1
|
Okrah AK, Tharrington S, Shin I, Wagoner A, Woodsmall KS, Jehu DA. Risk Factors for Fall-Related Mild Traumatic Brain Injuries Among Older Adults: A Systematic Review Highlighting Research Gaps. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:255. [PMID: 40003481 PMCID: PMC11854998 DOI: 10.3390/ijerph22020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Mild traumatic brain injury (mTBI) is commonly undiagnosed, delaying treatment and recovery. Approximately 80% of mTBIs in older adults stem from falls, yet the predictive factors remain unclear. This systematic review aimed to examine the risk factors for fall-related mTBIs among older adults. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol and the Meta-Analysis of Observational Studies in Epidemiology (MOOSE) guidelines were followed (Prospero ID: CRD42023377847). The scope included prospective studies analyzing the risk factors for fall-related mTBIs in adults ≥ 60 years. The primary outcome measure was the relative risk for fall-related mTBIs, and the secondary outcomes were fall rate, total falls, and faller/non-faller count among those with and without an mTBI. CINAHL Plus, Health Source: Nursing Academic Edition, Nursing and Allied Health Database, Medline via PubMed, SPORTDiscus, and Web of Science were searched on 4 November 2022 and 31 May 2024. Additional electronic searches were conducted. Two authors planned to screen the articles and assess the quality and risk of bias, with a third author adjudicating disagreements. Results were to be presented in a narrative synthesis. The database search yielded 434 records; 410 titles and abstracts were screened after deduplication, and 71 reports underwent a full-text review. No prospective observational studies were eligible because they did not fulfil the following: (1) focus on an mTBI (46 records); (2) exclusively assess individuals aged ≥60 (20 records); or (3) examine falls (5 records). Given the devastating consequences of fall-related mTBIs among older adults, there is an urgent need to identify the risk factors to improve screening and intervention.
Collapse
Affiliation(s)
- Albert K. Okrah
- Department of Community & Behavioral Health Sciences, School of Public Health, Augusta University, Augusta, GA 30912, USA
| | - Shafer Tharrington
- Robert B. Greenblatt, M.D. Library, College of Allied Health Sciences, Augusta University, Augusta, GA 30901, USA
| | - Isaac Shin
- Department of Community & Behavioral Health Sciences, School of Public Health, Augusta University, Augusta, GA 30912, USA
| | - Aaron Wagoner
- Department of Community & Behavioral Health Sciences, School of Public Health, Augusta University, Augusta, GA 30912, USA
| | - Katelyn S. Woodsmall
- Department of Community & Behavioral Health Sciences, School of Public Health, Augusta University, Augusta, GA 30912, USA
| | - Deborah A. Jehu
- Department of Community & Behavioral Health Sciences, School of Public Health, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Poliva O, Herrera C, Sugai K, Whittle N, Leek MR, Barnes S, Holshouser B, Yi A, Venezia JH. Additive effects of mild head trauma, blast exposure, and aging within white matter tracts: A novel Diffusion Tensor Imaging analysis approach. J Neuropathol Exp Neurol 2024; 83:853-869. [PMID: 39053000 DOI: 10.1093/jnen/nlae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Existing diffusion tensor imaging (DTI) studies of neurological injury following high-level blast exposure (hlBE) in military personnel have produced widely variable results. This is potentially due to prior studies often not considering the quantity and/or recency of hlBE, as well as co-morbidity with non-blast head trauma (nbHT). Herein, we compare commonly used DTI metrics: fractional anisotropy and mean, axial, and radial diffusivity, in Veterans with and without history of hlBE and/or nbHT. We use both the traditional method of dividing participants into 2 equally weighted groups and an alternative method wherein each participant is weighted by quantity and recency of hlBE and/or nbHT. While no differences were detected using the traditional method, the alternative method revealed diffuse and extensive changes in all DTI metrics. These effects were quantified within 43 anatomically defined white matter tracts, which identified the forceps minor, middle corpus callosum, acoustic and optic radiations, fornix, uncinate, inferior fronto-occipital and inferior longitudinal fasciculi, and cingulum, as the pathways most affected by hlBE and nbHT. Moreover, additive effects of aging were present in many of the same tracts suggesting that these neuroanatomical effects may compound with age.
Collapse
Affiliation(s)
- Oren Poliva
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | | | - Kelli Sugai
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Nicole Whittle
- VA Portland Healthcare System, Portland, OR, United States
| | - Marjorie R Leek
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Samuel Barnes
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Alex Yi
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Jonathan H Venezia
- VA Loma Linda Healthcare System, Loma Linda, CA, United States
- Department of Otolaryngology-Head & Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
3
|
Khoury MA, Churchill NW, Di Battista A, Graham SJ, Symons S, Troyer AK, Roberts A, Kumar S, Tan B, Arnott SR, Ramirez J, Tartaglia MC, Borrie M, Pollock B, Rajji TK, Pasternak SH, Frank A, Tang-Wai DF, Scott CJM, Haddad SMH, Nanayakkara N, Orange JB, Peltsch A, Fischer CE, Munoz DG, Schweizer TA. History of traumatic brain injury is associated with increased grey-matter loss in patients with mild cognitive impairment. J Neurol 2024; 271:4540-4550. [PMID: 38717612 DOI: 10.1007/s00415-024-12369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVES To investigate whether a history of traumatic brain injury (TBI) is associated with greater long-term grey-matter loss in patients with mild cognitive impairment (MCI). METHODS 85 patients with MCI were identified, including 26 with a previous history of traumatic brain injury (MCI[TBI-]) and 59 without (MCI[TBI+]). Cortical thickness was evaluated by segmenting T1-weighted MRI scans acquired longitudinally over a 2-year period. Bayesian multilevel modelling was used to evaluate group differences in baseline cortical thickness and longitudinal change, as well as group differences in neuropsychological measures of executive function. RESULTS At baseline, the MCI[TBI+] group had less grey matter within right entorhinal, left medial orbitofrontal and inferior temporal cortex areas bilaterally. Longitudinally, the MCI[TBI+] group also exhibited greater longitudinal declines in left rostral middle frontal, the left caudal middle frontal and left lateral orbitofrontal areas sover the span of 2 years (median = 1-2%, 90%HDI [-0.01%: -0.001%], probability of direction (PD) = 90-99%). The MCI[TBI+] group also displayed greater longitudinal declines in Trail-Making-Test (TMT)-derived ratio (median: 0.737%, 90%HDI: [0.229%: 1.31%], PD = 98.8%) and differences scores (median: 20.6%, 90%HDI: [-5.17%: 43.2%], PD = 91.7%). CONCLUSIONS Our findings support the notion that patients with MCI and a history of TBI are at risk of accelerated neurodegeneration, displaying greatest evidence for cortical atrophy within the left middle frontal and lateral orbitofrontal frontal cortex. Importantly, these results suggest that long-term TBI-mediated atrophy is more pronounced in areas vulnerable to TBI-related mechanical injury, highlighting their potential relevance for diagnostic forms of intervention in TBI.
Collapse
Affiliation(s)
- Marc A Khoury
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Nathan W Churchill
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Physics Department, Toronto Metropolitan University, Toronto, Canada
| | - Alex Di Battista
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Sean Symons
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Angela K Troyer
- Neuropsychology and Cognitive Health Program, Baycrest Hospital, Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Angela Roberts
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- Department of Computer Science, Western University, London, ON, Canada
- Canadian Centre for Activity and Aging, London, ON, Canada
| | - Sanjeev Kumar
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Brian Tan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Joel Ramirez
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Maria C Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Michael Borrie
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
- . Joseph's Healthcare Centre, London, ON, Canada
| | - Bruce Pollock
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen H Pasternak
- . Joseph's Healthcare Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, London Health Sciences Centre, London, ON, Canada
| | - Andrew Frank
- Bruyère Research Institute, Ottawa, ON, Canada
- University of Ottawa, Ottawa, ON, Canada
| | - David F Tang-Wai
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Christopher J M Scott
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | | | | | - Joseph B Orange
- School of Communication Sciences and Disorders, Western University, London, ON, Canada
- University of Western, London, ON, Canada
| | | | - Corinne E Fischer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David G Munoz
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science & Tech (iBEST), A Partnership Between St. Michael's Hospital and Ryerson University, Toronto, ON, M5V 1T8, Canada
- Division of Neurosurgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
5
|
Hanrahan JG, Burford C, Nagappan P, Adegboyega G, Rajkumar S, Kolias A, Helmy A, Hutchinson PJ. Is dementia more likely following traumatic brain injury? A systematic review. J Neurol 2023; 270:3022-3051. [PMID: 36810827 DOI: 10.1007/s00415-023-11614-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The association between traumatic brain injury (TBI) and dementia is controversial, and of growing importance considering the ageing demography of TBI. OBJECTIVE To review the scope and quality of the existing literature investigating the relationship between TBI and dementia. METHODS We conducted a systematic review following PRISMA guidelines. Studies that compared TBI exposure and dementia risk were included. Studies were formally assessed for quality with a validated quality-assessment tool. RESULTS 44 studies were included in the final analysis. 75% (n = 33) were cohort studies and data collection was predominantly retrospective (n = 30, 66.7%). 25 studies (56.8%) found a positive relationship between TBI and dementia. Clearly defined and valid measures of assessing TBI history were lacking (case-control studies-88.9%, cohort studies-52.9%). Most studies failed to justify a sample size (case-control studies-77.8%, cohort studies-91.2%), blind assessors to exposure (case-control-66.7%) or blind assessors to exposure status (cohort-3.00%). Studies that identified a relationship between TBI and dementia had a longer median follow-up time (120 months vs 48 months, p = 0.022) and were more likely to use validated TBI definitions (p = 0.01). Studies which clearly defined TBI exposure (p = 0.013) and accounted for TBI severity (p = 0.036) were also more likely to identify an association between TBI and dementia. There was no consensus method by which studies diagnosed dementia and neuropathological confirmation was only available in 15.5% of studies. CONCLUSIONS Our review suggests a relationship between TBI and dementia, but we are unable to predict the risk of dementia for an individual following TBI. Our conclusions are limited by heterogeneity in both exposure and outcome reporting and by poor study quality. Future studies should; (a) use validated methods to define TBI, accounting for TBI severity; (b) follow consensus agreement on criteria for dementia diagnosis; and (c) undertake follow-up that is both longitudinal, to determine if there is a progressive neurodegenerative change or static post-traumatic deficit, and of sufficient duration.
Collapse
Affiliation(s)
- John Gerrard Hanrahan
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Charlotte Burford
- Department of General Surgery, East Kent University Hospitals NHS Foundation Trust, Ashford, UK.
| | - Palani Nagappan
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gideon Adegboyega
- Bart's and the London Medical School, Queen Mary University of London, London, UK
| | - Shivani Rajkumar
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Angelos Kolias
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Peter John Hutchinson
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
6
|
Yarns BC, Holiday KA, Carlson DM, Cosgrove CK, Melrose RJ. Pathophysiology of Alzheimer's Disease. Psychiatr Clin North Am 2022; 45:663-676. [PMID: 36396271 DOI: 10.1016/j.psc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia worldwide. While neuritic plaques consisting of aggregated amyloid-beta proteins and neurofibrillary tangles of accumulated tau proteins represent the pathophysiologic hallmarks of AD, numerous processes likely interact with risk and protective factors and one's culture to produce the cognitive loss, neuropsychiatric symptoms, and functional impairments that characterize AD dementia. Recent biomarker and neuroimaging research has revealed how the pathophysiology of AD may lead to symptoms, and as the pathophysiology of AD gains clarity, more potential treatments are emerging that aim to modify the disease and relieve its burden.
