1
|
Feleus S, Skotnicki LEM, Roos RAC, de Bot ST. Medication Use and Treatment Indications in Huntington's Disease; Analyses from a Large Cohort. Mov Disord Clin Pract 2024; 11:1530-1541. [PMID: 39431460 DOI: 10.1002/mdc3.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Huntington's Disease is a rare neurodegenerative disorder in which appropriate medication management is essential. While many medications are prescribed based on expert knowledge, overviews of actual medication use in HD are sparse. OBJECTIVES We provide a detailed overview of medication use and associated indications across HD disease stages, considering sex and regional differences. METHODS Data from the largest observational HD study, ENROLL-HD, were used. We created HD-related medication and indication classes to identify medication trends in manifest, premanifest and control subjects. We studied medication use in adult, childhood- and adolescent-onset HD, incorporating disease stage (including phenoconverters), sex and regional differences. RESULTS In 8546 manifest HD patients, 84.6% used medication (any type), with the average number of medications per user rising from 2.5 in premanifest HD to 5.2 in end stage disease. Antipsychotics (29.2%), SSRIs (27.5%) and painkillers (21.8%) were most often used. Medication use varied with disease progression. Several differences were observed between the sexes, and notably between Europe and Northern America as well. Medication use increased after phenoconversion (from 64.8% to 70.6%, P < 0.05), with the largest difference in antipsychotic use (4.4%-7.8%, P < 0.05). Medication patterns were different in childhood-onset HD, with no use of painkillers, less use of anti-chorea and antidepressant drugs, and more for aggression and irritability. CONCLUSIONS Medication use in HD increases with disease progression, with varying types of medications prescribed based on disease stage, sex, and region of living. Recognizing these medication trends is vital for further personalized HD management.
Collapse
Affiliation(s)
- Stephanie Feleus
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lara E M Skotnicki
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Khalil I, Sayad R, Kedwany AM, Sayed HH, Caprara ALF, Rissardo JP. Cardiovascular dysautonomia and cognitive impairment in Parkinson's disease (Review). MEDICINE INTERNATIONAL 2024; 4:70. [PMID: 39355336 PMCID: PMC11443310 DOI: 10.3892/mi.2024.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), which can result in significant disability and distress for patients and caregivers. There is a marked variation in the timing, characteristics and rate at which cognitive decline occurs in patients with PD. This decline can vary from normal cognition to mild cognitive impairment and dementia. Cognitive impairment is associated with several pathophysiological mechanisms, including the accumulation of β-amyloid and tau in the brain, oxidative stress and neuroinflammation. Cardiovascular autonomic dysfunctions are commonly observed in patients with PD. These dysfunctions play a role in the progression of cognitive impairment, the incidents of falls and even in mortality. The majority of symptoms of dysautonomia arise from changes in the peripheral autonomic nervous system, including both the sympathetic and parasympathetic nervous systems. Cardiovascular changes, including orthostatic hypotension, supine hypertension and abnormal nocturnal blood pressure (BP), can occur in both the early and advanced stages of PD. These changes tend to increase as the disease advances. The present review aimed to describe the cognitive changes in the setting of cardiovascular dysautonomia and to discuss strategies through which these changes can be modified and managed. It is a multifactorial process usually involving decreased blood flow to the brain, resulting in the development of cerebral ischemic lesions, an increased presence of abnormal white matter signals in the brain, and a potential influence on the process of neurodegeneration in PD. Another possible explanation is this association being independent observations of PD progression. Patients with clinical symptoms of dysautonomia should undergo 24-h ambulatory BP monitoring, as they are frequently subtle and underdiagnosed.
Collapse
Affiliation(s)
- Ibrahim Khalil
- Faculty of Medicine, Alexandria University, Alexandria 5372066, Egypt
| | - Reem Sayad
- Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | | | - Hager Hamdy Sayed
- Department of Nuclear Medicine, Assuit University, Assuit 71515, Egypt
| | | | | |
Collapse
|
3
|
Kalbe E, Folkerts AK, Witt K, Buhmann C, Liepelt-Scarfone I. German Society of Neurology guidelines for the diagnosis and treatment of cognitive impairment and affective disorders in people with Parkinson's disease: new spotlights on diagnostic procedures and non-pharmacological interventions. J Neurol 2024; 271:7330-7357. [PMID: 39120709 PMCID: PMC11561078 DOI: 10.1007/s00415-024-12503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Cognitive impairment and dementia as well as affective disorders are common and debilitating syndromes that develop in people with Parkinson's disease (PwPD). The authors summarized recommendations for the 2023 updated German guidelines on "Parkinson's disease" from the German Neurological Society (DGN), focusing on the diagnosis and treatment of these disorders. METHODS The recommendations were based on literature reviews, other relevant guidelines, and expert opinions. RESULTS Measurements to assess cognitive and affective states were reviewed for psychometric properties, use in routine clinical practice, and availability in German. To improve mild cognitive impairment, cognitive training and physical aerobic training are recommended. To treat Parkinson's disease (PD)-related dementia, cognitive stimulation (as a non-pharmacological intervention) and acetylcholinesterase inhibitors (AChEIs, i.e., rivastigmine) are recommended. Cognitive behavioral therapy is recommended to treat depression, anxiety, and fear of progression. Physical interventions are recommended to treat depression, fatigue, and apathy. Optimized dopaminergic treatment is the first-line pharmacological strategy recommended to manage depression, apathy, anhedonia, fatigue, and mood swings. Major depression can be additionally treated using venlafaxine or desipramine, while moderate depression can be treated pharmacologically according to its clinical phenotype (psychomotor retardation or agitation) and comorbidities (e.g., sleep disturbances, pain). Venlafaxine and nortriptyline can be used to treat anhedonia, while citalopram can be used for anxiety. CONCLUSIONS In addition to the updated pharmacological treatment options, new insights into recommendations for standardized diagnostics and non-pharmacological interventions were provided for the German health care system. However, more studies are needed to explore the full potential of non-pharmacological interventions to treat and prevent cognitive impairment and affective disorders.
Collapse
Affiliation(s)
- Elke Kalbe
- Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Ann-Kristin Folkerts
- Medical Psychology | Neuropsychology and Gender Studies & Center for Neuropsychological Diagnostics and Intervention (CeNDI), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Science, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
- Research Center of Neurosensory Science, Carl Von Ossietzky University of Oldenburg, Oldenburg, Germany
- Department of Neurology, Evangelical Hospital, Oldenburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Clinic Eppendorf, Hamburg, Germany
| | - Inga Liepelt-Scarfone
- Hertie Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- IB-Hochschule, Stuttgart, Germany
| |
Collapse
|
4
|
Yang B, Zhu Y, Li K, Wang F, Liu B, Zhou Q, Tai Y, Liu Z, Yang L, Ba R, Lei C, Ren H, Xu Z, Pang A, Yang X. Machine learning model base on metabolomics and proteomics to predict cognitive impairment in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:187. [PMID: 39394257 PMCID: PMC11470017 DOI: 10.1038/s41531-024-00795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
There is an urgent need to identify predictive biomarkers of Parkinson's disease (PD) with cognitive impairment (PDCI) in order to individualize patient management, ensure timely intervention, and improve prognosis. The aim of this study was to screen for these biomarkers by comparing the plasma proteome and metabolome of PD patients with or without cognitive impairment. Proteomics and metabolomics analyses were performed on a discover cohort. A machine learning model was used to identify candidate protein and metabolite biomarkers of PDCI, which were validated in an independent cohort. The predictive ability of these biomarkers for PDCI was evaluated by plotting receiver operating characteristic curves and calculating the area under the curve (AUC). Moreover, we assessed the predictive ability of these proteins in combination with neuroimaging. In the discover cohort (n = 100), we identified 25 protein features with best results in the machine learning model, including top-ranked PSAP and H3C15. The two-proteins were used for model construction, achieving an Area under the curve (AUC) of 0.951 in the train set and AUC of 0.981 in the test set. Similarly, the model gives a rank list of endogenous metabolite features, Glycocholic Acid and 6-Methylnicotinamide were two top features. Combining these two markers further got the AUC of 0.969 in train set and 0.867 in the test set. To validate the performance of the protein biomarkers, we performed targeted analysis of selected proteins (H3C15 and PSAP) and proteins likely associated with PDCI (NCAM2 and LAMB2) using parallel reaction monitoring in validation cohort (n = 116). The AUC of the classifier built with H3C15 and PSAP is 0.813. Moreover, when combining H3C15, PSAP, NCAM2, and LAMB2, the model achieved AUC of 0.983 in the train set, AUC of 0.981 in the test set, and AUC of 0.839 in the validation set. Furthermore, we verified that these protein markers we discovered can improve the predictive effect of neuroimaging on PDCI: the classifier built with neuroimaging features had AUC of 0.833, which improved to 0.905 when combined with H3C15. Taken together, our integrated proteomics and metabolomics analysis successfully identified potential biomarkers for PDCI. Additionally, H3C15 showed promise in enhancing the predictive performance of neuroimaging for cognitive impairment.
Collapse
Affiliation(s)
- Baiyuan Yang
- Department of Neurology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan Province, China
| | - Yongyun Zhu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kelu Li
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fang Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bin Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qian Zhou
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuchao Tai
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhaochao Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Yang
- Department of Neurology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Ruiqiong Ba
- Department of Neurology, Qujing City First People's Hospital, Qujing, Yunnan Province, China
| | - Chunyan Lei
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Ren
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhong Xu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Ailan Pang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xinglong Yang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
5
|
Haikal C, Winston GM, Kaplitt MG. Cognitive dysfunction in animal models of human lewy-body dementia. Front Aging Neurosci 2024; 16:1369733. [PMID: 39104707 PMCID: PMC11298446 DOI: 10.3389/fnagi.2024.1369733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Cognitive impairments are a common feature of synucleinopathies such as Parkinson's Disease Dementia and Dementia with Lewy Bodies. These pathologies are characterized by accumulation of Lewy bodies and Lewy neurites as well as neuronal cell death. Alpha-synuclein is the main proteinaceous component of Lewy bodies and Lewy neurites. To model these pathologies in vivo, toxins that selectively target certain neuronal populations or different means of inducing alpha-synuclein aggregation can be used. Alpha-synuclein accumulation can be induced by genetic manipulation, viral vector overexpression or the use of preformed fibrils of alpha-synuclein. In this review, we summarize the cognitive impairments associated with different models of synucleinopathies and relevance to observations in human diseases.
