1
|
Heywood A, Stocks J, Schneider JA, Arfanakis K, Bennett DA, Beg MF, Wang L. In vivo effect of LATE-NC on integrity of white matter connections to the hippocampus. Alzheimers Dement 2024; 20:4401-4410. [PMID: 38877688 PMCID: PMC11247713 DOI: 10.1002/alz.13808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION TAR DNA-binding protein 43 (TDP-43) is a highly prevalent proteinopathy that is involved in neurodegenerative processes, including axonal damage. To date, no ante mortem biomarkers exist for TDP-43, and few studies have directly assessed its impact on neuroimaging measures utilizing pathologic quantification. METHODS Ante mortem diffusion-weighted images were obtained from community-dwelling older adults. Regression models calculated the relationship between post mortem TDP-43 burden and ante mortem fractional anisotropy (FA) within each voxel in connection with the hippocampus, controlling for coexisting Alzheimer's disease and demographics. RESULTS Results revealed a significant negative relationship (false discovery rate [FDR] corrected p < .05) between post mortem TDP-43 and ante mortem FA in one cluster within the left medial temporal lobe connecting to the parahippocampal cortex, entorhinal cortex, and cingulate, aligning with the ventral subdivision of the cingulum. FA within this cluster was associated with cognition. DISCUSSION Greater TDP-43 burden is associated with lower FA within the limbic system, which may contribute to impairment in learning and memory. HIGHLIGHTS Post mortem TDP-43 pathological burden is associated with reduced ante mortem fractional anisotropy. Reduced FA located in the parahippocampal portion of the cingulum. FA in this area was associated with reduced episodic and semantic memory. FA in this area was associated with increased inward hippocampal surface deformation.
Collapse
Affiliation(s)
- Ashley Heywood
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jane Stocks
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
- Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Suite, Chicago, Illinois, USA
- Department of Diagnostic Radiology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Mirza Faisal Beg
- Simon Fraser University, School of Engineering Science, 8888 University Drive, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Health, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
2
|
Shir D, Pham NTT, Botha H, Koga S, Kouri N, Ali F, Knopman DS, Petersen RC, Boeve BF, Kremers WK, Nguyen AT, Murray ME, Reichard RR, Dickson DW, Graff-Radford N, Josephs KA, Whitwell J, Graff-Radford J. Clinicoradiologic and Neuropathologic Evaluation of Corticobasal Syndrome. Neurology 2023; 101:e289-e299. [PMID: 37268436 PMCID: PMC10382268 DOI: 10.1212/wnl.0000000000207397] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Corticobasal syndrome (CBS) is a clinical phenotype characterized by asymmetric parkinsonism, rigidity, myoclonus, and apraxia. Originally believed secondary to corticobasal degeneration (CBD), mounting clinicopathologic studies have revealed heterogenous neuropathologies. The objectives of this study were to determine the pathologic heterogeneity of CBS, the clinicoradiologic findings associated with different underlying pathologies causing CBS, and the positive predictive value (PPV) of current diagnostic criteria for CBD among patients with a CBS. METHODS Clinical data, brain MRI, and neuropathologic data of patients followed at Mayo Clinic and diagnosed with CBS antemortem were reviewed according to neuropathology category at autopsy. RESULTS The cohort consisted of 113 patients with CBS, 61 (54%) female patients. Mean ± SD disease duration was 7 ± 3.7 years; mean ± SD age at death was 70.5 ± 9.1 years. The primary neuropathologic diagnoses were 43 (38%) CBD, 27 (24%) progressive supranuclear palsy (PSP), 17 (15%) Alzheimer disease (AD), 10 (9%) frontotemporal lobar degeneration (FTLD) with TAR DNA-binding protein 43 (TDP) inclusions, 7 (6%) diffuse Lewy body disease (DLBD)/AD, and 9 (8%) with other diagnoses. Patients with CBS-AD or CBS-DLBD/AD were youngest at death (median [interquartile range]: 64 [13], 64 [11] years) while CBS-PSP were oldest (77 [12.5] years, p = 0.024). Patients with CBS-DLBD/AD had the longest disease duration (9 [6] years), while CBS-other had the shortest (3 [4.25] years, p = 0.04). Posterior cortical signs and myoclonus were more characteristic of patients with CBS-AD and patients with CBS-DLBD/AD. Patients with CBS-DLBD/AD displayed more features of Lewy body dementia. Voxel-based morphometry revealed widespread cortical gray matter loss characteristic of CBS-AD, while CBS-CBD and CBS-PSP predominantly involved premotor regions with greater amount of white matter loss. Patients with CBS-DLBD/AD showed atrophy in a focal parieto-occipital region, and patients with CBS-FTLD-TDP had predominant prefrontal cortical loss. Patients with CBS-PSP had the lowest midbrain/pons ratio (p = 0.012). Of 67 cases meeting clinical criteria for possible CBD at presentation, 27 were pathology-proven CBD, yielding a PPV of 40%. DISCUSSION A variety of neurodegenerative disorders can be identified in patients with CBS, but clinical and regional imaging differences aid in predicting underlying neuropathology. PPV analysis of the current CBD diagnostic criteria revealed suboptimal performance. Biomarkers adequately sensitive and specific for CBD are needed.
Collapse
Affiliation(s)
- Dror Shir
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Nha Trang Thu Pham
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Hugo Botha
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Shunsuke Koga
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Naomi Kouri
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Farwa Ali
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - David S Knopman
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Ronald C Petersen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Brad F Boeve
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Walter K Kremers
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Aivi T Nguyen
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Melissa E Murray
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - R Ross Reichard
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Neill Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| | - Keith Anthony Josephs
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jennifer Whitwell
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL
| | - Jonathan Graff-Radford
- From the Department of Neurology (D.S., H.B., F.A., D.S.K., R.C.P., B.F.B., K.A.J., J.G.-R.), and Department of Radiology (N.T.T.P., J.W.), Mayo Clinic, Rochester, MN; Department of Neuroscience (S.K., N.K., M.E.M., D.W.D.), Mayo Clinic, Jacksonville, FL; Department of Quantitative Health Sciences (R.C.P., W.K.K.), and Department of Laboratory Medicine and Pathology (A.T.N., R.R.R.), Mayo Clinic, Rochester, MN; and Department of Neurology (N.G.-R.), Mayo Clinic, Jacksonville, FL.
| |
Collapse
|
3
|
Chen M, Burke S, Olm CA, Irwin DJ, Massimo L, Lee EB, Trojanowski JQ, Gee JC, Grossman M. Antemortem network analysis of spreading pathology in autopsy-confirmed frontotemporal degeneration. Brain Commun 2023; 5:fcad147. [PMID: 37223129 PMCID: PMC10202556 DOI: 10.1093/braincomms/fcad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Despite well-articulated hypotheses of spreading pathology in animal models of neurodegenerative disease, the basis for spreading neurodegenerative pathology in humans has been difficult to ascertain. In this study, we used graph theoretic analyses of structural networks in antemortem, multimodal MRI from autopsy-confirmed cases to examine spreading pathology in sporadic frontotemporal lobar degeneration. We defined phases of progressive cortical atrophy on T1-weighted MRI using a published algorithm in autopsied frontotemporal lobar degeneration with tau inclusions or with transactional DNA binding protein of ∼43 kDa inclusions. We studied global and local indices of structural networks in each of these phases, focusing on the integrity of grey matter hubs and white matter edges projecting between hubs. We found that global network measures are compromised to an equal degree in patients with frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions compared to healthy controls. While measures of local network integrity were compromised in both frontotemporal lobar degeneration with tau inclusions and frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, we discovered several important characteristics that distinguished between these groups. Hubs identified in controls were degraded in both patient groups, but degraded hubs were associated with the earliest phase of cortical atrophy (i.e. epicentres) only in frontotemporal lobar degeneration with tau inclusions. Degraded edges were significantly more plentiful in frontotemporal lobar degeneration with tau inclusions than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, suggesting that the spread of tau pathology involves more significant white matter degeneration. Weakened edges were associated with degraded hubs in frontotemporal lobar degeneration with tau inclusions more than in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions, particularly in the earlier phases of the disease, and phase-to-phase transitions in frontotemporal lobar degeneration with tau inclusions were characterized by weakened edges in earlier phases projecting to diseased hubs in subsequent phases of the disease. When we examined the spread of pathology from a region diseased in an earlier phase to physically adjacent regions in subsequent phases, we found greater evidence of disease spreading to adjacent regions in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions than in frontotemporal lobar degeneration with tau inclusions. We associated evidence of degraded grey matter hubs and weakened white matter edges with quantitative measures of digitized pathology from direct observations of patients' brain samples. We conclude from these observations that the spread of pathology from diseased regions to distant regions via weakened long-range edges may contribute to spreading disease in frontotemporal dementia-tau, while spread of pathology to physically adjacent regions via local neuronal connectivity may play a more prominent role in spreading disease in frontotemporal lobar degeneration-transactional DNA binding protein of ∼43 kDa inclusions.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Burke
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher A Olm
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David J Irwin
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lauren Massimo
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James C Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Department of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Josephy-Hernandez S, Brickhouse M, Champion S, Kim DD, Touroutoglou A, Frosch M, Dickerson BC. Clinical, radiologic, and pathologic features of the globular glial tauopathy subtype of frontotemporal lobar degeneration in right temporal variant frontotemporal dementia with salient features of Geschwind syndrome. Neurocase 2022; 28:375-381. [PMID: 36251576 PMCID: PMC9682487 DOI: 10.1080/13554794.2022.2130805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/26/2022] [Indexed: 10/24/2022]
Abstract
Globular Glial Tauopathy (GGT) is a rare form of Frontotemporal Lobar Degeneration (FTLD) consisting of 4-repeat tau globular inclusions in astrocytes and oligodendrocytes. We present the pathological findings of GGT in a previously published case of a 73-year-old woman with behavioral symptoms concerning for right temporal variant frontotemporal dementia with initial and salient features of Geschwind syndrome. Clinically, she lacked motor abnormalities otherwise common in previously published GGT cases. Brain MRI showed focal right anterior temporal atrophy (indistinguishable from five FTLD-TDP cases) and subtle ipsilateral white matter signal abnormalities. Brain autopsy showed GGT type III and Alzheimer's neuropathologic changes. .
Collapse
Affiliation(s)
- Sylvia Josephy-Hernandez
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02129, USA
| | - Michael Brickhouse
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02129, USA
| | - Samantha Champion
- Forensic Pathology, Miami-Dade County Medical Examiner Office, Miami, FL 33136, USA
| | - David Dongkyung Kim
- Department of Psychiatry, Centre of Addiction and Mental Health & University of Toronto, Toronto, ON M6J 1H4, Canada
| | - Alexandra Touroutoglou
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02129, USA
| | - Matthew Frosch
- Neuropathology Service, Department of Pathology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA
| | - Bradford C. Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
5
|
Toller G, Mandelli ML, Cobigo Y, Rosen HJ, Kramer JH, Miller BL, Gorno-Tempini ML, Rankin KP. Right uncinate fasciculus supports socioemotional sensitivity in health and neurodegenerative disease. Neuroimage Clin 2022; 34:102994. [PMID: 35487131 PMCID: PMC9125782 DOI: 10.1016/j.nicl.2022.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
The uncinate fasciculus (UF) connects fronto-insular and temporal gray matter regions involved in visceral emotional reactivity and semantic appraisal, but the precise role of this tract in socioemotional functioning is not well-understood. Using the Revised-Self Monitoring (RSMS) informant questionnaire, we examined whether fractional anisotropy (FA) in the right UF corresponded to socioemotional sensitivity during face-to-face interactions in 145 individuals (40 healthy older adults [NC], and 105 patients with frontotemporal lobar degeneration [FTLD] syndromes in whom this tract is selectively vulnerable, including 31 behavioral variant frontotemporal dementia [bvFTD], 39 semantic variant primary progressive aphasia [svPPA], and 35 nonfluent variant primary progressive aphasia [nfvPPA]). Voxelwise and region-of-interest-based DWI analyses revealed that FA in the right but not left UF significantly predicted RSMS score in the full sample, and in NC and svPPA subgroups alone. Right UF integrity did not predict RSMS score in the bvFTD group, but gray matter volume in the right orbitofrontal cortex adjacent to the UF was a significant predictor. Our results suggest that better socioemotional sensitivity is specifically supported by right UF white matter, highlighting a key neuro-affective relationship found in both healthy aging and neurologically affected individuals. The finding that poorer socioemotional sensitivity corresponded to right UF damage in svPPA but was more robustly influenced by gray matter atrophy adjacent to the UF in bvFTD may have important implications for endpoint selection in clinical trial design for patients with FTLD.
