, such as herniations, honeycomb-like structures and irregular Lamin staining. In this study, we used lamin A/C immunostaining and nuclear DAPI staining to assess the number and type of nuclear abnormalities in primary dermal fibroblast cultures of laminopathy patients and healthy controls. The total number of abnormal nuclei, which includes herniations, honeycomb-structures, and donut-like nuclei, was found to be the most discriminating parameter between laminopathy and control cell cultures. The percentage abnormal nuclei was subsequently scored in fibroblasts of 28 LMNA variant carriers, ranging from (likely) benign to (likely) pathogenic variant. Using this method, 27 out of 28 fibroblast cell cultures could be classified as either normal (n = 14) or laminopathy (n = 13) and no false positive results were obtained. The obtained specificity was 100% (CI 40-100%) and sensitivity 77% (46-95%). We conclude that assessing the percentage of abnormal nuclei is a quick and reliable method, which aids classification or confirms pathogenicity of identified LMNA variants causing formation of aberrant lamin A/C protein.
Collapse
Affiliation(s)
- Florence H J van Tienen
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands. .,GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Patrick J Lindsey
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Miriam A F Kamps
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Frans C S Ramaekers
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jos L V Broers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.,CARIM-School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
25
|
Bondue A, Arbustini E, Bianco A, Ciccarelli M, Dawson D, De Rosa M, Hamdani N, Hilfiker-Kleiner D, Meder B, Leite-Moreira AF, Thum T, Tocchetti CG, Varricchi G, Van der Velden J, Walsh R, Heymans S. Complex roads from genotype to phenotype in dilated cardiomyopathy: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2018; 114:1287-1303. [PMID: 29800419 PMCID: PMC6054212 DOI: 10.1093/cvr/cvy122] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/05/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
Dilated cardiomyopathy (DCM) frequently affects relatively young, economically, and socially active adults, and is an important cause of heart failure and transplantation. DCM is a complex disease and its pathological architecture encounters many genetic determinants interacting with environmental factors. The old perspective that every pathogenic gene mutation would lead to a diseased heart, is now being replaced by the novel observation that the phenotype depends not only on the penetrance-malignancy of the mutated gene-but also on epigenetics, age, toxic factors, pregnancy, and a diversity of acquired diseases. This review discusses how gene mutations will result in mutation-specific molecular alterations in the heart including increased mitochondrial oxidation (sarcomeric gene e.g. TTN), decreased calcium sensitivity (sarcomeric genes), fibrosis (e.g. LMNA and TTN), or inflammation. Therefore, getting a complete picture of the DCM patient will include genomic data, molecular assessment by preference from cardiac samples, stratification according to co-morbidities, and phenotypic description. Those data will help to better guide the heart failure and anti-arrhythmic treatment, predict response to therapy, develop novel siRNA-based gene silencing for malignant gene mutations, or intervene with mutation-specific altered gene pathways in the heart.This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Antoine Bondue
- Department of Cardiology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, IRCCS Foundation, University Hospital Policlinico San Matteo, Pavia, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
- Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- School of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Matteo De Rosa
- School of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Benjamin Meder
- Department of Cardiology, Heidelberg University, Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Genome Technology Center, Palo Alto, CA, USA
| | - Adelino F Leite-Moreira
- Cardiovascular R&D Unit, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital of S. João, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Jolanda Van der Velden
- Department of Physiology, VU University Medical Centre, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Roddy Walsh
- Cardiovascular Research Center, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, UK
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
26
|
Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet 2018; 9:231. [PMID: 30050558 PMCID: PMC6052891 DOI: 10.3389/fgene.2018.00231] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mutations in the LMNA gene, which encodes for the nuclear lamina proteins lamins A and C, are responsible for a diverse group of diseases known as laminopathies. One type of laminopathy is Dilated Cardiomyopathy (DCM), a heart muscle disease characterized by dilation of the left ventricle and impaired systolic function, often leading to heart failure and sudden cardiac death. LMNA is the second most commonly mutated gene in DCM. In addition to LMNA, mutations in more than 60 genes have been associated with DCM. The DCM-associated genes encode a variety of proteins including transcription factors, cytoskeletal, Ca2+-regulating, ion-channel, desmosomal, sarcomeric, and nuclear-membrane proteins. Another important category among DCM-causing genes emerged upon the identification of DCM-causing mutations in RNA binding motif protein 20 (RBM20), an alternative splicing factor that is chiefly expressed in the heart. In addition to RBM20, several essential splicing factors were validated, by employing mouse knock out models, to be embryonically lethal due to aberrant cardiogenesis. Furthermore, heart-specific deletion of some of these splicing factors was found to result in aberrant splicing of their targets and DCM development. In addition to splicing alterations, advances in next generation sequencing highlighted the association between splice-site mutations in several genes and DCM. This review summarizes LMNA mutations and splicing alterations in DCM and discusses how the interaction between LMNA and splicing regulators could possibly explain DCM disease mechanisms.