Collapse
Affiliation(s)
- Caroline Haikal
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Graham M. Winston
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| | - Michael G. Kaplitt
- Weill Cornell Medicine, Department of Neurological Surgery, New York, NY, United States
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
6
|
Wyman-Chick KA, Chaudhury P, Bayram E, Abdelnour C, Matar E, Chiu SY, Ferreira D, Hamilton CA, Donaghy PC, Rodriguez-Porcel F, Toledo JB, Habich A, Barrett MJ, Patel B, Jaramillo-Jimenez A, Scott GD, Kane JPM. Differentiating Prodromal Dementia with Lewy Bodies from Prodromal Alzheimer's Disease: A Pragmatic Review for Clinicians. Neurol Ther 2024; 13:885-906. [PMID: 38720013 PMCID: PMC11136939 DOI: 10.1007/s40120-024-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
This pragmatic review synthesises the current understanding of prodromal dementia with Lewy bodies (pDLB) and prodromal Alzheimer's disease (pAD), including clinical presentations, neuropsychological profiles, neuropsychiatric symptoms, biomarkers, and indications for disease management. The core clinical features of dementia with Lewy bodies (DLB)-parkinsonism, complex visual hallucinations, cognitive fluctuations, and REM sleep behaviour disorder are common prodromal symptoms. Supportive clinical features of pDLB include severe neuroleptic sensitivity, as well as autonomic and neuropsychiatric symptoms. The neuropsychological profile in mild cognitive impairment attributable to Lewy body pathology (MCI-LB) tends to include impairment in visuospatial skills and executive functioning, distinguishing it from MCI due to AD, which typically presents with impairment in memory. pDLB may present with cognitive impairment, psychiatric symptoms, and/or recurrent episodes of delirium, indicating that it is not necessarily synonymous with MCI-LB. Imaging, fluid and other biomarkers may play a crucial role in differentiating pDLB from pAD. The current MCI-LB criteria recognise low dopamine transporter uptake using positron emission tomography or single photon emission computed tomography (SPECT), loss of REM atonia on polysomnography, and sympathetic cardiac denervation using meta-iodobenzylguanidine SPECT as indicative biomarkers with slowing of dominant frequency on EEG among others as supportive biomarkers. This review also highlights the emergence of fluid and skin-based biomarkers. There is little research evidence for the treatment of pDLB, but pharmacological and non-pharmacological treatments for DLB may be discussed with patients. Non-pharmacological interventions such as diet, exercise, and cognitive stimulation may provide benefit, while evaluation and management of contributing factors like medications and sleep disturbances are vital. There is a need to expand research across diverse patient populations to address existing disparities in clinical trial participation. In conclusion, an early and accurate diagnosis of pDLB or pAD presents an opportunity for tailored interventions, improved healthcare outcomes, and enhanced quality of life for patients and care partners.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center and Center for Memory and Aging, Department of Neurology, HealthPartners/Park Nicollet, Bloomington, USA.
| | - Parichita Chaudhury
- Cleo Roberts Memory and Movement Center, Banner Sun Health Research Institute, Sun City, USA
| | - Ece Bayram
- Parkinson and Other Movement Disorders Center, University of California San Diego, San Diego, USA
| | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, USA
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shannon Y Chiu
- Department of Neurology, Mayo Clinic Arizona, Phoenix, USA
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- Department of Radiology, Mayo Clinic Rochester, Rochester, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Calum A Hamilton
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Paul C Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Jon B Toledo
- Nantz National Alzheimer Center, Stanley Appel Department of Neurology, Houston Methodist Hospital, Houston, USA
| | - Annegret Habich
- Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institute, Solna, Sweden
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Matthew J Barrett
- Department of Neurology, Parkinson's and Movement Disorders Center, Virginia Commonwealth University, Richmond, USA
| | - Bhavana Patel
- Department of Neurology, College of Medicine, University of Florida, Gainesville, USA
- Norman Fixel Institute for Neurologic Diseases, University of Florida, Gainesville, USA
| | - Alberto Jaramillo-Jimenez
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- School of Medicine, Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Gregory D Scott
- Department of Pathology and Laboratory Services, VA Portland Medical Center, Portland, USA
| | - Joseph P M Kane
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Oliveira da Silva MI, Santejo M, Babcock IW, Magalhães A, Minamide LS, Won SJ, Castillo E, Gerhardt E, Fahlbusch C, Swanson RA, Outeiro TF, Taipa R, Ruff M, Bamburg JR, Liz MA. α-Synuclein triggers cofilin pathology and dendritic spine impairment via a PrP C-CCR5 dependent pathway. Cell Death Dis 2024; 15:264. [PMID: 38615035 PMCID: PMC11016063 DOI: 10.1038/s41419-024-06630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.
Collapse
Grants
- R01 AG049668 NIA NIH HHS
- R01 NS105774 NINDS NIH HHS
- R43 AG071064 NIA NIH HHS
- S10 OD025127 NIH HHS
- Applicable Funding Source FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD). Márcia A Liz is supported by CEECINST/00091/2018.
- FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-028336 (PTDC/MED-NEU/28336/2017); National Funds through FCT – Fundação para a Ciência e a Tecnologia under the project IF/00902/2015; R&D@PhD from Luso-American Development Foundation (FLAD); FLAD Healthcare 2020; and Programme for Cooperation in Science between Portugal and Germany 2018/2019 (FCT/DAAD).
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), and R43AG071064 (J.R.B).
- National Institutes on Aging of the National Institutes of Health under award number RO1NS105774 (R.A.S).
- Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2067/1- 390729940) and SFB1286 (Project B8)
- Generous gifts to the Colorado State University Development Fund (J.R.B) and by the National Institutes on Aging of the National Institutes of Health under award numbers R01AG049668, 1S10OD025127 (J.R.B), R43AG071064 (J.R.B)
Collapse
Affiliation(s)
- Marina I Oliveira da Silva
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Miguel Santejo
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Isaac W Babcock
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ana Magalhães
- Addiction Biology Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
| | - Laurie S Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seok-Joon Won
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Erika Castillo
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Christiane Fahlbusch
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Raymond A Swanson
- Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075, Göttingen, Germany
| | - Ricardo Taipa
- Neuropathology Unit, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
- Autoimmune and Neuroscience Research Group, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, 4050-600, Porto, Portugal
| | - Michael Ruff
- Creative Bio-Peptides, Rockville, MD, 20854, USA
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Márcia A Liz
- Neurodegeneration Team, Nerve Regeneration Group, IBMC -Instituto de Biologia Molecular e Celular and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
8
|
Sperling SA, Acheson SK, Fox-Fuller J, Colvin MK, Harder L, Cullum CM, Randolph JJ, Carter KR, Espe-Pfeifer P, Lacritz LH, Arnett PA, Gillaspy SR. Tele-Neuropsychology: From Science to Policy to Practice. Arch Clin Neuropsychol 2024; 39:227-248. [PMID: 37715508 DOI: 10.1093/arclin/acad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE The primary aim of this paper is to accelerate the number of randomized experimental studies of the reliability and validity in-home tele-neuropsychological testing (tele-np-t). METHOD We conducted a critical review of the tele-neuropsychology literature. We discuss this research in the context of the United States' public and private healthcare payer systems, including the Centers for Medicare & Medicaid Services (CMS) and Current Procedural Terminology (CPT) coding system's telehealth lists, and existing disparities in healthcare access. RESULTS The number of tele-np publications has been stagnant since the onset of the COVID-19 pandemic. There are less published experimental studies of tele-neuropsychology (tele-np), and particularly in-home tele-np-t, than other tele-np publications. There is strong foundational evidence of the acceptability, feasibility, and reliability of tele-np-t, but relatively few studies of the reliability and validity of in-home tele-np-t using randomization methodology. CONCLUSIONS More studies of the reliability and validity of in-home tele-np-t using randomization methodology are necessary to support inclusion of tele-np-t codes on the CMS and CPT telehealth lists, and subsequently, the integration and delivery of in-home tele-np-t services across providers and institutions. These actions are needed to maintain equitable reimbursement of in-home tele-np-t services and address the widespread disparities in healthcare access.
Collapse
Affiliation(s)
- Scott A Sperling
- Department of Neurology, Center for Neurological Restoration, Cleveland Clinic, Cleveland, OH, USA
| | | | - Joshua Fox-Fuller
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Mary K Colvin
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lana Harder
- Children's Health, Children's Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John J Randolph
- Department of Psychiatry, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Randolph Neuropsychology Associates, PLLC, Lebanon, NH, USA
| | | | - Patricia Espe-Pfeifer
- Department of Psychiatry and Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Laura H Lacritz
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter A Arnett
- Department of Psychology, The Pennsylvania State University, State College, PA, USA
| | | |
Collapse
|
9
|
van Wamelen DJ, Leta V, Chaudhuri KR, Jenner P. Future Directions for Developing Non-dopaminergic Strategies for the Treatment of Parkinson's Disease. Curr Neuropharmacol 2024; 22:1606-1620. [PMID: 37526188 PMCID: PMC11284721 DOI: 10.2174/1570159x21666230731110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 08/02/2023] Open
Abstract
The symptomatic treatment of Parkinson's disease (PD) has been dominated by the use of dopaminergic medication, but significant unmet need remains, much of which is related to non-motor symptoms and the involvement of non-dopaminergic transmitter systems. As such, little has changed in the past decades that has led to milestone advances in therapy and significantly improved treatment paradigms and patient outcomes, particularly in relation to symptoms unresponsive to levodopa. This review has looked at how pharmacological approaches to treatment are likely to develop in the near and distant future and will focus on two areas: 1) novel non-dopaminergic pharmacological strategies to control motor symptoms; and 2) novel non-dopaminergic approaches for the treatment of non-motor symptoms. The overall objective of this review is to use a 'crystal ball' approach to the future of drug discovery in PD and move away from the more traditional dopamine-based treatments. Here, we discuss promising non-dopaminergic and 'dirty drugs' that have the potential to become new key players in the field of Parkinson's disease treatment.
Collapse
Affiliation(s)
- Daniel J. van Wamelen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
- Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valentina Leta
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - K. Ray Chaudhuri
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence at King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Peter Jenner
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Tolea MI, Ezzeddine R, Camacho S, Galvin JE. Emerging drugs for dementia with Lewy Bodies: a review of Phase II & III trials. Expert Opin Emerg Drugs 2023; 28:167-180. [PMID: 37531299 DOI: 10.1080/14728214.2023.2244425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Despite faster cognitive decline and greater negative impact on patients and family caregivers, drug development efforts in Dementia with Lewy Bodies (DLB) fall behind those for Alzheimer's Disease (AD). Current off-label drug DLB treatment options are limited to symptomatic agents developed to address cognitive deficits in AD, motor deficits in Parkinson's Disease, or behavioral symptoms in psychiatric disease. Aided by recent improvements in DLB diagnosis, a new focus on the development of disease-modifying agents (DMA) is emerging. AREAS COVERED Driven by evidence supporting different pathological mechanisms in DLB and PDD, this review assesses the evidence on symptomatic drug treatments and describes current efforts in DMA development in DLB. Specifically, our goals were to: (1) review evidence supporting the use of symptomatic drug treatments in DLB; (2) review the current DMA pipeline in DLB with a focus on Phase II and III clinical trials; and (3) identify potential issues with the development of DMA in DLB. Included in this review were completed and ongoing drug clinical trials in DLB registered on ClinicalTrials.gov (no time limits set for the search) or disseminated at the 2023 international conference on Clinical Trials in AD. Drug clinical trials registered in non-US clinical trial registries were not included. EXPERT OPINION Adoption of current symptomatic drug treatments used off-label in DLB relied on efficacy of benefits in other disorders rather than evidence from randomized controlled clinical trials. Symptoms remain difficult to manage. Several DMA drugs are currently being evaluated as either repurposing candidates or novel small molecules. Continued improvement in methodological aspects including development of DLB-specific outcome measures and biomarkers is needed to move the field of DMA drug development forward.
Collapse
Affiliation(s)
- Magdalena I Tolea
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Reem Ezzeddine
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simone Camacho
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
11
|
Hafiz R, Alajlani L, Ali A, Algarni GA, Aljurfi H, Alammar OAM, Ashqan MY, Alkhashan A. The Latest Advances in the Diagnosis and Treatment of Dementia. Cureus 2023; 15:e50522. [PMID: 38222245 PMCID: PMC10787596 DOI: 10.7759/cureus.50522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Abstract
Dementia is a debilitating neurological condition that is characterized by persistent cognitive decline. It is a global health challenge, with a rapidly increasing prevalence due to an increasing aging population. Although definitive diagnosis of various conditions of dementia is only possible by autopsy, clinical diagnosis can be performed by a specialist. The diagnostic process has evolved with recent breakthroughs in diagnostic tools, such as advanced imaging techniques and biomarkers. These tools facilitate early and accurate identification of the condition. Early diagnosis is vital, as it enables timely interventions to improve the quality of life for affected individuals. Treatment strategies for dementia encompass both pharmacological and non-pharmacological approaches. Non-pharmacological treatments include cognitive training and lifestyle modifications. Among pharmacological treatments, acetyl-cholinesterase inhibitors including donepezil, rivastigmine, and galantamine can be used in various doses based on the severity of the disease. Apart from these, N-methyl-D-aspartate receptor antagonists such as memantine can also be used. Furthermore, personalized treatments have also gained significant attention in dementia treatment. Interdisciplinary care, involving healthcare professionals, social workers, and support networks, is crucial for comprehensive and holistic dementia management.