Collapse
Affiliation(s)
- Gianina Toller
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Yann Cobigo
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Howard J Rosen
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Joel H Kramer
- Memory and Aging Center, University of California, San Francisco, United States.
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, United States.
| | | | - Katherine P Rankin
- Memory and Aging Center, University of California, San Francisco, United States.
| |
Collapse
|
6
|
Tisdall MD, Ohm DT, Lobrovich R, Das SR, Mizsei G, Prabhakaran K, Ittyerah R, Lim S, McMillan CT, Wolk DA, Gee J, Trojanowski JQ, Lee EB, Detre JA, Yushkevich P, Grossman M, Irwin DJ. Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. Neuroimage Clin 2022; 33:102913. [PMID: 34952351 PMCID: PMC8715243 DOI: 10.1016/j.nicl.2021.102913] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Comparative study of whole-hemisphere ex vivo T2*-weighted MRI and histopathology. Sample of FTLD-Tau and FTLD-TDP subtypes with reference to healthy and AD brain. Novel focal upper cortical-layer iron-rich pathology distinguishes FTLD-TDP from clinically-similar FTLD-Tau and AD. Distinct novel iron-rich FTLD-Tau pathology in mid-to-deep cortical-layers and WM. T2*-weighted MRI signatures offer in vivo biomarker targets for FTLD proteinopathy.
Frontotemporal lobar degeneration (FTLD) is a heterogeneous spectrum of age-associated neurodegenerative diseases that include two main pathologic categories of tau (FTLD-Tau) and TDP-43 (FTLD-TDP) proteinopathies. These distinct proteinopathies are often clinically indistinguishable during life, posing a major obstacle for diagnosis and emerging therapeutic trials tailored to disease-specific mechanisms. Moreover, MRI-derived measures have had limited success to date discriminating between FTLD-Tau or FTLD-TDP. T2*-weighted (T2*w) ex vivo MRI has previously been shown to be sensitive to non-heme iron in healthy intracortical lamination and myelin, and to pathological iron deposits in amyloid-beta plaques and activated microglia in Alzheimer’s disease neuropathologic change (ADNC). However, an integrated, ex vivo MRI and histopathology approach is understudied in FTLD. We apply joint, whole-hemisphere ex vivo MRI at 7 T and histopathology to the study autopsy-confirmed FTLD-Tau (n = 4) and FTLD-TDP (n = 3), relative to ADNC disease-control brains with antemortem clinical symptoms of frontotemporal dementia (n = 2), and an age-matched healthy control. We detect distinct laminar patterns of novel iron-laden glial pathology in both FTLD-Tau and FTLD-TDP brains. We find iron-positive ameboid and hypertrophic microglia and astrocytes largely in deeper GM and adjacent WM in FTLD-Tau. In contrast, FTLD-TDP presents prominent superficial cortical layer iron reactivity in astrocytic processes enveloping small blood vessels with limited involvement of adjacent WM, as well as more diffuse distribution of punctate iron-rich dystrophic microglial processes across all GM lamina. This integrated MRI/histopathology approach reveals ex vivo MRI features that are consistent with these pathological observations distinguishing FTLD-Tau and FTLD-TDP subtypes, including prominent irregular hypointense signal in deeper cortex in FTLD-Tau whereas FTLD-TDP showed upper cortical layer hypointense bands and diffuse cortical speckling. Moreover, differences in adjacent WM degeneration and iron-rich gliosis on histology between FTLD-Tau and FTLD-TDP were also readily apparent on MRI as hyperintense signal and irregular areas of hypointensity, respectively that were more prominent in FTLD-Tau compared to FTLD-TDP. These unique histopathological and radiographic features were distinct from healthy control and ADNC brains, suggesting that iron-sensitive T2*w MRI, adapted to in vivo application at sufficient resolution, may eventually offer an opportunity to improve antemortem diagnosis of FTLD proteinopathies using tissue-validated methods.
Collapse
Affiliation(s)
- M Dylan Tisdall
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States.
| | - Daniel T Ohm
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Rebecca Lobrovich
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sandhitsu R Das
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Gabor Mizsei
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Karthik Prabhakaran
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Ranjit Ittyerah
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Sydney Lim
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Corey T McMillan
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David A Wolk
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - James Gee
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - John Q Trojanowski
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - Edward B Lee
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States
| | - John A Detre
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States; Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Paul Yushkevich
- Radiology, Perelman School of Medicine, University of Pennsylvania, United States
| | - Murray Grossman
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States
| | - David J Irwin
- Neurology, Perelman School of Medicine, University of Pennsylvania, United States; Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
7
|
McKenna MC, Murad A, Huynh W, Lope J, Bede P. The changing landscape of neuroimaging in frontotemporal lobar degeneration: from group-level observations to single-subject data interpretation. Expert Rev Neurother 2022; 22:179-207. [PMID: 35227146 DOI: 10.1080/14737175.2022.2048648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION While the imaging signatures of frontotemporal lobar degeneration (FTLD) phenotypes and genotypes are well-characterised based on group-level descriptive analyses, the meaningful interpretation of single MRI scans remains challenging. Single-subject MRI classification frameworks rely on complex computational models and large training datasets to categorise individual patients into diagnostic subgroups based on distinguishing imaging features. Reliable individual subject data interpretation is hugely important in the clinical setting to expedite the diagnosis and classify individuals into relevant prognostic categories. AREAS COVERED This article reviews (1) the neuroimaging studies that propose single-subject MRI classification strategies in symptomatic and pre-symptomatic FTLD, (2) potential practical implications and (3) the limitations of current single-subject data interpretation models. EXPERT OPINION Classification studies in FTLD have demonstrated the feasibility of categorising individual subjects into diagnostic groups based on multiparametric imaging data. Preliminary data indicate that pre-symptomatic FTLD mutation carriers may also be reliably distinguished from controls. Despite momentous advances in the field, significant further improvements are needed before these models can be developed into viable clinical applications.
Collapse
Affiliation(s)
| | - Aizuri Murad
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - William Huynh
- Brain and Mind Centre, University of Sydney, Australia
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity College Dublin, Ireland.,Pitié-Salpêtrière University Hospital, Sorbonne University, France
| |
Collapse
|
8
|
Perani D, Cappa SF. The contribution of positron emission tomography to the study of aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:151-165. [PMID: 35078596 DOI: 10.1016/b978-0-12-823384-9.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniela Perani
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, Nuclear Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano F Cappa
- Department of Humanities and Life Sciences, University Institute for Advanced Studies IUSS Pavia, Pavia, Italy; Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
9
|
Zhou XY, Lu JY, Liu FT, Wu P, Zhao J, Ju ZZ, Tang YL, Shi QY, Lin HM, Wu JJ, Yen TC, Zuo CT, Sun YM, Wang J. In Vivo 18 F-APN-1607 Tau Positron Emission Tomography Imaging in MAPT Mutations: Cross-Sectional and Longitudinal Findings. Mov Disord 2021; 37:525-534. [PMID: 34842301 DOI: 10.1002/mds.28867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Frontotemporal lobar degeneration with tauopathy caused by MAPT (microtubule-associated protein tau) mutations is a highly heterogenous disorder. The ability to visualize and longitudinally monitor tau deposits may be beneficial to understand disease pathophysiology and predict clinical trajectories. OBJECTIVE The aim of this study was to investigate the cross-sectional and longitudinal 18 F-APN-1607 positron emission tomography/computed tomography (PET/CT) imaging findings in MAPT mutation carriers. METHODS Seven carriers of MAPT mutations (six within exon 10 and one outside of exon 10) and 15 healthy control subjects were included. All participants underwent 18 F-APN-1607 PET/CT at baseline. Three carriers of exon 10 mutations received follow-up 18 F-APN-1607 PET/CT scans. Standardized uptake value ratio (SUVR) maps were obtained using the cerebellar gray matter as the reference region. SUVR values observed in MAPT mutation carriers were normalized to data from healthy control subjects. A regional SUVR z score ≥ 2 was used as the criterion to define positive 18 F-APN-1607 PET/CT findings. RESULTS Although the seven study patients had heterogenous clinical phenotypes, all showed a significant 18 F-APN-1607 uptake characterized by high-contrast signals. However, the anatomical localization of tau deposits differed in patients with distinct clinical symptoms. Follow-up imaging data, which were available for three patients, demonstrated worsening trends in patterns of tau accumulation over time, which were paralleled by a significant clinical deterioration. CONCLUSIONS Our data represent a promising step in understanding the usefulness of 18 F-APN-1607 PET/CT imaging for detecting tau accumulation in MAPT mutation carriers. Our preliminary follow-up data also suggest the potential value of 18 F-APN-1607 PET/CT for monitoring the longitudinal trajectories of frontotemporal lobar degeneration caused by MAPT mutations. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Ying Lu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Tao Liu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Wu
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jue Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zi-Zhao Ju
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Lin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Yi Shi
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Mei Lin
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian-Jun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | | | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Giannini LAA, Peterson C, Ohm D, Xie SX, McMillan CT, Raskovsky K, Massimo L, Suh E, Van Deerlin VM, Wolk DA, Trojanowski JQ, Lee EB, Grossman M, Irwin DJ. Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology. Acta Neuropathol Commun 2021; 9:30. [PMID: 33622418 PMCID: PMC7901087 DOI: 10.1186/s40478-021-01129-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/10/2023] Open
Abstract
Frontotemporal lobar degeneration proteinopathies with tau inclusions (FTLD-Tau) or TDP-43 inclusions (FTLD-TDP) are associated with clinically similar phenotypes. However, these disparate proteinopathies likely differ in cellular severity and regional distribution of inclusions in white matter (WM) and adjacent grey matter (GM), which have been understudied. We performed a neuropathological study of subcortical WM and adjacent GM in a large autopsy cohort (n = 92; FTLD-Tau = 37, FTLD-TDP = 55) using a validated digital image approach. The antemortem clinical phenotype was behavioral-variant frontotemporal dementia (bvFTD) in 23 patients with FTLD-Tau and 42 with FTLD-TDP, and primary progressive aphasia (PPA) in 14 patients with FTLD-Tau and 13 with FTLD-TDP. We used linear mixed-effects models to: (1) compare WM pathology burden between proteinopathies; (2) investigate the relationship between WM pathology burden and WM degeneration using luxol fast blue (LFB) myelin staining; (3) study regional patterns of pathology burden in clinico-pathological groups. WM pathology burden was greater in FTLD-Tau compared to FTLD-TDP across regions (beta = 4.21, SE = 0.34, p < 0.001), and correlated with the degree of WM degeneration in both FTLD-Tau (beta = 0.32, SE = 0.10, p = 0.002) and FTLD-TDP (beta = 0.40, SE = 0.08, p < 0.001). WM degeneration was greater in FTLD-Tau than FTLD-TDP particularly in middle-frontal and anterior cingulate regions (p < 0.05). Distinct regional patterns of WM and GM inclusions characterized FTLD-Tau and FTLD-TDP proteinopathies, and associated in part with clinical phenotype. In FTLD-Tau, WM pathology was particularly severe in the dorsolateral frontal cortex in nonfluent-variant PPA, and GM pathology in dorsolateral and paralimbic frontal regions with some variation across tauopathies. Differently, FTLD-TDP had little WM regional variability, but showed severe GM pathology burden in ventromedial prefrontal regions in both bvFTD and PPA. To conclude, FTLD-Tau and FTLD-TDP proteinopathies have distinct severity and regional distribution of WM and GM pathology, which may impact their clinical presentation, with overall greater severity of WM pathology as a distinguishing feature of tauopathies.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claire Peterson
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Daniel Ohm
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Katya Raskovsky
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - Lauren Massimo
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - EunRah Suh
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David A Wolk
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Alzheimer's Disease Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, Penn Frontotemporal Degeneration Center (FTDC), Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Avants BB, Tustison NJ, Stone JR. Similarity-driven multi-view embeddings from high-dimensional biomedical data. NATURE COMPUTATIONAL SCIENCE 2021; 1:143-152. [PMID: 33796865 PMCID: PMC8009088 DOI: 10.1038/s43588-021-00029-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022]
Abstract
Diverse, high-dimensional modalities collected in large cohorts present new opportunities for the formulation and testing of integrative scientific hypotheses. Similarity-driven multi-view linear reconstruction (SiMLR) is an algorithm that exploits inter-modality relationships to transform large scientific datasets into smaller, more well-powered and interpretable low-dimensional spaces. SiMLR contributes an objective function for identifying joint signal, regularization based on sparse matrices representing prior within-modality relationships and an implementation that permits application to joint reduction of large data matrices. We demonstrate that SiMLR outperforms closely related methods on supervised learning problems in simulation data, a multi-omics cancer survival prediction dataset and multiple modality neuroimaging datasets. Taken together, this collection of results shows that SiMLR may be applied to joint signal estimation from disparate modalities and may yield practically useful results in a variety of application domains.