Collapse
Affiliation(s)
| | - Diana E. Jaalouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
27
|
Paller MS, Martin CM, Pierpont ME. Restrictive cardiomyopathy: an unusual phenotype of a lamin A variant. ESC Heart Fail 2018; 5:724-726. [PMID: 29741282 PMCID: PMC6073024 DOI: 10.1002/ehf2.12294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 11/10/2022] Open
Abstract
Most individuals with cardiomyopathy associated with variants of the LMNA (lamin A) gene present with cardiac conduction abnormalities followed by dilated cardiomyopathy and cardiac failure; some also have skeletal muscle weakness. In this report, an individual with restrictive cardiomyopathy presenting with conduction defects followed by cardiac dysfunction of a restrictive nature eventually requiring cardiac transplantation is described. Subsequently, progressive skeletal muscle weakness became evident. The finding of a new LMNA pathologic gene variant in this patient increases the options for genetic testing of individuals with restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Mark S Paller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Cindy M Martin
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Mary Ella Pierpont
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Laurini E, Martinelli V, Lanzicher T, Puzzi L, Borin D, Chen SN, Long CS, Lee P, Mestroni L, Taylor MRG, Sbaizero O, Pricl S. Biomechanical defects and rescue of cardiomyocytes expressing pathologic nuclear lamins. Cardiovasc Res 2018; 114:846-857. [PMID: 29432544 PMCID: PMC5909658 DOI: 10.1093/cvr/cvy040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/06/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Aims Given the clinical impact of LMNA cardiomyopathies, understanding lamin function will fulfill a clinical need and will lead to advancement in the treatment of heart failure. A multidisciplinary approach combining cell biology, atomic force microscopy (AFM), and molecular modeling was used to analyse the biomechanical properties of human lamin A/C gene (LMNA) mutations (E161K, D192G, N195K) using an in vitro neonatal rat ventricular myocyte model. Methods and results The severity of biomechanical defects due to the three LMNA mutations correlated with the severity of the clinical phenotype. AFM and molecular modeling identified distinctive biomechanical and structural changes, with increasing severity from E161K to N195K and D192G, respectively. Additionally, the biomechanical defects were rescued with a p38 MAPK inhibitor. Conclusions AFM and molecular modeling were able to quantify distinct biomechanical and structural defects in LMNA mutations E161K, D192G, and N195K and correlate the defects with clinical phenotypic severity. Improvements in cellular biomechanical phenotype was demonstrated and may represent a mechanism of action for p38 MAPK inhibition therapy that is now being used in human clinical trials to treat laminopathies.
Collapse
Affiliation(s)
- Erik Laurini
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Valentina Martinelli
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Thomas Lanzicher
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Luca Puzzi
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Daniele Borin
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlin S Long
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patrice Lee
- Array BioPharma Inc., Boulder, CO 80301, USA
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| | - Sabrina Pricl
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
29
|
McAulay G, Borgeat K, Sargent J, Mõtsküla P, Neves J, Dukes-McEwan J, Luis Fuentes V. Phenotypic description of cardiac findings in a population of Dogue de Bordeaux with an emphasis on atrial fibrillation. Vet J 2018; 234:111-118. [PMID: 29680382 DOI: 10.1016/j.tvjl.2018.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
The aim of this study was to describe the clinical phenotype of Dogue de Bordeaux (DdB) referred for cardiac investigation, with particular reference to the prevalence of atrial fibrillation and associated features. Review of canine medical records of two United Kingdom veterinary referral hospitals identified 64 DdB with available echocardiographic and electrocardiographic (ECG)/Holter data. Atrial fibrillation was documented in 25 (39%) dogs and supraventricular tachycardia was recorded in five (7.8%) dogs. In a subset of 34 dogs, excluding congenital heart disease (n=17), presence of a cardiac mass (n=7) and non-cardiac neoplasia (n=6), 19 (56%) dogs had atrial fibrillation, with a median heart rate of 200 beats per min (bpm) on presentation. Atrial fibrillation was inconsistently associated with cardiac chamber remodelling, but was frequently associated with systolic dysfunction (13/19, 68.4%) and right sided atrial or ventricular dilatation (14/19, 73.7%) in dogs with atrial fibrillation in this subset. No dogs in this subset had right sided atrial or ventricular dilatation in the absence of supraventricular arrhythmia or systolic dysfunction. The absence of structural heart disease in some dogs with supraventricular arrhythmias suggests that an underlying primary arrhythmic process might be responsible for initiating remodelling, although a primary cardiomyopathy cannot be ruled out.
Collapse
Affiliation(s)
- G McAulay
- Cardio-respiratory Referrals, New Priory Vets Brighton, BN1 8QR, UK.