Collapse
Affiliation(s)
- Rehab Hafiz
- Family Medicine, Al Takassusi Primary Healthcare Center, Makkah, SAU
| | - Lama Alajlani
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Albatool Ali
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Ghadah A Algarni
- College of Medicine, Fakeeh College for Medical Sciences, Jeddah, SAU
| | - Hassan Aljurfi
- Family Medicine, Alfath Care Center, Madinah Health Cluster, Ministry of Health, Madinah, SAU
| | | | - Maria Y Ashqan
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Alanoud Alkhashan
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
12
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
13
|
Campagnolo M, Emmi A, Biundo R, Fiorenzato E, Batzu L, Chaudhuri KR, Antonini A. The pharmacological management of the behavioral aspects of Parkinson's disease: an update. Expert Opin Pharmacother 2023; 24:1693-1701. [PMID: 37493445 DOI: 10.1080/14656566.2023.2240228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Behavioural symptoms are common manifestations of Parkinson's disease and include depression, anxiety, impulse control disorders, hallucinations, psychosis, and cognitive dysfunction. They remain inadequately addressed in many patients despite their relevance for quality of life and disability. This applies also to impulse control disorders where the most common approach in recent literature is to refrain from using dopamine agonists without consideration about their potential benefit on motor complications. AREAS COVERED We conducted a narrative review searching for articles on behavioral symptoms in Parkinson disease and selected those which included involved neurotransmitters such as dopamine, noradrenaline, serotonin, acetylcholine. We specifically focused our search on open-label and randomized double-blind studies and biomarkers which could best characterize these clinical manifestations. EXPERT OPINION Management of Parkinson disease behavioural manifestations lacks clear guidelines and standardized protocols beside general suggestions of dose adjustments in dopamine replacement therapy and use of antidepressants or antipsychotic drugs with little consideration of patients' age, sex, comorbidities, and motor status. We suggest a pragmatic approach which includes education of affected patients and caring people, dealing with complex cases by experienced multidisciplinary teams, use of cognitive behavioural therapy, and psychological counselling to complement drug treatment.
Collapse
Affiliation(s)
- Marta Campagnolo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Emmi
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Institute of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Roberta Biundo
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
| | - Eleonora Fiorenzato
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Angelo Antonini
- Parkinson's Disease and Movement Disorders Unit, Centre for Rare Neurological Diseases (ERN-RND), Department of Neuroscience, University of Padova, Padova, Italy
- Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
14
|
Dimitrova M, Marinova Y, Dilkov D. Investigation of Cognitive Impairment in the Course of Post-COVID Syndrome. Diagnostics (Basel) 2023; 13:2703. [PMID: 37627961 PMCID: PMC10453167 DOI: 10.3390/diagnostics13162703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: The study presents results from an investigation of cognitive impairment in patients hospitalized in the first psychiatric clinic in Bulgaria to treat patients with COVID-19 during the pandemic period between 2020 and 2022. One hundred and twenty patients who had recovered from acute COVID-19 infection (up to 12 weeks ago) and had no previous history of cognitive impairment participated in the study. In 23 of them (19.17%), disturbance of cognitive functioning was observed. (2) Methods: All 23 patients underwent neuropsychological (Luria's test, Platonov's Maze test, MMSE, Boston Naming test) and neuroimaging examinations. Only seven of them had evidence of cortical atrophy on CT/MRI images. The most significantly demonstrative image of one of those patients is presented. (3) Results: The neuropsychological testing results of both groups show a certain decrease in fixation and memory retention as well as in the range, concentration, distribution and switching of attention. Deviations from the norm on the MMSE, as well as on the Boston Naming Test, were found in the group of patients with cortical atrophy (mild to moderate aphasia). Neuroprotective agents such as Citicoline, Piracetam and Memantine were prescribed to the patients with evident cortical atrophy. After 3 months, positive results of the neuropsychological examination were reported in both groups. (4) Conclusions: Although there are limited data on the benefit of prescribing pro-cognitive agents in the post-COVID period, our clinical experience suggests that it might be useful in the recovery process from the infection's consequences on cognition for patients with brain pathology.
Collapse
Affiliation(s)
| | - Yoanna Marinova
- Psychiatry Clinic, Military Medical Academy, 1606 Sofia, Bulgaria
| | | |
Collapse
|
15
|
Bayram E, Batzu L, Tilley B, Gandhi R, Jagota P, Biundo R, Garon M, Prasertpan T, Lazcano-Ocampo C, Chaudhuri KR, Weil RS. Clinical trials for cognition in Parkinson's disease: Where are we and how can we do better? Parkinsonism Relat Disord 2023; 112:105385. [PMID: 37031010 PMCID: PMC10330317 DOI: 10.1016/j.parkreldis.2023.105385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Cognitive impairment is common in Parkinson's disease (PD) and has a substantial impact on quality of life. Despite numerous trials targeting various PD features, we still lack effective treatments for cognition beyond cholinesterase inhibitors. OBJECTIVE To identify the gaps in recent clinical trials with cognitive outcomes in PD and consider areas for improvement. METHODS We examined recent clinical trials with cognitive outcomes in PD registered on ClinicalTrials.gov, excluding trials without cognitive outcomes, non-interventional studies, and in atypical Parkinsonian disorders. Included trials were categorized by treatment approach (investigational medicinal product, behavioral, physical activity, device-based). Details of trial design and outcomes were collected. RESULTS 178 trials at different stages of trial completion were considered. 46 trials were completed, 25 had available results. Mean follow-up duration was 29.9 weeks. Most common cognitive measure was Montreal Cognitive Assessment. Most were performed in North America or Europe. Majority of the participants identified as non-Hispanic and White. Only eight trials showed improvement in cognition, none showed improvement beyond four months. These included trials of international medicinal products, cognitive and physical interventions and devices. GRADE certainty levels ranged from Moderate to Very Low. Only mevidalen had a Moderate certainty for potential clinical effectiveness. CONCLUSIONS Amongst a large number of trials for cognition in PD, only a small proportion were completed. Few showed significant improvement, with no proven long-lasting effects. Trial design, lack of enrichment for at-risk groups, short follow-up duration, insensitive outcome measures likely contribute to lack of detectable benefit and should be considered in future trials.
Collapse
Affiliation(s)
- Ece Bayram
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| | - Lucia Batzu
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Bension Tilley
- Dementia Research Centre, University College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Rhea Gandhi
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy; Study Center for Neurodegeneration (CESNE), University of Padua, Padua, Italy
| | - Michela Garon
- Parkinson and Movement Disorders Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Tittaya Prasertpan
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Claudia Lazcano-Ocampo
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neurology, Hospital Sotero del Rio, Santiago, Chile
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, London, UK; Movement Disorders Centre, University College London, London, UK
| |
Collapse
|
16
|
Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [ 123I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging 2023; 50:1974-1987. [PMID: 36847827 PMCID: PMC10199883 DOI: 10.1007/s00259-023-06171-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE In routine practice, dopamine transporter (DAT) imaging is frequently used as a diagnostic tool to support the diagnosis of Parkinson's disease or dementia with Lewy bodies. In 2008, we published a review on which medications and drugs of abuse may influence striatal [123I]I-FP-CIT binding and consequently may influence the visual read of an [123I]I-FP-CIT SPECT scan. We made recommendations on which drugs should be withdrawn before performing DAT imaging in routine practice. Here, we provide an update of the original work based on published research since 2008. METHODS We performed a systematic review of literature without language restriction from January 2008 until November 2022 to evaluate the possible effects of medications and drugs of abuse, including the use of tobacco and alcohol, on striatal DAT binding in humans. RESULTS The systematic literature search identified 838 unique publications, of which 44 clinical studies were selected. Using this approach, we found additional evidence to support our original recommendations as well as some new findings on potential effect of other medications on striatal DAT binding. Consequently, we updated the list of medications and drugs of abuse that may influence the visual read of [123I]I-FP-CIT SPECT scans in routine clinical practice. CONCLUSION We expect that a timely withdrawal of these medications and drugs of abuse before DAT imaging may reduce the incidence of false-positive reporting. Nevertheless, the decision to withdraw any medication must be made by the specialist in charge of the patient's care and considering the pros and cons of doing so.
Collapse
Affiliation(s)
- Youssef Chahid
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam UMC location University of Amsterdam, Clinical Pharmacy, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Zulfiqar H Sheikh
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Max Mitropoulos
- GE Healthcare, Pharmaceutical Diagnostics, Nightingales Ln, Chalfont Saint Giles, United Kingdom
| | - Jan Booij
- Amsterdam UMC location University of Amsterdam, Radiology and Nuclear Medicine, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Malar DS, Thitilertdecha P, Ruckvongacheep KS, Brimson S, Tencomnao T, Brimson JM. Targeting Sigma Receptors for the Treatment of Neurodegenerative and Neurodevelopmental Disorders. CNS Drugs 2023; 37:399-440. [PMID: 37166702 PMCID: PMC10173947 DOI: 10.1007/s40263-023-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 05/12/2023]
Abstract
The sigma-1 receptor is a 223 amino acid-long protein with a recently identified structure. The sigma-2 receptor is a genetically unrelated protein with a similarly shaped binding pocket and acts to influence cellular activities similar to the sigma-1 receptor. Both proteins are highly expressed in neuronal tissues. As such, they have become targets for treating neurological diseases, including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), Rett syndrome (RS), developmental and epileptic encephalopathies (DEE), and motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). In recent years, there have been many pre-clinical and clinical studies of sigma receptor (1 and 2) ligands for treating neurological disease. Drugs such as blarcamesine, dextromethorphan and pridopidine, which have sigma-1 receptor activity as part of their pharmacological profile, are effective in treating multiple aspects of several neurological diseases. Furthermore, several sigma-2 receptor ligands are under investigation, including CT1812, rivastigmine and SAS0132. This review aims to provide a current and up-to-date analysis of the current clinical and pre-clinical data of drugs with sigma receptor activities for treating neurological disease.
Collapse
Affiliation(s)
- Dicson S Malar
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokphorn S Ruckvongacheep
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sirikalaya Brimson
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - James M Brimson
- Natural Products for Neuroprotection and Anti-ageing Research Unit, Chulalongkorn University, Bangkok, Thailand.
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Room 409, ChulaPat-1 Building, 154 Rama 1 Road, Bangkok, 10330, Thailand.
| |
Collapse
|
18
|
Parish AL, Kim J. Clinical update on dementia with Lewy bodies for primary care NPs. Nurse Pract 2023; 48:22-29. [PMID: 36975746 DOI: 10.1097/01.npr.0000000000000024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
ABSTRACT Dementia with Lewy bodies is the second most common type of neurodegenerative dementia in older adults. NPs in primary care must have a thorough understanding of this complex disease in order to ensure appropriate referrals, provide patient and caregiver education, and comanage this disease with other healthcare professionals.
Collapse
|
19
|
Wei H, Masurkar AV, Razavian N. On gaps of clinical diagnosis of dementia subtypes: A study of Alzheimer's disease and Lewy body disease. Front Aging Neurosci 2023; 15:1149036. [PMID: 37025965 PMCID: PMC10070837 DOI: 10.3389/fnagi.2023.1149036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Lewy body disease (LBD) are the two most common neurodegenerative dementias and can occur in combination (AD+LBD). Due to overlapping biomarkers and symptoms, clinical differentiation of these subtypes could be difficult. However, it is unclear how the magnitude of diagnostic uncertainty varies across dementia spectra and demographic variables. We aimed to compare clinical diagnosis and post-mortem autopsy-confirmed pathological results to assess the clinical subtype diagnosis quality across these factors. Methods We studied data of 1,920 participants recorded by the National Alzheimer's Coordinating Center from 2005 to 2019. Selection criteria included autopsy-based neuropathological assessments for AD and LBD, and the initial visit with Clinical Dementia Rating (CDR) stage of normal, mild cognitive impairment, or mild dementia. Longitudinally, we analyzed the first visit at each subsequent CDR stage. This analysis included positive predictive values, specificity, sensitivity and false negative rates of clinical diagnosis, as well as disparities by sex, race, age, and education. If autopsy-confirmed AD and/or LBD was missed in the clinic, the alternative clinical diagnosis was analyzed. Findings In our findings, clinical diagnosis of AD+LBD had poor sensitivities. Over 61% of participants with autopsy-confirmed AD+LBD were diagnosed clinically as AD. Clinical diagnosis of AD had a low sensitivity at the early dementia stage and low specificities at all stages. Among participants diagnosed as AD in the clinic, over 32% had concurrent LBD neuropathology at autopsy. Among participants diagnosed as LBD, 32% to 54% revealed concurrent autopsy-confirmed AD pathology. When three subtypes were missed by clinicians, "No cognitive impairment" and "primary progressive aphasia or behavioral variant frontotemporal dementia" were the leading primary etiologic clinical diagnoses. With increasing dementia stages, the clinical diagnosis accuracy of black participants became significantly worse than other races, and diagnosis quality significantly improved for males but not females. Discussion These findings demonstrate that clinical diagnosis of AD, LBD, and AD+LBD are inaccurate and suffer from significant disparities on race and sex. They provide important implications for clinical management, anticipatory guidance, trial enrollment and applicability of potential therapies for AD, and promote research into better biomarker-based assessment of LBD pathology.
