1
|
Werth VP, Merrill JT, Furie R, Dörner T, van Vollenhoven R, Lipsky P, Weiswasser M, Korish S, Schafer PH, Stern M, Li S, Delev N. Effect of iberdomide on cutaneous manifestations in systemic lupus erythematosus: A randomized phase 2 clinical trial. J Am Acad Dermatol 2025; 92:435-443. [PMID: 39461504 DOI: 10.1016/j.jaad.2024.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Iberdomide, a cereblon modulator, promotes degradation of transcription factors Ikaros and Aiolos. OBJECTIVE Evaluate iberdomide efficacy and safety in cutaneous lupus erythematosus (CLE) in a phase 2 study. METHODS Patients were randomized (2:2:1:2) to iberdomide 0.45 (n = 81), 0.30 (n = 82), or 0.15 mg (n = 42) or placebo (n = 83) daily while continuing background lupus medications. RESULTS The mean (SD) baseline Cutaneous Lupus Area and Severity Index Activity (CLASI-A) score was 6.9 (7.0); 28% of patients had a score ≥8; 56% had acute CLE, 29% chronic CLE, and 16% subacute CLE. Mean CLASI-A improvement in patients with baseline score ≥8 was 39.7% for iberdomide 0.45 mg versus 20.1% for placebo at week 4 (P = .032), with continued improvement through week 24 (66.7% vs 54.2%; P = .295). Proportions of patients achieving ≥50% CLASI-A reduction from baseline at week 24 were significantly greater for iberdomide 0.45 mg versus placebo for patients with subacute (91.7% vs 52.9%, P = .035) and chronic (62.1% vs 27.8%; P = .029) CLE but not for the overall population (55.6% vs 44.6%) or patients with baseline CLASI-A ≥8 (66.7% vs 50.0%). LIMITATIONS Small patient subgroups of CLE subtypes. CONCLUSIONS Iberdomide showed beneficial effects when added to background lupus medications in patients with subacute and chronic CLE.
Collapse
Affiliation(s)
- Victoria P Werth
- University of Pennsylvania and the Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania.
| | - Joan T Merrill
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | | | - Thomas Dörner
- German Rheumatism Research Center and Charité University Hospital, Berlin, Germany
| | | | - Peter Lipsky
- RILITE Foundation and AMPEL BioSolutions, Charlottesville, Virginia
| | | | | | | | - Mark Stern
- Bristol Myers Squibb, Princeton, New Jersey
| | - Stan Li
- Bristol Myers Squibb, Princeton, New Jersey
| | | |
Collapse
|
2
|
Bokor LA, Martyin K, Krebs M, Galajda NÁ, Meznerics FA, Szabó B, Hegyi P, Lőrincz K, Kiss N, Bánvölgyi A, Hidvégi B. Deucravacitinib shows superior efficacy and safety in cutaneous lupus erythematosus compared to various biologics and small molecules - A systematic review and meta-analysis. Autoimmun Rev 2025; 24:103723. [PMID: 39694128 DOI: 10.1016/j.autrev.2024.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Novel therapies for cutaneous lupus erythematosus (CLE) and systemic lupus erythematosus (SLE) demonstrated efficacy and safety in previous trials. However, data on the comparison of these treatments is still lacking, limiting their integration into clinical practice. Therefore, our aim is to perform a systematic review and network meta-analysis to compare the efficacy and safety of novel systemic therapies in CLE. METHODS A systematic search was performed across PubMed, Embase, and CENTRAL on November 25, 2023, to identify studies involving patients with CLE or SLE with active skin involvement treated with novel systemic therapies. The primary outcomes assessed were the proportion of patients achieving the Cutaneous Lupus Erythematosus Disease Area and Severity Index-50 (CLASI-50), the change in CLASI-A, the occurrence of adverse events (AEs), and serious adverse events (SAEs). RESULTS 18,280 records were retrieved, of which 53 met the inclusion criteria. Deucravacitinib showed significantly greater efficacy in achieving the CLASI50 compared to placebo (OR: 8.28, 95 % CI: 2.22-30.91). Both litifilimab (OR: 2.54, 95 % CI: 1.20-5.40) and anifrolumab (OR: 2.25, 95 % CI: 1.23-4.14) were also significantly more effective than placebo. No significant differences were observed in the occurrence of AEs and SAEs between these therapeutics and placebo. CONCLUSION Anifrolumab and litifilimab are effective and safe treatment options in CLE. However, deucravacitinib demonstrated superior efficacy and safety with fewer adverse events compared to anifrolumab. CLE patients who have shown an inadequate response to first- and second-line treatments may benefit from the incorporation of deucravacitinib into their treatment regimens.
Collapse
Affiliation(s)
- Laura Anna Bokor
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Katalin Martyin
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Máté Krebs
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Noémi Ágnes Galajda
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Fanni Adél Meznerics
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary; Division of Pancreatic Diseases, Heart and Vascular Centre, Semmelweis University, 25-29 Tömő Street, Budapest 1083, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Kende Lőrincz
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary
| | - Bernadett Hidvégi
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, 41 Mária Street, Budapest 1085, Hungary; Centre for Translational Medicine, Semmelweis University, 22 Baross Street, Budapest 1085, Hungary.
| |
Collapse
|
3
|
Lanser EM, Sudol-Szopinska I, Weaver JS, Vickery M, Taljanovic MS. Musculoskeletal manifestations of systemic lupus erythematosus. Skeletal Radiol 2025:10.1007/s00256-025-04896-4. [PMID: 39971778 DOI: 10.1007/s00256-025-04896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease affecting nearly every organ system in the body. The musculoskeletal (MSK) system is frequently affected and often the earliest site of disease presentation. Tendon, tendon sheath, bone, muscle, and soft tissue involvement is assessed through a multimodality approach. Radiology has an evolving role in the diagnosis and management of SLE. In this article, the authors discuss the epidemiology, pathophysiology, and typical imaging findings, as well as review the role of imaging in the management of SLE.