| | - K Borgeat
- Royal Veterinary College, Department of Clinical Science and Services, Hatfield AL9 7TA, UK
| | - J Sargent
- Royal Veterinary College, Department of Clinical Science and Services, Hatfield AL9 7TA, UK
| | - P Mõtsküla
- Royal Veterinary College, Department of Clinical Science and Services, Hatfield AL9 7TA, UK
| | - J Neves
- Small Animal Teaching Hospital, Institute of Veterinary Science, University of Liverpool, Chester High Road, Neston CH64 7TE, UK
| | - J Dukes-McEwan
- Small Animal Teaching Hospital, Institute of Veterinary Science, University of Liverpool, Chester High Road, Neston CH64 7TE, UK
| | - V Luis Fuentes
- Royal Veterinary College, Department of Clinical Science and Services, Hatfield AL9 7TA, UK
| |
Collapse
|
30
|
Genetic basis of dilated cardiomyopathy. Int J Cardiol 2016; 224:461-472. [PMID: 27736720 DOI: 10.1016/j.ijcard.2016.09.068] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/19/2023]
|
31
|
Shin AN, Dasgupta C, Zhang G, Seal K, Zhang L. Proteomic Analysis of Endothelin-1 Targets in the Regulation of Cardiomyocyte Proliferation. Curr Top Med Chem 2016; 17:1788-1802. [PMID: 27848898 DOI: 10.2174/1568026617666161116142417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 11/22/2022]
Abstract
Hypoxia is a fetal stressor that leads to the production of endothelin-1 (ET-1). Previous work has shown that ET-1 treatment leads to the premature terminal differentiation of fetal cardiomyocytes. However, the precise mechanism is unknown. We tested the hypothesis that the fetal cardiomyocyte proteome will be greatly altered due to ET-1-treatment, which reveals a potential molecular mechanism of ET-1-induced terminal differentiation. Over a thousand proteins were detected in the fetal cardiomyocytes and among them 75 proteins were significantly altered due to ET-1 treatment. Using IPA pathway analysis, the merged network depicted several key proteins that appeared to be involved in regulating proliferation, including: EED, UBC, ERK1/2, MAPK, Akt, and EGFR. EED protein, which is associated with regulating proliferation via epigenetic mechanisms, is of particular interest. Herein we propose a model of the molecular mechanism by which ET-1 induced cardiomyocyte terminal differentiation occurs.
Collapse
Affiliation(s)
- Alexandra N Shin
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Guangyu Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States
| | - Kala Seal
- Loyola Marymount University, Los Angeles, California, United States
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, United States
| |
Collapse
|
32
|
Kayvanpour E, Sedaghat-Hamedani F, Amr A, Lai A, Haas J, Holzer DB, Frese KS, Keller A, Jensen K, Katus HA, Meder B. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol 2016; 106:127-139. [DOI: 10.1007/s00392-016-1033-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023]
|
33
|
Zhao J, Yao H, Li Z, Wang L, Liu G, Wang DW, Wang DW, Liang Z. A novel nonsense mutation in LMNA gene identified by Exome Sequencing in an atrial fibrillation family. Eur J Med Genet 2016; 59:396-400. [PMID: 27373676 DOI: 10.1016/j.ejmg.2016.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/18/2016] [Accepted: 06/27/2016] [Indexed: 12/13/2022]
Abstract
Genetic factor plays an important role in cardiac arrhythmias. Several loci have been identified associated with this disease. However, they only explained parts of it and more genes and loci remain to be identified. In present study, we recruited a four generation family from the north of China. Four members of this family were diagnosed with atrial fibrillation by electrocardiogram (ECG). We used Exome Sequencing and Sanger sequencing to explore the candidate mutation for cardiac arrhythmia in this family. A nonsense mutation (c.G1494A, p.Trp498Ter) in the LMNA gene were identified as the candidate mutation. This variant is a novel mutation and has not yet been reported for any actual databases. This novel mutation co-segregated exactly with the disease in this family. Meanwhile, it was not detected in 524 control subjects of matched ancestry. According to structural model prediction, the mutation is expected to affect the Lamin Tail Domain (LTD) of lamin A/C protein. So the nonsense mutation discovered in the family probably was a novel mutation associated with familial atrial fibrillation. This discovery expands the mutation spectrum of LMNA and indicates the importance of LMNA in AF.
Collapse
Affiliation(s)
- Jinzhao Zhao
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Yao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zongzhe Li
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangzong Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dao W Wang
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Institute of Hypertension, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhaoguang Liang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
West G, Gullmets J, Virtanen L, Li SP, Keinänen A, Shimi T, Mauermann M, Heliö T, Kaartinen M, Ollila L, Kuusisto J, Eriksson JE, Goldman RD, Herrmann H, Taimen P. Deleterious assembly of the lamin A/C mutant p.S143P causes ER stress in familial dilated cardiomyopathy. J Cell Sci 2016; 129:2732-43. [PMID: 27235420 DOI: 10.1242/jcs.184150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Mutation of the LMNA gene, encoding nuclear lamin A and lamin C (hereafter lamin A/C), is a common cause of familial dilated cardiomyopathy (DCM). Among Finnish DCM patients, the founder mutation c.427T>C (p.S143P) is the most frequently reported genetic variant. Here, we show that p.S143P lamin A/C is more nucleoplasmic and soluble than wild-type lamin A/C and accumulates into large intranuclear aggregates in a fraction of cultured patient fibroblasts as well as in cells ectopically expressing either FLAG- or GFP-tagged p.S143P lamin A. In fluorescence loss in photobleaching (FLIP) experiments, non-aggregated EGFP-tagged p.S143P lamin A was significantly more dynamic. In in vitro association studies, p.S143P lamin A failed to form appropriate filament structures but instead assembled into disorganized aggregates similar to those observed in patient cell nuclei. A whole-genome expression analysis revealed an elevated unfolded protein response (UPR) in cells expressing p.S143P lamin A/C. Additional endoplasmic reticulum (ER) stress induced by tunicamycin reduced the viability of cells expressing mutant lamin further. In summary, p.S143P lamin A/C affects normal lamina structure and influences the cellular stress response, homeostasis and viability.