Collapse
Affiliation(s)
- Hui Wei
- Manning College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Arjun V. Masurkar
- Center for Cognitive Neurology, Department of Neurology, NYU Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
| | - Narges Razavian
- Department of Population Health, NYU Grossman School of Medicine, New York, NY, United States
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
- Center for Data Science, New York University, New York, NY, United States
| |
Collapse
|
20
|
Watts KE, Storr NJ, Barr PG, Rajkumar AP. Systematic review of pharmacological interventions for people with Lewy body dementia. Aging Ment Health 2023; 27:203-216. [PMID: 35109724 DOI: 10.1080/13607863.2022.2032601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Lewy body dementia (LBD) is the second most common neurodegenerative dementia, and it causes earlier mortality and more morbidity than Alzheimer's disease. Reviewing current evidence on its pharmacological management is essential for developing evidence-based clinical guidelines, and for improving the quality of its clinical care. Hence, we systematically reviewed all studies that investigated the efficacy of any medication for managing various symptoms of LBD. METHOD We identified eligible studies by searching 15 databases comprehensively. We completed quality assessment, extracted relevant data, and performed GRADE assessment of available evidence. We conducted meta-analyses when appropriate (PROSPERO:CRD42020182166). RESULTS We screened 18,884 papers and included 135 studies. Our meta-analyses confirmed level-1 evidence for Donepezil's efficacy of managing cognitive symptoms of dementia with Lewy bodies (DLB) (SMD = 0.63; p < 0.001) and Parkinson's Disease Dementia (PDD) (SMD = 0.43; p < 0.01), and managing hallucinations in DLB (SMD=-0.52; p = 0.02). Rivastigmine and Memantine have level-2 evidence for managing cognitive and neuropsychiatric symptoms of DLB. Olanzapine and Yokukansan have similar evidence for managing DLB neuropsychiatric symptoms. Level-2 evidence support the efficacy of Rivastigmine and Galantamine for managing cognitive and neuropsychiatric symptoms of PDD. CONCLUSION We list evidence-based recommendations for the pharmacological management of DLB and PDD, and propose specific clinical guidelines for improving their clinical management. UNLABELLED Supplemental data for this article can be accessed online at https://doi.org/10.1080/13607863.2022.2032601 .
Collapse
Affiliation(s)
- Katrina E Watts
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK
| | - Nicholas J Storr
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK
| | - Phoebe G Barr
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK
| | - Anto P Rajkumar
- Institute of Mental Health, Mental Health and Clinical Neurosciences academic unit, University of Nottingham, Nottingham, UK.,Mental Health Services of Older People, Nottinghamshire Healthcare NHS Foundation Trust, Nottingham, UK
| |
Collapse
|
21
|
de Liyis BG, Sutedja JC, Kesuma PMI, Liyis S, Widyadharma IPE. A review of literature on Compound 21-loaded gelatin nanoparticle: a promising nose-to-brain therapy for multi-infarct dementia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractMulti-infarct dementia (MID) is described as a chronic progressive decline in cortical cognitive function due to the occurrence of multiple infarcts in the cerebral vascularization throughout the gray and white matter. Current therapies of MID mostly focus only on slowing down MID progression and symptomatic medications. A novel therapy which is able to provide both preventive and curative properties for MID is of high interest. The purpose of this review is to identify the potential of Compound 21 (C21) gelatin nanoparticle through the nose-to-brain route as therapy for MID. C21, an angiotensin II type 2 receptor (AT2R) agonist, has shown to reduce the size of cerebral infarct in rodent models, resulting in the preservation and improvement of overall cognitive function and prevention of secondary neurodegenerative effects. It is also shown that C21 decreases neuronal apoptosis, improves damaged axons, and encourage synapse development. The challenge remains in preventing systemic AT2R activation and increasing its low oral bioavailability which can be overcome through nose-to-brain administration of C21. Nose-to-brain drug delivery of C21 significantly increases drug efficiency and limits C21 exposure in order to specifically target the multiple infarcts located in the cerebral cortex. Adhering C21 onto gelatin nanoparticles may enable longer contact time with the olfactory and the trigeminal nerve endings, increasing the potency of C21. In summary, treatment of C21 gelatin nanoparticle through nose-to-brain delivery shows high potential as therapy for vascular dementia. However, clinical trials must be further studied in order to test the safety and efficacy of C21.
Collapse
|
22
|
Tzioras M, McGeachan RI, Durrant CS, Spires-Jones TL. Synaptic degeneration in Alzheimer disease. Nat Rev Neurol 2023; 19:19-38. [PMID: 36513730 DOI: 10.1038/s41582-022-00749-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
Alzheimer disease (AD) is characterized by progressive cognitive decline in older individuals accompanied by the presence of two pathological protein aggregates - amyloid-β and phosphorylated tau - in the brain. The disease results in brain atrophy caused by neuronal loss and synapse degeneration. Synaptic loss strongly correlates with cognitive decline in both humans and animal models of AD. Indeed, evidence suggests that soluble forms of amyloid-β and tau can cause synaptotoxicity and spread through neural circuits. These pathological changes are accompanied by an altered phenotype in the glial cells of the brain - one hypothesis is that glia excessively ingest synapses and modulate the trans-synaptic spread of pathology. To date, effective therapies for the treatment or prevention of AD are lacking, but understanding how synaptic degeneration occurs will be essential for the development of new interventions. Here, we highlight the mechanisms through which synapses degenerate in the AD brain, and discuss key questions that still need to be answered. We also cover the ways in which our understanding of the mechanisms of synaptic degeneration is leading to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Makis Tzioras
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.,The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK. .,UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Mantovani E, Zucchella C, Argyriou AA, Tamburin S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson's disease: current evidence and future perspectives. Expert Rev Neurother 2023; 23:25-43. [PMID: 36701529 DOI: 10.1080/14737175.2023.2173576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Non-motor symptoms (NMS) affect patients with Parkinson's disease (PD) from the prodromal to the advanced stages. NMS phenotypes greatly vary and have a huge impact on patients' and caregivers' quality of life (QoL). The management of cognitive and neuropsychiatric NMS remains an unmet need. AREAS COVERED The authors, herein, review the dopaminergic and non-dopaminergic pathogenesis, clinical features, assessment, and pharmacological and non-pharmacological treatments of cognitive and neuropsychiatric NMS in PD. They discuss the current evidence and report the findings of an overview of ongoing trials on pharmacological and selected non-pharmacological strategies. EXPERT OPINION The treatment of cognitive and neuropsychiatric NMS in PD is poorly explored, and therapeutic options are unsatisfactory. Pharmacological treatment of cognitive NMS is based on symptomatic active principles used in Alzheimer's disease. Dopamine agonists, selective serotonin, and serotonin-norepinephrine reuptake inhibitors have some evidence on PD-related depression. Clozapine, quetiapine, and pimavanserin may be considered for psychosis in PD. Evidence on the treatment of other neuropsychiatric NMS is limited or lacking. Addressing pathophysiological and clinical issues, which hamper solid evidence on the treatment of cognitive and neuropsychiatric NMS, may reduce the impact on QoL for PD patients and their caregivers.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Andreas A Argyriou
- Department of Neurology, "Agios Andreas" State General Hospital of Patras, Patras, Greece
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
24
|
Ramm RM, Lerner ZI, Levy-Meeks GS, Burke RV, Raven MC, Song A, Glass MH. A Case Report of Treatment-Resistant Agitation in Dementia with Lewy Bodies: Medical Marijuana as an Alternative to Antipsychotics. J Palliat Med 2022; 26:737-740. [PMID: 36576970 DOI: 10.1089/jpm.2022.0343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Palliative care teams are often consulted to assist in treating persistent dementia-related behavioral issues. Delta-9-tetrahydrocannabinol (THC) offers an alternative to traditional antipsychotic drugs in the long-term management of dementia with behavioral change. We present the case of an 85-year-old man with dementia with Lewy bodies with worsening aggression refractory to antipsychotic management. Multiple regimens of antipsychotics failed both in the outpatient and inpatient settings. After exhausting other options and in the setting of worsening agitation, a tincture of THC was prescribed. After starting THC tincture, the patient's behavior rapidly improved, and he was discharged home to the care of his spouse. The challenges of prescribing and obtaining THC are discussed.
Collapse
Affiliation(s)
- Rebecca M Ramm
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zachary I Lerner
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Garrett S Levy-Meeks
- Division of Geriatric and Palliative Medicine, Department of Medicine, University of Texas Houston School of Medicine, Houston, Texas, USA
| | - Rebecca V Burke
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Mary C Raven
- Medical Director, Palliative Medicine Program, Our Lady of the Lake Regional Medical Center, Baton Rouge, Louisiana, USA
| | - Amanda Song
- Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Marcia H Glass
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
25
|
Chen S, Price AC, Cardinal RN, Moylett S, Kershenbaum AD, Fitzgerald J, Mueller C, Stewart R, O’Brien JT. Association between antidementia medication use and mortality in people diagnosed with dementia with Lewy bodies in the UK: A retrospective cohort study. PLoS Med 2022; 19:e1004124. [PMID: 36472984 PMCID: PMC9725132 DOI: 10.1371/journal.pmed.1004124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dementia with Lewy bodies (DLBs) is a common cause of dementia but has higher mortality than Alzheimer's disease (AD). The reasons for this are unclear, but antidementia drugs (including acetylcholinesterase inhibitors [AChEIs] and memantine) symptomatically benefit people with DLB and might improve outcomes. We investigated whether AChEIs and/or memantine were associated with reduced hospital admissions and mortality. METHODS AND FINDINGS We performed a retrospective cohort study of those diagnosed with DLB between 1 January 2005 and 31 December 2019, using data from electronic clinical records of secondary care mental health services in Cambridgeshire and Peterborough NHS Foundation Trust (CPFT), United Kingdom (catchment area population approximately 0.86 million), as well as linked records from national Hospital Episode Statistics (HES) data. Eligible patients were those who started AChEIs or memantine within 3 months of their diagnosis (cases) and those who never used AChEIs or memantine (controls). Outcomes included admission, length of stay, and mortality. Cox proportional hazard and linear regression models were used. Of 592 patients with DLB, 219 never took AChEIs or memantine, 100 took AChEIs only, and 273 took both AChEIs and memantine. The cohorts were followed up for an average of 896 days, 981 days, and 1,004 days, respectively. There were no significant differences in the cohorts' baseline characteristics, except for socioeconomic status that was lower in patients who never took AChEIs or memantine (χ2 = 23.34, P = 0.003). After controlling for confounding by sociodemographic factors (age, sex, marital status, ethnicity, socioeconomic status), antipsychotic use, antidepressant use, cognitive status, physical comorbidity, anticholinergic burden, and global health performance, compared with patients who never took AChEIs or memantine, patients taking AChEIs only or taking both had a significantly lower risk of death (adjusted hazard ratio (HR) = 0.67, 95% CI = 0.48 to 0.93, p = 0.02; adjusted HR = 0.64, 95% CI = 0.50 to 0.83, P = 0.001, respectively). Those taking AChEIs or both AChEIs and memantine had significantly shorter periods of unplanned hospital admission for physical disorders (adjusted coefficient -13.48, 95% CI = [-26.87, -0.09], P = 0.049; adjusted coefficient -14.21, 95% CI = [-24.58, -3.85], P = 0.007, respectively), but no difference in length of stay for planned admissions for physical disorders, or for admissions for mental health disorders. No significant additional associations of memantine on admission, length of stay, and mortality were found (all P > 0.05). The main limitation was that this was a naturalistic study and possible confounds cannot be fully controlled, and there may be selection bias resulting from nonrandom prescription behaviour in clinical practice. However, we mimicked the intention-to-treat design of clinical trials, and the majority of baseline characters were balanced between cohorts. In addition, our series of sensitivity analyses confirmed the consistency of our results. CONCLUSION In this study, we observed that use of AChEIs with or without memantine in DLB was associated with shorter duration of hospital admissions and decreased risk of mortality. Although our study was naturalistic, it supports further the use of AChEIs in DLB.