Collapse
Affiliation(s)
- Brandon C Yarns
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA.
| | - Kelsey A Holiday
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA
| | - David M Carlson
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| | - Coleman K Cosgrove
- Department of Psychiatry, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Merone M, D'Addario SL, Mirino P, Bertino F, Guariglia C, Ventura R, Capirchio A, Baldassarre G, Silvetti M, Caligiore D. A multi-expert ensemble system for predicting Alzheimer transition using clinical features. Brain Inform 2022; 9:20. [PMID: 36056985 PMCID: PMC9440971 DOI: 10.1186/s40708-022-00168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) diagnosis often requires invasive examinations (e.g., liquor analyses), expensive tools (e.g., brain imaging) and highly specialized personnel. The diagnosis commonly is established when the disorder has already caused severe brain damage, and the clinical signs begin to be apparent. Instead, accessible and low-cost approaches for early identification of subjects at high risk for developing AD years before they show overt symptoms are fundamental to provide a critical time window for more effective clinical management, treatment, and care planning. This article proposes an ensemble-based machine learning algorithm for predicting AD development within 9 years from first overt signs and using just five clinical features that are easily detectable with neuropsychological tests. The validation of the system involved both healthy individuals and mild cognitive impairment (MCI) patients drawn from the ADNI open dataset, at variance with previous studies that considered only MCI. The system shows higher levels of balanced accuracy, negative predictive value, and specificity than other similar solutions. These results represent a further important step to build a preventive fast-screening machine-learning-based tool to be used as a part of routine healthcare screenings.
Collapse
Affiliation(s)
- Mario Merone
- Unit of Computer Systems and Bioinformatics, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Sebastian Luca D'Addario
- Department of Psychology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via Ardeatina, 306 and Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Pierandrea Mirino
- Department of Psychology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy.,AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Francesca Bertino
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via Ardeatina, 306 and Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Department of Psychology, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, Via Ardeatina, 306 and Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Adriano Capirchio
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Gianluca Baldassarre
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy.,Laboratory of Embodied Natural and Artificial Intelligence, Institute of Cognitive Sciences and Technologies, National Research Council (LENAI-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Massimo Silvetti
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via San Martino della Battaglia 44, 00185, Rome, Italy. .,AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy.
| |
Collapse
|
8
|
Graham A, Livingston G, Purnell L, Huntley J. Mild Traumatic Brain Injuries and Future Risk of Developing Alzheimer’s Disease: Systematic Review and Meta-Analysis. J Alzheimers Dis 2022; 87:969-979. [DOI: 10.3233/jad-220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Traumatic brain injury (TBI) increases the risk of future dementia and Alzheimer’s disease (AD). However, it is unclear whether this is true for mild TBI (mTBI). Objective: To explore the association between mTBI and subsequent risk of developing AD. Method: We systematically searched four electronic databases from January 1954 to April 2020. We included studies reporting primary data and where mTBI preceded AD by≥5 years. We meta-analyzed included studies for both high quality studies and studies with a follow up of > 10 years. Result: We included 5 of the 10,435 results found. Meta-analysis found a history of mTBI increased risk of AD (pooled relative risk = 1.18, 95% CI 1.11–1.25, N = 3,149,740). The sensitivity analysis including only studies in which mTBI preceded AD by > 10 years, excluded two very large studies and resulted in wider confidence intervals (RR = 2.02, 95% CI 0.66–6.21, N = 2307). Conclusion: There is an increased risk of AD following mTBI. Our findings of increased risk even with mTBI means it cannot be assumed that mild head injuries from sports are harmless. The sensitivity analysis suggests that we cannot exclude reverse causation, and longer follow up times are needed. Implementation of policy to reduce mTBIs, including in children and sportsmen, are urgently needed. Further research is needed on the effect of frequency and age at injury of mTBIs.
Collapse
|
9
|
Soriano S, Curry K, Wang Q, Chow E, Treangen TJ, Villapol S. Fecal Microbiota Transplantation Derived from Alzheimer's Disease Mice Worsens Brain Trauma Outcomes in Wild-Type Controls. Int J Mol Sci 2022; 23:4476. [PMID: 35562867 PMCID: PMC9103830 DOI: 10.3390/ijms23094476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration, both of which increase the risk and accelerate the progression of Alzheimer's disease (AD). The gut microbiome is an essential modulator of the immune system, impacting the brain. AD has been related with reduced diversity and alterations in the community composition of the gut microbiota. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in control mice. We prepared fecal microbiota transplants from 18 to 24 month old 3×Tg-AD (FMT-AD) and from healthy control (FMT-young) mice. FMTs were administered orally to young control C57BL/6 (wild-type, WT) mice after they underwent controlled cortical impact (CCI) injury, as a model of TBI. Then, we characterized the microbiota composition of the fecal samples by full-length 16S rRNA gene sequencing analysis. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD administration stimulates a higher relative abundance of the genus Muribaculum and a decrease in Lactobacillus johnsonii compared to FMT-young in WT mice. Furthermore, WT mice exhibited larger lesion, increased activated microglia/macrophages, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. In summary, we observed gut microbiota from AD mice to have a detrimental effect and aggravate the neuroinflammatory response and neurological outcomes after TBI in young WT mice.
Collapse
Affiliation(s)
- Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Qi Wang
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Elsbeth Chow
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
10
|
Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol Psychiatry 2022; 91:498-507. [PMID: 34364650 PMCID: PMC8636548 DOI: 10.1016/j.biopsych.2021.05.025] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI), particularly of greater severity (i.e., moderate to severe), has been identified as a risk factor for all-cause dementia and Parkinson's disease, with risk for specific dementia subtypes being more variable. Among the limited studies involving neuropathological (postmortem) confirmation, the association between TBI and risk for neurodegenerative disease increases in complexity, with polypathology often reported on examination. The heterogeneous clinical and neuropathological outcomes associated with TBI are likely reflective of the multifaceted postinjury acute and chronic processes that may contribute to neurodegeneration. Acutely in TBI, axonal injury and disrupted transport influences molecular mechanisms fundamental to the formation of pathological proteins, such as amyloid-β peptide and hyperphosphorylated tau. These protein deposits may develop into amyloid-β plaques, hyperphosphorylated tau-positive neurofibrillary tangles, and dystrophic neurites. These and other characteristic neurodegenerative disease pathologies may then spread across brain regions. The acute immune and neuroinflammatory response involves alteration of microglia, astrocytes, oligodendrocytes, and endothelial cells; release of downstream pro- and anti-inflammatory cytokines and chemokines; and recruitment of peripheral immune cells. Although thought to be neuroprotective and reparative initially, prolongation of these processes may promote neurodegeneration. We review the evidence for TBI as a risk factor for neurodegenerative disorders, including Alzheimer's dementia and Parkinson's disease, in clinical and neuropathological studies. Further, we describe the dynamic interactions between acute response to injury and chronic processes that may be involved in TBI-related pathogenesis and progression of neurodegeneration.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of
Wisconsin,Corresponding author: Benjamin L.
Brett, 414-955-7316, , Medical College of
Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Raquel C. Gardner
- Department of Neurology, Memory and Aging Center, Weill
Institute for Neurosciences, University of California San Francisco and the San
Francisco Veterans Affairs Medical Center
| | - Jonathan Godbout
- Department of Neuroscience, Chronic Brain Injury Program,
The Ohio State Wexner Medical Center, Columbus, OH
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance,
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University
of Washington School of Medicine, Seattle, WA
| |
Collapse
|
11
|
Vaughn MN, Winston CN, Levin N, Rissman RA, Risbrough VB. Developing Biomarkers of Mild Traumatic Brain Injury: Promise and Progress of CNS-Derived Exosomes. Front Neurol 2022; 12:698206. [PMID: 35222223 PMCID: PMC8866179 DOI: 10.3389/fneur.2021.698206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Mild traumatic brain injuries (mTBI) are common injuries across civilian and military populations. Although most individuals recover after mTBI, some individuals continue to show long-term symptoms as well as increased risk for neurodegenerative and neuropsychiatric disorders. Currently, diagnosing TBI severity relies primarily on self-report and subjective symptoms, with limited tools for diagnosis or prognosis. Brain-derived exosomes, a form of extracellular vesicle, may offer a solution for interpreting injury states by aiding in diagnosis as well as outcome prediction with relatively low patient burden. Exosomes, which are released into circulation, contain both protein and RNA cargo that can be isolated and quantified, providing a molecular window into molecular status of the exosome source. Here we examined the current literature studying the utility of exosomes, in particular neuronal- and astrocyte-derived exosomes, to identify protein and miRNA biomarkers of injury severity, trajectory, and functional outcome. Current evidence supports the potential for these emerging new tools to capture an accessible molecular window into the brain as it responds to a traumatic injury, however a number of limitations must be addressed in future studies. Most current studies are relatively small and cross sectional; prospective, longitudinal studies across injury severity, and populations are needed to track exosome cargo changes after injury. Standardized exosome isolation as well as advancement in identifying/isolating exosomes from CNS-specific tissue sources will improve mechanistic understanding of cargo changes as well as reliability of findings. Exosomes are also just beginning to be used in model systems to understand functional effects of TBI-associated cargo such as toxicity. Finally linking exosome cargo changes to objective markers of neuronal pathology and cognitive changes will be critical in validating these tools to provide insights into injury and recovery states after TBI.
Collapse
Affiliation(s)
- Melonie N. Vaughn
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Charisse N. Winston
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Natalie Levin
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Health System, University of California, San Diego, San Diego, CA, United States
| | - Victoria B. Risbrough
- Veterans Affairs San Diego Health System, University of California, San Diego, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- VA Center of Excellence for Stress and Mental Health, La Jolla, CA, United States
| |
Collapse
|
12
|
Diaz-Pacheco V, Vargas-Medrano J, Tran E, Nicolas M, Price D, Patel R, Tonarelli S, Gadad BS. Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects. J Alzheimers Dis 2022; 86:943-959. [PMID: 35147534 DOI: 10.3233/jad-215158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mild traumatic brain injury (mTBI) is the most prevalent type of TBI (80-90%). It is characterized by a loss consciousness for less than 30 minutes, post-traumatic amnesia for less than 24 hours, and Glasgow Coma Score of 13-15. Accurately diagnosing mTBIs can be a challenge because the majority of these injuries do not show noticeable or visible changes on neuroimaging studies. Appropriate determination of mTBI is tremendously important because it might lead in some cases to post-concussion syndrome, cognitive impairments including attention, memory, and speed of information processing problems. The scientists have studied different methods to improve mTBI diagnosis and enhanced approaches that would accurately determine the severity of the trauma. The present review focuses on discussing the role of biomarkers as potential key factors in diagnosing mTBI. The present review focuses on 1) protein based peripheral and CNS markers, 2) genetic biomarkers, 3) imaging biomarkers, 4) neurophysiological biomarkers, and 5) the studies and clinical trials in mTBI. Each section provides information and characteristics on different biomarkers for mTBI.