Collapse
Affiliation(s)
- Gun West
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Josef Gullmets
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Laura Virtanen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Song-Ping Li
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Anni Keinänen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| | - Takeshi Shimi
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Monika Mauermann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Tiina Heliö
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Maija Kaartinen
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Laura Ollila
- Heart and Lung Center Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Johanna Kuusisto
- Department of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Robert D Goldman
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, 69120 Heidelberg, Germany Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, 20520 Turku, Finland MediCity Research Laboratory, 20520 Turku, Finland
| |
Collapse
|
35
|
Abstract
Lamins are intermediate filament proteins able to polymerise and form an organised meshwork underlying the inner nuclear membrane in most differentiated somatic cells. Mutations in the LMNA gene, which encodes the two major lamin A and C isoforms, cause a diverse range of diseases, called laminopathies, including dilated cardiomyopathy, associated with a poor prognosis and high rate of sudden death due to conduction defect and early ventricular arrhythmia. Identification of mutations in LMNA gene in clinical practice is rapidly increasing, as well as comprehensive cardiac and genetic family screening. As a consequence, cardiologists are more and more frequently faced to difficult questions regarding optimal management of patients and relatives, especially timing for prophylactic cardioverter defibrillator. This review focuses on recent data useful for the clinician, as well as therapeutic perspectives both in human and animal models.
Collapse
Affiliation(s)
- Philippe Charron
- AP-HP, Hôpital Pitié-Salpêtrière, Centre de référence maladies cardiaques héréditaires, Paris, France; 2. UPMC Université Paris VI, INSERM UMR-S956.,Paris, France
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gisèle Bonne
- INSERM U974; UPMC Université Paris 6; CNRS UMR 7215; Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| |
Collapse
|
36
|
Zhang L, Shen H, Zhao Z, Bing Q, Hu J. Cardiac effects of the c.1583 C→G LMNA mutation in two families with Emery-Dreifuss muscular dystrophy. Mol Med Rep 2015; 12:5065-71. [PMID: 26165385 PMCID: PMC4581790 DOI: 10.3892/mmr.2015.4065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to examine and analyze cardiac involvement in two Emery-Dreifuss muscular dystrophy (EDMD) pedigrees caused by the c.1583 C→G mutation of the lamin A/C gene (LMNA). The clinical and genetic characteristics of members of two families with EDMD were evaluated by performing neurological examinations, skeletal muscle biopsies, cardiac evaluations, including electrocardiography, 24 h Holter, ultrasound cardiography and 99TcM-MIBI-gated myocardiac perfusion imaging, and genomic DNA sequencing. Family history investigations revealed an autosomal dominant transmission pattern of the disease in Family 1 and a sporadic case in Family 2. The three affected patients exhibited typical clinical features of EDMD, including joint contractures, muscle weakness and cardiac involvement. Muscle histopathological investigation revealed dystrophic features. In addition, each affected individual exhibited either cardiac arrhythmia, which was evident as sinus tachycardia, atrial flutter or complete atrioventricular inhibition. Cardiac imaging revealed dilated cardiomyopathy in two of the individuals, one of whom was presented with heart failure. The second patient presented with no significant abnormalities in cardiac structure or function. The three affected individuals exhibited a heterozygous missense mutation in the LMNA gene (c.1583 C→G), which caused a T528R amino acid change in the LMNA protein. In conclusion, the present study identified three patients with EDMD, exhibiting the same dominant LMNA mutation and presenting with a spectrum of severe cardiac abnormalities, including cardiac conduction system defects, cardiomyopathy and heart failure. As LMNA mutations have been associated with at least six clinical disorders, including EDMD, the results of the present study provide additional mutational and functional data, which may assist in further establishing LMNA mutational variation and disease pathogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongrui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
37
|
Banerjee A, Ghoshal PK, Sengupta K. Novel linkage of LMNA Single Nucleotide Polymorphism with Dilated Cardiomyopathy in an Indian case study. IJC HEART & VASCULATURE 2015; 7:99-105. [PMID: 28785654 PMCID: PMC5497236 DOI: 10.1016/j.ijcha.2015.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Dilated Cardiomyopathy (DCM) is one of the most commonly encountered heart diseases reported globally. It is characterized by enlarged ventricles with impaired systolic and diastolic functions. Mutations in LMNA gene are one of the causative factors to precipitate the disease. However, association of SNPs of LMNA with DCM in particular has not been well documented. METHOD Here we present a limited and restricted case study of patients from south eastern part of India afflicted with idiopathic DCM and conduction defects. By using next generation sequencing we have sequenced the exons of LMNA gene from genomic DNA isolated from patients. RESULT We have identified the linkage of 8 different LMNA SNPs with idiopathic DCM viz. rs121117552, rs538089, rs505058, rs4641, rs646840, rs534807, rs80356803 and rs7339. These SNPs are scattered throughout the gene with prevalence for the region encoding the central rod domain of lamin A/C. CONCLUSION Most of these SNPs in LMNA were previously reported to be involved in various disorders other than DCM. We conclude that, variation in LMNA is one of the major underlying genetic causes for the pathogenesis of DCM, as observed in few Indian populations.