Collapse
Affiliation(s)
- Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA
| |
Collapse
|
12
|
Coughlin DG, Dickson DW, Josephs KA, Litvan I. Progressive Supranuclear Palsy and Corticobasal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:151-176. [PMID: 33433875 DOI: 10.1007/978-3-030-51140-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression.
Collapse
Affiliation(s)
| | | | | | - Irene Litvan
- UC San Diego Department of Neurosciences, La Jolla, CA, USA.
| |
Collapse
|
13
|
Stone JR, Avants BB, Tustison NJ, Wassermann EM, Gill J, Polejaeva E, Dell KC, Carr W, Yarnell AM, LoPresti ML, Walker P, O'Brien M, Domeisen N, Quick A, Modica CM, Hughes JD, Haran FJ, Goforth C, Ahlers ST. Functional and Structural Neuroimaging Correlates of Repetitive Low-Level Blast Exposure in Career Breachers. J Neurotrauma 2020; 37:2468-2481. [PMID: 32928028 PMCID: PMC7703399 DOI: 10.1089/neu.2020.7141] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Combat military and civilian law enforcement personnel may be exposed to repetitive low-intensity blast events during training and operations. Persons who use explosives to gain entry (i.e., breach) into buildings are known as “breachers” or dynamic entry personnel. Breachers operate under the guidance of established safety protocols, but despite these precautions, breachers who are exposed to low-level blast throughout their careers frequently report performance deficits and symptoms to healthcare providers. Although little is known about the etiology linking blast exposure to clinical symptoms in humans, animal studies demonstrate network-level changes in brain function, alterations in brain morphology, vascular and inflammatory changes, hearing loss, and even alterations in gene expression after repeated blast exposure. To explore whether similar effects occur in humans, we collected a comprehensive data battery from 20 experienced breachers exposed to blast throughout their careers and 14 military and law enforcement controls. This battery included neuropsychological assessments, blood biomarkers, and magnetic resonance imaging measures, including cortical thickness, diffusion tensor imaging of white matter, functional connectivity, and perfusion. To better understand the relationship between repetitive low-level blast exposure and behavioral and imaging differences in humans, we analyzed the data using similarity-driven multi-view linear reconstruction (SiMLR). SiMLR is specifically designed for multiple modality statistical integration using dimensionality-reduction techniques for studies with high-dimensional, yet sparse, data (i.e., low number of subjects and many data per subject). We identify significant group effects in these data spanning brain structure, function, and blood biomarkers.
Collapse
Affiliation(s)
- James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Brian B Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Nicholas J Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Eric M Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jessica Gill
- Tissue Injury Branch, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Elena Polejaeva
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, USA
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Walter Carr
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA.,Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Angela M Yarnell
- Military Emergency Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Matthew L LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Peter Walker
- Health Mission Initiative, DoD Joint Artificial Intelligence Center, Washington, DC, USA
| | - Meghan O'Brien
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Natalie Domeisen
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Alycia Quick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Claire M Modica
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - John D Hughes
- Behavioral Biology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Francis J Haran
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Carl Goforth
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Stephen T Ahlers
- Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, Maryland, USA
| |
Collapse
|
14
|
Coughlin DG, Phillips JS, Roll E, Peterson C, Lobrovich R, Rascovsky K, Ungrady M, Wolk DA, Das S, Weintraub D, Lee EB, Trojanowski JQ, Shaw LM, Vaishnavi S, Siderowf A, Nasrallah IM, Irwin DJ, McMillan CT. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol Aging 2020; 96:137-147. [PMID: 33002767 DOI: 10.1016/j.neurobiolaging.2020.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
We compared regional retention of 18F-flortaucipir between 20 patients with Lewy body disorders (LBD), 12 Alzheimer's disease patients with positive amyloid positron emission tomography (PET) scans (AD+Aβ) and 15 healthy controls with negative amyloid PET scans (HC-Aβ). In LBD subjects, we compared the relationship between 18F-flortaucipir retention and cerebrospinal fluid (CSF) tau, cognitive performance, and neuropathological tau at autopsy. The LBD cohort was stratified using an Aβ42 cut-off of 192 pg/mL to enrich for groups likely harboring tau pathology (LBD+Aβ = 11, LBD-Aβ = 9). 18F-flortaucipir retention was higher in LBD+AB than HC-Aβ in five, largely temporal-parietal regions with sparing of medial temporal regions. Higher retention was associated with higher CSF total-tau levels (p = 0.04), poorer domain-specific cognitive performance (p = 0.02-0.04), and greater severity of neuropathological tau in corresponding regions. While 18F-flortaucipir retention in LBD is intermediate between healthy controls and AD, retention relates to cognitive impairment, CSF total-tau, and neuropathological tau. Future work in larger autopsy-validated cohorts is needed to define LBD-specific tau biomarker profiles.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey S Phillips
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Roll
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Peterson
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Lobrovich
- Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Katya Rascovsky
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Ungrady
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sandhitsu Das
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Weintraub
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Michael J. Crescenz VA Medical Center, Parkinson's Disease Research, Education, and Clinical Center, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Center for Neurodegenerative Disease Research, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Vaishnavi
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Siderowf
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ilya M Nasrallah
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Irwin
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Digital Neuropathology Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Lewy Body Disease Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Corey T McMillan
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
15
|
Baldacci F, Mazzucchi S, Della Vecchia A, Giampietri L, Giannini N, Koronyo-Hamaoui M, Ceravolo R, Siciliano G, Bonuccelli U, Elahi FM, Vergallo A, Lista S, Giorgi FS. The path to biomarker-based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev Mol Diagn 2020; 20:421-441. [PMID: 32066283 PMCID: PMC7445079 DOI: 10.1080/14737159.2020.1731306] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022]
Abstract
Introduction: The postmortem examination still represents the reference standard for detecting the pathological nature of chronic neurodegenerative diseases (NDD). This approach displays intrinsic conceptual limitations since NDD represent a dynamic spectrum of partially overlapping phenotypes, shared pathomechanistic alterations that often give rise to mixed pathologies.Areas covered: We scrutinized the international clinical diagnostic criteria of NDD and the literature to provide a roadmap toward a biomarker-based classification of the NDD spectrum. A few pathophysiological biomarkers have been established for NDD. These are time-consuming, invasive, and not suitable for preclinical detection. Candidate screening biomarkers are gaining momentum. Blood neurofilament light-chain represents a robust first-line tool to detect neurodegeneration tout court and serum progranulin helps detect genetic frontotemporal dementia. Ultrasensitive assays and retinal scans may identify Aβ pathology early, in blood and the eye, respectively. Ultrasound also represents a minimally invasive option to investigate the substantia nigra. Protein misfolding amplification assays may accurately detect α-synuclein in biofluids.Expert opinion: Data-driven strategies using quantitative rather than categorical variables may be more reliable for quantification of contributions from pathophysiological mechanisms and their spatial-temporal evolution. A systems biology approach is suitable to untangle the dynamics triggering loss of proteostasis, driving neurodegeneration and clinical evolution.
Collapse
Affiliation(s)
- Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
| | - Sonia Mazzucchi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Giannini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fanny M. Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Andrea Vergallo
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l’hôpital, Paris, France
- Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
16
|
Giannini LAA, Xie SX, Peterson C, Zhou C, Lee EB, Wolk DA, Grossman M, Trojanowski JQ, McMillan CT, Irwin DJ. Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration. Front Neurosci 2019; 13:682. [PMID: 31333403 PMCID: PMC6616086 DOI: 10.3389/fnins.2019.00682] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Digital pathology is increasingly prominent in neurodegenerative disease research, but variability in immunohistochemical staining intensity between staining batches prevents large-scale comparative studies. Here we provide a statistically rigorous method to account for staining batch effects in a large sample of brain tissue with frontotemporal lobar degeneration with tau inclusions (FTLD-Tau, N = 39) or TDP-43 inclusions (FTLD-TDP, N = 53). We analyzed the relationship between duplicate measurements of digital pathology, i.e., percent area occupied by pathology (%AO) for grey matter (GM) and white matter (WM), from two distinct staining batches. We found a significant difference in duplicate measurements from distinct staining batches in FTLD-Tau (mean difference: GM = 1.13 ± 0.44, WM = 1.28 ± 0.56; p < 0.001) and FTLD-TDP (GM = 0.95 ± 0.66, WM = 0.90 ± 0.77; p < 0.001), and these measurements were linearly related (R-squared [Rsq]: FTLD-Tau GM = 0.92, WM = 0.92; FTLD-TDP GM = 0.75, WM = 0.78; p < 0.001 all). We therefore used linear regression to transform %AO from distinct staining batches into equivalent values. Using a train-test set design, we examined transformation prerequisites (i.e., Rsq) from linear-modeling in training sets, and we applied equivalence factors (i.e., beta, intercept) to independent testing sets to determine transformation outcomes (i.e., intraclass correlation coefficient [ICC]). First, random iterations (×100) of linear regression showed that smaller training sets (N = 12–24), feasible for prospective use, have acceptable transformation prerequisites (mean Rsq: FTLD-Tau ≥0.9; FTLD-TDP ≥0.7). When cross-validated on independent complementary testing sets, in FTLD-Tau, N = 12 training sets resulted in 100% of GM and WM transformations with optimal transformation outcomes (ICC ≥ 0.8), while in FTLD-TDP N = 24 training sets resulted in optimal ICC in testing sets (GM = 72%, WM = 98%). We therefore propose training sets of N = 12 in FTLD-Tau and N = 24 in FTLD-TDP for prospective transformations. Finally, the transformation enabled us to significantly reduce batch-related difference in duplicate measurements in FTLD-Tau (GM/WM: p < 0.001 both) and FTLD-TDP (GM/WM: p < 0.001 both), and to decrease the necessary sample size estimated in a power analysis in FTLD-Tau (GM:-40%; WM: -34%) and FTLD-TDP (GM: -20%; WM: -30%). Finally, we tested generalizability of our approach using a second, open-source, image analysis platform and found similar results. We concluded that a small sample of tissue stained in duplicate can be used to account for pre-analytical variability such as staining batch effects, thereby improving methods for future studies.
Collapse
Affiliation(s)
- Lucia A A Giannini
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neurology, University Medical Center Groningen - University of Groningen, Groningen, Netherlands
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Claire Peterson
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Cecilia Zhou
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A Wolk
- Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Alzheimer's Disease Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David J Irwin
- Penn Digital Neuropathology Laboratory, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Abstract
Frontotemporal dementia (FTD) is the second commonest cause of young onset dementia. Our understanding of FTD and its related syndromes has advanced significantly in recent years. Among the most prominent areas of progress is the overlap between FTD, MND, and other neurodegenerative conditions at a clinicopathologic and genetic level. In parallel major advances in neuroimaging techniques, the discovery of new genetic mutations as well as the development of potential biomarkers may serve to further expand knowledge of the biologic processes at play in FTD and may in turn propel research toward identifying curative and preventative pharmacologic therapies. The aim of this chapter is to discuss the clinical, pathologic, and genetic complexities of FTD and related disorders.
Collapse
Affiliation(s)
- Emma M Devenney
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Rebekah M Ahmed
- Department of Clinical Neuroscience, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Neurodegeneration of brain networks in the amyotrophic lateral sclerosis-frontotemporal lobar degeneration (ALS-FTLD) continuum: evidence from MRI and MEG studies. CNS Spectr 2018; 23:378-387. [PMID: 29076800 DOI: 10.1017/s109285291700075x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brain imaging techniques, especially those based on magnetic resonance imaging (MRI) and magnetoencephalography (MEG), have been increasingly applied to study multiple large-scale distributed brain networks in healthy people and neurological patients. With regard to neurodegenerative disorders, amyotrophic lateral sclerosis (ALS), clinically characterized by the predominant loss of motor neurons and progressive weakness of voluntary muscles, and frontotemporal lobar degeneration (FTLD), the second most common early-onset dementia, have been proven to share several clinical, neuropathological, genetic, and neuroimaging features. Specifically, overlapping or mildly diverging brain structural and functional connectivity patterns, mostly evaluated by advanced MRI techniques-such as diffusion tensor and resting-state functional MRI (DT-MRI, RS-fMRI)-have been described comparing several ALS and FTLD populations. Moreover, though only pioneering, promising clues on connectivity patterns in the ALS-FTLD continuum may derive from MEG investigations. We will herein overview the current state of knowledge concerning the most advanced neuroimaging findings associated with clinical and genetic patterns of neurodegeneration across the ALS-FTLD continuum, underlying the possibility that network-based approaches may be useful to develop novel biomarkers of disease for adequately designing and monitoring more appropriate treatment strategies.