Collapse
Affiliation(s)
- Valeria Diaz-Pacheco
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Javier Vargas-Medrano
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Eric Tran
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Meza Nicolas
- Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Diamond Price
- The Chicago School of Professional Psychology, Irvine, CA, USA
| | - Richa Patel
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Silvina Tonarelli
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA
| | - Bharathi S Gadad
- Department of Psychiatry, Paul L. Foster School of Medicine, Texas Tech University Health Science Center, El Paso, TX, USA.,Southwest Brain Bank, Texas Tech University Health Science Center, El Paso, TX, USA
| |
Collapse
|
13
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
14
|
Esopenko C, Meyer J, Wilde EA, Marshall AD, Tate DF, Lin AP, Koerte IK, Werner KB, Dennis EL, Ware AL, de Souza NL, Menefee DS, Dams-O'Connor K, Stein DJ, Bigler ED, Shenton ME, Chiou KS, Postmus JL, Monahan K, Eagan-Johnson B, van Donkelaar P, Merkley TL, Velez C, Hodges CB, Lindsey HM, Johnson P, Irimia A, Spruiell M, Bennett ER, Bridwell A, Zieman G, Hillary FG. A global collaboration to study intimate partner violence-related head trauma: The ENIGMA consortium IPV working group. Brain Imaging Behav 2021; 15:475-503. [PMID: 33405096 PMCID: PMC8785101 DOI: 10.1007/s11682-020-00417-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/11/2022]
Abstract
Intimate partner violence includes psychological aggression, physical violence, sexual violence, and stalking from a current or former intimate partner. Past research suggests that exposure to intimate partner violence can impact cognitive and psychological functioning, as well as neurological outcomes. These seem to be compounded in those who suffer a brain injury as a result of trauma to the head, neck or body due to physical and/or sexual violence. However, our understanding of the neurobehavioral and neurobiological effects of head trauma in this population is limited due to factors including difficulty in accessing/recruiting participants, heterogeneity of samples, and premorbid and comorbid factors that impact outcomes. Thus, the goal of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium Intimate Partner Violence Working Group is to develop a global collaboration that includes researchers, clinicians, and other key community stakeholders. Participation in the working group can include collecting harmonized data, providing data for meta- and mega-analysis across sites, or stakeholder insight on key clinical research questions, promoting safety, participant recruitment and referral to support services. Further, to facilitate the mega-analysis of data across sites within the working group, we provide suggestions for behavioral surveys, cognitive tests, neuroimaging parameters, and genetics that could be used by investigators in the early stages of study design. We anticipate that the harmonization of measures across sites within the working group prior to data collection could increase the statistical power in characterizing how intimate partner violence-related head trauma impacts long-term physical, cognitive, and psychological health.
Collapse
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107, USA.
- Department of Health Informatics, School of Health Professions, Rutgers Biomedical and Health Sciences, Newark, NJ, 07107, USA.
| | - Jessica Meyer
- Department of Psychiatry, Summa Health System, Akron, OH, 44304, USA
| | - Elisabeth A Wilde
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Amy D Marshall
- Department of Psychology, Pennsylvania State University, University Park, PA, 16802, USA
| | - David F Tate
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Alexander P Lin
- Department of Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, 80336, Munich, Germany
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kimberly B Werner
- College of Nursing, University of Missouri, St. Louis, MO, 63121, USA
| | - Emily L Dennis
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
| | - Ashley L Ware
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Nicola L de Souza
- School of Graduate Studies, Biomedical Sciences, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | | - Kristen Dams-O'Connor
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, South African Medical Research Council Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, 7501, South Africa
| | - Erin D Bigler
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Martha E Shenton
- College of Nursing, University of Missouri, St. Louis, MO, 63121, USA
- Departments of Psychiatry and Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Veterans Affairs, Boston Healthcare System, Boston, MA, 02130, USA
| | - Kathy S Chiou
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Judy L Postmus
- School of Social Work, University of Maryland, Baltimore, USA
| | - Kathleen Monahan
- School of Social Welfare, Stony Brook University, Stony Brook, NY, 11794-8231, USA
| | | | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Tricia L Merkley
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carmen Velez
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Cooper B Hodges
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Hannah M Lindsey
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Department of Psychology, Brigham Young University, Provo, UT, 84602, USA
| | - Paula Johnson
- Traumatic Brain Injury and Concussion Center, Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, 84148, USA
- Neuroscience Center, Brigham Young University, Provo, UT, 84602, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Denney Research Center Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Matthew Spruiell
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Esther R Bennett
- Rutgers University School of Social Work, New Brunswick, NJ, 08901, USA
| | - Ashley Bridwell
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Glynnis Zieman
- Barrow Concussion and Brain Injury Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Frank G Hillary
- Department of Psychology, Pennsylvania State University, University Park, PA, 16802, USA
- Social Life and Engineering Sciences Imaging Center, University Park, PA, 16802, USA
| |
Collapse
|
15
|
Apolipoprotein ɛ4 Status and Brain Structure 12 Months after Mild Traumatic Injury: Brain Age Prediction Using Brain Morphometry and Diffusion Tensor Imaging. J Clin Med 2021; 10:jcm10030418. [PMID: 33499167 PMCID: PMC7865561 DOI: 10.3390/jcm10030418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Apolipoprotein E (APOE) ɛ4 is associated with poor outcome following moderate to severe traumatic brain injury (TBI). There is a lack of studies investigating the influence of APOE ɛ4 on intracranial pathology following mild traumatic brain injury (MTBI). This study explores the association between APOE ɛ4 and MRI measures of brain age prediction, brain morphometry, and diffusion tensor imaging (DTI). Methods: Patients aged 16 to 65 with acute MTBI admitted to the trauma center were included. Multimodal MRI was performed 12 months after injury and associated with APOE ɛ4 status. Corrections for multiple comparisons were done using false discovery rate (FDR). Results: Of included patients, 123 patients had available APOE, volumetric, and DTI data of sufficient quality. There were no differences between APOE ɛ4 carriers (39%) and non-carriers in demographic and clinical data. Age prediction revealed high accuracy both for the DTI-based and the brain morphometry based model. Group comparisons revealed no significant differences in brain-age gap between ɛ4 carriers and non-carriers, and no significant differences in conventional measures of brain morphometry and volumes. Compared to non-carriers, APOE ɛ4 carriers showed lower fractional anisotropy (FA) in the hippocampal part of the cingulum bundle, which did not remain significant after FDR adjustment. Conclusion: APOE ɛ4 carriers might be vulnerable to reduced neuronal integrity in the cingulum. Larger cohort studies are warranted to replicate this finding.
Collapse
|
16
|
Gilmore CS, Lim KO, Garvin MK, Wang JK, Ledolter J, Fenske AL, Gentz CL, Nellis J, Armstrong MT, Kardon RH. Association of Optical Coherence Tomography With Longitudinal Neurodegeneration in Veterans With Chronic Mild Traumatic Brain Injury. JAMA Netw Open 2020; 3:e2030824. [PMID: 33351088 PMCID: PMC7756235 DOI: 10.1001/jamanetworkopen.2020.30824] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IMPORTANCE Mild traumatic brain injury (TBI) may predispose individuals to progressive neurodegeneration. OBJECTIVE To identify evidence of neurodegeneration through longitudinal evaluation of changes in retinal layer thickness using optical coherence tomography in veterans with a history of mild TBI. DESIGN, SETTING, AND PARTICIPANTS This longitudinal cohort study evaluated veterans who were receiving services at the Minneapolis Veterans Affairs Health Care System. Symptomatic or mild TBI was diagnosed according to the Mayo TBI Severity Classification System. Participants in the age-matched control group had no history of TBI. Participants with any history or evidence of retinal or optic nerve disease that could affect retinal thickness were excluded. Data analysis was performed from July 2019 to February 2020. EXPOSURES The presence and severity of mild TBI were determined through consensus review of self-report responses during the Minnesota Blast Exposure Screening Tool semistructured interview. MAIN OUTCOMES AND MEASURES Change over time of retinal nerve fiber layer (RNFL) thickness. RESULTS A total of 139 veterans (117 men [84%]; mean [SD] age, 49.9 [11.1] years) were included in the study, 69 in the TBI group and 70 in the control group. Veterans with mild TBI showed significantly greater RNFL thinning compared with controls (mean [SE] RNFL slope, -1.47 [0.24] μm/y vs -0.31 [0.32] μm/y; F1,122 = 8.42; P = .004; Cohen d = 0.52). Functionally, veterans with mild TBI showed greater declines in visual field mean deviation (mean [SE] slope, -0.09 [0.14] dB/y vs 0.46 [0.23] dB/y; F1,122 = 4.08; P = .046; Cohen d = 0.36) and pattern standard deviation (mean [SE] slope, 0.09 [0.06] dB/y vs -0.10 [0.07] dB/y; F1,122 = 4.78; P = .03; Cohen d = 0.39) and high spatial frequency (12 cycles/degree) contrast sensitivity compared with controls. Cognitively, there was a significantly greater decrease in the number of errors over time during the Groton Maze Learning Test (GMLT) in controls compared with veterans with mild TBI (mean [SE] slope, -9.30 [1.48] errors/y vs -5.23 [1.24] errors/y; F1,127 = 4.43; P = .04; Cohen d = 0.37). RNFL tissue loss was significantly correlated with both worsening performance on the GMLT over time (Spearman ρ = -0.20; P = .03) and mild TBI severity (Spearman ρ = -0.25; P = .006). The more severe the mild TBI (larger Minnesota Blast Exposure Screening Tool severity score), the faster the reduction in RNFL thickness (ie, the more negative the slope) across time. CONCLUSIONS AND RELEVANCE This cohort study found longitudinal evidence for significant, progressive neural degeneration over time in veterans with mild TBI, as indicated by greater RNFL tissue loss in patients with mild TBI vs controls, as well as measures of function. These results suggest that these longitudinal measures may be useful biomarkers of neurodegeneration. Changes in this biomarker may provide early detection of subsequent cognitive and functional deficits that may impact veterans' independence and need for care.
Collapse
Affiliation(s)
- Casey S. Gilmore
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Kelvin O. Lim
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
- Department of Psychiatry, University of Minnesota, Minneapolis
| | - Mona K. Garvin
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
| | - Jui-Kai Wang
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
| | - Johannes Ledolter
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City
- Department of Business Analytics and Department of Statistics and Actuarial Science, University of Iowa, Iowa City
| | - Alicia L. Fenske
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Carolyn L. Gentz
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Julie Nellis
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
| | - Michael T. Armstrong
- Minneapolis VA Healthcare System, Minneapolis, Minnesota
- Defense and Veterans Brain Injury Center, Minneapolis, Minnesota
| | - Randy H. Kardon
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Healthcare System, Iowa City, Iowa
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City
| |
Collapse
|
17
|
Raymont V, Thayanandan T. What do we know about the risks of developing dementia after traumatic brain injury? Minerva Med 2020; 112:288-297. [PMID: 33164474 DOI: 10.23736/s0026-4806.20.07084-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is a risk factor for the later development of dementia, but although the evidence dates back to the early 20th century, the nature of any association and its mechanistic pathways remain unclear. There has been greater focus on this subject over recent years, in part because of increasing reports around sports related TBIs, especially in the USA. Differences in research methods and clinical sampling remain the primary reason for the variable findings, although there is clearly increased prevalence of neurodegenerative disorders in general. Duration of follow up, definition of both TBI and dementia, and differences in the extent to which other dementia risk factors are controlled, as well as concerns about medical record accuracy are all issues yet to be resolved in TBI research, as is an absence pathological evidence. In addition, TBI has been reported to initiate a cascade of pathological processes related to several neurodegenerative disorders, and as such, it is likely that the risks vary between individuals. Given the evidence that dementia risk may increase with injury severity and frequency, a detailed account of age and type of injury, as well as lifetime TBI exposure is essential to document in future studies, and further longitudinal research with biomarker assessments are needed.