Collapse
Affiliation(s)
- Shanquan Chen
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Annabel C. Price
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Rudolf N. Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Sinéad Moylett
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Laboratory of Neuroimmunology, KU Leuven, Leuven, Belgium
| | - Anne D. Kershenbaum
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - James Fitzgerald
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Christoph Mueller
- King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Robert Stewart
- King’s College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
26
|
Marotta N, Calafiore D, Curci C, Lippi L, Ammendolia V, Ferraro F, Invernizzi M, de Sire A. Integrating virtual reality and exergaming in cognitive rehabilitation of patients with Parkinson disease: a systematic review of randomized controlled trials. Eur J Phys Rehabil Med 2022; 58:818-826. [PMID: 36169933 PMCID: PMC10081485 DOI: 10.23736/s1973-9087.22.07643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION In recent years, growing attention is rising to virtual reality (VR) tools and exergaming in rehabilitation management of patients with Parkinson disease (PD). However, no strong evidence supports the effectiveness of these cutting-edge technologies on cognitive function and the integration of these promising tool in the rehabilitation framework of PD patients is still challenging. Therefore, the present systematic review of randomized controlled trials (RCTs) aimed at assessing the effects of VR and exergames/telerehabilitation in the cognitive rehabilitation management of patients with PD. EVIDENCE ACQUISITION PubMed, Scopus and Web of Science databases were systematically searched up to February 14th, 2022, to identify RCTs assessing patients with PD undergoing cognitive rehabilitation including VR or exergames/telerehabilitation. The intervention was compared to conventional rehabilitation protocols. The primary outcome was cognitive function. The quality assessment was performed following the Version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB 2). PROSPERO registration code: CRD42022319788. EVIDENCE SYNTHESIS Out of 1419 identified studies, 66 articles were assessed for eligibility, and, at the end of the screening process, 10 studies were included in the present systematic review. Five RCTs (50%) assessed the exergaming devices, reporting significant positive results on cognitive outcomes scales (Trail Making test scale, Digit Span backward, MoCA, and MyCQ score). The other 5 RTCs (50%) assessed VR approaches, reporting significant improvement in executive functions. The RoB 2 showed an overall high risk of bias for the 40% of studies included. CONCLUSIONS Exergaming and VR might be considered promising rehabilitation interventions in the cognitive rehabilitation framework of PD patients. Further high-quality studies are needed to define the role of exergames and VR in a comprehensive rehabilitation approach aiming at improving the multilevel cognitive impairment characterizing patients with PD.
Collapse
Affiliation(s)
- Nicola Marotta
- Unit of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy
| | - Dario Calafiore
- Unit Physical Medicine and Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
| | - Claudio Curci
- Unit Physical Medicine and Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
| | - Lorenzo Lippi
- Unit of Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.,Unit of Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Valerio Ammendolia
- Unit of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy
| | - Francesco Ferraro
- Unit Physical Medicine and Rehabilitation, Department of Neurosciences, ASST Carlo Poma, Mantua, Italy
| | - Marco Invernizzi
- Unit of Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy.,Unit of Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Alessandro de Sire
- Unit of Physical Medicine and Rehabilitation, Department of Medical and Surgical Sciences, Magna Grecia University, Catanzaro, Italy -
| |
Collapse
|
27
|
Pooladgar P, Sakhabakhsh M, Taghva A, Soleiman-Meigooni S. Donepezil Beyond Alzheimer's Disease? A Narrative Review of Therapeutic Potentials of Donepezil in Different Diseases. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128408. [PMID: 36942075 PMCID: PMC10024338 DOI: 10.5812/ijpr-128408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022]
Abstract
Donepezil hydrochloride is an acetylcholine esterase inhibitor studied and approved to treat Alzheimer's disease (AD). However, this drug can have positive therapeutic potential in treating different conditions, including various neurodegenerative disorders such as other types of dementia, multiple sclerosis, Parkinson's disease, psychiatric and mood disorders, and even infectious diseases. Hence, this study reviewed the therapeutic potential of this drug in treating Alzheimer's and other diseases by reviewing the articles from databases including Web of Science, Scopus, PubMed, Cochrane, and Science Direct. It was shown that donepezil could affect the pathophysiology of these diseases via mechanisms such as increasing the concentration of acetylcholine, modulating local and systemic inflammatory processes, affecting acetylcholine receptors like nicotinic and muscarinic receptors, and activating various cellular signaling via receptors like sigma-1 receptors. Despite many therapeutic potentials, this drug has not yet been approved for treating non-Alzheimer's diseases, and more comprehensive studies are needed.
Collapse
Affiliation(s)
- Parham Pooladgar
- Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Sakhabakhsh
- Head of Department of Neurology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Arsia Taghva
- Department of Psychiatry, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
28
|
Pérez Palmer N, Trejo Ortega B, Joshi P. Cognitive Impairment in Older Adults: Epidemiology, Diagnosis, and Treatment. Psychiatr Clin North Am 2022; 45:639-661. [PMID: 36396270 DOI: 10.1016/j.psc.2022.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cognitive impairment and dementia affect dozens of millions of people worldwide and cause significant distress to patients and caregivers and a financial burden to families and health care systems. Careful history-taking, cognitive and physical examination, and supplemental neuroimaging and fluid-based biomarkers can accurately diagnose neurocognitive disorders. Management includes non-pharmacological and pharmacological treatments tailored to the etiology and to the individual.
Collapse
Affiliation(s)
- Nicolás Pérez Palmer
- Department of Psychiatry, Yale School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA.
| | - Barbara Trejo Ortega
- Department of Psychiatry, Yale School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Pallavi Joshi
- Banner Alzheimer's Institute, 901 East Willeta Street, Phoenix, AZ 85006, USA; Department of Psychiatry, University of Arizona College of Medicine-Phoenix, 475 North 5th, Phoenix, AZ 85004, USA
| |
Collapse
|
29
|
Truong C, Recto C, Lafont C, Canoui-Poitrine F, Belmin JB, Lafuente-Lafuente C. Effect of Cholinesterase Inhibitors on Mortality in Patients With Dementia: A Systematic Review of Randomized and Nonrandomized Trials. Neurology 2022; 99:e2313-e2325. [PMID: 36096687 DOI: 10.1212/wnl.0000000000201161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cholinesterase inhibitors (ChEIs) have cardiovascular effects in addition to their neurologic activity and might alter mortality. We wanted to know whether treatment with ChEIs modifies mortality in patients with dementia. METHODS We searched PubMed, Embase, Cochrane CENTRAL, ClinicalTrials.gov, and ICRTP, from their inception to November 2021, and screened bibliographies of reviews, guidelines, and included studies. We included randomized controlled trials (RCTs) and nonrandomized controlled studies at lower risk of bias comparing ChEI treatment with placebo or usual treatment, for 6 months or longer, in patients with dementia of any type. Two investigators independently assessed studies for inclusion, assessed their risk of bias, and extracted data using predefined forms. Any discordance between investigators was solved by discussion and consensus. Data on all-cause and cardiovascular mortality, measured as either crude death rates or multivariate adjusted hazard ratios (HRs), were pooled using a random-effect model. Information size achieved was assessed using trial sequential analysis (TSA). We followed Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. RESULTS Twenty-four studies (12 RCTs, 12 cohorts, mean follow-up 6-120 months), cumulating 79,153 patients with Alzheimer (13 studies), Parkinson (1), vascular (1), or any type (9) dementia, fulfilled inclusion criteria. Pooled all-cause mortality in control patients was 15.1 per 100 person-years. Treatment with ChEIs was associated with lower all-cause mortality (unadjusted risk ratio [RR] 0.74, 95% CI 0.66-0.84; adjusted HR 0.77, 95% CI 0.70-0.84, moderate-quality to high-quality evidence). This result was consistent between randomized and nonrandomized studies and in several sensitivity analyses. No difference appeared between subgroups by type of dementia, age, individual drug, or dementia severity. Less data were available for cardiovascular mortality (3 RCTs, 2 cohorts, 9,182 patients, low-quality to moderate-quality evidence), which was also lower in patients treated with ChEIs (unadjusted RR 0.61, 95% CI 0.40-0.93, adjusted HR 0.47, 95% CI 0.32-0.68). In TSA analysis, the results for all-cause mortality were conclusive but not those for cardiovascular mortality. DISCUSSION There is moderate-quality to high-quality evidence of a consistent association between long-term treatment with ChEIs and a reduction in all-cause mortality in patients with dementia. These findings may influence decisions to prescribe ChEIs in those patients. TRIAL REGISTRATION INFORMATION This systematic review was registered in the PROSPERO international prospective register of systematic reviews with the number CRD42021254458 (June 11, 2021).
Collapse
Affiliation(s)
- Céline Truong
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Caryn Recto
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Charlotte Lafont
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Florence Canoui-Poitrine
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Joel Belmin Belmin
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Carmelo Lafuente-Lafuente
- From the AP-HP (C.T., C.R., J.B.B., C.L.-L.), Sorbonne Université, Hôpitaux universitaires Pitie-Salpêtrière-Charles Foix, Service de Gériatrie à orientation Cardiologique et Neurologique, Ivry-sur-Seine; Université Paris Est Créteil (UPEC) (C.L., F.C.-P., C.L.-L.), INSERM, IMRB, Clinical Epidemiology and Ageing (CEpiA) Team; and APHP (C.L., F.C.-P.), Hôpital Henri Mondor, Service de Santé Publique, Créteil, France.
| |
Collapse
|
30
|
Zhou Q, Han C, Xia Y, Wan F, Yin S, Li Y, Kou L, Chi X, Hu J, Sun Y, Wu J, Zou W, Huang J, Wang T. Efficacy and safety of 3-n-butylphthalide for the treatment of cognitive impairment: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1706-1717. [PMID: 36047338 PMCID: PMC9532910 DOI: 10.1111/cns.13952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Current evidence for the efficacy of pharmacological treatment in improving cognitive function is absent. Recent studies have reported that 3-n-butylphthalide (NBP) has a positive effect on improving cognitive impairment; however, its clinical efficacy and safety is unclear. Therefore, we conducted a meta-analysis to assess its efficacy and safety for cognitive impairment. METHODS We systematically searched the PubMed, EMBASE, Cochrane Library, Web of Science, and Scopus databases, and two reviewers independently screened and extracted the data from included studies. We synthesized the data using the Review Manager Software version 5.3. RESULTS We included six randomized clinical trials (RCTs), encompassing 851 patients with cognitive impairment. The results showed that NBP improved cognitive impairment. Specifically, the clinical efficacy was better than that in the control group, with better performance in improving the Mini-Mental State Examination and the Montreal Cognitive Assessment scores, while decreasing the Alzheimer's Disease Assessment Scale-Cognitive subscale and the Clinician's Interview-Based Impression of Change plus caregiver input scores. There was no significant difference in the incidence of adverse events between both groups. CONCLUSION The NBP is effective and safe in improving cognitive impairment; however, more high-quality RCTs are needed to confirm these findings.