Collapse
Affiliation(s)
- Avinanda Banerjee
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | - Pradip K. Ghoshal
- Department of Cardiology & Medicine, N.R.S. Medical College & Hospital, 138 A. J. C Bose Road, Kolkata 700014, India
| | - Kaushik Sengupta
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
38
|
Chen S, Wang C, Wang X, Xu C, Wu M, Wang P, Tu X, Wang QK. Significant Association Between CAV1 Variant rs3807989 on 7p31 and Atrial Fibrillation in a Chinese Han Population. J Am Heart Assoc 2015; 4:JAHA.115.001980. [PMID: 25953654 PMCID: PMC4599427 DOI: 10.1161/jaha.115.001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recent genome-wide association studies (GWAS) in European ancestry populations revealed several genomic loci for atrial fibrillation (AF). We previously replicated the 4q25 locus (PITX2) and 16q22 locus (ZFHX3) in the Chinese population, but not the KCNN3 locus on 1q21. With single-nucleotide polymorphism rs3807989 in CAV1 encoding caveolin-1, however, controversial results were reported in 2 Chinese replication studies. Methods and Results Six remaining AF genetic loci from GWAS, including rs3807989/CAV1, rs593479/PRRX1, rs6479562/C9orf3, rs10824026/SYNPO2L, rs1152591/SYNE2, and rs7164883/HCN4, were analyzed in a Chinese Han population with 941 cases and 562 controls. Only rs3807989 showed significant association with AF (Padj=4.77×10−5), and the finding was replicated in 2 other independent populations with 709 cases and 2175 controls, 463 cases and 644 controls, and the combined population with a total of 2113 cases and 3381 controls (Padj=2.20×10−9; odds ratio [OR]=1.34 for major allele G). Meta-analysis, together with data from previous reports in Chinese and Japanese populations, also showed a significant association between rs3807989 and AF (P=3.40×10−4; OR=1.24 for allele G). We also found that rs3807989 showed a significant association with lone AF in 3 independent populations and in the combined population (Padj=3.85×10−8; OR=1.43 for major allele G). Conclusions The data in this study revealed a significant association between rs3807989 and AF in the Chinese Han population. Together with the findings that caveolin-1 interacts with potassium channels Kir2.1, KCNH2, and HCN4 and sodium channels Nav1.5 and Nav1.8, CAV1 becomes a strong candidate susceptibility gene for AF across different ethnic populations. This study is the first to show a significant association between rs3807989 and lone AF.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Manman Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.) Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (Q.K.W.) Department of Molecular Medicine, Department of Genetics and Genome Sciences, CCLCM, Case Western Reserve University, Cleveland, OH (Q.K.W.)
| |
Collapse
|
39
|
Parent JJ, Towbin JA, Jefferies JL. Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J 2015; 42:73-6. [PMID: 25873806 DOI: 10.14503/thij-13-3843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Left ventricular noncompaction is a rare type of cardiomyopathy, the genetics of which are poorly understood to date. Lamin A/C gene mutations have been associated with dilated cardiomyopathy and diseases of the conduction system, but rarely in left ventricular noncompaction cardiomyopathy. This report describes the cases of 4 family members with a lamin A/C gene mutation, 3 of whom had phenotypic expression of left ventricular noncompaction.
Collapse
|
40
|
Carmosino M, Torretta S, Procino G, Gerbino A, Forleo C, Favale S, Svelto M. Role of nuclear Lamin A/C in cardiomyocyte functions. Biol Cell 2014; 106:346-58. [PMID: 25055884 DOI: 10.1111/boc.201400033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022]
Abstract
Lamin A/C is a structural protein of the nuclear envelope (NE) and cardiac involvement in Lamin A/C mutations was one of the first phenotypes to be reported in humans, suggesting a crucial role of this protein in the cardiomyocytes function. Mutations in LMNA gene cause a class of pathologies generically named 'Lamanopathies' mainly involving heart and skeletal muscles. Moreover, the well-known disease called Hutchinson-Gilford Progeria Syndrome due to extensive mutations in LMNA gene, in addition to the systemic phenotype of premature aging, is characterised by the death of patients at around 13 typically for a heart attack or stroke, suggesting again the heart as the main site sensitive to Lamin A/C disfunction. Indeed, the identification of the roles of the Lamin A/C in cardiomyocytes function is a key area of exploration. One of the primary biological roles recently conferred to Lamin A/C is to affect contractile cells lineage determination and senescence. Then, in differentiated adult cardiomyocytes both the 'structural' and 'gene expression hypothesis' could explain the role of Lamin A in the function of cardiomyocytes. In fact, recent advances in the field propose that the structural weakness/stiffness of the NE, regulated by Lamin A/C amount in NE, can 'consequently' alter gene expression.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Stroud MJ, Banerjee I, Veevers J, Chen J. Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 2014; 114:538-48. [PMID: 24481844 DOI: 10.1161/circresaha.114.301236] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex, composed of proteins within the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The importance of this complex has been highlighted by the discovery of mutations in genes encoding LINC complex proteins, which cause skeletal or cardiac myopathies. Herein, this review summarizes structure, function, and interactions of major components of the LINC complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines future challenges in the field.