Collapse
Affiliation(s)
- Vanessa Raymont
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK -
| | - Tony Thayanandan
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Alyenbaawi H, Allison WT, Mok SA. Prion-Like Propagation Mechanisms in Tauopathies and Traumatic Brain Injury: Challenges and Prospects. Biomolecules 2020; 10:E1487. [PMID: 33121065 PMCID: PMC7692808 DOI: 10.3390/biom10111487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
The accumulation of tau protein in the form of filamentous aggregates is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). These dementias share traumatic brain injury (TBI) as a prominent risk factor. Tau aggregates can transfer between cells and tissues in a "prion-like" manner, where they initiate the templated misfolding of normal tau molecules. This enables the spread of tau pathology to distinct parts of the brain. The evidence that tauopathies spread via prion-like mechanisms is considerable, but work detailing the mechanisms of spread has mostly used in vitro platforms that cannot fully reveal the tissue-level vectors or etiology of progression. We review these issues and then briefly use TBI and CTE as a case study to illustrate aspects of tauopathy that warrant further attention in vivo. These include seizures and sleep/wake disturbances, emphasizing the urgent need for improved animal models. Dissecting these mechanisms of tauopathy progression continues to provide fresh inspiration for the design of diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hadeel Alyenbaawi
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Medical Laboratories, Majmaah University, Majmaah 11952, Saudi Arabia
| | - W. Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Sue-Ann Mok
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada; (H.A.); (W.T.A.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
19
|
June D, Williams OA, Huang CW, An Y, Landman BA, Davatzikos C, Bilgel M, Resnick SM, Beason-Held LL. Lasting consequences of concussion on the aging brain: Findings from the Baltimore Longitudinal Study of Aging. Neuroimage 2020; 221:117182. [PMID: 32702483 PMCID: PMC7848820 DOI: 10.1016/j.neuroimage.2020.117182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
Studies suggest that concussions may be related to increased risk of
neurodegenerative diseases, such as Chronic Traumatic Encephalopathy and
Alzheimer’s Disease. Most neuroimaging studies show effects of
concussionsin frontal and temporal lobes of the brain, yet the long-term impacts
of concussions on the aging brain have not been well studied. We examined
neuroimaging data from 51 participants (mean age at first imaging visit =
65.1±11.23) in the Baltimore Longitudinal Study of Aging (BLSA) who
reported a concussion in their medical history an average of 23 years prior to
the first imaging visit, and compared them to 150 participants (mean age at
first imaging visit = 66.6 ± 10.97) with no history of concussion.
Participants underwent serial structural MRI overa mean of 5.17 ± 6.14
years and DTI over a mean of 2.92 ± 2.22 years to measure brain
structure, as well as 15O-water PET over a mean of 5.33 ± 2.19
years to measure brain function. A battery of neuropsychological tests was also
administered over a mean of 11.62 ± 7.41 years. Analyses of frontal and
temporal lobe regions were performed to examine differences in these measures
between the concussion and control groups at first imaging visit and in change
over time. Compared to those without concussion, participants with a prior
concussion had greater brain atrophy in temporal lobe white matter and
hippocampus at first imaging visit, which remained stable throughout the
follow-up visits. Those with prior concussion also showed differences in white
matter microstructure using DTI, including increased radial and axial
diffusivity in the fornix/stria terminalis, anterior corona radiata, and
superior longitudinal fasciculus at first imaging visit. In 15O-water
PET, higher resting cerebral blood flow was seen at first imaging visit in
orbitofrontal and lateral temporal regions, and both increases and decreases
were seen in prefrontal, cingulate, insular, hippocampal, and ventral temporal
regions with longitudinal follow-up. There were no significant differences in
neuropsychological performance between groups. Most of the differences observed
between the concussed and non-concussed groups were seen at the first imaging
visit, suggesting that concussions can produce long-lasting structural and
functional alterations in temporal and frontal regions of the brain in older
individuals. These results also suggest that many of the reported short-term
effects of concussion may still be apparent later in life.
Collapse
Affiliation(s)
- Danielle June
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Chiung-Wei Huang
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA.
| |
Collapse
|
20
|
Klomparens K, Ding Y. Updates on the association of brain injury and Alzheimer's disease. Brain Circ 2020; 6:65-69. [PMID: 33033775 PMCID: PMC7511920 DOI: 10.4103/bc.bc_18_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/15/2022] Open
Abstract
The purpose of this minireview is to outline the updates made on the association of Alzheimer's disease (AD) and brain injury. A review of the literature on this subject was conducted that included various aspects such as age of onset, severity of head trauma, and genetic influences. The results of this mini-review were that consistent associations of AD risk are seen when the severity of head trauma increases, the lag time decreases and when genetic links are present. Brain injury and AD have a complicated relationship that requires further studies to be fully understood.
Collapse
Affiliation(s)
- Kara Klomparens
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, School of Medicine, Wayne State University, Detroit, MI, USA.,John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
21
|
Qiu X, Ping S, Kyle M, Chin L, Zhao LR. Long-term beneficial effects of hematopoietic growth factors on brain repair in the chronic phase of severe traumatic brain injury. Exp Neurol 2020; 330:113335. [PMID: 32360282 DOI: 10.1016/j.expneurol.2020.113335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Severe traumatic brain injury (TBI) is the major cause of long-term, even life-long disability and cognitive impairments in young adults. The lack of therapeutic approaches to improve recovery in the chronic phase of severe TBI is a big challenge to the medical research field. Using a single severe TBI model in young adult mice, this study examined the restorative efficacy of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), on brain repair in the chronic phase of TBI. SCF and G-CSF alone or combination (SCF + G-CSF) treatment was administered at 3 months post-TBI. Functional recovery was evaluated by neurobehavioral tests during the period of 21 weeks after treatment. Neuropathology was examined 22 weeks after treatment. We observed that severe TBI caused persistent impairments in spatial learning/memory and somatosensory-motor function, long-term and widespread neuropathology, including dendritic reduction, decrease and overgrowth of axons, over-generated excitatory synapses, and demyelination in the cortex, hippocampus and striatum. SCF, G-CSF, and SCF + G-CSF treatments ameliorated severe TBI-induced widespread neuropathology. SCF + G-CSF treatment showed superior efficacy in improving long-term functional outcome, enhancing neural plasticity, rebalancing neural structure networks disturbed by severe TBI, and promoting remyelination. These novel findings demonstrate the therapeutic potential of SCF and G-CSF in enhancing recovery in the chronic phase of severe TBI .
Collapse
Affiliation(s)
- Xuecheng Qiu
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Suning Ping
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA; VA Health Care Upstate New York, Syracuse VA Medical Center, USA.
| |
Collapse
|
22
|
Liang KJ, Carlson ES. Resistance, vulnerability and resilience: A review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 2020; 170:106981. [PMID: 30630042 PMCID: PMC6612482 DOI: 10.1016/j.nlm.2019.01.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022]
Abstract
In the context of neurodegeneration and aging, the cerebellum is an enigma. Genetic markers of cellular aging in cerebellum accumulate more slowly than in the rest of the brain, and it generates unknown factors that may slow or even reverse neurodegenerative pathology in animal models of Alzheimer's Disease (AD). Cerebellum shows increased activity in early AD and Parkinson's disease (PD), suggesting a compensatory function that may mitigate early symptoms of neurodegenerative pathophysiology. Perhaps most notably, different parts of the brain accumulate neuropathological markers of AD in a recognized progression and generally, cerebellum is the last brain region to do so. Taken together, these data suggest that cerebellum may be resistant to certain neurodegenerative mechanisms. On the other hand, in some contexts of accelerated neurodegeneration, such as that seen in chronic traumatic encephalopathy (CTE) following repeated traumatic brain injury (TBI), the cerebellum appears to be one of the most susceptible brain regions to injury and one of the first to exhibit signs of pathology. Cerebellar pathology in neurodegenerative disorders is strongly associated with cognitive dysfunction. In neurodegenerative or neurological disorders associated with cerebellar pathology, such as spinocerebellar ataxia, cerebellar cortical atrophy, and essential tremor, rates of cognitive dysfunction, dementia and neuropsychiatric symptoms increase. When the cerebellum shows AD pathology, such as in familial AD, it is associated with earlier onset and greater severity of disease. These data suggest that when neurodegenerative processes are active in the cerebellum, it may contribute to pathological behavioral outcomes. The cerebellum is well known for comparing internal representations of information with observed outcomes and providing real-time feedback to cortical regions, a critical function that is disturbed in neuropsychiatric disorders such as intellectual disability, schizophrenia, dementia, and autism, and required for cognitive domains such as working memory. While cerebellum has reciprocal connections with non-motor brain regions and likely plays a role in complex, goal-directed behaviors, it has proven difficult to establish what it does mechanistically to modulate these behaviors. Due to this lack of understanding, it's not surprising to see the cerebellum reflexively dismissed or even ignored in basic and translational neuropsychiatric literature. The overarching goals of this review are to answer the following questions from primary literature: When the cerebellum is affected by pathology, is it associated with decreased cognitive function? When it is intact, does it play a compensatory or protective role in maintaining cognitive function? Are there theoretical frameworks for understanding the role of cerebellum in cognition, and perhaps, illnesses characterized by cognitive dysfunction? Understanding the role of the cognitive cerebellum in neurodegenerative diseases has the potential to offer insight into origins of cognitive deficits in other neuropsychiatric disorders, which are often underappreciated, poorly understood, and not often treated.
Collapse
Affiliation(s)
- Katharine J Liang
- University of Washington School of Medicine, Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Erik S Carlson
- University of Washington School of Medicine, Seattle, WA, United States.
| |
Collapse
|
23
|
Nguyen TP, Schaffert J, LoBue C, Womack KB, Hart J, Cullum CM. Traumatic Brain Injury and Age of Onset of Dementia with Lewy Bodies. J Alzheimers Dis 2019; 66:717-723. [PMID: 30320582 DOI: 10.3233/jad-180586] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) with loss of consciousness (LOC) has been associated with earlier onset of mild cognitive impairment, frontotemporal dementia, Parkinson's disease, and Alzheimer's disease (AD), but has not been examined as a risk factor for earlier onset of dementia with Lewy bodies (DLB). OBJECTIVE The purpose of this study was to assess the association between a history of TBI and the age of onset of DLB. METHOD Data from 576 subjects with a clinical diagnosis of DLB were obtained from the National Alzheimer's Coordinating Center (NACC). Analyses of Covariance examined whether self-reported history of remote TBI with LOC (i.e., >1 year prior to the first Alzheimer's Disease Center visit) was associated with earlier DLB symptom onset. RESULTS Controlling for sex, those with a history of remote TBI had an approximately 1.5-year earlier clinician-estimated age of onset (F = 0.87, p = 0.35) and 0.75-years earlier age of diagnosis (F = 0.14, p = 0.71) of DLB compared to those without a history of TBI, though the differences did not reach statistical significance. Analysis of subjects with autopsy-confirmed diagnoses was underpowered due to the low number of TBI+ subjects. CONCLUSIONS Remote TBI with LOC was not significantly associated with DLB onset, despite being a significant risk factor for cognitive decline and earlier age of onset in other neurodegenerative conditions. Replication of these results using a larger cohort of DLB subjects with and without a TBI history who have undergone autopsy is indicated, as our TBI+ subjects did show a slightly earlier onset of about 1.5 years. Further investigations into other potential DLB risk factors are also warranted.