Collapse
|
19
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
20
|
Jiskoot LC, Bocchetta M, Nicholas JM, Cash DM, Thomas D, Modat M, Ourselin S, Rombouts SA, Dopper EG, Meeter LH, Panman JL, van Minkelen R, van der Ende EL, Donker Kaat L, Pijnenburg YA, Borroni B, Galimberti D, Masellis M, Tartaglia MC, Rowe J, Graff C, Tagliavini F, Frisoni GB, Laforce R, Finger E, de Mendonça A, Sorbi S, Papma JM, van Swieten JC, Rohrer JD. Presymptomatic white matter integrity loss in familial frontotemporal dementia in the GENFI cohort: A cross-sectional diffusion tensor imaging study. Ann Clin Transl Neurol 2018; 5:1025-1036. [PMID: 30250860 PMCID: PMC6144447 DOI: 10.1002/acn3.601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Objective We aimed to investigate mutation-specific white matter (WM) integrity changes in presymptomatic and symptomatic mutation carriers of the C9orf72,MAPT, and GRN mutations by use of diffusion-weighted imaging within the Genetic Frontotemporal dementia Initiative (GENFI) study. Methods One hundred and forty mutation carriers (54 C9orf72, 30 MAPT, 56 GRN), 104 presymptomatic and 36 symptomatic, and 115 noncarriers underwent 3T diffusion tensor imaging. Linear mixed effects models were used to examine the association between diffusion parameters and years from estimated symptom onset in C9orf72,MAPT, and GRN mutation carriers versus noncarriers. Post hoc analyses were performed on presymptomatic mutation carriers only, as well as left-right asymmetry analyses on GRN mutation carriers versus noncarriers. Results Diffusion changes in C9orf72 mutation carriers are present significantly earlier than both MAPT and GRN mutation carriers - characteristically in the posterior thalamic radiation and more posteriorly located tracts (e.g., splenium of the corpus callosum, posterior corona radiata), as early as 30 years before estimated symptom onset. MAPT mutation carriers showed early involvement of the uncinate fasciculus and cingulum, sparing the internal capsule, whereas involvement of the anterior and posterior internal capsule was found in GRN. Restricting analyses to presymptomatic mutation carriers only, similar - albeit less extensive - patterns were found: posteriorly located WM tracts (e.g., posterior thalamic radiation, splenium of the corpus callosum, posterior corona radiata) in presymptomatic C9orf72, the uncinate fasciculus in presymptomatic MAPT, and the internal capsule (anterior and posterior limbs) in presymptomatic GRN mutation carriers. In GRN, most tracts showed significant left-right differences in one or more diffusion parameter, with the most consistent results being found in the UF, EC, RPIC, and ALIC. Interpretation This study demonstrates the presence of early and widespread WM integrity loss in presymptomatic FTD, and suggests a clear genotypic "fingerprint." Our findings corroborate the notion of FTD as a network-based disease, where changes in connectivity are some of the earliest detectable features, and identify diffusion tensor imaging as a potential neuroimaging biomarker for disease-tracking and -staging in presymptomatic to early-stage familial FTD.
Collapse
|
21
|
Woollacott IOC, Bocchetta M, Sudre CH, Ridha BH, Strand C, Courtney R, Ourselin S, Cardoso MJ, Warren JD, Rossor MN, Revesz T, Fox NC, Holton JL, Lashley T, Rohrer JD. Pathological correlates of white matter hyperintensities in a case of progranulin mutation associated frontotemporal dementia. Neurocase 2018; 24:166-174. [PMID: 30112957 PMCID: PMC6168954 DOI: 10.1080/13554794.2018.1506039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
White matter hyperintensities (WMH) are often seen on MRI brain scans in frontotemporal dementia (FTD) due to progranulin (GRN) mutations, but their pathological correlates are unknown. We examined the histological changes underlying WMH in a patient with GRN mutation associated behavioral variant FTD. In vivo and cadaveric MRI showed progressive, asymmetric frontotemporal and parietal atrophy, and asymmetrical WMH predominantly affecting frontal mid-zones. We first performed segmentation and localization analyses of WMH present on cadaveric MRI FLAIR images, then selected five different brain regions directly matched to differing severities of WMH for histological analysis. We used immunohistochemistry to assess vascular pathology, degree of spongiosis, neuronal and axonal loss, TDP-43, demyelination and astrogliosis, and microglial burden and morphology. Brain regions with significant WMH displayed severe cortical and white matter pathology, and prominent white matter microglial activation and microglial dystrophy, but only mild axonal loss and minimal vascular pathology. Our study suggests that WMH in GRN mutation carriers are not secondary to vascular pathology. Whilst cortical pathology induced axonal degeneration could contribute to white matter damage, individuals with GRN mutations could develop selective white matter vulnerability and myelin loss due to chronic, regional microglial dysfunction arising from GRN haploinsufficiency.
Collapse
Affiliation(s)
- Ione O C Woollacott
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Martina Bocchetta
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Carole H Sudre
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK.,b Translational Imaging Group, Centre for Medical Image Computing , University College London , London , UK
| | - Basil H Ridha
- c NIHR Queen Square Dementia Biomedical Research Unit , UCL Institute of Neurology , London , UK
| | - Catherine Strand
- d Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Robert Courtney
- d Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Sebastien Ourselin
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK.,b Translational Imaging Group, Centre for Medical Image Computing , University College London , London , UK
| | - M Jorge Cardoso
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK.,b Translational Imaging Group, Centre for Medical Image Computing , University College London , London , UK
| | - Jason D Warren
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Martin N Rossor
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Tamas Revesz
- d Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Nick C Fox
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| | - Janice L Holton
- d Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Tammaryn Lashley
- d Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Jonathan D Rohrer
- a Dementia Research Centre, Department of Neurodegenerative Disease , UCL Institute of Neurology , London , UK
| |
Collapse
|
22
|
Mente K, Edwards NA, Urbano D, Ray-Chaudhury A, Iacono D, Di Lorenzo Alho AT, Lopes Alho EJ, Amaro E, Horovitz SG, Hallett M. Pedunculopontine Nucleus Cholinergic Deficiency in Cervical Dystonia. Mov Disord 2018; 33:827-834. [PMID: 29508906 PMCID: PMC7299544 DOI: 10.1002/mds.27358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The etiology of cervical dystonia is unknown. Cholinergic abnormalities have been identified in dystonia animal models and human imaging studies. Some animal models have cholinergic neuronal loss in the striatum and increased acetylcholinesterase activity in the pedunculopontine nucleus. OBJECTIVES The objective of this study was to determine the presence of cholinergic abnormalities in the putamen and pedunculopontine nucleus in cervical dystonia human brain donors. METHODS Formalin-fixed brain tissues were obtained from 8 cervical dystonia and 7 age-matched control brains (controls). Pedunculopontine nucleus was available in only 6 cervical dystonia and 5 controls. Neurodegeneration was evaluated pathologically in the putamen, pedunculopontine nucleus, and other regions. Cholinergic neurons were detected using choline acetyltransferase immunohistochemistry in the putamen and pedunculopontine nucleus. Putaminal cholinergic neurons were quantified. A total of 6 cervical dystonia patients and 6 age-matched healthy controls underwent diffusion tensor imaging to determine if there were white matter microstructural abnormalities around the pedunculopontine nucleus. RESULTS Decreased or absent choline acetyltransferase staining was identified in all 6 pedunculopontine nucleus samples in cervical dystonia. In contrast, strong choline acetyltransferase staining was present in 4 of 5 pedunculopontine nucleus controls. There were no differences in pedunculopontine nucleus diffusion tensor imaging between cervical dystonia and healthy controls. There was no difference in numbers of putaminal cholinergic neurons between cervical dystonia and controls. CONCLUSIONS Our findings suggest that pedunculopontine nucleus choline acetyltransferase deficiency represents a functional cholinergic deficit in cervical dystonia. Structural lesions and confounding neurodegenerative processes were excluded by absence of neuronal loss, gliosis, diffusion tensor imaging abnormalities, and beta-amyloid, tau, and alpha-synuclein pathologies. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Karin Mente
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Nancy A. Edwards
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Demelio Urbano
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Abhik Ray-Chaudhury
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Diego Iacono
- Neuropathology Core and Brain Tissue Repository, Center for Neuroscience and Regenerative Medicine, Uniform Services University, Bethesda, MD, USA
- Departments of Neurology and Pathology, F. Edward Hébert School of Medicine, Uniformed, Services University, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Research, Bethesda, MD, USA
| | - Ana Tereza Di Lorenzo Alho
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Eduardo Joaquim Lopes Alho
- Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, Divisão de Neurocirurgia Funcional do Instituto de Psiquiatria-HCFMUSP, São Paulo, Brazil
| | - Edson Amaro
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, Brazil
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo, Instituto de Radiologia, São Paulo, Brazil
| | - Silvina G. Horovitz
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Tauopathies represent a spectrum of incurable and progressive age-associated neurodegenerative diseases that currently are diagnosed definitively only at autopsy. Few clinical diagnoses, such as classic Richardson's syndrome of progressive supranuclear palsy, are specific for underlying tauopathy and no clinical syndrome is fully sensitive to reliably identify all forms of clinically manifest tauopathy. Thus, a major unmet need for the development and implementation of tau-targeted therapies is precise antemortem diagnosis. This article reviews new and emerging diagnostic therapies for tauopathies including novel imaging techniques and biomarkers and also reviews recent tau therapeutics. RECENT FINDINGS Building evidence from animal and cell models suggests that prion-like misfolding and propagation of pathogenic tau proteins between brain cells are central to the neurodegenerative process. These rapidly growing developments build rationale and motivation for the development of therapeutics targeting this mechanism through altering phosphorylation and other post-translational modifications of the tau protein, blocking aggregation and spread using small molecular compounds or immunotherapy and reducing or silencing expression of the MAPT tau gene. New clinical criteria, CSF, MRI, and PET biomarkers will aid in identifying tauopathies earlier and more accurately which will aid in selection for new clinical trials which focus on a variety of agents including immunotherapy and gene silencing.
Collapse
Affiliation(s)
- David Coughlin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Frontotemporal Dementia Center (FTDC), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
McMillan CT, Huey ED. Flortaucipir imaging of MAPT: Mutations emphasize challenges for tau-targeted trials. Neurology 2018; 90:495-496. [PMID: 29440565 DOI: 10.1212/wnl.0000000000005112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Corey T McMillan
- From the Department of Neurology (C.T.M.), Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia; and Departments of Psychiatry and Neurology (E.D.H.), Taub Institute for Research on Alzheimer's Disease and Aging, Columbia University, New York, NY.
| | - Edward D Huey
- From the Department of Neurology (C.T.M.), Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia; and Departments of Psychiatry and Neurology (E.D.H.), Taub Institute for Research on Alzheimer's Disease and Aging, Columbia University, New York, NY
| |
Collapse
|
25
|
Sieben A, Van Mossevelde S, Wauters E, Engelborghs S, van der Zee J, Van Langenhove T, Santens P, Praet M, Boon P, Miatton M, Van Hoecke S, Vandenbulcke M, Vandenberghe R, Cras P, Cruts M, De Deyn PP, Van Broeckhoven C, Martin JJ. Extended FTLD pedigree segregating a Belgian GRN-null mutation: neuropathological heterogeneity in one family. ALZHEIMERS RESEARCH & THERAPY 2018; 10:7. [PMID: 29370838 PMCID: PMC6389176 DOI: 10.1186/s13195-017-0334-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this paper, we describe the clinical and neuropathological findings of nine members of the Belgian progranulin gene (GRN) founder family. In this family, the loss-of-function mutation IVS1 + 5G > C was identified in 2006. In 2007, a clinical description of the mutation carriers was published that revealed the clinical heterogeneity among IVS1 + 5G > C carriers. We report our comparison of our data with the published clinical and neuropathological characteristics of other GRN mutations as well as other frontotemporal lobar degeneration (FTLD) syndromes, and we present a review of the literature. METHODS For each case, standardized sampling and staining were performed to identify proteinopathies, cerebrovascular disease, and hippocampal sclerosis. RESULTS The neuropathological substrate in the studied family was compatible in all cases with transactive response DNA-binding protein (TDP) proteinopathy type A, as expected. Additionally, most of the cases presented also with primary age-related tauopathy (PART) or mild Alzheimer's disease (AD) neuropathological changes, and one case had extensive Lewy body pathology. An additional finding was the presence of cerebral small vessel changes in every patient in this family. CONCLUSIONS Our data show not only that the IVS1 + 5G > C mutation has an exclusive association with FTLD-TDP type A proteinopathy but also that other proteinopathies can occur and should be looked for. Because the penetrance rate of the clinical phenotype of carriers of GRN mutations is age-dependent, further research is required to investigate the role of co-occurring age-related pathologies such as AD, PART, and cerebral small vessel disease.