Collapse
Affiliation(s)
- Qiulu Zhou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Chao Han
- Department of NeurologyThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yun Xia
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Fang Wan
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Sijia Yin
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yunna Li
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Liang Kou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaosa Chi
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Junjie Hu
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Yadi Sun
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jiawei Wu
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wenkai Zou
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Jinsha Huang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Tao Wang
- Department of NeurologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
31
|
Åström DO, Simonsen J, Raket LL, Sgarbi S, Hellsten J, Hagell P, Norlin JM, Kellerborg K, Martinez-Martin P, Odin P. High risk of developing dementia in Parkinson's disease: a Swedish registry-based study. Sci Rep 2022; 12:16759. [PMID: 36202962 PMCID: PMC9537530 DOI: 10.1038/s41598-022-21093-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Dementia have substantial negative impact on the affected individual, their care partners and society. Persons living with Parkinson’s disease (PwP) are also to a large extent living with dementia. The aim of this study is to estimate time to dementia in PD using data from a large quality register with access to baseline clinical and patient reported data merged with Swedish national health registries. Persons with Parkinson’s disease in the Swedish Neuro Registries/Parkinson’s Disease Swedish PD Registry (PARKreg) in Sweden were included and linked to national health registries and matched by sex and age to controls without PD. Time to dementia was analysed with Cox regression models assuming proportional hazards, with time since diagnosis as the underlying time variable. In this large prospective cohort study, PwP had approximately four times higher risk of developing dementia as compared to age and sex-matched controls, a finding which remained after adjusting for potential confounders. The present results underline the high risk of dementia in PD and further emphasize the importance of developing symptomatic and ultimately disease modifying strategies to counteract this part of the non-motor symptomatology in PD.
Collapse
Affiliation(s)
| | | | - Lars Lau Raket
- H Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark.,Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Peter Hagell
- The PRO-CARE Group, Faculty of Health Sciences, Kristianstad University, Kristianstad, Sweden
| | - Jenny M Norlin
- The Swedish Institute for Health Economics, Lund, Sweden
| | | | - Pablo Martinez-Martin
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health, Madrid, Spain
| | - Per Odin
- Division of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Khera A, Stopschinski BE, Chiang HS. Evidence-Based Evaluation and Management of Cognitive Impairment in Dementia With Lewy Bodies. Psychiatr Ann 2022. [DOI: 10.3928/00485713-20220901-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Thaler A, Alcalay RN. Diagnosis and Medical Management of Parkinson Disease. Continuum (Minneap Minn) 2022; 28:1281-1300. [DOI: 10.1212/con.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Cerami C, Perini G, Panzavolta A, Cotta Ramusino M, Costa A. A Call for Drug Therapies for the Treatment of Social Behavior Disorders in Dementia: Systematic Review of Evidence and State of the Art. Int J Mol Sci 2022; 23:ijms231911550. [PMID: 36232852 PMCID: PMC9569533 DOI: 10.3390/ijms231911550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/14/2022] Open
Abstract
Growing evidence supports the presence of social cognition deficits and social behavior alterations in major and minor neurocognitive disorders (NCDs). Even though the ability to identify socio-emotional changes has significantly improved in recent years, there is still no specific treatment available. Thus, we explored evidence of drug therapies targeting social cognition alterations in NCDs. Papers were selected according to PRISMA guidelines by searching on the PubMed and Scopus databases. Only papers reporting information on pharmacological interventions for the treatment of social cognition and/or social behavioral changes in major and/or minor NCDs were included. Among the 171 articles entered in the paper selection, only 9 papers were eligible for the scope of the review. Trials testing pharmacological treatments for socio-emotional alterations in NCDs are poor and of low-medium quality. A few attempts with neuroprotective, psychoactive, or immunomodulating drugs have been made. Oxytocin is the only drug specifically targeting the social brain that has been tested with promising results in frontotemporal dementia. Its beneficial effects in long-term use have yet to be evaluated. No recommendation can currently be provided. There is a long way to go to identify and test effective targets to treat social cognition changes in NCDs for the ultimate benefit of patients and caregivers.
Collapse
Affiliation(s)
- Chiara Cerami
- IUSS Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, 27100 Pavia, Italy
- Cognitive Computational Neuroscience Research Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence:
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementias (CDCD), IRCCS Mondino Foundation, 27100 Pavia, Italy
- Dementia Research Center (DRC), IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Andrea Panzavolta
- IUSS Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementias (CDCD), IRCCS Mondino Foundation, 27100 Pavia, Italy
- Dementia Research Center (DRC), IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementias (CDCD), IRCCS Mondino Foundation, 27100 Pavia, Italy
- Dementia Research Center (DRC), IRCCS Mondino Foundation, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
35
|
Baba T, Takeda A, Murakami A, Koga T, Isomura T, Mori E. Effect of donepezil for dementia prevention in Parkinson's disease with severe hyposmia (The DASH-PD study): A randomized long-term placebo-controlled trial. EClinicalMedicine 2022; 51:101571. [PMID: 35860451 PMCID: PMC9289637 DOI: 10.1016/j.eclinm.2022.101571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Dementia greatly contributes to poor prognosis in patients with Parkinson's disease (PD). We previously reported that severe olfactory dysfunction may be a good predictor of Parkinson's disease dementia (PDD). In this trial, we investigated whether early administration of donepezil to patients with severe hyposmia can reduce the development of PDD. METHODS This was a multi-centre, randomized, double-blind, parallel group, placebo-controlled trial in patients with non-demented PD with severe hyposmia (The Donepezil Application for Severe Hyposmic Parkinson's Disease [DASH-PD] study). A total of 201 patients were randomly allocated to receive donepezil or placebo in addition to standard therapy for PD. Patients were followed up every 6 months until the onset of PDD or for a maximum of 4 years. The primary endpoint was the onset of dementia. The secondary endpoint was cognitive impairment measured by Addenbrooke's Cognitive Examination-Revised (ACE-R) and the Clinical Dementia Rating (CDR).(UMIN000009958: February 2013 to May 2019). FINDINGS A total of 201 hyposmic patients with PD were randomly assigned to a treatment: 103 to donepezil and 98 to placebo. Overall, 141 (70%) patients completed the 4-year intervention. During follow-up, 7 of 103 (6.8%) patients in the donepezil group and 12 of 98 (12.2%) patients in the placebo group developed PDD; however, the hazard ratio of PDD incidence was not statistically significant (hazard ratio (HR), 0.609; 95% confidence interval, 0.240 to 1.547; p = 0.2969). At week 208, the patients in the donepezil group had better scores on the ACE-R (p < 0.005) and the CDR (p < 0.005) than those taking placebo. INTERPRETATION Administration of donepezil to PD patients with severe olfactory dysfunction for 4 years did not change the incidence of dementia but had a beneficial effect on neuropsychological function, with good tolerability. FUNDING The Ministry of Health Labour and Welfare and the Japan Agency for Medical Research and Development provided funding for this study.
Collapse
Affiliation(s)
- Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Cognitive & Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
- Corresponding author at: Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, 2-11-11, Kagitorihoncho, Taihaku-ku, Sendai, 982-8555, Japan.
| | | | | | | | - Etsuro Mori
- Department of Behavioral Neurology and Cognitive Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Behavioral Neurology and Neuropsychiatry, United Graduate School of Child Development, Osaka University, Suita, Japan
| | | |
Collapse
|
36
|
Agüera-Ortiz L, Babulal GM, Bruneau MA, Creese B, D'Antonio F, Fischer CE, Gatchel JR, Ismail Z, Kumar S, McGeown WJ, Mortby ME, Nuñez NA, de Oliveira FF, Pereiro AX, Ravona-Springer R, Rouse HJ, Wang H, Lanctôt KL. Psychosis as a Treatment Target in Dementia: A Roadmap for Designing Interventions. J Alzheimers Dis 2022; 88:1203-1228. [PMID: 35786651 PMCID: PMC9484097 DOI: 10.3233/jad-215483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Psychotic phenomena are among the most severe and disruptive symptoms of dementias and appear in 30% to 50% of patients. They are associated with a worse evolution and great suffering to patients and caregivers. Their current treatments obtain limited results and are not free of adverse effects, which are sometimes serious. It is therefore crucial to develop new treatments that can improve this situation. We review available data that could enlighten the future design of clinical trials with psychosis in dementia as main target. Along with an explanation of its prevalence in the common diseases that cause dementia, we present proposals aimed at improving the definition of symptoms and what should be included and excluded in clinical trials. A review of the available information regarding the neurobiological basis of symptoms, in terms of pathology, neuroimaging, and genomics, is provided as a guide towards new therapeutic targets. The correct evaluation of symptoms is transcendental in any therapeutic trial and these aspects are extensively addressed. Finally, a critical overview of existing pharmacological and non-pharmacological treatments is made, revealing the unmet needs, in terms of efficacy and safety. Our work emphasizes the need for better definition and measurement of psychotic symptoms in dementias in order to highlight their differences with symptoms that appear in non-dementing diseases such as schizophrenia. Advances in neurobiology should illuminate the development of new, more effective and safer molecules for which this review can serve as a roadmap in the design of future clinical trials.
Collapse
Affiliation(s)
- Luis Agüera-Ortiz
- Department of Psychiatry, Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, & Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Ganesh M Babulal
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Clinical Research and Leadership, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Department of Psychology, Faculty of Humanities, University of Johannesburg, South Africa
| | - Marie-Andrée Bruneau
- Department of Psychiatry and Addictology, Faculty of Medicine, University of Montreal, Quebec, Canada.,Geriatric Institute of Montreal Research Center, Montreal, Quebec, Canada
| | - Byron Creese
- Medical School, College of Medicine and Health, University of Exeter, UK
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.,University of Toronto, Department of Psychiatry, Toronto, Ontario, Canada
| | - Jennifer R Gatchel
- Harvard Medical School; Massachusetts General Hospital, Boston MA, USA.,McLean Hospital, Belmont MA, USA
| | - Zahinoor Ismail
- Hotchkiss Brain Institute & O'Brien Institute for Public Health, University of Calgary, Calgary, Canada
| | - Sanjeev Kumar
- Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - William J McGeown
- School of Psychological Sciences and Health, University of Strathclyde, Glasgow, UK
| | - Moyra E Mortby
- School of Psychology, University of New South Wales, Sydney, Australia & Neuroscience Research Australia, Sydney, Australia
| | - Nicolas A Nuñez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Fabricio F de Oliveira
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Arturo X Pereiro
- Facultade de Psicoloxía, Universidade de Santiago de Compostela, Spain
| | - Ramit Ravona-Springer
- Sheba Medical Center, Tel Hashomer, Israel & Sackler School of Medicine, Tel Aviv University, Israel
| | - Hillary J Rouse
- School of Aging Studies, University of South Florida, Tampa, FL, USA.,SiteRx, New York, NY, USA
| | - Huali Wang
- Dementia Care and Research Center, Peking University Institute of Mental Health; National & Clinical Research Center for Mental Disorders, Beijing, China
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Departments of Psychiatry and Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Prasad S, Katta MR, Abhishek S, Sridhar R, Valisekka SS, Hameed M, Kaur J, Walia N. Recent advances in Lewy body dementia: A comprehensive review. Dis Mon 2022; 69:101441. [PMID: 35690493 DOI: 10.1016/j.disamonth.2022.101441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lewy Body Dementia is the second most frequent neurodegenerative illness proven to cause dementia, after Alzheimer's disease (AD). It is believed to be vastly underdiagnosed, as there is a significant disparity between the number of cases diagnosed clinically and those diagnosed via neuropathology at the time of postmortem autopsy. Strikingly, many of the pharmacologic treatments used to treat behavioral and cognitive symptoms in other forms of dementia exacerbate the symptoms of DLB. Therefore, it is critical to accurately diagnose DLB as these patients require a specific treatment approach. This article focuses on its pathophysiology, risk factors, differentials, and its diverse treatment modalities. In this study, an English language literature search was conducted on Medline, Cochrane, Embase, and Google Scholar till April 2022. The following search strings and Medical Subject Headings (MeSH) terms were used: "Lewy Body Dementia," "Dementia with Lewy bodies," and "Parkinson's Disease Dementia." We explored the literature on Lewy Body Dementia for its epidemiology, pathophysiology, the role of various genes and how they bring about the disease, biomarkers, its differential diagnoses and treatment options.