Collapse
Affiliation(s)
- Erica M Lanser
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Iwona Sudol-Szopinska
- Department of Radiology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Jennifer S Weaver
- Department of Radiology, University of Texas San Antonia, San Antonio, TX, USA
| | - Matthew Vickery
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mihra S Taljanovic
- Departments of Medical Imaging and Orthopedic Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Radiology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
4
|
Saegusa K, Tsuchida Y, Komai T, Tsuchiya H, Fujio K. Advances in Targeted Therapy for Systemic Lupus Erythematosus: Current Treatments and Novel Approaches. Int J Mol Sci 2025; 26:929. [PMID: 39940698 PMCID: PMC11816971 DOI: 10.3390/ijms26030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with diverse clinical manifestations that can lead to severe organ damage. The complex pathophysiology of SLE makes treatment selection difficult. This review examines the current evidence for biological therapies in SLE, including the anti-B cell activating factor antibody belimumab; the type I interferon receptor antagonist anifrolumab; the novel calcineurin inhibitor voclosporin; and rituximab, which targets CD20 on B cells. We also describe emerging therapies, including novel agents in development and CD19-directed chimeric antigen receptor (CAR) T cell therapy, which has shown promise in early clinical experience. Recent advances in biomarker research, including interferon signatures and transcriptomic profiles, may facilitate patient stratification and treatment selection. This review offers insights into current and future treatment strategies for patients with SLE by analyzing clinical trial results and recent immunological findings.
Collapse
Affiliation(s)
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (K.S.); (T.K.); (H.T.); (K.F.)
| | | | | | | |
Collapse
|
5
|
Andrade-Ortega L, Xibillé-Friedmann D, Galarza-Delgado DA, Saavedra MÁ, Alvarez-Nemegyei J, Amigo-Castañeda MC, Fragoso-Loyo H, Gordillo-Huerta MV, Irazoque-Palazuelos F, Jara-Quezada LJ, Merayo-Chalico J, Portela-Hernández M, Sicsik-Ayala S, Abud-Mendoza C, Alpizar-Rodriguez D, Amaya-Estrada JL, Barragán-Navarro YR, Carrillo-Vázquez SM, Castro-Colín Z, Cruz-Álvarez LJ, Durán-Barragán S, Esquivel-Valerio JA, Gamez-Nava JI, García-García C, Gonzalez-Lopez L, Hadid-Smeke J, Hernández-Bedolla A, Hernández-Cabrera MF, Herrera-VanOostdam DA, Horta-Baas G, Iturbide-Escamilla AE, Muñoz-Lopez S, Pacheco-Tena C, Pérez-Cristóbal M, Pimentel-Leon RR, Pinto-Ortiz M, Ramos-Sánchez MA, Sandoval-Cabrera DV, de Anda KS, Silveira LH, Barile-Fabris LA. Clinical Practice Mexican Guidelines for the Treatment of Systemic Lupus Erythematosus: 2024 Update. REUMATOLOGIA CLINICA 2024; 20:490-510. [PMID: 39505612 DOI: 10.1016/j.reumae.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 11/08/2024]
Abstract
Herein we present the update for the Mexican Guidelines for the Treatment of Systemic Lupus Erythematosus. It involves the participation of several experts along the country, following the GRADE system. We included aspects regarding vaccines, pregnancy and cardiovascular risk which were not presented in the previous guidelines in 2017.
Collapse
Affiliation(s)
- Lilia Andrade-Ortega
- Servicio de Reumatología, Centro Médico Nacional 20 de Noviembre, ISSSTE, CDMX, Mexico.
| | | | - Dionicio A Galarza-Delgado
- Servicio de Reumatología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Miguel Ángel Saavedra
- División de Investigación en Salud, Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza IMSS, CDMX, Mexico
| | | | | | - Hilda Fragoso-Loyo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencia Médicas y Nutrición, Dr Salvador Zubirán, CDMX, Mexico
| | | | | | - Luis Javier Jara-Quezada
- División de Reumatología, Instituto Nacional de Rehabilitación Dr. Luis Guillermo Ibarra Ibarra, CDMX, Mexico
| | - Javier Merayo-Chalico
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencia Médicas y Nutrición, Dr Salvador Zubirán, CDMX, Mexico
| | | | | | - Carlos Abud-Mendoza
- Departamento de Reumatología, Hospital Central "Dr. Ignacio Morones Prieto", Facultad de Medicina de la UASLP, San Luis Potosí, Mexico
| | | | - José Luis Amaya-Estrada
- Servicio de Interna, Hospital Central Sur de Alta Especialidad, Petróleos Mexicanos, CDMX, Mexico
| | | | | | - Zully Castro-Colín
- Servicio de Reumatología, Hospital de Especialidades Dr. Antonio Fraga Mouret, Centro Médico Nacional La Raza IMSS, CDMX, Mexico
| | | | - Sergio Durán-Barragán
- Departamento de Clínicas Médicas del Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jorge A Esquivel-Valerio
- Servicio de Reumatología, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León, Nuevo León, Mexico
| | - Jorge Iván Gamez-Nava
- Intituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Conrado García-García
- Servicio de Reumatología, Hospital General de México "Dr. Eduardo Liceaga", CDMX, Mexico
| | - Laura Gonzalez-Lopez
- Intituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Jaime Hadid-Smeke
- Servicio de Reumatología, Centro Médico Nacional 20 de Noviembre, ISSSTE, CDMX, Mexico
| | | | | | | | - Gabriel Horta-Baas
- Servicio de Reumatología, Hospital General Regional # 1, Instituto Mexicano del Seguro Social, Mérida, Mexico
| | | | - Sandra Muñoz-Lopez
- Servicio de Reumatología, Centro Médico Nacional 20 de Noviembre, ISSSTE, CDMX, Mexico
| | - Cesar Pacheco-Tena
- Facultad de Medicina, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Mario Pérez-Cristóbal
- Departamento de Reumatología, Hospital de Especialidades del CMN SXXI, IMSS, CDMX, Mexico
| | | | | | | | - Diana V Sandoval-Cabrera
- Servicio de Medicina Interna, Hospital General Regional #2 "Dr. Guillermo Fajardo Ortiz", IMSS, CDMX, Mexico
| | - Karina Santana de Anda
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencia Médicas y Nutrición, Dr Salvador Zubirán, CDMX, Mexico
| | - Luis H Silveira
- Departamento de Reumatología, Instituto Nacional de Cardiología Ignacio Chávez, CDMX, Mexico
| | | |
Collapse
|
6
|