Collapse
Affiliation(s)
- Anne Sieben
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, B-2160, Antwerp, Belgium.,Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Sara Van Mossevelde
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Netwerk Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Eline Wauters
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, B-2160, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Netwerk Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Tim Van Langenhove
- Department of Neurology, Ghent University Hospital, Ghent, Belgium.,Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Patrick Santens
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Sofie Van Hoecke
- Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Mathieu Vandenbulcke
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Old Age Psychiatry and Memory Clinic, University Hospitals Leuven, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Cras
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, B-2160, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Edegem, Belgium
| | - Marc Cruts
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Peter Paul De Deyn
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, B-2160, Antwerp, Belgium.,Department of Neurology and Memory Clinic, Hospital Netwerk Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium.,Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB , Universiteitsplein 1, B-2610, Antwerp, Belgium. .,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.
| | - Jean-Jacques Martin
- Institute Born-Bunge, Neuropathology and Laboratory of Neurochemistry and Behavior, University of Antwerp, Universiteitsplein 1, B-2160, Antwerp, Belgium.
| |
Collapse
|
26
|
Irwin DJ, McMillan CT, Xie SX, Rascovsky K, Van Deerlin VM, Coslett HB, Hamilton R, Aguirre GK, Lee EB, Lee VMY, Trojanowski JQ, Grossman M. Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain 2018; 141:288-301. [PMID: 29228211 PMCID: PMC5837322 DOI: 10.1093/brain/awx319] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/18/2017] [Accepted: 10/14/2017] [Indexed: 12/12/2022] Open
Abstract
Antemortem behavioural and anatomic abnormalities have largely been associated with right hemisphere disease in behavioural-variant frontotemporal dementia, but post-mortem neuropathological examination of bilateral hemispheres remains to be defined. Here we measured the severity of post-mortem pathology in both grey and white matter using a validated digital image analysis method in four cortical regions sampled from each hemisphere in 26 patients with behavioural-variant frontotemporal dementia, including those with frontotemporal degeneration (i.e. tau = 9, TDP-43 = 14, or FUS = 1 proteinopathy) or Alzheimer's pathology (n = 2). We calculated an asymmetry index based on the difference in measured pathology from each left-right sample pair. Analysis of the absolute value of the asymmetry index (i.e. degree of asymmetry independent of direction) revealed asymmetric pathology for both grey and white matter in all four regions sampled in frontototemporal degeneration patients with tau or TDP-43 pathology (P ≤ 0.01). Direct interhemispheric comparisons of regional pathology measurements within-subjects in the combined tauopathy and TDP-43 proteinopathy group found higher pathology in the right orbitofrontal grey matter compared to the left (P < 0.01) and increased pathology in ventrolateral temporal lobe grey matter of the left hemisphere compared to the right (P < 0.02). Preliminary group-wise comparisons between tauopathy and TDP-43 proteinopathy groups found differences in patterns of interhemispheric burden of grey and white matter regional pathology, with greater relative white matter pathology in tauopathies. To test the association of pathology measurement with ante-mortem observations, we performed exploratory analyses in the subset of patients with imaging data (n = 15) and found a direct association for increasing pathologic burden with decreasing cortical thickness in frontotemporal regions on ante-mortem imaging in tauopathy (P = 0.001) and a trend for TDP-43 proteinopathy (P = 0.06). Exploratory clinicopathological correlations demonstrated an association of socially-inappropriate behaviours with asymmetric right orbitofrontal grey matter pathology, and reduced semantically-guided category naming fluency was associated asymmetric white matter pathology in the left ventrolateral temporal region. We conclude that pathologic disease burden is distributed asymmetrically in behavioural-variant frontotemporal dementia, although not universally in the right hemisphere, and this asymmetry contributes to the clinical heterogeneity of the disorder. The basis for this asymmetric profile is enigmatic but may reflect distinct species or strains of tau and TDP-43 pathologies with propensities to spread by distinct cell- and region-specific mechanisms. Patterns of region-specific pathology in the right hemisphere as well as the left hemisphere may play a role in antemortem clinical observations, and these observations may contribute to antemortem identification of molecular pathology in frontotemporal degeneration.
Collapse
Affiliation(s)
- David J Irwin
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M Van Deerlin
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H Branch Coslett
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roy Hamilton
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey K Aguirre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cognitive Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Neuropathology Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Alzheimer’s Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Abstract
Currently, the differential diagnosis between atypical parkinsonisms and classical idiopathic Parkinson's disease can be quite difficult because of the significant overlap of clinical presentation and symptoms. Neurodegenerative conditions, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and frontotemporal dementia (FTD), are primarily characterized by accumulation of tau protein in the brain. Recent imaging developments for tau pathology may provide a promising tool for the assessment of diagnosis, prognosis, and progression of these neurodegenerative disorders. This review will survey PET studies to describe the recent advances in the imaging of tau pathology in PSP, CBD, and FTD.
Collapse
Affiliation(s)
- Mikaeel Valli
- a Research Imaging Centre , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto , Toronto , ON , Canada.,b Division of Brain, Imaging and Behaviour-Systems Neuroscience , Krembil Research Institute, UHN, University of Toronto , Toronto , ON , Canada.,c Institute of Medical Science , University of Toronto , Toronto , ON , Canada
| | - Antonio P Strafella
- a Research Imaging Centre , Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto , Toronto , ON , Canada.,b Division of Brain, Imaging and Behaviour-Systems Neuroscience , Krembil Research Institute, UHN, University of Toronto , Toronto , ON , Canada.,c Institute of Medical Science , University of Toronto , Toronto , ON , Canada.,d Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Neurology Division, Department of Medicine , Toronto Western Hospital, UHN, University of Toronto , Toronto , ON , Canada
| |
Collapse
|
28
|
Coakeley S, Strafella AP. Imaging tau pathology in Parkinsonisms. NPJ Parkinsons Dis 2017; 3:22. [PMID: 28685158 PMCID: PMC5491530 DOI: 10.1038/s41531-017-0023-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/23/2022] Open
Abstract
The recent development of positron emission tomography radiotracers targeting pathological tau in vivo has led to numerous human trials. While investigations have primarily focused on the most common tauopathy, Alzheimer's disease, it is imperative that testing also be performed in parkinsonian tauopathies, such as progressive supranuclear palsy, corticobasal degeneration, and frontotemporal dementia and parkinsonism linked to chromosome 17. Tau aggregates differ in isoforms and conformations across disorders, and as a result one radiotracer may not be appropriate for all tauopathies. In this review, we evaluate the preclinical and clinical reports of current tau radiotracers in parkinsonian disorders. These radiotracers include [18F]FDDNP, [11C]PBB3, [18F]THK-5317, [18F]THK-5351, and [18F]AV-1451 ([18F]T807). There are concerns of off-target binding with [18F]FDDNP and [11C]PBB3, which may increase the signal to noise ratio and thereby decrease the efficacy of these radiotracers. Testing in [18F]THK-5317, [18F]THK-5351, and [18F]AV-1451 has been performed in progressive supranuclear palsy, while [18F]THK-5317 and [18F]AV-1451 have also been tested in corticobasal degeneration patients. [18F]THK-5317 and [18F]THK-5351 have demonstrated binding in brain regions known to be afflicted with pathological tau; however, due to small sample sizes these studies should be replicated before concluding their appropriateness in parkinsonian tauopathies. [18F]AV-1451 has demonstrated mixed results in progressive supranuclear palsy patients and post-mortem analysis shows minimal to no binding to non-Alzheimer's disease tauopathies brain slices.
Collapse
Affiliation(s)
- Sarah Coakeley
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON Canada
| | - Antonio P. Strafella
- Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON Canada
- Division of Brain, Imaging and Behaviour—Systems Neuroscience, Krembil Research Institute, UHN, University of Toronto, Toronto, ON Canada
- Morton and Gloria Shulman Movement Disorder Unit and E.J. Safra Parkinson Disease Program, Neurology Division, Dept. of Medicine, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON Canada
| |
Collapse
|
29
|
Meeter LH, Kaat LD, Rohrer JD, van Swieten JC. Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 2017. [PMID: 28621768 DOI: 10.1038/nrneurol.2017.75] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Frontotemporal dementia (FTD), the second most common type of presenile dementia, is a heterogeneous neurodegenerative disease characterized by progressive behavioural and/or language problems, and includes a range of clinical, genetic and pathological subtypes. The diagnostic process is hampered by this heterogeneity, and correct diagnosis is becoming increasingly important to enable future clinical trials of disease-modifying treatments. Reliable biomarkers will enable us to better discriminate between FTD and other forms of dementia and to predict disease progression in the clinical setting. Given that different underlying pathologies probably require specific pharmacological interventions, robust biomarkers are essential for the selection of patients with specific FTD subtypes. This Review emphasizes the increasing availability and potential applications of structural and functional imaging biomarkers, and cerebrospinal fluid and blood fluid biomarkers in sporadic and genetic FTD. The relevance of new MRI modalities - such as voxel-based morphometry, diffusion tensor imaging and arterial spin labelling - in the early stages of FTD is discussed, together with the ability of these modalities to classify FTD subtypes. We highlight promising new fluid biomarkers for staging and monitoring of FTD, and underline the importance of large, multicentre studies of individuals with presymptomatic FTD. Harmonization in the collection and analysis of data across different centres is crucial for the implementation of new biomarkers in clinical practice, and will become a great challenge in the next few years.