Collapse
Affiliation(s)
- Trung P Nguyen
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christian LoBue
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle B Womack
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John Hart
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Ojo JO, Leary P, Lungmus C, Algamal M, Mouzon B, Bachmeier C, Mullan M, Stewart W, Crawford F. Subchronic Pathobiological Response Following Chronic Repetitive Mild Traumatic Brain Injury in an Aged Preclinical Model of Amyloid Pathogenesis. J Neuropathol Exp Neurol 2019; 77:1144-1162. [PMID: 30395237 DOI: 10.1093/jnen/nly101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury (r-mTBI) is a risk factor for Alzheimer disease (AD). The precise nature of how r-mTBI leads to, or precipitates, AD pathogenesis remains unclear. In this study, we explore subchronic effects of chronic r-mTBI (12-impacts) administered over 1-month in aged-PS1/APP mice and littermate controls. We investigate specific mechanisms that may elucidate the molecular link between AD and r-mTBI, focusing primarily on amyloid and tau pathology, amyloid processing, glial activation states, and associated clearance mechanisms. Herein, we demonstrate r-mTBI in aged PS1/APP mice does not augment, glial activation, amyloid burden, or tau pathology (with exception of pS202-positive Tau) 1 month after exposure to the last-injury. However, we observed a decrease in brain soluble Aβ42 levels without any appreciable change in peripheral soluble Aβ42 levels. This was accompanied by an increase in brain insoluble to soluble Aβ42 ratio in injured PS1/APP mice compared with sham injury. A parallel reduction in phagocytic receptor, triggering receptor expressed on myeloid cells 2, was also observed. This study demonstrates very subtle subchronic effects of r-mTBI on a preexisting amyloid pathology background, which may be on a continuum toward a slow and worsening neurodegenerative outcome compared with sham injury, and therefore, have many implications, especially in the elderly population exposed to TBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| | - Paige Leary
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida
| | - Caryln Lungmus
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida
| | - Moustafa Algamal
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK
| | - Benoit Mouzon
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| | - Corbin Bachmeier
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK.,Bay Pines VA Healthcare System, Bay Pines, Florida
| | - Michael Mullan
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,Open University, Milton Keynes, UK
| | - William Stewart
- Queen Elizabeth University Hospital and University of Glasgow, Glasgow, UK.,University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fiona Crawford
- Experimental Neuropathology and TBI Research Division, Roskamp Institute, Sarasota, Florida.,James A. Haley Veterans' Hospital, Tampa, Florida.,Open University, Milton Keynes, UK
| |
Collapse
|
25
|
Barnes DE, Byers AL, Gardner RC, Seal KH, Boscardin WJ, Yaffe K. Association of Mild Traumatic Brain Injury With and Without Loss of Consciousness With Dementia in US Military Veterans. JAMA Neurol 2019; 75:1055-1061. [PMID: 29801145 DOI: 10.1001/jamaneurol.2018.0815] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Traumatic brain injury (TBI) is common in both veteran and civilian populations. Prior studies have linked moderate and severe TBI with increased dementia risk, but the association between dementia and mild TBI, particularly mild TBI without loss of consciousness (LOC), remains unclear. Objective To examine the association between TBI severity, LOC, and dementia diagnosis in veterans. Design, Setting, and Participants This cohort study of all patients diagnosed with a TBI in the Veterans Health Administration health care system from October 1, 2001, to September 30, 2014, and a propensity-matched comparison group. Patients with dementia at baseline were excluded. Researchers identified TBIs through the Comprehensive TBI Evaluation database, which is restricted to Iraq and Afghanistan veterans, and the National Patient Care Database, which includes veterans of all eras. The severity of each TBI was based on the most severe injury recorded and classified as mild without LOC, mild with LOC, mild with LOC status unknown, or moderate or severe using Department of Defense or Defense and Veterans Brain Injury Center criteria. International Classification of Diseases, Ninth Revision codes were used to identify dementia diagnoses during follow-up and medical and psychiatric comorbidities in the 2 years prior to the index date. Main Outcomes and Measures Dementia diagnosis in veterans who had experienced TBI with or without LOC and control participants without TBI exposure. Results The study included 178 779 patients diagnosed with a TBI in the Veterans Health Administration health care system and 178 779 patients in a propensity-matched comparison group. Veterans had a mean (SD) age of nearly 49.5 (18.2) years at baseline; 33 250 (9.3%) were women, and 259 136 (72.5%) were non-Hispanic white individuals. Differences between veterans with and without TBI were small. A total of 4698 veterans (2.6%) without TBI developed dementia compared with 10 835 (6.1%) of those with TBI. After adjustment for demographics and medical and psychiatric comobidities, adjusted hazard ratios for dementia were 2.36 (95% CI, 2.10-2.66) for mild TBI without LOC, 2.51 (95% CI, 2.29-2.76) for mild TBI with LOC, 3.19 (95% CI, 3.05-3.33) for mild TBI with LOC status unknown, and 3.77 (95% CI, 3.63-3.91) for moderate to severe TBI. Conclusions and Relevance In this cohort study of more than 350 000 veterans, even mild TBI without LOC was associated with more than a 2-fold increase in the risk of dementia diagnosis. Studies of strategies to determine mechanisms, prevention, and treatment of TBI-related dementia in veterans are urgently needed.
Collapse
Affiliation(s)
- Deborah E Barnes
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Amy L Byers
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Raquel C Gardner
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Neurology, University of California, San Francisco
| | - Karen H Seal
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Medicine, University of California, San Francisco
| | - W John Boscardin
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Medicine, University of California, San Francisco
| | - Kristine Yaffe
- San Francisco Veterans Affairs Health Care System, San Francisco, California.,Department of Psychiatry, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco.,Department of Neurology, University of California, San Francisco
| |
Collapse
|
26
|
Charkviani M, Muradashvili N, Lominadze D. Vascular and non-vascular contributors to memory reduction during traumatic brain injury. Eur J Neurosci 2019; 50:2860-2876. [PMID: 30793398 PMCID: PMC6703968 DOI: 10.1111/ejn.14390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023]
Abstract
Traumatic brain injury (TBI) is an increasing health problem. It is a complex, progressive disease that consists of many factors affecting memory. Studies have shown that increased blood-brain barrier (BBB) permeability initiates pathological changes in neuro-vascular network but the role of cerebrovascular dysfunction and its mediated mechanisms associated with memory reduction during TBI are still not well understood. Changes in BBB, inflammation, extravasation of blood plasma components, activation of neuroglia lead to neurodegeneration. Extravasated proteins such as amyloid-beta, fibrinogen, and cellular prion protein may form degradation resistant complexes that can lead to neuronal dysfunction and degeneration. They also have the ability to activate astrocytes, and thus, can be involved in memory impairment. Understanding the triggering mechanisms and the places they originate in vasculature or in extravascular tissue may help to identify potential therapeutic targets to ameliorate memory reduction during TBI. The goal of this review is to discuss conceptual mechanisms that lead to short-term memory reduction during non-severe TBI considering distinction between vascular and non-vascular effects on neurons. Some aspects of these mechanisms need to be confirmed further. Therefore, we hope that the discussion presented bellow may lead to experiments that may clarify the triggering mechanisms of memory reduction after head trauma.
Collapse
Affiliation(s)
- Mariam Charkviani
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Nino Muradashvili
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Department of Basic Medicine, Caucasus International University, Tbilisi, Georgia
| | - David Lominadze
- Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
- Kentucky Spinal Cord Research Center, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
27
|
Mayer AR, Dodd AB, Vermillion MS, Stephenson DD, Chaudry IH, Bragin DE, Gigliotti AP, Dodd RJ, Wasserott BC, Shukla P, Kinsler R, Alonzo SM. A systematic review of large animal models of combined traumatic brain injury and hemorrhagic shock. Neurosci Biobehav Rev 2019; 104:160-177. [PMID: 31255665 PMCID: PMC7307133 DOI: 10.1016/j.neubiorev.2019.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
Traumatic brain injury (TBI) and severe blood loss (SBL) frequently co-occur in human trauma, resulting in high levels of mortality and morbidity. Importantly, each of the individual post-injury cascades is characterized by complex and potentially opposing pathophysiological responses, complicating optimal resuscitation and therapeutic approaches. Large animal models of poly-neurotrauma closely mimic human physiology, but a systematic literature review of published models has been lacking. The current review suggests a relative paucity of large animal poly-neurotrauma studies (N = 52), with meta-statistics revealing trends for animal species (exclusively swine), characteristics (use of single biological sex, use of juveniles) and TBI models. Although most studies have targeted blood loss volumes of 35-45%, the associated mortality rates are much lower relative to Class III/IV human trauma. This discrepancy may result from potentially mitigating experimental factors (e.g., mechanical ventilation prior to or during injury, pausing/resuming blood loss based on physiological parameters, administration of small volume fluid resuscitation) that are rarely associated with human trauma, highlighting the need for additional work in this area.
Collapse
Affiliation(s)
- Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States; Neurology Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychiatry Department, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; Psychology Department, University of New Mexico, Albuquerque, NM 87131, United States.
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Meghan S Vermillion
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Irshad H Chaudry
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294-0019, United States
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Andrew P Gigliotti
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rebecca J Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Benjamin C Wasserott
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Priyank Shukla
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| | - Rachel Kinsler
- Department of the Army Civilian, U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362-0577, United States
| | - Sheila M Alonzo
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, 1011 Yale Blvd. NE, Albuquerque, NM 87106, United States
| |
Collapse
|
28
|
Hicks AJ, James AC, Spitz G, Ponsford JL. Traumatic Brain Injury as a Risk Factor for Dementia and Alzheimer Disease: Critical Review of Study Methodologies. J Neurotrauma 2019; 36:3191-3219. [PMID: 31111768 DOI: 10.1089/neu.2018.6346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite much previous research stating that traumatic brain injury (TBI) has been confirmed as a risk factor for dementia and Alzheimer disease (AD), findings from observational studies are mixed and are of low methodological quality. This review aimed to critically evaluate the methodologies used in previous studies. Relevant literature was identified by examining reference lists for previous reviews and primary studies, and searches in MEDLINE, PubMed, Google Scholar, and Research Gate. Sixty-eight identified reports, published between 1982 and August 2018, met inclusion criteria. Common methodological weaknesses included self-reported TBI (62%); poor TBI case definition (55%); low prevalence of TBI in samples (range 0.07-28.7%); reverse causality (86% moderate to high risk of reverse causality); not controlling for important confounding factors. There were also key areas of methodological rigor including use of individual matching for cases and controls (57%); gold standard dementia and AD criteria (53%); symmetrical data collection (65%); large sample sizes (max, 2,794,752); long follow-up periods and controlling of analyses for age (82%). The quality assessment revealed methodological problems with most studies. Overall, only one study was identified as having strong methodological rigor. This critical review identified several key areas of methodological weakness and rigor and should be used as a guideline for improving future research. This can be achieved by using longitudinal prospective cohort designs, with medically confirmed and well characterized TBI sustained sufficient time before the onset of dementia, including appropriate controls and informants, and considering the impacts of known protective and risk factors.