Andrade-Ortega L, Xibillé-Friedmann D, Galarza-Delgado DA, Saavedra MÁ, Alvarez-Nemegyei J, Amigo-Castañeda MC, Fragoso-Loyo H, Gordillo-Huerta MV, Irazoque-Palazuelos F, Jara-Quezada† LJ, Merayo-Chalico J, Portela-Hernández M, Sicsik-Ayala S, Abud-Mendoza C, Alpizar-Rodriguez D, Amaya-Estrada JL, Barragán-Navarro YR, Carrillo-Vázquez SM, Castro-Colín Z, Cruz-Álvarez LJ, Durán-Barragán S, Esquivel-Valerio JA, Gamez-Nava JI, García-García C, Gonzalez-Lopez L, Hadid-Smeke J, Hernández-Bedolla A, Hernández-Cabrera MF, Herrera-VanOostdam DA, Horta-Baas G, Iturbide-Escamilla AE, Muñoz-Lopez S, Pacheco-Tena C, Pérez-Cristóbal M, Pimentel-Leon RR, Pinto-Ortiz M, Ramos-Sánchez MA, Sandoval-Cabrera DV, Santana de Anda K, Silveira LH, Barile-Fabris LA. Guías de Práctica Clínica para el tratamiento del lupus eritematoso sistémico del Colegio Mexicano de Reumatología. Actualización 2024. REUMATOLOGÍA CLÍNICA 2024; 20:490-510. [DOI: 10.1016/j.reuma.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Kostopoulou M, Mukhtyar CB, Bertsias G, Boumpas DT, Fanouriakis A. Management of systemic lupus erythematosus: a systematic literature review informing the 2023 update of the EULAR recommendations. Ann Rheum Dis 2024; 83:1489-1501. [PMID: 38777375 PMCID: PMC11503129 DOI: 10.1136/ard-2023-225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES To analyse the new evidence (2018-2022) for the management of systemic lupus erythematosus (SLE) to inform the 2023 update of the European League Against Rheumatism (EULAR) recommendations. METHODS Systematic literature reviews were performed in the Medline and the Cochrane Library databases capturing publications from 1 January 2018 through 31 December 2022, according to the EULAR standardised operating procedures. The research questions focused on five different domains, namely the benefit/harm of SLE treatments, the benefits from the attainment of remission/low disease activity, the risk/benefit from treatment tapering/withdrawal, the management of SLE with antiphospholipid syndrome and the safety of immunisations against varicella zoster virus and SARS-CoV2 infection. A Population, Intervention, Comparison and Outcome framework was used to develop search strings for each research topic. RESULTS We identified 439 relevant articles, the majority being observational studies of low or moderate quality. High-quality randomised controlled trials (RCTs) documented the efficacy of the type 1 interferon receptor inhibitor, anifrolumab, in non-renal SLE, and belimumab and voclosporin, a novel calcineurin inhibitor, in lupus nephritis (LN), when compared with standard of care. For the treatment of specific organ manifestations outside LN, a lack of high-quality data was documented. Multiple observational studies confirmed the beneficial effects of attaining clinical remission or low disease activity, reducing the risk for multiple adverse outcomes. Two randomised trials with some concerns regarding risk of bias found higher rates of relapse in patients who discontinued glucocorticoids (GC) or immunosuppressants in SLE and LN, respectively, yet observational cohort studies suggest that treatment withdrawal might be feasible in a subset of patients. CONCLUSION Anifrolumab and belimumab achieve better disease control than standard of care in extrarenal SLE, while combination therapies with belimumab and voclosporin attained higher response rates in high-quality RCTs in LN. Remission and low disease activity are associated with favourable long-term outcomes. In patients achieving these targets, GC and immunosuppressive therapy may gradually be tapered. Cite Now.
Collapse
Affiliation(s)
- Myrto Kostopoulou
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Chetan B Mukhtyar
- Vasculitis Service, Rheumatology Department, Norfolk and Norwich University Hospital NHS Trust, Norwich, UK
| | - George Bertsias
- Rheumatology and Clinical Immunology, University of Crete, School of Medicine, Heraklion, Greece
- Laboratory of Autoimmunity and Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Dimitrios T Boumpas
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
- Laboratory of Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
8
|
Flouda S, Emmanouilidou E, Karamanakos A, Koumaki D, Katsifis-Nezis D, Repa A, Bertsias G, Boumpas D, Fanouriakis A. Anifrolumab for systemic lupus erythematosus with multi-refractory skin disease: A case series of 18 patients. Lupus 2024; 33:1248-1253. [PMID: 39098049 DOI: 10.1177/09612033241273023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
OBJECTIVE Skin involvement is common in systemic lupus erythematosus (SLE), but may be resistant to conventional treatment. We sought to evaluate the efficacy of anifrolumab (ANI) in refractory cutaneous manifestations of SLE. METHODS Case series of patients with refractory cutaneous SLE from three Rheumatology Departments in Greece. Outcome measures were improvement in Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), physician global assessment (PGA) and Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI). Clinically relevant improvement in skin was defined as decrease ≥50% (CLASI50) from baseline values. RESULTS Eighteen patients received ANI; all had active skin involvement at baseline. Mean (SD) SLEDAI and PGA at ANI initiation were 7.4 (2.7) and 1.4 (0.5), respectively, with a mean prednisone dose 4.9 (4.5) mg/day. Mean CLASI (Activity/Damage) at baseline was 13.9 (9.7)/2.9 (4.6). Patients were refractory to a mean 6.3 (1.5) immunomodulatory agents (including hydroxychloroquine and glucocorticoids) before the initiation of ANI. After a mean 8.5 (4.6) months, 89% (n = 16/18) of patients demonstrated significant improvement in general lupus and cutaneous disease activity, and glucocorticoid tapering. Mean SLEDAI and mean CLASI at last visit were 3.4 (1.9) and 2.1 (2.4)/1.4 (2.2), respectively, and mean daily prednisone dose decreased to 2.4 (2.2). Of note, in this group of highly refractory patients CLASI50 was achieved in 16/18 (89%) patients. One patient discontinued ANI after 4 infusions due to a varicella-zoster virus infection and one patient, who initially responded to treatment with ANI, experienced a skin flare due to temporary discontinuation due to Covid 19 infection. DORIS remission and LLDAS were attained in two (11.1%) and eleven (61.1%) patients, respectively. CONCLUSION Anifrolumab is highly effective in various skin manifestations of SLE, even after prior failure to multiple treatments.