Collapse
Affiliation(s)
- Lieke H Meeter
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands
| | - Laura Donker Kaat
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative diseases, Institute of Neurology, Queen Square, University College London, London WC1N 3BG, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, 's Gravendijkwal 230, 3015 CE Rotterdam, Netherlands.,Department of Clinical Genetics, VU University Medical Center, De Boelelaan 1118, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
30
|
Gordon E, Rohrer JD, Fox NC. Advances in neuroimaging in frontotemporal dementia. J Neurochem 2017; 138 Suppl 1:193-210. [PMID: 27502125 DOI: 10.1111/jnc.13656] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a clinically and neuroanatomically heterogeneous neurodegenerative disorder with multiple underlying genetic and pathological causes. Whilst initial neuroimaging studies highlighted the presence of frontal and temporal lobe atrophy or hypometabolism as the unifying feature in patients with FTD, more detailed studies have revealed diverse patterns across individuals, with variable frontal or temporal predominance, differing degrees of asymmetry, and the involvement of other cortical areas including the insula and cingulate, as well as subcortical structures such as the basal ganglia and thalamus. Recent advances in novel imaging modalities including diffusion tensor imaging, resting-state functional magnetic resonance imaging and molecular positron emission tomography imaging allow the possibility of investigating alterations in structural and functional connectivity and the visualisation of pathological protein deposition. This review will cover the major imaging modalities currently used in research and clinical practice, focusing on the key insights they have provided into FTD, including the onset and evolution of pathological changes and also importantly their utility as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. Validating neuroimaging biomarkers that are able to accomplish these tasks will be crucial for the ultimate goal of powering upcoming clinical trials by correctly stratifying patient enrolment and providing sensitive markers for evaluating the effects and efficacy of disease-modifying therapies. This review describes the key insights provided by research into the major neuroimaging modalities currently used in research and clinical practice, including what they tell us about the onset and evolution of FTD and how they may be used as biomarkers for disease detection and staging, differential diagnosis and measurement of disease progression. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Elizabeth Gordon
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | - Nick C Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| |
Collapse
|
31
|
Canu E, Agosta F, Mandic-Stojmenovic G, Stojković T, Stefanova E, Inuggi A, Imperiale F, Copetti M, Kostic VS, Filippi M. Multiparametric MRI to distinguish early onset Alzheimer's disease and behavioural variant of frontotemporal dementia. NEUROIMAGE-CLINICAL 2017; 15:428-438. [PMID: 28616383 PMCID: PMC5458769 DOI: 10.1016/j.nicl.2017.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
This prospective study explored whether an approach combining structural [cortical thickness and white matter (WM) microstructure] and resting state functional MRI can aid differentiation between 62 early onset Alzheimer's disease (EOAD) and 27 behavioural variant of frontotemporal dementia (bvFTD) patients. Random forest and receiver operator characteristic curve analyses assessed the ability of MRI in classifying the two clinical syndromes. All patients showed a distributed pattern of brain alterations relative to controls. Compared to bvFTD, EOAD patients showed bilateral inferior parietal cortical thinning and decreased default mode network functional connectivity. Compared to EOAD, bvFTD patients showed bilateral orbitofrontal and temporal cortical thinning, and WM damage of the corpus callosum, bilateral uncinate fasciculus, and left superior longitudinal fasciculus. Random forest analysis revealed that left inferior parietal cortical thickness (accuracy 0.78, specificity 0.76, sensitivity 0.83) and WM integrity of the right uncinate fasciculus (accuracy 0.81, specificity 0.96, sensitivity 0.43) were the best predictors of clinical diagnosis. The combination of cortical thickness and DT MRI measures was able to distinguish patients with EOAD and bvFTD with accuracy 0.82, specificity 0.76, and sensitivity 0.96. The diagnostic ability of MRI models was confirmed in a subsample of patients with biomarker-based clinical diagnosis. Multiparametric MRI is useful to identify brain alterations which are specific to EOAD and bvFTD. A severe cortical involvement is suggestive of EOAD, while a prominent WM damage is indicative of bvFTD. Multimodal MRI distinguishes in vivo EOAD and bvFTD patients EOAD and bvFTD show a distributed pattern of structural brain alterations A severe cortical involvement is suggestive of EOAD relative to bvFTD A prominent WM damage is indicative of bvFTD relative to EOAD
Collapse
Key Words
- ACE-R, Addenbrooke's Cognitive Examination-revised
- Behavioural variant of frontotemporal dementia
- CC, corpus callosum
- CSF, cerebrospinal fluid
- Cortical thickness
- DMN, default mode network
- DT, diffusion tensor
- Diagnosis
- EOAD, early onset Alzheimer's disease
- Early onset Alzheimer's disease
- GM, grey matter
- IC, independent component
- ILF, inferior longitudinal fasciculus
- LOAD, late onset Alzheimer's disease
- MNI, Montreal Neurological Institute
- NVI, Normalized Variable Importance
- RS fMRI, resting state functional MRI
- RSN, resting state network
- Resting state functional MRI
- SLF, superior longitudinal fasciculus
- TFCE, threshold-free cluster enhancement
- WM, white matter
- White matter (WM) damage
- bvFTD, behavioural variant frontotemporal dementia
Collapse
Affiliation(s)
- Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Gorana Mandic-Stojmenovic
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Tanja Stojković
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Elka Stefanova
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Alberto Inuggi
- Unit of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genoa, Italy
| | - Francesca Imperiale
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Viale Cappuccini, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Vladimir S Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Dr Subotića 6, PO Box 12, 11129 Belgrade 102, Serbia
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
32
|
Giannini LAA, Irwin DJ, McMillan CT, Ash S, Rascovsky K, Wolk DA, Van Deerlin VM, Lee EB, Trojanowski JQ, Grossman M. Clinical marker for Alzheimer disease pathology in logopenic primary progressive aphasia. Neurology 2017; 88:2276-2284. [PMID: 28515265 DOI: 10.1212/wnl.0000000000004034] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/13/2017] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To determine whether logopenic features of phonologic loop dysfunction reflect Alzheimer disease (AD) neuropathology in primary progressive aphasia (PPA). METHODS We performed a retrospective case-control study of 34 patients with PPA with available autopsy tissue. We compared baseline and longitudinal clinical features in patients with primary AD neuropathology to those with primary non-AD pathologies. We analyzed regional neuroanatomic disease burden in pathology-defined groups using postmortem neuropathologic data. RESULTS A total of 19/34 patients had primary AD pathology and 15/34 had non-AD pathology (13 frontotemporal lobar degeneration, 2 Lewy body disease). A total of 16/19 (84%) patients with AD had a logopenic spectrum phenotype; 5 met published criteria for the logopenic variant (lvPPA), 8 had additional grammatical or semantic deficits (lvPPA+), and 3 had relatively preserved sentence repetition (lvPPA-). Sentence repetition was impaired in 68% of patients with PPA with AD pathology; forward digit span (DF) was impaired in 90%, substantially higher than in non-AD PPA (33%, p < 0.01). Lexical retrieval difficulty was common in all patients with PPA and did not discriminate between groups. Compared to non-AD, PPA with AD pathology had elevated microscopic neurodegenerative pathology in the superior/midtemporal gyrus, angular gyrus, and midfrontal cortex (p < 0.01). Low DF scores correlated with high microscopic pathologic burden in superior/midtemporal and angular gyri (p ≤ 0.03). CONCLUSIONS Phonologic loop dysfunction is a central feature of AD-associated PPA and specifically correlates with temporoparietal neurodegeneration. Quantitative measures of phonologic loop function, combined with modified clinical lvPPA criteria, may help discriminate AD-associated PPA.
Collapse
Affiliation(s)
- Lucia A A Giannini
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Corey T McMillan
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Sharon Ash
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Katya Rascovsky
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - David A Wolk
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Vivianna M Van Deerlin
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Neurology (L.A.A.G.), University Medical Center Groningen, University of Groningen, the Netherlands; Penn Frontotemporal Degeneration Center, Department of Neurology (L.A.A.G., D.J.I., C.T.M., S.A., K.R., M.G.), Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (D.J.I., V.M.V.D., J.Q.T.), Alzheimer's Disease Center (D.A.W.), Department of Neurology, and Translational Pathology Laboratory, Perelman School of Medicine (E.B.L.), University of Pennsylvania, Philadelphia.
| |
Collapse
|
33
|
Spinelli EG, Mandelli ML, Miller ZA, Santos-Santos MA, Wilson SM, Agosta F, Grinberg LT, Huang EJ, Trojanowski JQ, Meyer M, Henry ML, Comi G, Rabinovici G, Rosen HJ, Filippi M, Miller BL, Seeley WW, Gorno-Tempini ML. Typical and atypical pathology in primary progressive aphasia variants. Ann Neurol 2017; 81:430-443. [PMID: 28133816 DOI: 10.1002/ana.24885] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize in vivo signatures of pathological diagnosis in a large cohort of patients with primary progressive aphasia (PPA) variants defined by current diagnostic classification. METHODS Extensive clinical, cognitive, neuroimaging, and neuropathological data were collected from 69 patients with sporadic PPA, divided into 29 semantic (svPPA), 25 nonfluent (nfvPPA), 11 logopenic (lvPPA), and 4 mixed PPA. Patterns of gray matter (GM) and white matter (WM) atrophy at presentation were assessed and tested as predictors of pathological diagnosis using support vector machine (SVM) algorithms. RESULTS A clinical diagnosis of PPA was associated with frontotemporal lobar degeneration (FTLD) with transactive response DNA-binding protein (TDP) inclusions in 40.5%, FTLD-tau in 40.5%, and Alzheimer disease (AD) pathology in 19% of cases. Each variant was associated with 1 typical pathology; 24 of 29 (83%) svPPA showed FTLD-TDP type C, 22 of 25 (88%) nfvPPA showed FTLD-tau, and all 11 lvPPA had AD. Within FTLD-tau, 4R-tau pathology was commonly associated with nfvPPA, whereas Pick disease was observed in a minority of subjects across all variants except for lvPPA. Compared with pathologically typical cases, svPPA-tau showed significant extrapyramidal signs, greater executive impairment, and severe striatal and frontal GM and WM atrophy. nfvPPA-TDP patients lacked general motor symptoms or significant WM atrophy. Combining GM and WM volumes, SVM analysis showed 92.7% accuracy to distinguish FTLD-tau and FTLD-TDP pathologies across variants. INTERPRETATION Each PPA clinical variant is associated with a typical and most frequent cognitive, neuroimaging, and neuropathological profile. Specific clinical and early anatomical features may suggest rare and atypical pathological diagnosis in vivo. Ann Neurol 2017;81:430-443.
Collapse
Affiliation(s)
- Edoardo G Spinelli
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Luisa Mandelli
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Zachary A Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | | | - Stephen M Wilson
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Lea T Grinberg
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Eric J Huang
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Marita Meyer
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Maya L Henry
- Department of Communication Sciences and Disorders, University of Texas, Austin, TX
| | - Giancarlo Comi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Gil Rabinovici
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Howard J Rosen
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | - William W Seeley
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA
| | | |
Collapse
|
34
|
McMillan CT, Boyd C, Gross RG, Weinstein J, Firn K, Toledo JB, Rascovsky K, Shaw L, Wolk DA, Irwin DJ, Lee EB, Trojanowski JQ, Grossman M. Multimodal imaging evidence of pathology-mediated disease distribution in corticobasal syndrome. Neurology 2016; 87:1227-34. [PMID: 27543644 DOI: 10.1212/wnl.0000000000003119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/07/2016] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To use multimodal neuroimaging to evaluate the influence of heterogeneous underlying pathology in corticobasal syndrome (CBS) on the neuroanatomical distribution of disease. METHODS We performed a retrospective evaluation of 35 patients with CBS with T1-weighted MRI, diffusion tensor imaging, and neuropathologic, genetic, or CSF evidence of underlying pathology. Patients were assigned to 2 groups: those with evidence of Alzheimer pathology (CBS-AD) and those without Alzheimer pathology (CBS-non-AD). Group comparisons of CBS-AD and CBS-non-AD assessed clinical features, gray matter (GM) cortical thickness, and white matter (WM) fractional anisotropy. RESULTS CBS-AD was found in 34% (n = 12) and CBS-non-AD in 66% (n = 23) of CBS patients. Clinical evaluations revealed that CBS-non-AD had a higher frequency of asymmetric rigidity compared to CBS-AD, but groups otherwise did not differ in dementia severity, impairments in cognition, or rates of extrapyramidal symptoms. We found frontoparietal GM and WM disease in each group compared to healthy, demographically comparable controls, as well as multimodal neuroimaging evidence of a double dissociation: CBS-non-AD had WM disease in the corpus callosum, corticospinal tract, and superior longitudinal fasciculus relative to CBS-AD, and CBS-AD had reduced temporoparietal GM relative to CBS-non-AD, including the precuneus and posterior cingulate. CONCLUSIONS Patients with CBS have a pathology-mediated dissociation of GM and WM disease. Multimodality neuroimaging may be useful for improving in vivo pathologic diagnosis of CBS.
Collapse
Affiliation(s)
- Corey T McMillan
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Clara Boyd
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Rachel G Gross
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jessica Weinstein
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Kim Firn
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Jon B Toledo
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Katya Rascovsky
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Leslie Shaw
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David A Wolk
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Neurology (C.T.M., C.B., R.G.G., J.W., K.F., K.R., D.A.W., D.J.I., M.G.) and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine (J.B.T., L.S., D.J.I., E.B.L., J.Q.T.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
35
|
Caso F, Agosta F, Volonté MA, Ferraro PM, Tiraboschi P, Copetti M, Valsasina P, Falautano M, Comi G, Falini A, Filippi M. Cognitive impairment in progressive supranuclear palsy-Richardson's syndrome is related to white matter damage. Parkinsonism Relat Disord 2016; 31:65-71. [PMID: 27453032 DOI: 10.1016/j.parkreldis.2016.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/27/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Beside motor symptoms, patients with progressive supranuclear palsy syndrome (PSPs) commonly present cognitive and behavioral disorders. In this study we aimed to assess the structural brain correlates of cognitive impairment in PSPs. METHODS We enrolled 23 patients with probable PSP Richardson's syndrome and 15 matched healthy controls. Patients underwent an extensive clinical and neuropsychological evaluation. Cortical thickness measures and diffusion tensor metrics of white matter tracts were obtained. Random forest analysis was used to identify the strongest MRI predictors of cognitive impairment in PSPs at an individual patient level. RESULTS PSPs patients were in a moderate stage of the disease showing mild cognitive deficits with prominent executive dysfunction. Relative to controls, PSPs patients had a focal, bilateral cortical thinning mainly located in the prefrontal/precentral cortex and temporal pole. PSPs patients also showed a distributed white matter damage involving the main tracts including the superior cerebellar peduncle, corpus callosum, corticospinal tract, and extramotor tracts, such as the inferior fronto-occipital, superior longitudinal and uncinate fasciculi, and cingulum, bilaterally. Regional cortical thinning measures did not relate with cognitive features, while white matter damage showed a significant impact on cognitive impairment (r values ranging from -0.80 to 0.74). CONCLUSIONS PSPs patients show both focal cortical thinning in dorsolateral anterior regions and a distributed white matter damage involving the main motor and extramotor tracts. White matter measures are highly associated with cognitive deficits. Diffusion tensor MRI metrics are likely to be the most sensitive markers of extramotor deficits in PSPs.