Collapse
Affiliation(s)
- Matthew J Stroud
- From the Department of Cardiology, University of California San Diego School of Medicine, La Jolla, CA
| | | | | | | |
Collapse
|
42
|
Dittmer TA, Sahni N, Kubben N, Hill DE, Vidal M, Burgess RC, Roukos V, Misteli T. Systematic identification of pathological lamin A interactors. Mol Biol Cell 2014; 25:1493-510. [PMID: 24623722 PMCID: PMC4004598 DOI: 10.1091/mbc.e14-02-0733] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Laminopathies are a collection of phenotypically diverse diseases that include muscular dystrophies, cardiomyopathies, lipodystrophies, and premature aging syndromes. Laminopathies are caused by >300 distinct mutations in the LMNA gene, which encodes the nuclear intermediate filament proteins lamin A and C, two major architectural elements of the mammalian cell nucleus. The genotype-phenotype relationship and the basis for the pronounced tissue specificity of laminopathies are poorly understood. Here we seek to identify on a global scale lamin A-binding partners whose interaction is affected by disease-relevant LMNA mutations. In a screen of a human genome-wide ORFeome library, we identified and validated 337 lamin A-binding proteins. Testing them against 89 known lamin A disease mutations identified 50 disease-associated interactors. Association of progerin, the lamin A isoform responsible for the premature aging disorder Hutchinson-Gilford progeria syndrome, with its partners was largely mediated by farnesylation. Mapping of the interaction sites on lamin A identified the immunoglobulin G (IgG)-like domain as an interaction hotspot and demonstrated that lamin A variants, which destabilize the Ig-like domain, affect protein-protein interactions more globally than mutations of surface residues. Analysis of a set of LMNA mutations in a single residue, which result in three phenotypically distinct diseases, identified disease-specific interactors. The results represent a systematic map of disease-relevant lamin A interactors and suggest loss of tissue-specific lamin A interactions as a mechanism for the tissue-specific appearance of laminopathic phenotypes.
Collapse
Affiliation(s)
- Travis A Dittmer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Genetics, Harvard Medical School, Boston, MA 02215
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Voudris KV, Apostolakis S, Karyofillis P, Doukas K, Zaravinos A, Androutsopoulos VP, Michalis A, Voudris V, Spandidos DA. Genetic diversity of the KCNE1 gene and susceptibility to postoperative atrial fibrillation. Am Heart J 2014; 167:274-280.e1. [PMID: 24439990 DOI: 10.1016/j.ahj.2013.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The human KCNE1 protein forms the β-subunit of the IKs potassium channel and is important in the regulation of the atrial action potential duration. The purpose of this study was to investigate the association between the nonsynonymous 112G>A mutation of the KCNE1 gene and postcardiac surgery atrial fibrillation (AF). METHODS AND RESULTS A cohort of patients scheduled for cardiac surgery was prospectively recruited. The genotype of 112G>A polymorphism was determined using polymerase chain reaction/restriction fragment analysis and confirmed with direct sequencing of the polymerase chain reaction product. In total, 509 patients were recruited in the study, of whom 203 (39.9%) had at least 1 qualifying episode of postoperative AF. An increased frequency of the G allele was observed in the postoperative AF group compared with the group without postoperative AF (0.628 vs 0.552, respectively, P = .016). The individual's relative risk of postoperative AF increased as the number of G alleles increased from 1.36 (95% CI 0.89-2.08) for G allele heterozygotes to 1.62 (95% CI 1.08-2.43) for G allele homozygotes (P = .04 for trend). The multivariate analysis revealed the abnormal ejection fraction (odds ratio [OR] 1.585, 95% CI 1.076-2.331, P = .020), age (OR 1.043, 95% CI 1.022-1.064, P < .001), type of surgery (aortic valve replacement) (OR 1.869, 95% CI 1.094-3.194, P = .022), and the 112G>A genotype (OR 1.401 [in additive model], 95% CI 1.052-1.865, P = .021) to be independent predictors of postoperative AF. CONCLUSION This study confirmed the association of the 112G>A polymorphism and postoperative AF in a cohort of patients undergoing cardiac surgery.