Collapse
Affiliation(s)
- Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Amelia C James
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
29
|
Svingos AM, Asken BM, Jaffee MS, Bauer RM, Heaton SC. Predicting long-term cognitive and neuropathological consequences of moderate to severe traumatic brain injury: Review and theoretical framework. J Clin Exp Neuropsychol 2019; 41:775-785. [DOI: 10.1080/13803395.2019.1620695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Adrian M. Svingos
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Breton M. Asken
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Michael S. Jaffee
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Russell M. Bauer
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| | - Shelley C. Heaton
- Department of Clinical & Health Psychology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
30
|
Toro CA, Zhang L, Cao J, Cai D. Sex differences in Alzheimer's disease: Understanding the molecular impact. Brain Res 2019; 1719:194-207. [PMID: 31129153 DOI: 10.1016/j.brainres.2019.05.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/10/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that presents with cognitive impairment and behavioral disturbance. Approximately 5.5 million people in the United States live with AD, most of whom are over the age of 65 with two-thirds being woman. There have been major advancements over the last decade or so in the understanding of AD neuropathological changes and genetic involvement. However, studies of sex impact in AD have not been adequately integrated into the investigation of disease development and progression. It becomes indispensable to acknowledge in both basic science and clinical research studies the importance of understanding sex-specific differences in AD pathophysiology and pathogenesis, which could guide future effort in the discovery of novel targets for AD. Here, we review the latest and most relevant literature on this topic, highlighting the importance of understanding sex dimorphism from a molecular perspective and its association to clinical trial design and development in AD research field.
Collapse
Affiliation(s)
- Carlos A Toro
- National Center for the Medical Consequences of Spinal Cord Injury, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Larry Zhang
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Jiqing Cao
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Dongming Cai
- Research and Development, James J Peters VA Medical Center, Bronx, NY 10468, United States; Neurology Section, James J Peters VA Medical Center, Bronx, NY 10468, United States; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
31
|
Nguyen VT, Zafonte RD, Chen JT, Kponee-Shovein KZ, Paganoni S, Pascual-Leone A, Speizer FE, Baggish AL, Taylor HA, Nadler LM, Courtney TK, Connor A, Weisskopf MG. Mortality Among Professional American-Style Football Players and Professional American Baseball Players. JAMA Netw Open 2019; 2:e194223. [PMID: 31125098 PMCID: PMC6632140 DOI: 10.1001/jamanetworkopen.2019.4223] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Abstract
Importance Studies of American-style football players have suggested lower overall mortality rates compared with general populations, but with possibly increased neurodegenerative mortality. However, comparisons with general populations can introduce bias. This study compared mortality between US National Football League (NFL) and US Major League Baseball (MLB) players, a more appropriate comparison group of professional athletes. Objective To compare all-cause and cause-specific mortality between NFL and MLB players. Design, Setting, and Participants In this retrospective cohort study, the setting was US mortality from January 1, 1979, through December 31, 2013. The dates of analysis were January 2016 to April 2019. Participants were 3419 NFL and 2708 MLB players with at least 5 playing seasons. Exposures Participation in the NFL compared with the MLB. Main Outcomes and Measures Vital status and causes of death from the National Death Index from 1979 through 2013 were obtained. Cox proportional hazards regression models using age as the timescale were used to calculate hazard ratios (HRs) and 95% CIs to examine all-cause and cause-specific mortality among NFL players compared with MLB players, adjusted for race and decade of birth. Results By the end of follow-up, there were 517 deaths (mean [SD] age, 59.6 [13.2] years) in the NFL cohort and 431 deaths (mean [SD] age, 66.7 [12.3] years) in the MLB cohort. Cardiovascular and neurodegenerative conditions, respectively, were noted as underlying or contributing causes in 498 and 39 deaths in the NFL and 225 and 16 deaths in the MLB. Compared with MLB players, NFL players had significantly elevated rates of all-cause (HR, 1.26; 95% CI, 1.10-1.44), cardiovascular disease (HR, 2.40; 95% CI, 2.03-2.84), and neurodegenerative disease (HR, 2.99; 95% CI, 1.64-5.45) mortality. Comparing hypothetical populations of 1000 NFL and 1000 MLB players followed up to age 75 years, there would be an excess 21 all-cause deaths among NFL players, as well as 77 and 11 more deaths with underlying or contributing causes that included cardiovascular and neurodegenerative conditions, respectively. Conclusions and Relevance This study found that NFL players had elevated all-cause, cardiovascular, and neurodegenerative mortality rates compared with MLB players, although the absolute number of excess neurodegenerative deaths was still small. Factors that vary across these sports (eg, body habitus and head trauma) as opposed to those common across sports (eg, physical activity) could underlie the differences.
Collapse
Affiliation(s)
- Vy T. Nguyen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ross D. Zafonte
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Jarvis T. Chen
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kalé Z. Kponee-Shovein
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sabrina Paganoni
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Frank E. Speizer
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aaron L. Baggish
- Cardiovascular Performance Program, Massachusetts General Hospital, Boston
| | - Herman A. Taylor
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Cardiovascular Research Institute, School of Medicine, Morehouse University, Atlanta, Georgia
| | - Lee M. Nadler
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Theodore K. Courtney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ann Connor
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
32
|
Yang JR, Kuo CF, Chung TT, Liao HT. Increased Risk of Dementia in Patients with Craniofacial Trauma: A Nationwide Population-Based Cohort Study. World Neurosurg 2019; 125:e563-e574. [DOI: 10.1016/j.wneu.2019.01.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 01/09/2023]
|
33
|
Wadhawan A, Stiller JW, Potocki E, Okusaga O, Dagdag A, Lowry CA, Benros ME, Postolache TT. Traumatic Brain Injury and Suicidal Behavior: A Review. J Alzheimers Dis 2019; 68:1339-1370. [PMID: 30909230 DOI: 10.3233/jad-181055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abhishek Wadhawan
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Psychiatry Residency Training Program, Washington, DC, USA
| | - John W. Stiller
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Saint Elizabeths Hospital, Neurology Consultation Service, Washington, DC, USA
- Maryland State Athletic Commission, Baltimore, MD, USA
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Olaoluwa Okusaga
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Michael E DeBakey VA Medical Center, Houston, TX, USA
| | - Aline Dagdag
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, MD, USA
| | - Christopher A. Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
| | - Michael E. Benros
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, USA
| |
Collapse
|
34
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
35
|
Louis ED, Joyce JL, Cosentino S. Mind the gaps: What we don't know about cognitive impairment in essential tremor. Parkinsonism Relat Disord 2019; 63:10-19. [PMID: 30876840 DOI: 10.1016/j.parkreldis.2019.02.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Although the hallmark feature of essential tremor (ET) is tremor, there is growing appreciation that cognitive impairment also occurs, including increased prevalence of mild cognitive impairment (MCI) and increased prevalence and incidence of dementia. With emerging knowledge of ET-cognitive impairment, come fundamental questions regarding its course, bases, predictors and clinical outcomes. Studies in the general population and in Parkinson's disease (PD), a related movement disorder, offer a starting point from which to begin filling these clinically important knowledge gaps. METHODS A PubMed search (June 2018) identified articles for this review. RESULTS Much of our knowledge of cognitive impairment in ET is of the static condition (e.g., prevalence of cognitive impairment in ET), with nearly no information on its bases, predictors and dynamics (i.e., course, and clinical outcomes). In PD, where such data have been published, rates of cognitive decline and conversion to MCI/dementia are higher than in the general population. Predictors of cognitive change in PD and the general population have also been identified, yet they only partially overlap one another. CONCLUSION The predictors and dynamics of cognitive impairment have been investigated fairly extensively in the general population, to a somewhat lesser extent in PD, and are emerging only now in ET. We suggest that longitudinal studies specific to ET are needed, and we outline variables to be considered in these investigations. Increased knowledge of ET-cognitive impairment will facilitate meaningful counseling of patients and their families.
Collapse
Affiliation(s)
- Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Jillian L Joyce
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Stephanie Cosentino
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Laffey M, Darby AJ, Cline MG, Teng E, Mendez MF. The utility of clinical criteria in patients with chronic traumatic encephalopathy. NeuroRehabilitation 2019; 43:431-441. [PMID: 30412511 DOI: 10.3233/nre-182452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Repetitive traumatic brain injury (TBI) is associated with chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder characterized by Alzheimer-like changes in the brain. CTE has been defined through neuropathological findings among deceased athletes and others exposed to repetitive TBI, but to date there are no definitive clinical criteria for CTE. OBJECTIVE To evaluate the utility of currently proposed clinical criteria for CTE and suggest improvements. METHODS We describe two well-characterized patients referred for evaluation of CTE and apply the four major proposed criteria for CTE. These criteria were further assessed in a cohort of patients referred to a neurobehavior clinic with or without a history of TBI. RESULTS Without a CTE biomarker, the current criteria were of limited utility when applied to the two patient and the Neurobehavior cohort. Six items were extracted as potentially improving the clinical diagnosis of CTE: length of exposure to head impacts, a progressive course, specific psychiatric symptoms, frontal-executive dysfunction, parkinsonism and tremors, and targeted findings on neuroimaging. CONCLUSIONS The prevention and neurorehabilitation of CTE depends on clinical diagnosis, but, without a biomarker, the clinical diagnosis of CTE remains difficult. This report suggests that clinical criteria for CTE may be greatly improved with emphasis on several critical historical and clinical correlates of CTE.