Collapse
Affiliation(s)
- Francesca Caso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria Antonietta Volonté
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Tiraboschi
- Division of Neurology V and Neuropathology, IRCCS Foundation, Carlo Besta Neurologic Institute, Milan, Italy
| | - Massimiliano Copetti
- Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, Foggia, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Falautano
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
36
|
Ash S, Ternes K, Bisbing T, Min NE, Moran E, York C, McMillan CT, Irwin DJ, Grossman M. Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease. Neuropsychologia 2016; 89:141-152. [PMID: 27301638 DOI: 10.1016/j.neuropsychologia.2016.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
Abstract
Quantifiers such as many and some are thought to depend in part on the conceptual representation of number knowledge, while object nouns such as cookie and boy appear to depend in part on visual feature knowledge associated with object concepts. Further, number knowledge is associated with a frontal-parietal network while object knowledge is related in part to anterior and ventral portions of the temporal lobe. We examined the cognitive and anatomic basis for the spontaneous speech production of quantifiers and object nouns in non-aphasic patients with focal neurodegenerative disease associated with corticobasal syndrome (CBS, n=33), behavioral variant frontotemporal degeneration (bvFTD, n=54), and semantic variant primary progressive aphasia (svPPA, n=19). We recorded a semi-structured speech sample elicited from patients and healthy seniors (n=27) during description of the Cookie Theft scene. We observed a dissociation: CBS and bvFTD were significantly impaired in the production of quantifiers but not object nouns, while svPPA were significantly impaired in the production of object nouns but not quantifiers. MRI analysis revealed that quantifier production deficits in CBS and bvFTD were associated with disease in a frontal-parietal network important for number knowledge, while impaired production of object nouns in all patient groups was related to disease in inferior temporal regions important for representations of visual feature knowledge of objects. These findings imply that partially dissociable representations in semantic memory may underlie different segments of the lexicon.
Collapse
Affiliation(s)
- Sharon Ash
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Kylie Ternes
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Teagan Bisbing
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Nam Eun Min
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Eileen Moran
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Collin York
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Corey T McMillan
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - David J Irwin
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States; Center for Neurodegenerative Disease Research, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| | - Murray Grossman
- Department of Neurology and the Penn Frontotemporal Degeneration Center, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
37
|
Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 2:86-94. [PMID: 27239539 PMCID: PMC4879654 DOI: 10.1016/j.dadm.2015.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introduction Reliable cerebrospinal fluid (CSF) biomarkers enabling identification of frontotemporal dementia (FTD) and its pathologic subtypes are lacking. Methods Unbiased high-resolution mass spectrometry–based proteomics was applied on CSF of FTD patients with TAR DNA-binding protein 43 (TDP-43, FTD-TDP, n = 12) or tau pathology (FTD-tau, n = 8), and individuals with subjective memory complaints (SMC, n = 10). Validation was performed by applying enzyme-linked immunosorbent assay (ELISA) or enzymatic assays, when available, in a larger cohort (FTLD-TDP, n = 21, FTLD-tau, n = 10, SMC, n = 23) and in Alzheimer's disease (n = 20), dementia with Lewy bodies (DLB, n = 20), and vascular dementia (VaD, n = 18). Results Of 1914 identified CSF proteins, 56 proteins were differentially regulated (fold change >1.2, P < .05) between the different patient groups: either between the two pathologic subtypes (10 proteins), or between at least one of these FTD subtypes and SMC (47 proteins). We confirmed the differential expression of YKL-40 by ELISA in a partly independent cohort. Furthermore, enzyme activity of catalase was decreased in FTD subtypes compared with SMC. Further validation in a larger cohort showed that the level of YKL-40 was twofold increased in both FTD pathologic subtypes compared with SMC and that the levels in FTLD-tau were higher compared to Alzheimer's dementia (AD), DLB, and VaD patients. Clinical validation furthermore showed that the catalase enzyme activity was decreased in the FTD subtypes compared to SMC, AD and DLB. Discussion We identified promising CSF biomarkers for both FTD differential diagnosis and pathologic subtyping. YKL-40 and catalase enzyme activity should be validated further in similar pathology defined patient cohorts for their use for FTD diagnosis or treatment development.
Collapse
|
38
|
Irwin DJ, Brettschneider J, McMillan CT, Cooper F, Olm C, Arnold SE, Van Deerlin VM, Seeley WW, Miller BL, Lee EB, Lee VMY, Grossman M, Trojanowski JQ. Deep clinical and neuropathological phenotyping of Pick disease. Ann Neurol 2015; 79:272-87. [PMID: 26583316 DOI: 10.1002/ana.24559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize sequential patterns of regional neuropathology and clinical symptoms in a well-characterized cohort of 21 patients with autopsy-confirmed Pick disease. METHODS Detailed neuropathological examination using 70μm and traditional 6μm sections was performed using thioflavin-S staining and immunohistochemistry for phosphorylated tau, 3R and 4R tau isoforms, ubiquitin, and C-terminally truncated tau. Patterns of regional tau deposition were correlated with clinical data. In a subset of cases (n = 5), converging evidence was obtained using antemortem neuroimaging measures of gray and white matter integrity. RESULTS Four sequential patterns of pathological tau deposition were identified starting in frontotemporal limbic/paralimbic and neocortical regions (phase I). Sequential involvement was seen in subcortical structures, including basal ganglia, locus coeruleus, and raphe nuclei (phase II), followed by primary motor cortex and precerebellar nuclei (phase III) and finally visual cortex in the most severe (phase IV) cases. Behavioral variant frontotemporal dementia was the predominant clinical phenotype (18 of 21), but all patients eventually developed a social comportment disorder. Pathological tau phases reflected the evolution of clinical symptoms and degeneration on serial antemortem neuroimaging, directly correlated with disease duration and inversely correlated with brain weight at autopsy. The majority of neuronal and glial tau inclusions were 3R tau-positive and 4R tau-negative in sporadic cases. There was a relative abundance of mature tau pathology markers in frontotemporal limbic/paralimbic regions compared to neocortical regions. INTERPRETATION Pick disease tau neuropathology may originate in limbic/paralimbic cortices. The patterns of tau pathology observed here provide novel insights into the natural history and biology of tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- David J Irwin
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Corey T McMillan
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Felicia Cooper
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher Olm
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Steven E Arnold
- Brain-Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Filippi M, Agosta F, Ferraro PM. Charting Frontotemporal Dementia: From Genes to Networks. J Neuroimaging 2015; 26:16-27. [PMID: 26617288 DOI: 10.1111/jon.12316] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) is a genetically and clinically heterogeneous syndrome that is characterized by overlapping clinical symptoms involving behavior, personality, language and/or motor functions and degeneration of the frontal and temporal lobes. The term frontotemporal lobar degeneration (FTLD) is used to describe the proteinopathies associated with clinical FTD. Emerging evidence from network-based neuroimaging studies, such as resting state functional MRI and diffusion tensor MRI studies, have implicated specific large-scale brain networks in the pathogenesis of FTD syndromes, suggesting a new paradigm for explaining the distributed and heterogeneous spreading patterns of pathological proteins in FTLD. In this review, we overview recent research on the study of FTD syndromes as connectivity disorders in symptomatic patients as well as genotype-specific changes in asymptomatic FTD-related gene mutation carriers. Characterizing brain network breakdown in these subjects using neuroimaging may help anticipate the diagnosis and perhaps prevent the devastating impact of FTD.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Pilar M Ferraro
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
40
|
Li YQ, Tan MS, Yu JT, Tan L. Frontotemporal Lobar Degeneration: Mechanisms and Therapeutic Strategies. Mol Neurobiol 2015; 53:6091-6105. [PMID: 26537902 DOI: 10.1007/s12035-015-9507-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is characterized by progressive deterioration of frontal and anterior temporal lobes of the brain and often exhibits frontotemporal dementia (FTD) on clinic, in <65-year-old patients at the time of diagnosis. Interdisciplinary approaches combining genetics, molecular and cell biology, and laboratory animal science have revealed some of its potential molecular mechanisms. Although there is still no effective treatment to delay, prevent, and reverse the progression of FTD, emergence of agents targeting molecular mechanisms has been beginning to promote potential pharmaceutical development. Our review summarizes the latest new findings of FTLD and challenges in FTLD therapy.
Collapse
Affiliation(s)
- Ya-Qing Li
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
Benussi A, Padovani A, Borroni B. Phenotypic Heterogeneity of Monogenic Frontotemporal Dementia. Front Aging Neurosci 2015; 7:171. [PMID: 26388768 PMCID: PMC4555036 DOI: 10.3389/fnagi.2015.00171] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a genetically and pathologically heterogeneous disorder characterized by personality changes, language impairment, and deficits of executive functions associated with frontal and temporal lobe degeneration. Different phenotypes have been defined on the basis of presenting clinical symptoms, i.e., the behavioral variant of FTD, the agrammatic variant of primary progressive aphasia, and the semantic variant of PPA. Some patients have an associated movement disorder, either parkinsonism, as in progressive supranuclear palsy and corticobasal syndrome, or motor neuron disease (FTD-MND). A family history of dementia is found in 40% of cases of FTD and about 10% have a clear autosomal-dominant inheritance. Genetic studies have identified several genes associated with monogenic FTD: microtubule-associated protein tau, progranulin, TAR DNA-binding protein 43, valosin-containing protein, charged multivesicular body protein 2B, fused in sarcoma, and the hexanucleotide repeat expansion in intron 1 of the chromosome 9 open reading frame 72. Patients often present with an extensive phenotypic variability, even among different members of the same kindred carrying an identical disease mutation. The objective of the present work is to review and evaluate available literature data in order to highlight recent advances in clinical, biological, and neuroimaging features of monogenic frontotemporal lobar degeneration and try to identify different mechanisms underlying the extreme phenotypic heterogeneity that characterizes this disease.
Collapse
Affiliation(s)
- Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
42
|
Downey LE, Mahoney CJ, Buckley AH, Golden HL, Henley SM, Schmitz N, Schott JM, Simpson IJ, Ourselin S, Fox NC, Crutch SJ, Warren JD. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration. NEUROIMAGE-CLINICAL 2015; 8:640-51. [PMID: 26236629 PMCID: PMC4513187 DOI: 10.1016/j.nicl.2015.06.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/03/2015] [Accepted: 06/14/2015] [Indexed: 11/29/2022]
Abstract
Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries. Social cognition deficits define frontotemporal dementias but are poorly understood. We studied brain network correlates of sarcasm processing in these dementias with DTI. Sarcasm deficits were particularly linked to right frontotemporal tract changes. DTI generates functionally relevant metrics of white matter damage in these dementias.
Collapse
Affiliation(s)
- Laura E Downey
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Colin J Mahoney
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Aisling H Buckley
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Hannah L Golden
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Susie M Henley
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Nicole Schmitz
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jonathan M Schott
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Ivor J Simpson
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK ; Centre for Medical Image Computing, University College London, London, UK
| | - Sebastien Ourselin
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK ; Centre for Medical Image Computing, University College London, London, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| |
Collapse
|
43
|
Bisbing TA, Olm CA, McMillan CT, Rascovsky K, Baehr L, Ternes K, Irwin DJ, Clark R, Grossman M. Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases. Front Hum Neurosci 2015; 9:317. [PMID: 26089786 PMCID: PMC4454843 DOI: 10.3389/fnhum.2015.00317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
We often estimate an unknown value based on available relevant information, a process known as cognitive estimation. In this study, we assess the cognitive and neuroanatomic basis for quantitative estimation by examining deficits in patients with focal neurodegenerative disease in frontal and parietal cortex. Executive function and number knowledge are key components in cognitive estimation. Prefrontal cortex has been implicated in multilevel reasoning and planning processes, and parietal cortex has been associated with number knowledge required for such estimations. We administered the Biber cognitive estimation test (BCET) to assess cognitive estimation in 22 patients with prefrontal disease due to behavioral variant frontotemporal dementia (bvFTD), to 17 patients with parietal disease due to corticobasal syndrome (CBS) or posterior cortical atrophy (PCA) and 11 patients with mild cognitive impairment (MCI). Both bvFTD and CBS/PCA patients had significantly more difficulty with cognitive estimation than controls. MCI were not impaired on BCET relative to controls. Regression analyses related BCET performance to gray matter atrophy in right lateral prefrontal and orbital frontal cortices in bvFTD, and to atrophy in right inferior parietal cortex, right insula, and fusiform cortices in CBS/PCA. These results are consistent with the hypothesis that a frontal-parietal network plays a crucial role in cognitive estimation.