Collapse
Affiliation(s)
- Konstantinos V Voudris
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece
| | - Stavros Apostolakis
- Thrombosis Haemostasis and Vascular Biology Unit, University of Birmingham, Birmingham, United Kingdom; Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Apostolos Zaravinos
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Alkis Michalis
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, Athens, Greece
| | - Vassilis Voudris
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Demetrios A Spandidos
- Department of Clinical Virology Faculty of medicine, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
44
|
Banerjee A, Rathee V, Krishnaswamy R, Bhattacharjee P, Ray P, Sood AK, Sengupta K. Viscoelastic behavior of human lamin A proteins in the context of dilated cardiomyopathy. PLoS One 2013; 8:e83410. [PMID: 24386194 PMCID: PMC3875444 DOI: 10.1371/journal.pone.0083410] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
Lamins are intermediate filament proteins of type V constituting a nuclear lamina or filamentous meshwork which lines the nucleoplasmic side of the inner nuclear membrane. This protein mesh provides a supporting scaffold for the nuclear envelope and tethers interphase chromosome to the nuclear periphery. Mutations of mainly A-type lamins are found to be causative for at least 11 human diseases collectively termed as laminopathies majority of which are characterised by aberrant nuclei with altered structural rigidity, deformability and poor mechanotransduction behaviour. But the investigation of viscoelastic behavior of lamin A continues to elude the field. In order to address this problem, we hereby present the very first report on viscoelastic properties of wild type human lamin A and some of its mutants linked with Dilated cardiomyopathy (DCM) using quantitative rheological measurements. We observed a dramatic strain-softening effect on lamin A network as an outcome of the strain amplitude sweep measurements which could arise from the large compliance of the quasi-cross-links in the network or that of the lamin A rods. In addition, the drastic stiffening of the differential elastic moduli on superposition of rotational and oscillatory shear stress reflect the increase in the stiffness of the laterally associated lamin A rods. These findings present a preliminary insight into distinct biomechanical properties of wild type lamin A protein and its mutants which in turn revealed interesting differences.
Collapse
Affiliation(s)
- Avinanda Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Vikram Rathee
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rema Krishnaswamy
- Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bangalore, Karnataka, India
| | - Pritha Bhattacharjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Pulak Ray
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
| | - Ajay K. Sood
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Kaushik Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
45
|
Corradi D. Atrial fibrillation from the pathologist's perspective. Cardiovasc Pathol 2013; 23:71-84. [PMID: 24462196 DOI: 10.1016/j.carpath.2013.12.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/03/2013] [Accepted: 12/07/2013] [Indexed: 12/18/2022] Open
Abstract
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia encountered in clinical practice, is associated with increased morbidity and mortality. Electrophysiologically, it is characterized by a high rate of asynchronous atrial cell depolarization causing a loss of atrial contractile function and irregular ventricular rates. For a long time, AF was considered as a pure functional disorder without any structural background. Only in recent years, have new mapping and imaging techniques identified atrial locations, which are very often involved in the initiation and maintenance of this supraventricular arrhythmia (i.e. the distal portion of the pulmonary veins and the surrounding atrial myocardium). Morphological analysis of these myocardial sites has demonstrated significant structural remodeling as well as paved the way for further knowledge of AF natural history, pathogenesis, and treatment. This architectural myocardial disarrangement is induced by the arrhythmia itself and the very frequently associated cardiovascular disorders. At the same time, the structural remodeling is also capable of sustaining AF, thereby creating a sort of pathogenetic vicious circle. This review focuses on current understanding about the structural and genetic bases of AF with reference to their classification, pathogenesis, and clinical implications.
Collapse
Affiliation(s)
- Domenico Corradi
- Department of Biomedical, Biotechnological, and Translational Sciences (S.Bi.Bi.T.), Unit of Pathology, University of Parma, Parma, Italy.
| |
Collapse
|
46
|
Lai CC, Yeh YH, Hsieh WP, Kuo CT, Wang WC, Chu CH, Hung CL, Cheng CY, Tsai HY, Lee JL, Tang CY, Hsu LA. Whole-exome sequencing to identify a novel LMNA gene mutation associated with inherited cardiac conduction disease. PLoS One 2013; 8:e83322. [PMID: 24349489 PMCID: PMC3861486 DOI: 10.1371/journal.pone.0083322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 11/01/2013] [Indexed: 01/10/2023] Open
Abstract
Background Inherited cardiac conduction diseases (CCD) are rare but are caused by mutations in a myriad of genes. Recently, whole-exome sequencing has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. Objective To investigate the genetic background of a family affected by inherited CCD. Methods and Results We used whole-exome sequencing to study a Chinese family with multiple family members affected by CCD. Using the pedigree information, we proposed a heterozygous missense mutation (c.G695T, Gly232Val) in the lamin A/C (LMNA) gene as a candidate mutation for susceptibility to CCD in this family. The mutation is novel and is expected to affect the conformation of the coiled-coil rod domain of LMNA according to a structural model prediction. Its pathogenicity in lamina instability was further verified by expressing the mutation in a cellular model. Conclusions Our results suggest that whole-exome sequencing is a feasible approach to identifying the candidate genes underlying inherited conduction diseases.