Collapse
Affiliation(s)
- Megan Laffey
- Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Adam J Darby
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Michael G Cline
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edmond Teng
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Mario F Mendez
- Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.,Neurobehavior Unit, V.A. Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
37
|
Ojo JO, Algamal M, Leary P, Abdullah L, Mouzon B, Evans JE, Mullan M, Crawford F. Converging and Differential Brain Phospholipid Dysregulation in the Pathogenesis of Repetitive Mild Traumatic Brain Injury and Alzheimer's Disease. Front Neurosci 2019; 13:103. [PMID: 30837829 PMCID: PMC6390207 DOI: 10.3389/fnins.2019.00103] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI) is a major epigenetic risk factor for Alzheimer’s disease (AD). The precise nature of how rmTBI leads to or precipitates AD pathology is currently unknown. Numerous neurological conditions have shown an important role for dysfunctional phospholipid metabolism as a driving factor for the pathogenesis of neurodegenerative diseases. However, the precise role in rmTBI and AD remains elusive. We hypothesized that a detailed phospholipid characterization would reveal profiles of response to injury in TBI that overlap with age-dependent changes in AD and thus provide insights into the TBI-AD relationship. We employed a lipidomic approach examining brain phospholipid profiles from mouse models of rmTBI and AD. Cortex and hippocampal tissue were collected at 24 h, 3, 6, 9, and 12 months post-rmTBI, and at ages representing ‘pre’, ‘peri’ and ‘post’ onset of amyloid pathology (i.e., 3, 9, 15 months-old). Total levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), LysoPE, and phosphatidylinositol (PI), including their monounsaturated, polyunsaturated and saturated fatty acid (FA) containing species were significantly increased at acute and/or chronic time points post-injury in both brain regions. However, levels of most phospholipid species in PS1/APP mice were nominal in the hippocampus, while in the cortex, levels were significantly decreased at ages post-onset of amyloid pathology. Sphingomyelin and LysoPC levels showed coincidental trends in our rmTBI and AD models within the hippocampus, an increase at acute and/or chronic time points examined. The ratio of arachidonic acid (omega-6 FA) to docosahexaenoic acid (omega-3 FA)-containing PE species was increased at early time points in the hippocampus of injured versus sham mice, and in PS1/APP mice there was a coincidental increase compared to wild type littermates at all time points. This study demonstrates some overlapping and diverse phospholipid profiles in rmTBI and AD models. Future studies are required to corroborate our findings in human post-mortem tissue. Investigation of secondary mechanisms triggered by aberrant downstream alterations in bioactive metabolites of these phospholipids, and their modulation at the appropriate time-windows of opportunity could help facilitate development of novel therapeutic strategies to ameliorate the neurodegenerative consequences of rmTBI or the potential triggering of AD pathogenesis by rmTBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Roskamp Institute, Sarasota, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Roskamp Institute, Sarasota, FL, United States
| | - Laila Abdullah
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Benoit Mouzon
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | | | - Michael Mullan
- Roskamp Institute, Sarasota, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Roskamp Institute, Sarasota, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| |
Collapse
|
38
|
Hiraoka T. Association of late effects of single, severe traumatic brain injury with Alzheimer's disease using amyloid PET. Neurocase 2019; 25:10-16. [PMID: 30950324 DOI: 10.1080/13554794.2019.1599026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Traumatic brain injury (TBI) is suggested to be a risk factor for the onset of Alzheimer's disease (AD); however, the data remain controversial. This is the first report on cognitive decline in patients with TBI over 30 years post-injury. The medical significance/key learning points of this report are that (1) Functional Independence Measure (FIM) is useful in clinical settings, such as for higher brain dysfunction and dementia; (2) amyloid PET findings represent an essential biomarker for follow-up after TBI; and (3) cognitive decline can occur in patients with TBI more than 30 years post-injury.
Collapse
Affiliation(s)
- Takashi Hiraoka
- a Department of Rehabilitation Medicine , Kawasaki Medical School , Kurashiki , Japan
| |
Collapse
|
39
|
Schofield PW, Doty RL. The influence of head injury on olfactory and gustatory function. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:409-429. [PMID: 31604560 DOI: 10.1016/b978-0-444-63855-7.00023-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Head injury, particularly that resulting in brain injury, is a significant public health concern. For example, annual incidence rates of traumatic brain injury, a common consequence of head injury, range from 54 to 60 million people worldwide, including 2.2-3.6 million people whose trauma is moderate to severe. Trauma to the face and brain, including blast injuries common in modern warfare, can result in alterations in the ability to both smell and taste. In the case of smell, these include total loss of function (anosmia), decreased sensitivity (hyposmia), alterations in odor quality (dysosmia), and hallucination (phantosmia). Although taste dysfunction, i.e., altered perception of such basic taste-bud-mediated sensations as sweet, sour, bitter, salty, and savory (umami), can be similarly influenced by head trauma, the effects are typically more subtle and less studied. The present review provides an up-to-date assessment of what is known about the impact of head injury on quantitative measures of taste and smell function, including the influences of severity, type of injury, location of insults, prognosis, and approaches to therapy.
Collapse
Affiliation(s)
- Peter W Schofield
- Neuropsychiatry Service, Hunter New England Local Health District and Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, NSW, Australia.
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
40
|
Ojo JO, Algamal M, Leary P, Abdullah L, Mouzon B, Evans JE, Mullan M, Crawford F. Disruption in Brain Phospholipid Content in a Humanized Tau Transgenic Model Following Repetitive Mild Traumatic Brain Injury. Front Neurosci 2018; 12:893. [PMID: 30564087 PMCID: PMC6288299 DOI: 10.3389/fnins.2018.00893] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Repetitive mild traumatic brain injury (mTBI) is a risk factor for the development of neurodegenerative diseases such as chronic traumatic encephalopathy typified by immunoreactive tau aggregates in the depths of the sulci. However, the underlying neurobiological mechanisms involved have not been largely explored. Phospholipids are important molecules which form membrane lipid bilayers; they are ubiquitous to every cell in the brain, and carry out a host of different functions. Imbalance in phospholipid metabolism, signaling and transport has been documented in some neurological conditions. However, not much is currently known about their roles in repetitive mTBI and how this may confer risk for the development of age-related neurodegenerative diseases. To address this question, we designed a longitudinal study (24 h, 3, 6, 9, and 12 months post-injury) to comprehensively investigate mTBI dependent brain phospholipid profiles compared to sham counterparts. We use our established mouse model of repetitive mTBI that has been extensively characterized up to 1-year post-injury in humanized tau (hTau) mice, which expresses all six human tau isoforms, on a null murine background. Our data indicates a significant increase in sphingomyelin, phosphatidylethanolamine (PE), phosphatidylcholine (PC), and derivative lysoPE and lysoPC at acute and/or sub-acute time points post-injury within the cortex and hippocampus. There was also a parallel increase at early time points in monounsaturated, polyunsaturated and saturated fatty acids. Omega-6 (arachidonic acid) to omega-3 (docosahexaenoic acid) fatty acid ratio for PE and PC species was increased also at 24 h and 3 months post-injury in both hippocampus and cortex. The long-term consequences of these early changes in phospholipids on neuronal and non-neuronal cell function is unclear, and warrants further study. Understanding phospholipid metabolism, signaling and transport following TBI could be valuable; they may offer novel targets for therapeutic intervention not only in TBI but other neurodegenerative diseases.
Collapse
Affiliation(s)
- Joseph O. Ojo
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Moustafa Algamal
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Paige Leary
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Laila Abdullah
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Benoit Mouzon
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - James E. Evans
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
| | - Michael Mullan
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| | - Fiona Crawford
- Experimental Neuropathology and Omics Laboratory, Roskamp Institute, Sarasota, FL, United States
- James A. Haley Veterans’ Hospital, Tampa, FL, United States
- The School of Life, Health and Chemical Sciences, Open University, Milton Keynes, United Kingdom
| |
Collapse
|
41
|
Esopenko C, Simonds AH, Anderson EZ. The synergistic effect of concussions and aging in women? Disparities and perspectives on moving forward. Concussion 2018; 3:CNC55. [PMID: 30364380 PMCID: PMC6195093 DOI: 10.2217/cnc-2018-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carrie Esopenko
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Adrienne H Simonds
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Ellen Z Anderson
- Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Rehabilitation & Movement Sciences, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.,Department of Health Informatics, School of Health Professions, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
42
|
Al-Dahhak R, Khoury R, Qazi E, Grossberg GT. Traumatic Brain Injury, Chronic Traumatic Encephalopathy, and Alzheimer Disease. Clin Geriatr Med 2018; 34:617-635. [PMID: 30336991 DOI: 10.1016/j.cger.2018.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a major health and economic burden. With increasing aging population, this issue is expected to continue to rise. Neurodegenerative disorders are more common with aging population in general regardless of history of TBI. Recent evidence continues to support a relation between a TBI and neurocognitive decline later in life (such as in athletes and military). This article summarizes the pathologic and clinical effects of TBI (regardless of severity) on the later development of dementia in individuals 65 years or older.
Collapse
Affiliation(s)
- Roula Al-Dahhak
- Department of Neurology, Saint Louis University, 1438 South Grand Boulevard, Suite 105, St Louis, MO 63104, USA.
| | - Rita Khoury
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - Erum Qazi
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| | - George T Grossberg
- Department of Psychiatry and Behavioral Neuroscience, Saint Louis University, 1438 South Grand Boulevard, St Louis, MO 63104, USA
| |
Collapse
|
43
|
Logsdon AF, Meabon JS, Cline MM, Bullock KM, Raskind MA, Peskind ER, Banks WA, Cook DG. Blast exposure elicits blood-brain barrier disruption and repair mediated by tight junction integrity and nitric oxide dependent processes. Sci Rep 2018; 8:11344. [PMID: 30054495 PMCID: PMC6063850 DOI: 10.1038/s41598-018-29341-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
Mild blast-induced traumatic brain injury (TBI) is associated with blood-brain barrier (BBB) disruption. However, the mechanisms whereby blast disrupts BBB integrity are not well understood. To address this issue BBB permeability to peripherally injected 14C-sucrose and 99mTc-albumin was quantified in ten brain regions at time points ranging from 0.25 to 72 hours. In mice, repetitive (2X) blast provoked BBB permeability to 14C-sucrose that persisted in specific brain regions from 0.25 to 72 hours. However, 99mTc-albumin revealed biphasic BBB disruption (open-closed-open) over the same interval, which was most pronounced in frontal cortex and hippocampus. This indicates that blast initiates interacting BBB disruption and reparative processes in specific brain regions. Further investigation of delayed (72 hour) BBB disruption revealed that claudin-5 (CLD5) expression was disrupted specifically in the hippocampus, but not in dorsal striatum, a brain region that showed no blast-induced BBB permeability to sucrose or albumin. In addition, we found that delayed BBB permeability and disrupted CLD5 expression were blocked by the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). These data argue that latent nitric oxide-dependent signaling pathways initiate processes that result in delayed BBB disruption, which are manifested in a brain-region specific manner.
Collapse
Affiliation(s)
- Aric F Logsdon
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - James S Meabon
- Veterans Affairs Northwest Network, Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Marcella M Cline
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - Kristin M Bullock
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Murray A Raskind
- Veterans Affairs Northwest Network, Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elaine R Peskind
- Veterans Affairs Northwest Network, Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - David G Cook
- Geriatric Research Education and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA. .,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
44
|
Kelley KD, Checkoway H, Hall DA, Reich SG, Cunningham C, Litvan I. Traumatic Brain Injury and Firearm Use and Risk of Progressive Supranuclear Palsy Among Veterans. Front Neurol 2018; 9:474. [PMID: 29973911 PMCID: PMC6020251 DOI: 10.3389/fneur.2018.00474] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Progressive supranuclear palsy (PSP) is a tauopathy that has a multifactorial etiology. Numerous studies that have investigated lead exposure and traumatic brain injury (TBI) as risk factors for other tauopathies, such as Alzheimer's disease, but not for PSP. Objective: We sought to investigate the role of firearm usage, as a possible indicator of lead exposure, and TBI as risk factors for PSP in a population of military veterans. Methods: We included participants from a larger case-control study who reported previous military service. Our sample included 67 PSP cases and 68 controls. Participants were administered a questionnaire to characterize firearm use in the military and occurrence of TBI. Results: Cases were significantly less educated than controls. In unadjusted analyses, the proportion of PSP cases (80.6%) and controls (64.7%) who reported use of firearms as part of their military job was positively associated with PSP, odds ratio (OR) 2.2 (95% CI: 1-5.0). There were no significant case-control differences in mean service duration. There was only a weak association with history of TBI, OR 1.6 (95% CI: 0.8-3.4). In multivariate models, firearm usage (OR 3.7, 95% CI: 1.5, 9.8) remained significantly associated with PSP. Conclusions: Our findings show a positive association between firearm usage and PSP and an inverse association between education and PSP. The former suggests a possible etiologic role of lead. Further studies are needed to confirm the potential etiologic effects of metals on PSP. The study was registered in clinicaltrials.gov. ClinicalTrials.gov Identifier: NCT00431301.