Collapse
Affiliation(s)
- Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018, Vinnytsya, Ukraine.
| | | | | | | | | | - Maha Hameed
- Alfaisal University College of Medicine, Riyadh, Saudi Arabia
| | | | - Namrata Walia
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Sciences Center, Houston, Texas, United States of America
| |
Collapse
|
38
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
39
|
Goldman JG, Holden SK. Cognitive Syndromes Associated With Movement Disorders. Continuum (Minneap Minn) 2022; 28:726-749. [PMID: 35678400 DOI: 10.1212/con.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE OF REVIEW This article reviews the recognition and management of cognitive syndromes in movement disorders, including those with parkinsonism, chorea, ataxia, dystonia, and tremor. RECENT FINDINGS Cognitive and motor syndromes are often intertwined in neurologic disorders, including neurodegenerative diseases such as Parkinson disease, atypical parkinsonian syndromes, Huntington disease, and other movement disorders. Cognitive symptoms often affect attention, working memory, and executive and visuospatial functions preferentially, rather than language and memory, but heterogeneity can be seen in the various movement disorders. A distinct cognitive syndrome has been recognized in patients with cerebellar syndromes. Appropriate recognition and screening for cognitive changes in movement disorders may play a role in achieving accurate diagnoses and guiding patients and their families regarding progression and management decisions. SUMMARY In the comprehensive care of patients with movement disorders, recognition of cognitive syndromes is important. Pharmacologic treatments for the cognitive syndromes, including mild cognitive impairment and dementia, in these movement disorders lag behind the therapeutics available for motor symptoms, and more research is needed. Patient evaluation and management require a comprehensive team approach, often linking neurologists as well as neuropsychologists, psychologists, psychiatrists, social workers, and other professionals.
Collapse
|
40
|
Kawashima S, Matsukawa N. Memantine for the patients with mild cognitive impairment in Parkinson's disease: a pharmacological fMRI study. BMC Neurol 2022; 22:175. [PMID: 35562711 PMCID: PMC9103297 DOI: 10.1186/s12883-022-02699-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mild cognitive impairment in Parkinson's disease (PD-MCI) is associated with an increased risk of cognitive decline. PD-MCI is characterized by impairments in executive function and visuospatial recognition. The visuospatial n-back test is useful for assessing both domains. The 0-back test reflects visuospatial recognition, while the 1-back and 2-back tests reflect working memory. Cholinesterase inhibitors are effective in the treatment of PD-MCI and dementia in PD (PDD). Although some studies have reported the efficacy of memantine for PDD, the therapeutic efficacy of memantine in patients with PD-MCI remains uncertain. METHODS This study aimed to investigate the effects of memantine on brain function in patients with PD-MCI, using a randomized double-blinded crossover protocol and functional MRI (fMRI). Ten patients who completed 16 weeks of follow-up were included. They were randomly assigned to either the memantine or placebo. Patients in the memantine group received 5 mg/day of memantine in the first week. The memantine dose was increased by 5 mg/day per week, until a final dose of 20 mg/day. Patients in the placebo group received the placebo following the same regimen as memantine. After the intervention, they underwent a 4 weeks washout period. Following the crossover protocol, a second intervention was conducted after the washout period. In each intervention, fMRI and neuropsychological tests were performed at the maximum dose period. Comparing the memantine and placebo groups, we investigated difference in the brain regions using the visuospatial n-back test. RESULTS There were no significant regions enhanced by memantine comparing with placebo at any load of n-back tests. In contrast, exploring regions reduced by memantine, we found significant reduction of activations within right lingual gyrus and left superior frontal gyrus in comparison between 2-back and 0-back test. A number of correct answers of the 2-back test and time to complete Trail Making Test-A were worse during memantine intervention. CONCLUSIONS Memantine did not improve visuospatial working memory of the patients with PD-MCI. Treatment for PD should be planned carefully considering the impact on cognitive function. Further study is needed to establish new therapeutic strategy. TRIAL REGISTRATION UMIN000046104. Retrospectively registered. First registration date: 28 Sept 2017.
Collapse
Affiliation(s)
- Shoji Kawashima
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan.
| | | | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
41
|
Yoon B, Kim HJ. Patterns of dementia treatment in older adults with Parkinson's disease using nationwide medical claims data. BMC Geriatr 2022; 22:353. [PMID: 35459128 PMCID: PMC9026646 DOI: 10.1186/s12877-022-03028-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022] Open
Abstract
Background Dementia is a common feature in Parkinson’s disease (PD); however, data on dementia treatment patterns in patients with PD are scarce. This study aimed to evaluate the incidence of dementia in individuals with PD and to describe the dementia treatment patterns in the Korean elderly population. Methods We conducted a retrospective population-based cohort study using data obtained from the Korean National Health Insurance Service-Senior Cohort (NHIS-SC) database. The dataset comprised more than 500,000 health insurance beneficiaries from January 1, 2002 to December 31, 2015. We estimated the incidence of patients newly diagnosed with dementia during this observational period, compared patient demographics, and analyzed the exposure to anticholinergic drugs among PD patients with (PD + D) and without (PD-D) dementia. Furthermore, the duration to dementia diagnosis and patterns of dementia treatment were evaluated. Results A cohort of 28,537 patients aged 60 years or older who were diagnosed with PD by the NHIS was established. Within this cohort, 8620 patients were eligible study participants according to strict inclusion/exclusion criteria. Of these individuals, 3879 (45.0%) patients were newly diagnosed with dementia; the incidence of dementia in PD was 15.2 per 1000 person-years. The proportion of women was higher in the PD + D (64.6%) than the PD-D group (58.2%) (P < 0.001); furthermore, the use of anticholinergic medication was greater in PD + D (37.6%) than in PD-D (24.0%) patients. The incidence curves for dementia over time were the steepest during the first year and decreased every year thereafter. Approximately 60% of PD patients were diagnosed with dementia during the first 3 years. Regarding the use of anti-dementia drugs, 2539 (65.5%) of 3879 PD + D were prescribed medication. During the observation period, 1799 (70.9%) patients were prescribed only one type of anti-dementia drug. In this monotherapy group, the most commonly prescribed medication was donepezil (1313[73.0%]), followed by rivastigmine (capsule and patch; 246[13.7%]), memantine (187[10.4%]), and galantamine (53[2.9%]). Conclusions In Korea, dementia was observed to occur relatively soon after the diagnosis of PD. Anti-dementia medication was prescribed to approximately 66% of PD + D patients, with the majority receiving donepezil as monotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-022-03028-0.
Collapse
Affiliation(s)
- Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Konyang University Hospital, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Preventive Medicine, Ulsan University College of Medicine, Seoul, South Korea. .,Department of Clinical Epidemiology and Biostatistics, ASAN Medical Center, Ulsan University College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
42
|
Halhouli O, Zhang Q, Aldridge GM. Caring for patients with cognitive dysfunction, fluctuations and dementia caused by Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:407-434. [PMID: 35248204 DOI: 10.1016/bs.pbr.2022.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cognitive dysfunction is one of the most prevalent non-motor symptoms in patients with Parkinson's disease (PD). While it tends to worsen in the later stages of disease, it can occur at any time, with 15-20% of patients exhibiting cognitive deficits at diagnosis (Aarsland et al., 2010; Goldman and Sieg, 2020). The characteristic features of cognitive dysfunction include impairment in executive function, visuospatial abilities, and attention, which vary in severity from subtle impairment to overt dementia (Martinez-Horta and Kulisevsky, 2019). To complicate matters, cognitive dysfunction is prone to fluctuate in PD patients, impacting diagnosis and the ability to assess progression and decision-making capacity. The diagnosis of cognitive impairment or dementia has a huge impact on patient independence, quality of life, life expectancy and caregiver burden (Corallo et al., 2017; Lawson et al., 2016; Leroi et al., 2012). It is therefore essential that physicians caring for patients with PD provide education, screening and treatment for this aspect of the disease. In this chapter, we provide a practical guide for the assessment and management of various degrees of cognitive dysfunction in patients with PD by approaching the disease at different stages. We address risk factors for cognitive dysfunction, prevention strategies prior to making the diagnosis, available tools for screening. Lastly, we review aspects of care, management and considerations, including decision-making capacity, that occur after the patient has been diagnosed with cognitive dysfunction or dementia.
Collapse
Affiliation(s)
- Oday Halhouli
- University of Iowa, Department of Neurology, Iowa City, IA, United States
| | - Qiang Zhang
- University of Iowa, Department of Neurology, Iowa City, IA, United States
| | | |
Collapse
|
43
|
Abstract
Cognitive impairment affects up to 80% of patients with Parkinson's disease (PD) and is associated with poor quality of life. PD cognitive dysfunction includes poor working memory, impairments in executive function and difficulty in set-shifting. The pathophysiology underlying cognitive impairment in PD is still poorly understood, but there is evidence to support involvements of the cholinergic, dopaminergic, and noradrenergic systems. Only rivastigmine, an acetyl- and butyrylcholinesterase inhibitor, is efficacious for the treatment of PD dementia, which limits management of cognitive impairment in PD. Whereas the role of the serotonergic system in PD cognition is less understood, through its interactions with other neurotransmitters systems, namely, the cholinergic system, it may be implicated in cognitive processes. In this chapter, we provide an overview of the pharmacological, clinical and pathological evidence that implicates the serotonergic system in mediating cognition in PD.
Collapse
|
44
|
Herrmann N, Ismail Z, Collins R, Desmarais P, Goodarzi Z, Henri‐Bhargava A, Iaboni A, Kirkham J, Massoud F, Moser A, Silvius J, Watt J, Seitz D. CCCDTD5 recommendations on the deprescribing of cognitive enhancers in dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12099. [PMID: 35128025 PMCID: PMC8802736 DOI: 10.1002/trc2.12099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cognitive enhancers (ie, cholinesterase inhibitors and memantine) can provide symptomatic benefit for some individuals with dementia; however, there are circumstances in which the risks of continuing treatment may potentially outweigh benefits. The decision to deprescribe cognitive enhancers must consider each patient's preferences, treatment indications, current clinical status and symptoms, prognosis, and dementia type. METHODS The 5th Canadian Consensus Conference on the Diagnosis and Treatment of Dementia (CCCDTD5) established a subcommittee of experts to review current evidence on the deprescribing of cognitive enhancers. The questions answered by this group included: When should cognitive enhancers be deprescribed in persons with dementia and mild cognitive impairment? How should cognitive enhancers be deprescribed? And, what clinical factors should be considered when deprescribing cognitive enhancers? RESULTS Patient and care-partner preferences should be incorporated into all decisions to deprescribe cognitive enhancers. Cognitive enhancers should be discontinued in individuals without ongoing evidence of benefit or when the indication for cognitive enhancer use was inappropriate (eg, mild cognitive impairment). Deprescribing should occur gradually and cognitive enhancers should be reinitiated if patients' cognition or function deteriorates. Cognitive enhancers should be continued in individuals whose neuropsychiatric symptoms improve in response to treatment. Clinicians should not deprescribe cognitive enhancers in individuals with significant neuropsychiatric symptoms until symptoms have stabilized. CONCLUSION CCCDTD5 deprescribing recommendations provide evidence-informed recommendations related to cognitive enhancer deprescribing that will facilitate shared decision making among patients, care partners, and clinicians.