Collapse
Affiliation(s)
- Sofia Flouda
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, Athens, Greece
| | - Evgenia Emmanouilidou
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion, Heraklion, Greece
| | | | - Dimitra Koumaki
- Department of Dermatology, University Hospital of Heraklion, Heraklion, Greece
| | | | - Argyro Repa
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios Boumpas
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, Athens, Greece
| | - Antonis Fanouriakis
- Rheumatology and Clinical Immunology Unit, Attikon University Hospital, Athens, Greece
| |
Collapse
|
9
|
Li TM, Zyulina V, Seltzer ES, Dacic M, Chinenov Y, Daamen AR, Veiga KR, Schwartz N, Oliver DJ, Cabahug-Zuckerman P, Lora J, Liu Y, Shipman WD, Ambler WG, Taber SF, Onel KB, Zippin JH, Rashighi M, Krueger JG, Anandasabapathy N, Rogatsky I, Jabbari A, Blobel CP, Lipsky PE, Lu TT. The interferon-rich skin environment regulates Langerhans cell ADAM17 to promote photosensitivity in lupus. eLife 2024; 13:e85914. [PMID: 38860651 PMCID: PMC11213570 DOI: 10.7554/elife.85914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.
Collapse
Affiliation(s)
- Thomas Morgan Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Victoria Zyulina
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ethan S Seltzer
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Marija Dacic
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yurii Chinenov
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Andrea R Daamen
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Keila R Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Noa Schwartz
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
| | - David J Oliver
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Pamela Cabahug-Zuckerman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
| | - Jose Lora
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Yong Liu
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Sarah F Taber
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Karen B Onel
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jonathan H Zippin
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical SchoolWorcesterUnited States
| | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medical CollegeNew YorkUnited States
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Inez Rogatsky
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Ali Jabbari
- Laboratory of Investigative Dermatology, Rockefeller UniversityNew YorkUnited States
| | - Carl P Blobel
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Peter E Lipsky
- Department of Medicine, AMPEL BioSolutionsCharlottesvilleUnited States
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery Research InstituteNew YorkUnited States
- Department of Microbiology and Immunology, Weill Cornell Medical CollegeNew YorkUnited States
- Pediatric Rheumatology, Department of Medicine, Hospital for Special SurgeryNew YorkUnited States
- Department of Pediatrics, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
10
|
Raupov RK, Suspitsin EN, Kalashnikova EM, Sorokina LS, Burtseva TE, Argunova VM, Mulkidzhan RS, Tumakova AV, Kostik MM. IFN-I Score and Rare Genetic Variants in Children with Systemic Lupus Erythematosus. Biomedicines 2024; 12:1244. [PMID: 38927451 PMCID: PMC11200921 DOI: 10.3390/biomedicines12061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Interferon I (IFN I) signaling hyperactivation is considered one of the most important pathogenetic mechanisms in systemic lupus erythematosus (SLE). Early manifestation and more severe SLE courses in children suggest a stronger genetic influence in childhood-onset SLE (cSLE). Aim: To evaluate IFN-I score and SLE-associated genetic variants in cSLE. Material and Methods: 80 patients with cSLE were included in the study. IFN I-score was assessed by real-time PCR quantitation of 5 IFN I-regulated transcripts (IFI44L, IFI44, IFIT3, LY6E, MXA1) in 60 patients. Clinical exome sequencing (CES) was performed in 51 patients. Whole-exome sequencing was performed in 32 patients with negative results of CES. Results: 46/60 patients (77%) had elevated IFN-I scores. Leucopenia and skin involvement were associated with over-expression of IFI44 and IFI44L, while hypocomplementemia-with hyperactivation of IFIT3, LY6E, and MX1. No correlation of IFN-I score with disease activity was found. At least one rare genetic variant, potentially associated with SLE, was found in 29 (56.9%) patients. The frequency of any SLE-genetic variants in patients with increased IFN scores was 84%, in patients with normal IFN scores-33%, and in the group whose IFN score was not assessed was 65% (p = 0.040). The majority of genetic variants (74%) are functionally related to nucleic acid sensing and IFN-signaling. The highest frequency of genetic variants was observed in Sakha patients (9/14; 64.3%); three and two unrelated patients had identical variants in PTPN22 and TREX1 genes, respectively. Conclusions: More than half of patients with childhood-onset SLE have rare variants in SLE-associated genes. The IFN-I score could be considered a tool for the selection of patients for further genetic assessment in whom monogenic lupus is suspected.
Collapse
Affiliation(s)
- Rinat K. Raupov
- Hospital Pediatry Department, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia (E.M.K.); (L.S.S.)
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery, Pediatric Rheumatology, 196603 Saint Petersburg, Russia
| | - Evgeny N. Suspitsin
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia; (E.N.S.); (A.V.T.)