Collapse
Affiliation(s)
- Teagan A Bisbing
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Christopher A Olm
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Corey T McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Katya Rascovsky
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Laura Baehr
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Kylie Ternes
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| | - Robin Clark
- Department of Linguistics, University of Pennsylvania, Philadelphia, PA USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
44
|
Massimo L, Zee J, Xie SX, McMillan CT, Rascovsky K, Irwin DJ, Kolanowski A, Grossman M. Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. Neurology 2015; 84:2070-5. [PMID: 25904687 DOI: 10.1212/wnl.0000000000001595] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/11/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To examine the influence of occupational attainment and education on survival in autopsy-confirmed cases of frontotemporal lobar degeneration (FTLD) and Alzheimer disease (AD). METHODS We performed a retrospective chart review of 83 demographically matched, autopsy-confirmed FTLD (n = 34) and AD (n = 49) cases. Each patient's primary occupation was classified and ranked. Level of education was recorded in years. Survival was defined as time from symptom onset until death. Linear regression was used to test for associations among occupational attainment, education, and patient survival. RESULTS Median survival was 81 months for FTLD and 95 months for AD. Years of education and occupational attainment were similar for both groups. We found that higher occupational attainment was associated with longer survival in FTLD but not AD. CONCLUSIONS Our findings suggest that higher occupational attainment is associated with longer survival in autopsy-confirmed FTLD. The identification of protective factors associated with FTLD survival has important implications for estimates of prognosis and longitudinal studies such as treatment trials.
Collapse
Affiliation(s)
- Lauren Massimo
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA.
| | - Jarcy Zee
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - Sharon X Xie
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - Corey T McMillan
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - Katya Rascovsky
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - David J Irwin
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - Ann Kolanowski
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| | - Murray Grossman
- From the Frontotemporal Degeneration Center, Department of Neurology (L.M., C.T.M., K.R., D.J.I., M.G.), and Department of Biostatistics and Epidemiology (J.Z., S.X.X.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and The Pennsylvania State University (L.M., A.K.), College of Nursing, University Park, PA
| |
Collapse
|
45
|
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VMY, Trojanowski JQ. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 2015; 129:469-91. [PMID: 25549971 PMCID: PMC4369168 DOI: 10.1007/s00401-014-1380-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
Collapse
Affiliation(s)
- David J Irwin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nigel J. Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
46
|
Agosta F, Galantucci S, Magnani G, Marcone A, Martinelli D, Antonietta Volontè M, Riva N, Iannaccone S, Ferraro PM, Caso F, Chiò A, Comi G, Falini A, Filippi M. MRI signatures of the frontotemporal lobar degeneration continuum. Hum Brain Mapp 2015; 36:2602-14. [PMID: 25821176 DOI: 10.1002/hbm.22794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 02/16/2015] [Accepted: 03/11/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To identify overlapping and unique grey (GM) and white matter (WM) signatures within the frontotemporal lobar degeneration (FTLD) continuum, and discriminate likely FTLD-TAU and FTLD-TDP patients using structural and diffusion tensor (DT) magnetic resonance imaging (MRI). METHODS T1-weighted and DT MRI were collected from 121 subjects: 35 motor neuron disease (MND), 14 behavioral variant of frontotemporal dementia, 12 semantic and 11 nonfluent primary progressive aphasia, 21 progressive supranuclear palsy syndrome patients, and 28 healthy controls. Patterns of GM atrophy were established using voxel-based morphometry. Tract-based spatial statistics was used to perform a WM voxelwise analysis of mean diffusivity and fractional anisotropy. RESULTS In all clinical FTLD phenotypes, the pattern of WM damage was more distributed than that of GM atrophy. All patient groups, with the exception of MND cases with a pure motor syndrome, shared a focal GM atrophy centered around the dorsolateral and medial frontal cortex and a largely overlapping pattern of WM damage involving the genu and body of the corpus callosum and ventral frontotemporal and dorsal frontoparietal WM pathways. Surrounding this common area, phenotype (symptom)-specific GM and WM regions of damage were found in each group. CONCLUSIONS In the FTLD spectrum, WM disruption is more severe than GM damage. Frontal cortex and WM pathways represent the common target of neurodegeneration in these conditions. The topographic pattern of damage supports a "prion-like" protein propagation through WM connections as underlying mechanism of the stereotyped progression of FTLD.
Collapse
Affiliation(s)
| | | | - Giuseppe Magnani
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Alessandra Marcone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Nilo Riva
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Sandro Iannaccone
- Department of Clinical Neurosciences, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Adriano Chiò
- Department of Neuroscience, ALS Center, "Rita Levi Montalcini" University of Torino, Torino, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| | - Andrea Falini
- Department of Neuroradiology and CERMAC, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience
| |
Collapse
|
47
|
White matter disease contributes to apathy and disinhibition in behavioral variant frontotemporal dementia. Cogn Behav Neurol 2015; 27:206-14. [PMID: 25539040 DOI: 10.1097/wnn.0000000000000044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To relate changes in fractional anisotropy associated with behavioral variant frontotemporal dementia to measures of apathy and disinhibition. BACKGROUND Apathy and disinhibition are the 2 most common behavioral features of behavioral variant frontotemporal dementia, and these symptoms are associated with accelerated patient decline and caregiver stress. However, little is known about how white matter disease contributes to these symptoms. METHODS We collected neuropsychiatric data, volumetric magnetic resonance imaging, and diffusion-weighted imaging in 11 patients who met published criteria for behavioral variant frontotemporal dementia and had an autopsy-validated cerebrospinal fluid profile consistent with frontotemporal lobar degeneration. We also collected imaging data on 34 healthy seniors for analyses defining regions of disease in the patients. We calculated and analyzed fractional anisotropy with a white matter tract-specific method. This approach uses anatomically guided data reduction to increase sensitivity, and localizes results within canonically defined tracts. We used nonparametric, cluster-based statistical analysis to relate fractional anisotropy to neuropsychiatric measures of apathy and disinhibition. RESULTS The patients with behavioral variant frontotemporal dementia had widespread reductions in fractional anisotropy in anterior portions of frontal and temporal white matter, compared to the controls. Fractional anisotropy correlated with apathy in the left uncinate fasciculus and with disinhibition in the right corona radiata. CONCLUSIONS In patients with behavioral variant frontotemporal dementia, apathy and disinhibition are associated with distinct regions of white matter disease. The implicated fiber tracts likely support frontotemporal networks that are involved in goal-directed behavior.
Collapse
|
48
|
Whitwell JL, Duffy JR, Strand EA, Machulda MM, Senjem ML, Schwarz CG, Reid R, Baker MC, Perkerson RB, Lowe VJ, Rademakers R, Jack CR, Josephs KA. Clinical and neuroimaging biomarkers of amyloid-negative logopenic primary progressive aphasia. BRAIN AND LANGUAGE 2015; 142:45-53. [PMID: 25658633 PMCID: PMC4380294 DOI: 10.1016/j.bandl.2015.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/01/2023]
Abstract
Logopenic primary progressive aphasia (lvPPA) is a progressive language disorder characterized by anomia, difficulty repeating complex sentences, and phonological errors. The majority, although not all, lvPPA patients have underlying Alzheimer's disease. We aimed to determine whether clinical or neuroimaging features differ according to the deposition of Aβ on Pittsburgh-compound B PET in lvPPA. Clinical features, patterns of atrophy on MRI, hypometabolism on FDG-PET, and white matter tract degeneration were compared between six PiB-negative and 20 PiB-positive lvPPA patients. PiB-negative patients showed more asymmetric left-sided patterns of atrophy, hypometabolism and white matter tract degeneration, with greater left anteromedial temporal and medial prefrontal involvement, than PiB-positive patients. PiB-positive patients showed greater involvement of right temporoparietal and frontal lobes. There was very little evidence for clinical differences between the groups. Strikingly asymmetric neuroimaging findings with relatively preserved right hemisphere may provide clues that AD pathology is absent in lvPPA.
Collapse
Affiliation(s)
| | - Joseph R Duffy
- Department of Neurology (Division of Speech Pathology), Mayo Clinic, Rochester, MN, United States
| | - Edythe A Strand
- Department of Neurology (Division of Speech Pathology), Mayo Clinic, Rochester, MN, United States
| | - Mary M Machulda
- Department of Psychiatry and Psychology (Neuropsychology), Mayo Clinic, Rochester, MN, United States
| | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, United States; Department of Information Technology, Mayo Clinic, Rochester, MN, United States
| | | | - Robert Reid
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Keith A Josephs
- Department of Neurology (Division of Behavioral Neurology), Mayo Clinic, Rochester, MN, United states
| |
Collapse
|
49
|
Agosta F, Ferraro PM, Canu E, Copetti M, Galantucci S, Magnani G, Marcone A, Valsasina P, Sodero A, Comi G, Falini A, Filippi M. Differentiation between Subtypes of Primary Progressive Aphasia by Using Cortical Thickness and Diffusion-Tensor MR Imaging Measures. Radiology 2015; 276:219-27. [PMID: 25734554 DOI: 10.1148/radiol.15141869] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To test a multimodal magnetic resonance (MR) imaging-based approach composed of cortical thickness and white matter (WM) damage metrics to discriminate between variants of primary progressive aphasia (PPA) that are nonfluent and/or agrammatic (NFVPPA) and semantic (SVPPA). MATERIALS AND METHODS This study was approved by the local ethics committees on human studies, and written informed consent from all patients was obtained before their enrollment. T1-weighted and diffusion-tensor (DT) MR images were obtained from 13 NFVPPA patients, 13 SVPPA patients, and 23 healthy control participants. Cortical thickness and DT MR imaging indices from the long-associative and interhemispheric WM tracts were obtained. A random forest (RF) analysis was used to identify the image features associated with each clinical syndrome. Individual patient classification was performed by using receiver operator characteristic curve analysis with cortical thickness, DT MR imaging, and a combination of the two modalities. RESULTS RF analysis showed that the best markers to differentiate the two PPA variants at an individual patient level among cortical thickness and DT MR imaging metrics were diffusivity abnormalities of the left inferior longitudinal and uncinate fasciculi and cortical thickness measures of the left temporal pole and inferior frontal gyrus. A combination of cortical thickness and DT MR imaging measures (the so-called gray-matter-and-WM model) was able to distinguish patients with NFVPPA and SVPPA with the following classification pattern: area under the curve, 0.91; accuracy, 0.89; sensitivity, 0.92; specificity, 0.85. Leave-one-out analysis demonstrated that the gray matter and WM model is more robust than the single MR modality models to distinguish PPA variants (accuracy was 0.86, 0.73, and 0.68 for the gray matter and WM model, the gray matter-only model, and the WM-only model, respectively). CONCLUSION A combination of structural and DT MR imaging metrics may provide a quantitative procedure to distinguish NFVPPA and SVPPA patients at an individual patient level. The discrimination accuracies obtained suggest that the gray matter and WM model is potentially relevant for the differential diagnosis of the PPA variants in clinical practice.
Collapse
Affiliation(s)
- Federica Agosta
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Pilar M Ferraro
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Elisa Canu
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Massimiliano Copetti
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Sebastiano Galantucci
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Giuseppe Magnani
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Alessandra Marcone
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Paola Valsasina
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Alessandro Sodero
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Giancarlo Comi
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Andrea Falini
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit (F.A., P.M.F., E.C., S.G., P.V., A.S., M.F.), Department of Neurology, Institute of Experimental Neurology (G.M., G.C., M.F.), Department of Clinical Neurosciences (A.M.), and Department of Neuroradiology and CERMAC, Division of Neuroscience (A.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy; and Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy (M.C.)
| |
Collapse
|
50
|
Avants BB, Duda JT, Kilroy E, Krasileva K, Jann K, Kandel BT, Tustison NJ, Yan L, Jog M, Smith R, Wang Y, Dapretto M, Wang DJJ. The pediatric template of brain perfusion. Sci Data 2015; 2:150003. [PMID: 25977810 PMCID: PMC4413243 DOI: 10.1038/sdata.2015.3] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) captures the dynamics of brain development with multiple modalities that quantify both structure and function. These measurements may yield valuable insights into the neural patterns that mark healthy maturation or that identify early risk for psychiatric disorder. The Pediatric Template of Brain Perfusion (PTBP) is a free and public neuroimaging resource that will help accelerate the understanding of childhood brain development as seen through the lens of multiple modality neuroimaging and in relation to cognitive and environmental factors. The PTBP uses cross-sectional and longitudinal MRI to quantify cortex, white matter, resting state functional connectivity and brain perfusion, as measured by Arterial Spin Labeling (ASL), in 120 children 7-18 years of age. We describe the PTBP and show, as a demonstration of validity, that global summary measurements capture the trajectories that demarcate critical turning points in brain maturation. This novel resource will allow a more detailed understanding of the network-level, structural and functional landmarks that are obtained during normal adolescent brain development.
Collapse
Affiliation(s)
- Brian B Avants
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jeffrey T Duda
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily Kilroy
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Kate Krasileva
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Kay Jann
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Benjamin T Kandel
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas J Tustison
- Department of Radiology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Lirong Yan
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Mayank Jog
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Robert Smith
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Yi Wang
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Mirella Dapretto
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| | - Danny J J Wang
- Department of Neurology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|