Collapse
Affiliation(s)
- Nathan Herrmann
- Department of PsychiatrySunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Zahinoor Ismail
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Cumming School of Medicine; Hotchkiss Brain Institute and O'Brien Institute of Public HealthUniversity of Calgary, Calgary, Alberta, Canada
| | - Rhonda Collins
- Department of Family MedicineMcMaster UniversityChief Medical Officer, Revera IncHamiltonOntarioCanada
| | - Philippe Desmarais
- Department of MedicineDivision of Geriatrics and Department of NeurosciencesCentre de Recherche du Centre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Zahra Goodarzi
- Division of Geriatrics, Department of Medicine, Cumming School of Medicine; Hotchkiss Brain Institute; O'Brien Institute of Public HealthUniversity of CalgaryCalgaryCanada
| | - Alexandre Henri‐Bhargava
- Division of Neurology, Faculty of MedicineUniversity of British Columbia; Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Andrea Iaboni
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Kite Research Institute, Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
| | - Julia Kirkham
- Department of PsychiatryCumming School of Medicine, University of Calgary
| | - Fadi Massoud
- Department of MedicineUniversity of SherbrookeSherbrookeQuebecCanada
| | - Andrea Moser
- Department of Family and Community MedicineUniversity of Toronto, Associate Medical Director, Jewish Home for the Aged, BaycrestTorontoOntarioCanada
| | - James Silvius
- Division of Geriatric Medicine, Department of Medicine, Cumming School of MedicineUniversity of Calgary, Calgary, Alberta, Canada
| | - Jennifer Watt
- Division of Geriatric MedicineDepartment of Medicine, University of TorontoTorontoOntarioCanada
| | - Dallas Seitz
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Cumming School of Medicine; Hotchkiss Brain Institute and O'Brien Institute of Public HealthUniversity of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Carey E, Furlong E, Smith R. The management of delirium in the older adult in advanced nursing practice. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2022; 31:76-84. [PMID: 35094544 DOI: 10.12968/bjon.2022.31.2.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Delirium is a term used to describe an array of symptoms that indicate a disruption in cerebral metabolism, a condition that is often under-recognised, leading to delayed interventions. The condition is a common cause of older adults presenting in hospital, with significant morbidity and mortality associated with increased length of stay. A case study is used to illustrate the use of a diagnostic algorithm for older adults presenting with delirium to an advanced nurse practitioner (ANP)-led service. The clinical decision pathway provides four differential diagnoses, using the case study to put the decision-making process in context. The article demonstrates the ability of the ANP to practise at a high level of expertise as an autonomous practitioner and shows how the pathway supports the nurse to reach an accurate diagnosis. It shows that prompt and accurate diagnosis of delirium in older adults is crucial to avoiding the complications and cognitive decline associated with the condition.
Collapse
Affiliation(s)
- Edel Carey
- Registered Advanced Nurse Practitioner, Older Adult Care, Cherry Orchard Hospital and Dublin South Kildare and West Wicklow Community Healthcare Area, Dublin, Ireland
| | - Eileen Furlong
- Associate Professor in Nursing, School of Nursing, Midwifery and Health Systems, University College Dublin. Ireland
| | - Rita Smith
- Associate Professor in Nursing, School of Nursing, Midwifery and Health Systems, University College Dublin. Ireland
| |
Collapse
|
46
|
Maneval J, Woods JK, Feany MB, Miller MB, Silbersweig DA, Gale SA, Daffner KR, McGinnis SM. Case Study 3: A 58-Year-Old Woman Referred for Evaluation of Suspected Alzheimer Dementia. J Neuropsychiatry Clin Neurosci 2022; 34:307-315. [PMID: 36239480 PMCID: PMC9823288 DOI: 10.1176/appi.neuropsych.20220113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jeffrey Maneval
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Jared K. Woods
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Mel B. Feany
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Michael B. Miller
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - David A. Silbersweig
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Seth A. Gale
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Kirk R. Daffner
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| | - Scott M. McGinnis
- Department of Neurology (Maneval, Silbersweig, Gale, Daffner, McGinnis) and Department of Psychiatry (Silbersweig), Center for Brain/Mind Medicine, and Department of Pathology (Woods, Feany, Miller), Brigham and Women’s Hospital, Harvard Medical School, Boston; Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (McGinnis)
| |
Collapse
|
47
|
Couto SDF, Araujo SM, Bortolotto VC, Dahleh MMM, Musachio EAS, Pinheiro FC, Romio LC, do Sacramento M, Alves D, Prigol M. Effectiveness of 7-chloro-4-(phenylselanyl) quinoline in improving learning, short-term memory, and anxiety-like behaviors in a mimetic model of Parkinson's disease in Drosophila melanogaster. NEW J CHEM 2022. [DOI: 10.1039/d2nj04011e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential of 4-PSQ on psychomotor and non-motor behaviors of PD, such as spontaneous locomotor activity, learning, memory, and anxiety.
Collapse
Affiliation(s)
- Shanda de Freitas Couto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Franciane Cabral Pinheiro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Leugim Corteze Romio
- Departamento de Matemática – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa – LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA) – Universidade Federal de Pelotas – Campus Universitário, S/N – Prédio/Bloco: 30 e 32, Capão do Leão, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas – LaftamBio Pampa – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
- Departamento de Nutrição – Universidade Federal do Pampa – Campus Itaqui – Rua Luiz Joaquim de Sá Britto, s/n – Bairro: Promorar, Itaqui, Rio Grande do Sul, CEP 97650-000, Brazil
| |
Collapse
|
48
|
Rahman M, Mim SA, Islam R, Parvez A, Islam F, Uddin MB, Rahaman S, Shuvo PA, Ahmed M, Greig NH, Kamal MA. Exploring the Recent Trends in Management of Dementia and Frailty: Focus on Diagnosis and Treatment. Curr Med Chem 2022; 29:5289-5314. [PMID: 35400321 PMCID: PMC10477961 DOI: 10.2174/0929867329666220408102051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 02/08/2023]
Abstract
Dementia and frailty increase health adversities in older adults, which are topics of growing research interest. Frailty is considered to correspond to a biological syndrome associated with age. Frail patients may ultimately develop multiple dysfunctions across several systems, including stroke, transient ischemic attack, vascular dementia, Parkinson's disease, Alzheimer's disease, frontotemporal dementia, dementia with Lewy bodies, cortico-basal degeneration, multiple system atrophy, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease. Patients with dementia and frailty often develop malnutrition and weight loss. Rigorous nutritional, pharmacological, and non-pharmacological interventions generally are required for these patients, which is a challenging issue for healthcare providers. A healthy diet and lifestyle instigated at an early age can reduce the risk of frailty and dementia. For optimal treatment, accurate diagnosis involving clinical evaluation, cognitive screening, essential laboratory evaluation, structural imaging, functional neuroimaging, and neuropsychological testing is necessary. Diagnosis procedures best apply the clinical diagnosis, identifying the cause(s) and the condition(s) appropriate for treatment. The patient's history, caregiver's interview, physical examination, cognitive evaluation, laboratory tests, and structural imaging should best be involved in the diagnostic process. Varying types of physical exercise can aid the treatment of these disorders. Nutrition maintenance is a particularly significant factor, such as exceptionally high-calorie dietary supplements and a Mediterranean diet to support weight gain. The core purpose of this article is to investigate trends in the management of dementia and frailty, focusing on improving diagnosis and treatment. Substantial evidence builds the consensus that a combination of balanced nutrition and good physical activity is an integral part of treatment. Notably, more evidence-based medicine knowledge is required.
Collapse
Affiliation(s)
- Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Pollob Ahmed Shuvo
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka-1207, Bangladesh
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, NSW; Novel Global Community Educational Foundation, Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
49
|
Guglietti B, Hobbs D, Collins-Praino LE. Optimizing Cognitive Training for the Treatment of Cognitive Dysfunction in Parkinson's Disease: Current Limitations and Future Directions. Front Aging Neurosci 2021; 13:709484. [PMID: 34720988 PMCID: PMC8549481 DOI: 10.3389/fnagi.2021.709484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
Cognitive dysfunction, primarily involving impairments in executive function, visuospatial function and memory, is one of the most common non-motor symptoms of Parkinson’s disease (PD). Currently, the only pharmacological treatments available for the treatment of cognitive dysfunction in PD provide variable benefit, making the search for potential non-pharmacological therapies to improve cognitive function of significant interest. One such therapeutic strategy may be cognitive training (CT), which involves the repetition of standardized tasks with the aim of improving specific aspects of cognition. Several studies have examined the effects of CT in individuals with PD and have shown benefits in a variety of cognitive domains, but the widespread use of CT in these individuals may be limited by motor impairments and other concerns in study design. Here, we discuss the current state of the literature on the use of CT for PD and propose recommendations for future implementation. We also explore the potential use of more recent integrative, adaptive and assistive technologies, such as virtual reality, which may optimize the delivery of CT in PD.
Collapse
Affiliation(s)
- Bianca Guglietti
- Cognition, Ageing and Neurodegenerative Disease Laboratory, Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - David Hobbs
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, Australia.,Allied Health & Human Performance, University of South Australia, Adelaide, SA, Australia
| | - Lyndsey E Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
50
|
Zhang Y, Luo H, Wong GHY, Zhao M, Lv X, Lum TYS, Chui CSL, Yu X, Wong ICK, Wang H. Prescription Patterns of Antidementia and Psychotropic Drugs in People Living With Dementia: Findings From the Clinical Pathway Study of Alzheimer's Disease in China. J Am Med Dir Assoc 2021; 23:1073-1079.e3. [PMID: 34418377 DOI: 10.1016/j.jamda.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Evidence about prescribing patterns of dementia medication in China is lacking. This study aimed to examine prescribing rates of antidementia and psychotropic drugs and factors associated with drug prescription for dementia in China. DESIGN A multicenter observational study. SETTING AND PARTICIPANTS This study employed cross-sectional data from the Clinical Pathway for Alzheimer's Disease in China study that was conducted in 28 memory clinics at tertiary hospitals across 14 provinces between 2012 and 2013. Patients aged ≥45 years with a diagnosis of dementia were included. METHODS Antidementia and psychotropic drugs were classified according to the Anatomical Therapeutic Chemical codes. Odds ratios (ORs) of putative factors associated with prescription patterns were estimated using logistic regressions. RESULTS A total of 751 respondents were included in this study, 77.8% of whom were prescribed antidementia drugs, and 33.0% were prescribed at least 1 psychotropic drug. The concomitant prescription rate of antidementia and psychotropic drugs was 24.1%. Frontotemporal dementia [OR 9.92 (99.17% CI 3.08-42.70)], severe dementia [4.25 (1.88-9.79)], and apathy [1.94 (1.18-3.20)] were significantly associated with an elevated likelihood of memantine prescription. Psychotic symptoms [1.84 (1.02-3.35)], agitation [1.91 (1.08-3.40)], and depressive symptoms [2.10 (1.12-3.94)] were significantly associated with the coprescription of antidementia and psychotropic agents. CONCLUSIONS AND IMPLICATIONS The prescribing rate of antidementia drugs in the study sample was higher, whereas the rate of coprescription of psychotropic and antidementia drugs was lower than reported in Western studies. Dementia prescription practice was generally consistent with clinical guidelines in memory clinics in China, whereas the prescription of antidementia and psychotropic medication mainly depended on patients' clinical symptoms.
Collapse
Affiliation(s)
- Yingyang Zhang
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China
| | - Hao Luo
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China; Department of Computer Science, The University of Hong Kong, Hong Kong, China; Aging Research Center, Karolinska Institutet, Stockholm, Sweden; Sau Po Centre on Ageing, The University of Hong Kong, Hong Kong, China.
| | - Gloria H Y Wong
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China; Sau Po Centre on Ageing, The University of Hong Kong, Hong Kong, China
| | - Mei Zhao
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Xiaozhen Lv
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China; Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Terry Y S Lum
- Department of Social Work and Social Administration, The University of Hong Kong, Hong Kong, China; Sau Po Centre on Ageing, The University of Hong Kong, Hong Kong, China
| | - Celine S L Chui
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong SAR, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong SAR, China
| | - Xin Yu
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China; Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ian C K Wong
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Sha Tin, Hong Kong SAR, China; Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom
| | - Huali Wang
- Dementia Care & Research Center, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China; Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China; Key Laboratory for Mental Health, Ministry of Health (Peking University), Beijing, China.
| |
Collapse
|