- Laboratory of Molecular Oncology, N. N. Petrov Institute of Oncology, 197758 Saint Petersburg, Russia;
| | - Elvira M. Kalashnikova
- Hospital Pediatry Department, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia (E.M.K.); (L.S.S.)
| | - Lubov S. Sorokina
- Hospital Pediatry Department, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia (E.M.K.); (L.S.S.)
| | - Tatiana E. Burtseva
- Department of Pediatry and Pediatric Surgery, Medical Institute of North-Eastern Federal University, 677007 Yakutsk, Russia;
- Yakut Science Center of Complex Medical Problems, Laboratory of Monitoring of the Children Health and Environmental Research, 677018 Yakutsk, Russia
| | - Vera M. Argunova
- Republic Hospital #1–National Center of Medicine, Pediatric Rheumatology, 677010 Yakutsk, Russia
| | - Rimma S. Mulkidzhan
- Laboratory of Molecular Oncology, N. N. Petrov Institute of Oncology, 197758 Saint Petersburg, Russia;
| | - Anastasia V. Tumakova
- Department of Medical Genetics, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia; (E.N.S.); (A.V.T.)
| | - Mikhail M. Kostik
- Hospital Pediatry Department, Saint-Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia (E.M.K.); (L.S.S.)
- Research Laboratory of Autoimmune and Autoinflammatory Diseases, World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
11
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
12
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
13
|
Askanase AD, Furie RA, Dall'Era M, Bomback AS, Schwarting A, Zhao MH, Bruce IN, Khamashta M, Rubin B, Carroll A, Daniels M, Levy RA, van Vollenhoven R, Urowitz MB. Disease-modifying therapies in systemic lupus erythematosus for extrarenal manifestations. Lupus Sci Med 2024; 11:e001124. [PMID: 38777595 PMCID: PMC11116871 DOI: 10.1136/lupus-2023-001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Our 2022 published working definition of disease modification in systemic lupus erythematosus (SLE) was 'minimising disease activity with the fewest treatment-associated toxicities and slowing or preventing organ damage progression'. The objective of this review was to classify current SLE treatments according to the proposed non-renal disease modification criteria excluding toxicities. Based on a review of select clinical trial (n=32) and observational study (n=54) publications for 14 SLE medications across different therapeutic classes, and the authors' clinical experience, we evaluated disease modification potential as per the proposed framework at three time points. Specific criteria used to determine disease modification potential included a drug's capacity to reduce: (1) non-renal disease activity, (2) severe flares, (3) use of steroids/immunosuppressants and (4) organ damage accrual. Criteria 1-3 were assessed at 1 year and 2-5 years and, when positive, were considered evidence for disease modification potential; criterion 4 was used to confirm disease modification at >5 years. Each treatment received one of four mutually exclusive designations at each time point: (a) criterion met, (b) indications of criterion met despite insufficient evidence in the literature, (c) inconclusive and (d) no available supportive data. This review excludes an assessment of potential toxicities. Eight of the 14 SLE treatments met ≥1 disease modification criteria up to year 5. Hydroxychloroquine improved overall survival at >5 years, suggesting long-term disease modification, but no data on specific organ systems were reported. Belimumab was the only treatment to meet all criteria. Belimumab and hydroxychloroquine met disease modification definitions across three time points. Evidence for other SLE therapies was incomplete, particularly at >5 years. Future studies are warranted for other treatments to meet the disease modification criteria. We discuss challenges to classification and possible updates to our published criteria.
Collapse
Affiliation(s)
- Anca D Askanase
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Richard A Furie
- Division of Rheumatology, Northwell Health, Great Neck, New York, USA
| | - Maria Dall'Era
- Division of Rheumatology, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Andrew S Bomback
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Andreas Schwarting
- Rheumatology Center Rhineland Palatinate, Bad Kreuznach, Germany
- University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ming-Hui Zhao
- Renal Division, Peking University First Hospital, Beijing, China
| | - Ian N Bruce
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | | | - Bernie Rubin
- US Medical Affairs, GSK, Research Triangle Park, North Carolina, USA
| | - Angela Carroll
- US Medical Affairs, GSK, Research Triangle Park, North Carolina, USA
| | | | - Roger Abramino Levy
- Specialty Care, Global Medical Affairs, GlaxoSmithKline, Philadelphia, Pennsylvania, USA
| | - Ronald van Vollenhoven
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center and Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Murray B Urowitz
- Professor Emeritus, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Fushida N, Horii M, Oishi K, Matsushita T. Anifrolumab for systemic lupus erythematosus: A clinical study of Japanese patients in Kanazawa University Hospital. J Dermatol 2024; 51:607-611. [PMID: 37929294 DOI: 10.1111/1346-8138.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
We investigated the effectiveness of anifrolumab in treating systemic lupus erythematosus (SLE). We treated seven patients with SLE (age range, 31-68 years; median age, 48 years); one male and six females) with anifrolumab between January 2022 and February 2023 at Kanazawa University Hospital. The period between the onset and initiation of anifrolumab treatment was 60-276 months (median, 234 months), and the SLE disease activity index-2000 (SLEDAI-2 K) before treatment was 2-6 months (median, 3 months). Five patients experienced skin rashes or alopecia, and their cutaneous lupus erythematosus disease area and severity index (CLASI) activity scores were 2-9 (median, 4). Six patients continued treatment with anifrolumab, but one did not because of uncontrolled pleurisy and pericarditis. Our results demonstrated that anifrolumab was effective in treating SLE and reducing both SLEDAI-2 K and CLASI activity scores (median decrease, 100%). Furthermore, the oral corticosteroid dosage could be reduced in all patients who were able to continue treatment. Our findings indicate that anifrolumab is effective not only for reducing disease and eruption activities, but also facilitates tapering of corticosteroid dosage.