Collapse
Affiliation(s)
- Chun-Chi Lai
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yung-Hsin Yeh
- First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Tai Kuo
- First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Han Chu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chiu-Lien Hung
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Yang Cheng
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Tsai
- First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
| | - Jia-Lin Lee
- Institute of Molecular and Cellular Biology and Department of Life Sciences, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chuan-Yi Tang
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lung-An Hsu
- First Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW LMNA gene encodes the nuclear A-type lamins. LMNA mutations are associated with more than 10 clinical entities and represent one of the first causes of inherited dilated cardiomyopathy. LMNA-dilated cardiomyopathy is associated with conduction disease (DCM-CD) and is a severe and aggressive form of DCM. However, pathogenesis remains largely unknown and no specific treatment is currently available for the patients. In this review, we present recent discoveries that improve the understanding of the cardiac pathophysiological roles of A-type lamins and shed light on potential therapeutic targets. RECENT FINDINGS In the last decade, many efforts have been made to elucidate how mutations in A-type lamins, ubiquitous proteins, lead to DCM-CD. No clear genotype/phenotype correlations have been found to help in elucidating those mechanisms. Analysis of several mouse models has helped in deciphering critical pathomechanisms. Among those, Mitogen-activated protein kinases (MAPK) and Akt/mTOR appear to be key early-activated signaling pathways in LMNA DCM-CD in both humans and mice. Inhibition of these signaling pathways has shown encouraging beneficial effects upon cardiac evolution of DCM-CD. SUMMARY These recent findings suggest that targeting MAPK and Akt/mTOR pathways with potent and specific compounds represents a promising intervention for the treatment of LMNA DCM-CD.
Collapse
|
48
|
Abstract
Remarkable progress has been made in understanding the genetic basis of dilated cardiomyopathy (DCM). Rare variants in >30 genes, some also involved in other cardiomyopathies, muscular dystrophy, or syndromic disease, perturb a diverse set of important myocardial proteins to produce a final DCM phenotype. Large, publicly available datasets have provided the opportunity to evaluate previously identified DCM-causing mutations, and to examine the population frequency of sequence variants similar to those that have been observed to cause DCM. The frequency of these variants, whether associated with dilated or hypertrophic cardiomyopathy, is greater than estimates of disease prevalence. This mismatch might be explained by one or more of the following possibilities: that the penetrance of DCM-causing mutations is lower than previously thought, that some variants are noncausal, that DCM prevalence is higher than previously estimated, or that other more-complex genomics underlie DCM. Reassessment of our assumptions about the complexity of the genomic and phenomic architecture of DCM is warranted. Much about the genomic basis of DCM remains to be investigated, which will require comprehensive genomic studies in much larger cohorts of rigorously phenotyped probands and family members than previously examined.
Collapse
|
49
|
Carboni N, Mateddu A, Marrosu G, Cocco E, Marrosu MG. Genetic and clinical characteristics of skeletal and cardiac muscle in patients with lamin A/C gene mutations. Muscle Nerve 2013; 48:161-70. [PMID: 23450819 DOI: 10.1002/mus.23827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Alterations of the lamin A/C (LMNA) gene are associated with different clinical entities, including disorders that affect skeletal and cardiac muscle, peripheral nerves, metabolism, bones, and disorders that cause premature aging. In this article we review the clinical and genetic characteristics of cardiac and skeletal muscle diseases related to alterations in the LMNA gene. There is no single explanation of how LMNA gene alterations may cause these disorders; however, important goals have been achieved in understanding the pathogenic effects of LMNA gene mutations on cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Nicola Carboni
- Department of Public Health, Clinical and Molecular Medicine, Multiple Sclerosis Centre, Via Is Guadazzonis 2, 09100 Cagliari, University of Cagliari, Italy.
| | | | | | | | | |
Collapse
|
50
|
Ball J, Carrington MJ, McMurray JJV, Stewart S. Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol 2013; 167:1807-24. [PMID: 23380698 DOI: 10.1016/j.ijcard.2012.12.093] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/04/2012] [Accepted: 12/24/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) represents an increasing public health challenge with profound social and economic implications. METHODS A comprehensive synthesis and review of the AF literature was performed. Overall, key findings from 182 studies were used to describe the indicative scope and impact of AF from an individual to population perspective. RESULTS There are many pathways to AF including advancing age, cardiovascular disease and increased levels of obesity/metabolic disorders. The reported population prevalence of AF ranges from 2.3%-3.4% and historical trends reflect increased AF incidence. Estimated life-time risk of AF is around 1 in 4. Primary care contacts reflect whole population trends: AF-related case-presentations increase from less than 0.5% in those aged 40 years or less to 6-12% for those aged 85 years or more. Globally, AF-related hospitalisations (primary or secondary diagnosis) showed an upward trend (from ~35 to over 100 admissions/10,000 persons) during 1996 to 2006. The estimated cost of AF is greater than 1% of health care expenditure and rising with hospitalisations the largest contributor. For affected individuals, quality of life indices are poor and AF confers an independent 1.5 to 2.0-fold probability of death in the longer-term. AF is also closely linked to ischaemic stroke (3- to 5-fold risk), chronic heart failure (up to 50% develop AF) and acute coronary syndromes (up to 25% develop AF) with consistently worse outcomes reported with concurrent AF. Future projections predict at least a doubling of AF cases by 2050. SUMMARY AF represents an evolving, global epidemic providing considerable challenges to minimise its impact from an individual to whole society perspective.
Collapse
Affiliation(s)
- Jocasta Ball
- Centre of Research Excellence to Reduce Inequality in Heart Disease, Preventative Health, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | | | | | |
Collapse
|