Collapse
Affiliation(s)
- Kristen D. Kelley
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Harvey Checkoway
- Department of Family Medicine & Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Deborah A. Hall
- Department of Neurology, Rush University Medical Center, Chicago, IL, United States
| | - Stephen G. Reich
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Chris Cunningham
- Clinical Trials Unit, University of Louisville, Louisville, KY, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Nielsen DA, Spellicy CJ, Harding MJ, Graham DP. Apolipoprotein E DNA methylation and posttraumatic stress disorder are associated with plasma ApoE level: A preliminary study. Behav Brain Res 2018; 356:415-422. [PMID: 29807071 DOI: 10.1016/j.bbr.2018.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Mild traumatic brain injury (mTBI) occurred in 15-30% of Veterans returning from Iraq and Afghanistan. We examined whether DNA methylation of the apolipoprotein E (APOE) gene promoter region or plasma ApoE protein levels are altered in mTBI. APOE promoter region DNA methylation, APOE genotype, and plasma ApoE concentration were determined in 87 Veterans with or without mTBI who were recruited from 2010-2014. Plasma ApoE concentration was found to be associated with Posttraumatic Stress Disorder (PTSD) symptom severity ratings by hierarchical linear regression (p = .013) and ANCOVA (p = .007). Hierarchical linear regression revealed that plasma ApoE concentration was associated with APOE-ε4 genotype status (p=.022). Higher ApoE plasma levels were found in ε3/ε3 Veterans than in APOE-ε4 carriers (p = .031). Furthermore, plasma ApoE concentration was associated experiment-wise with DNA methylation at CpG sites -877 (p = .021), and -775 (p = .014). The interaction between APOE-ε4 genotype and having a PTSD diagnosis was associated with DNA methylation at CpG site -675 (p = .009).
Collapse
Affiliation(s)
- David A Nielsen
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States.
| | - Catherine J Spellicy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Harding
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - David P Graham
- Neurorehabilitation: Neurons to Networks Traumatic Brain Injury Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States; Houston VA Health Services Research and Development Center of Excellence, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, United States
| |
Collapse
|
46
|
Kokiko-Cochran ON, Godbout JP. The Inflammatory Continuum of Traumatic Brain Injury and Alzheimer's Disease. Front Immunol 2018; 9:672. [PMID: 29686672 PMCID: PMC5900037 DOI: 10.3389/fimmu.2018.00672] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The post-injury inflammatory response is a key mediator in long-term recovery from traumatic brain injury (TBI). Moreover, the immune response to TBI, mediated by microglia and macrophages, is influenced by existing brain pathology and by secondary immune challenges. For example, recent evidence shows that the presence of beta-amyloid and phosphorylated tau protein, two hallmark features of AD that increase during normal aging, substantially alter the macrophage response to TBI. Additional data demonstrate that post-injury microglia are “primed” and become hyper-reactive following a subsequent acute immune challenge thereby worsening recovery. These alterations may increase the incidence of neuropsychiatric complications after TBI and may also increase the frequency of neurodegenerative pathology. Therefore, the purpose of this review is to summarize experimental studies examining the relationship between TBI and development of AD-like pathology with an emphasis on the acute and chronic microglial and macrophage response following injury. Furthermore, studies will be highlighted that examine the degree to which beta-amyloid and tau accumulation as well as pre- and post-injury immune stressors influence outcome after TBI. Collectively, the studies described in this review suggest that the brain’s immune response to injury is a key mediator in recovery, and if compromised by previous, coincident, or subsequent immune stressors, post-injury pathology and behavioral recovery will be altered.
Collapse
Affiliation(s)
- Olga N Kokiko-Cochran
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jonathan P Godbout
- Department of Neuroscience, Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
47
|
Gallo V, McElvenny D, Hobbs C, Davoren D, Morris H, Crutch S, Zetterberg H, Fox NC, Kemp S, Cross M, Arden NK, Davies MAM, Malaspina A, Pearce N. BRain health and healthy AgeINg in retired rugby union players, the BRAIN Study: study protocol for an observational study in the UK. BMJ Open 2017; 7:e017990. [PMID: 29282262 PMCID: PMC5770902 DOI: 10.1136/bmjopen-2017-017990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Relatively little is known about the long-term health of former elite rugby players, or former sportspeople more generally. As well as the potential benefits of being former elite sportspersons, there may be potential health risks from exposures occurring during an individual's playing career, as well as following retirement. Each contact sport has vastly different playing dynamics, therefore exposing its players to different types of potential traumas. Current evidence suggests that these are not necessarily comparable in terms of pathophysiology, and their potential long-term adverse effects might also differ. There is currently limited but increasing evidence that poorer age-related and neurological health exists among former professional sportsmen exposed to repetitive concussions; however the evidence is limited on rugby union players, specifically. METHODS AND ANALYSIS We present the protocol for a cross-sectional study to assess the association between self-reported history of concussion during a playing career, and subsequent measures of healthy ageing and neurological and cognitive impairment. We are recruiting a sample of approximately 200 retired rugby players (former Oxford and Cambridge University rugby players and members of the England Rugby International Club) aged 50 years or more, and collecting a number of general and neurological health-related outcome measures though validated assessments. Biomarkers of neurodegeneration (neurofilaments and tau) will be also be measured. Although the study is focusing on rugby union players specifically, the general study design and the methods for assessing neurological health are likely to be relevant to other studies of former elite sportspersons. ETHICS AND DISSEMINATION The study has been approved by the Ethical Committee of London School of Hygiene and Tropical Medicine (reference: 11634-2). It is intended that results of this study will be published in peer-reviewed medical journals, communicated to participants, the general public and all relevant stakeholders.
Collapse
Affiliation(s)
- Valentina Gallo
- School of Public Health, Imperial College London, London, UK
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Primary Care and Public Health, Queen Mary, University of London, London, UK
| | - Damien McElvenny
- Research Division, Institute of Occupational Medicine, Edinburgh, UK
| | - Catherine Hobbs
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Donna Davoren
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Huw Morris
- Department of Clinical Neuroscience, University College London, London, UK
| | - Sebastian Crutch
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of molecular neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nick C Fox
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | | | | | - Nigel K Arden
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Madeleine A M Davies
- Arthritis Research UK Centre for Sport, exercise and osteoarthritis, University of Oxford, Oxford, UK
| | - Andrea Malaspina
- Department of Neuroscience and Trauma, Blizard Institute, Queen Mary, University of London, London, UK
| | - Neil Pearce
- Epidemiology and Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
48
|
Wiesner D, Tar L, Linkus B, Chandrasekar A, Olde Heuvel F, Dupuis L, Tsao W, Wong PC, Ludolph A, Roselli F. Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Exp Neurol 2017; 299:15-25. [PMID: 28941811 DOI: 10.1016/j.expneurol.2017.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/18/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been proposed as a risk factor for neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). To determine whether TBI might trigger or exacerbate ALS-relevant pathology, we delivered a mild stab-wound injury to the motor cortex of three different ALS mouse models expressing mutations in SOD1, TDP-43 or FUS and scrutinized the effects on the formation of phospho-TDP-43 (pTDP-43) cytoplasmic granules. Stab-injury induced the formation of cytoplasmic TDP-43 granules in wt animals, peaking at 3dpi; a much larger response was seen in mutant TDP-43 mice, whose response peaked at 7dpi. The pTDP-43 granules did not colocalize with the stress markers TIAR-1 and FUS but colocalized with FMRP (35%) and with p62 (65%), suggesting their involvement in transport granules and their clearance by autophagy. A similar, albeit smaller effect, was seen in mutant FUS mice. In the SOD1G93A mouse model, neither increase in pTDP-43 granules nor in SOD1 aggregates were detected. In all cases, pTDP-43 granules were cleared and the number of pTDP-43-positive neurons returned to baseline by 40dpi. Neither injury-related neuronal loss nor motor performance or survival was significantly different in transgenic mice receiving injury vs sham mice. Thus, trauma can trigger ALS-related TDP-43 pathology, the extent of which is modulated by ALS-related mutations. However, the pathological findings prove reversible and do not affect disease progression and neuronal vulnerability.
Collapse
Affiliation(s)
- Diana Wiesner
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Lilla Tar
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Birgit Linkus
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | | | | | - Luc Dupuis
- Inserm U1118, Mécanismes centraux et périphétiques de la neurodégénérescence, Strasbourg, France; Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - William Tsao
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Philip C Wong
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Albert Ludolph
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany
| | - Francesco Roselli
- Dept. of Neurology, University of Ulm School of Medicine, Ulm, Germany; Dept. of Anatomy and Cell Biology, University of Ulm School of Medicine, Germany.
| |
Collapse
|
49
|
ApoE4-associated phospholipid dysregulation contributes to development of Tau hyper-phosphorylation after traumatic brain injury. Sci Rep 2017; 7:11372. [PMID: 28900205 PMCID: PMC5595858 DOI: 10.1038/s41598-017-11654-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
The apolipoprotein E4 (ApoE4) genotype combines with traumatic brain injury (TBI) to increase the risk of developing Alzheimer's Disease (AD). However, the underlying mechanism(s) is not well-understood. We found that after exposure to repetitive blast-induced TBI, phosphoinositol biphosphate (PIP2) levels in hippocampal regions of young ApoE3 mice were elevated and associated with reduction in expression of a PIP2 degrading enzyme, synaptojanin 1 (synj1). In contrast, hippocampal PIP2 levels in ApoE4 mice did not increase after blast TBI. Following blast TBI, phospho-Tau (pTau) levels were unchanged in ApoE3 mice, whereas in ApoE4 mice, levels of pTau were significantly increased. To determine the causal relationship between changes in pTau and PIP2/synj1 levels after TBI, we tested if down-regulation of synj1 prevented blast-induced Tau hyper-phosphorylation. Knockdown of synj1 decreased pTau levels in vitro, and abolished blast-induced elevation of pTau in vivo. Blast TBI increased glycogen synthase kinase (GSK)-3β activities in ApoE4 mice, and synj1 knockdown inhibited GSK3β phosphorylation of Tau. Together, these data suggest that ApoE proteins regulate brain phospholipid homeostasis in response to TBI and that the ApoE4 isoform is dysfunctional in this process. Down-regulation of synj1 rescues blast-induced phospholipid dysregulation and prevents development of Tau hyper-phosphorylation in ApoE4 carriers.
Collapse
|
50
|
Julien J, Joubert S, Ferland MC, Frenette L, Boudreau-Duhaime M, Malo-Véronneau L, de Guise E. Association of traumatic brain injury and Alzheimer disease onset: A systematic review. Ann Phys Rehabil Med 2017; 60:347-356. [DOI: 10.1016/j.rehab.2017.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 03/26/2017] [Indexed: 10/19/2022]
|