Collapse
Affiliation(s)
- Natsumi Fushida
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Motoki Horii
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Oishi
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
15
|
Moriyama M, Noda K, Ito H, Matsushita T, Kurosaka D. Clinical features of newly diagnosed systemic lupus erythematosus after SARS-CoV-2 vaccination. Mod Rheumatol Case Rep 2023; 8:63-68. [PMID: 37348045 DOI: 10.1093/mrcr/rxad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes damage to multiple organs. Various factors, including vaccination, have been associated with SLE development. Vaccination for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in 2020, and there are a few reports on the exacerbation of SLE after SARS-CoV-2 vaccination. The influence of SARS-CoV-2 vaccination on SLE development remains unclear. We present the case of a 53-year-old man who developed peritonitis and was subsequently diagnosed with SLE on Day 9 after receiving a third dose of the messenger ribonucleic acid-1273 SARS-CoV-2 vaccine. This case and previous reports have shown that patients who developed SLE after SARS-CoV-2 vaccination are more likely to develop it within 2 weeks of vaccination, especially when they have a higher rate of immunological abnormalities or a family history of autoimmune diseases. Furthermore, these features suggest that type I interferon is involved in the pathogenesis of SLE after SARS-CoV-2 vaccination.
Collapse
Affiliation(s)
- Masayori Moriyama
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kentaro Noda
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruyasu Ito
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takayuki Matsushita
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daitaro Kurosaka
- Division of Rheumatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Santacruz JC, Mantilla MJ, Pulido S, Isaza JR, Tuta E, Agudelo CA, Londono J. A Practical Overview of the Articular Manifestations of Systemic Lupus Erythematosus. Cureus 2023; 15:e44964. [PMID: 37822423 PMCID: PMC10562134 DOI: 10.7759/cureus.44964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 10/13/2023] Open
Abstract
Although it is widely known that joint involvement is the most frequent and prevalent manifestation of systemic lupus erythematosus (SLE), not having a validated organ-specific index for this domain in order to guide its treatment has been a major limitation. In addition, its clinical importance had been underestimated since it was not a vital risk domain; it was never the center of treatment, under the premise that in most cases its progression was slow and did not lead to significant functional disability. However, this concept has been changing due to the greater description of erosions both in ultrasonography and in osteoarticular magnetic resonance, so their identification can establish a more appropriate treatment time and thus avoid joint deformities, which in some cases can become irreversible. Recently, anifrolumab and belimumab have been able to significantly reduce the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and British Isles Lupus Assessment Group (BILAG) index scores, along with improvement in quality of life indices and a significant decrease in the required dose of glucocorticoids. Despite this, the ideal moment to consider biological therapy in this domain is not clear, since the clinical examination can sometimes be biased by the pain associated with fibromyalgia or the fatigue associated with SLE. For this reason, perhaps ultrasonography or magnetic resonance imaging, apart from differentiating the joint phenotype, can identify patients in time to define the onset of disease-modifying antirheumatic drugs and rationalize the use of glucocorticoids. The objective of this review is to characterize in detail the joint manifestations of SLE to offer the clinician a practical view of its diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Juan Ramón Isaza
- Rheumatology Department, Comité de Estudios Médicos, Medellín, COL
| | - Eduardo Tuta
- Spondyloarthropathies Research Group, Universidad de La Sabana, Chía, COL
| | | | - John Londono
- Spondyloarthropathies Research Group, Universidad de La Sabana, Chía, COL
| |
Collapse
|
17
|
Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol 2023; 50:1103-1113. [PMID: 37399470 DOI: 10.3899/jrheum.2022-0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 07/05/2023]
Abstract
Type I interferon (IFN-I) is thought to play a role in many systemic autoimmune diseases. IFN-I pathway activation is associated with pathogenic features, including the presence of autoantibodies and clinical phenotypes such as more severe disease with increased disease activity and damage. We will review the role and potential drivers of IFN-I dysregulation in 5 prototypic autoimmune diseases: systemic lupus erythematosus, dermatomyositis, rheumatoid arthritis, primary Sjögren syndrome, and systemic sclerosis. We will also discuss current therapeutic strategies that directly or indirectly target the IFN-I system.
Collapse
Affiliation(s)
- Ana Carolina Londe
- A.C. Londe, MSc, Autoimmunity Lab, and Graduate Program in Physiopathology, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Ruth Fernandez-Ruiz
- R. Fernandez-Ruiz, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA
| | - Paulo Rogério Julio
- P. Rogério Julio, MSc, Autoimmunity Lab, and Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Simone Appenzeller
- S. Appenzeller, MD, PhD, Autoimmunity Lab, and Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, São Paulo, Brazil
| | - Timothy B Niewold
- T.B. Niewold, MD, Department of Medicine, Hospital for Special Surgery, New York, New York, USA.
| |
Collapse
|
18
|
Ciurtin C. Potential relevance of type I interferon-related biomarkers for the management of polygenic autoimmune rheumatic diseases with childhood onset. Clin Rheumatol 2023; 42:1733-1736. [PMID: 37246197 DOI: 10.1007/s10067-023-06645-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Coziana Ciurtin
- Centre for Adolescent Rheumatology, Division of Medicine, University College London, Rayne Building, London, WC1E 6JF, UK.
| |
Collapse
|
19
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
20
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Rönnblom L, Versnel MA, Vital EM. 2022 EULAR points to consider for the measurement, reporting and application of IFN-I pathway activation assays in clinical research and practice. Ann Rheum Dis 2023; 82:754-762. [PMID: 36858821 DOI: 10.1136/ard-2022-223628] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/04/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Type I interferons (IFN-Is) play a role in a broad range of rheumatic and musculoskeletal diseases (RMDs), and compelling evidence suggests that their measurement could have clinical value, although testing has not progressed into clinical settings. OBJECTIVE To develop evidence-based points to consider (PtC) for the measurement and reporting of IFN-I assays in clinical research and to determine their potential clinical utility. METHODS EULAR standardised operating procedures were followed. A task force including rheumatologists, immunologists, translational scientists and a patient partner was formed. Two systematic reviews were conducted to address methodological and clinical questions. PtC were formulated based on the retrieved evidence and expert opinion. Level of evidence and agreement was determined. RESULTS Two overarching principles and 11 PtC were defined. The first set (PtC 1-4) concerned terminology, assay characteristics and reporting practices to enable more consistent reporting and facilitate translation and collaborations. The second set (PtC 5-11) addressed clinical applications for diagnosis and outcome assessments, including disease activity, prognosis and prediction of treatment response. The mean level of agreement was generally high, mainly in the first PtC set and for clinical applications in systemic lupus erythematosus. Harmonisation of assay methodology and clinical validation were key points for the research agenda. CONCLUSIONS IFN-I assays have a high potential for implementation in the clinical management of RMDs. Uptake of these PtC will facilitate the progress of IFN-I assays into clinical practice and may be also of interest beyond rheumatology.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Functional Biology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Philip G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, The Netherlands
| | - Robert Biesen
- Charité University Medicine Berlin, Department of Rheumatology, Berlin, Germany
| | - Maija-Leena Eloranta
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Giulio Cavalli
- Vita-Salute San Raffaele University, Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Milan, Italy
| | - Marianne Visser
- EULAR PARE Patient Research Partner, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Medicine, University of Crete, Medical School, Department of Internal Medicine, Heraklion, Greece
| | - George Bertsias
- University of Crete, Medical School, Department of Rheumatology-Clinical Immunology, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, New York, USA
| | - Lars Rönnblom
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Marjan A Versnel
- Erasmus MC, University Medical Center Rotterdam, Department of Immunology, Rotterdam, The Netherlands
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
21
|
García-Martínez K, Chen J, Jones J, Woo A, Aucapina A, Brito I, Leifer CA. Stimulator of interferon genes is required for Toll-Like Receptor-8 induced interferon response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540812. [PMID: 37292640 PMCID: PMC10245589 DOI: 10.1101/2023.05.15.540812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The innate immune system is equipped with multiple receptors to detect microbial nucleic acids and induce type I interferon (IFN) to restrict viral replication. When dysregulated these receptor pathways induce inflammation in response to host nucleic acids and promote development and persistence of autoimmune diseases like Systemic Lupus Erythematosus (SLE). IFN production is regulated by the Interferon Regulatory Factor (IRF) transcription factor family of proteins that function downstream of several innate immune receptors such as Toll-like receptors (TLRs) and Stimulator of Interferon Genes (STING). Although both TLRs and STING activate the same downstream molecules, the pathway by which TLRs and STING activate IFN response are thought to be independent. Here we show that STING plays a previously undescribed role in human TLR8 signaling. Stimulation with the TLR8 ligands induced IFN secretion in primary human monocytes, and inhibition of STING reduced IFN secretion from primary monocytes from 8 healthy donors. We demonstrate that TLR8-induced IRF activity was reduced by STING inhibitors. Moreover, TLR8-induced IRF activity was blocked by inhibition or loss of IKKε, but not TBK1. Bulk RNA transcriptomic analysis supported a model where TLR8 induces transcriptional responses associated with SLE that can be downregulated by inhibition of STING. These data demonstrate that STING is required for full TLR8-to-IRF signaling and provide evidence for a new framework of crosstalk between cytosolic and endosomal innate immune receptors, which could be leveraged to treat IFN driven autoimmune diseases. Background High levels of type I interferon (IFN) is characteristic of multiple autoimmune diseases, and while TLR8 is associated with autoimmune disease and IFN production, the mechanisms of TLR8-induced IFN production are not fully understood. Results STING is phosphorylated following TLR8 signaling, which is selectively required for the IRF arm of TLR8 signaling and for TLR8-induced IFN production in primary human monocytes. Conclusion STING plays a previously unappreciated role in TLR8-induced IFN production. Significance Nucleic acid-sensing TLRs contribute to development and progression of autoimmune disease including interferonopathies, and we show a novel role for STING in TLR-induced IFN production that could be a therapeutic target.
Collapse
|
22
|
Burska A, Rodríguez-Carrio J, Biesen R, Dik WA, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Conaghan PG, Versnel M, Vital E. Type I interferon pathway assays in studies of rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002876. [PMID: 36863752 PMCID: PMC9990675 DOI: 10.1136/rmdopen-2022-002876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023] Open
Abstract
OBJECTIVES To systematically review the literature for assay methods that aim to evaluate type I interferon (IFN-I) pathway activation and to harmonise-related terminology. METHODS Three databases were searched for reports of IFN-I and rheumatic musculoskeletal diseases. Information about the performance metrics of assays measuring IFN-I and measures of truth were extracted and summarised. A EULAR task force panel assessed feasibility and developed consensus terminology. RESULTS Of 10 037 abstracts, 276 fulfilled eligibility criteria for data extraction. Some reported more than one technique to measure IFN-I pathway activation. Hence, 276 papers generated data on 412 methods. IFN-I pathway activation was measured using: qPCR (n=121), immunoassays (n=101), microarray (n=69), reporter cell assay (n=38), DNA methylation (n=14), flow cytometry (n=14), cytopathic effect assay (n=11), RNA sequencing (n=9), plaque reduction assay (n=8), Nanostring (n=5), bisulphite sequencing (n=3). Principles of each assay are summarised for content validity. Concurrent validity (correlation with other IFN assays) was presented for n=150/412 assays. Reliability data were variable and provided for 13 assays. Gene expression and immunoassays were considered most feasible. Consensus terminology to define different aspects of IFN-I research and practice was produced. CONCLUSIONS Diverse methods have been reported as IFN-I assays and these differ in what elements or aspects of IFN-I pathway activation they measure and how. No 'gold standard' represents the entirety of the IFN pathway, some may not be specific for IFN-I. Data on reliability or comparing assays were limited, and feasibility is a challenge for many assays. Consensus terminology should improve consistency of reporting.
Collapse
Affiliation(s)
- Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Javier Rodríguez-Carrio
- University of Oviedo, Area of Immunology, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Robert Biesen
- Charité University Medicine Berlin, Department of Rheumatology, Berlin, Germany
| | - Willem A Dik
- Erasmus MC, University Medical Center Rotterdam, Laboratory Medical Immunology, Department of Immunology, Rotterdam, Netherlands Immunology, Rotterdam, The Netherlands
| | - Maija-Leena Eloranta
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
- EULAR, PARE Patient Research Partners, Amsterdam, Netherlands
| | - Marianne Visser
- University of Crete, Medical School, Department of Internal Medicine, Heraklion, Greece
| | - Dimitrios T Boumpas
- University of Crete, Medical School, Department of Rheumatology-Clinical Immunology, Heraklion, Greece
| | - George Bertsias
- University of Crete, Medical School, Department of Rheumatology-Clinical Immunology, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Uppsala University, Department of Medical Sciences, Rheumatology, Uppsala, Sweden
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Erasmus MC, Department of Immunology, Rotterdam, The Netherlands
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
23
|
Rodríguez-Carrio J, Burska A, Conaghan PG, Dik WA, Biesen R, Eloranta ML, Cavalli G, Visser M, Boumpas DT, Bertsias G, Wahren-Herlenius M, Rehwinkel J, Frémond ML, Crow MK, Ronnblom L, Vital E, Versnel M. Association between type I interferon pathway activation and clinical outcomes in rheumatic and musculoskeletal diseases: a systematic literature review informing EULAR points to consider. RMD Open 2023; 9:e002864. [PMID: 36882218 PMCID: PMC10008483 DOI: 10.1136/rmdopen-2022-002864] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Type I interferons (IFN-I) contribute to a broad range of rheumatic and musculoskeletal diseases (RMDs). Compelling evidence suggests that the measurement of IFN-I pathway activation may have clinical value. Although several IFN-I pathway assays have been proposed, the exact clinical applications are unclear. We summarise the evidence on the potential clinical utility of assays measuring IFN-I pathway activation. METHODS A systematic literature review was conducted across three databases to evaluate the use of IFN-I assays in diagnosis and monitor disease activity, prognosis, response to treatment and responsiveness to change in several RMDs. RESULTS Of 366 screened, 276 studies were selected that reported the use of assays reflecting IFN-I pathway activation for disease diagnosis (n=188), assessment of disease activity (n=122), prognosis (n=20), response to treatment (n=23) and assay responsiveness (n=59). Immunoassays, quantitative PCR (qPCR) and microarrays were reported most frequently, while systemic lupus erythematosus (SLE), rheumatoid arthritis, myositis, systemic sclerosis and primary Sjögren's syndrome were the most studied RMDs. The literature demonstrated significant heterogeneity in techniques, analytical conditions, risk of bias and application in diseases. Inadequate study designs and technical heterogeneity were the main limitations. IFN-I pathway activation was associated with disease activity and flare occurrence in SLE, but their incremental value was uncertain. IFN-I pathway activation may predict response to IFN-I targeting therapies and may predict response to different treatments. CONCLUSIONS Evidence indicates potential clinical value of assays measuring IFN-I pathway activation in several RMDs, but assay harmonisation and clinical validation are urged. This review informs the EULAR points to consider for the measurement and reporting of IFN-I pathway assays.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Asturias, Spain
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Willem A Dik
- Laboratory Medical Immunology, department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| | - Robert Biesen
- Department of Rheumatology, Charité University Medicine Berlin, Berlin, Germany
| | - Maija-Leena Eloranta
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Giulio Cavalli
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Marianne Visser
- EULAR, PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Dimitrios T Boumpas
- Department of Internal Medicine, University of Crete, Medical School, Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology-Clinical Immunology, University of Crete, Medical School, Heraklion, Greece
| | - Marie Wahren-Herlenius
- Karolinska Institutet, Division of Rheumatology, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Norway
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Marie-Louise Frémond
- Université de Paris Cité, Hôpital Necker-Enfants Malades, Immuno-Hématologie et Rhumatologie pédiatriques, Paris, France
| | - Mary K Crow
- Hospital for Special Surgery, Weill Cornell Medical College, Mary Kirkland Center for Lupus Research, New York, USA
| | - Lars Ronnblom
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ed Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK
| | - Marjan Versnel
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
24
|
Verdelli A, Corrà A, Mariotti EB, Aimo C, Ruffo di Calabria V, Volpi W, Quintarelli L, Caproni M. An update on the management of refractory cutaneous lupus erythematosus. Front Med (Lausanne) 2022; 9:941003. [PMID: 36213629 PMCID: PMC9537468 DOI: 10.3389/fmed.2022.941003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/15/2022] Open
Abstract
Management of cutaneous lupus erythematosus (CLE) involves a combination of preventive measures, topical and systemic drugs, fairly similar for the different subtypes. Although guidelines exist, to date, no specific drugs have been specifically licensed for CLE. Antimalarials remain the first-line systemic treatment, but many patients do not respond, making refractory lupus a challenge for clinicians. The choice of alternative medication should be based on effectiveness, safety and cost. Most of the available drugs for CLE have been adapted from systemic lupus erythematosus (SLE) treatment but the existing literature is limited to small studies and evidence often lacks. As knowledge of pathogenesis of both CLE and SLE is improving, promising new therapies are emerging. In this review, we discuss the available medications, focusing on the novelties under development for CLE.
Collapse
Affiliation(s)
- Alice Verdelli
- Section of Dermatology, Azienda USL Toscana Centro, Florence, Italy
| | - Alberto Corrà
- Section of Dermatology, University of Florence, Florence, Italy
| | | | - Cristina Aimo
- Section of Dermatology, University of Florence, Florence, Italy
| | | | - Walter Volpi
- Section of Dermatology, Azienda USL Toscana Centro, Florence, Italy
| | - Lavinia Quintarelli
- Rare Dermatological Diseases Unit, Department of Health Sciences, Azienda USL Toscana Centro, University of Florence, Florence, Italy
| | - Marzia Caproni
- Rare Dermatological Diseases Unit, Department of Health Sciences, Azienda USL Toscana Centro, University of Florence, Florence, Italy
| |
Collapse
|
25
|
Elhage KG, Zhao R, Nakamura M. Advancements in the Treatment of Cutaneous Lupus Erythematosus and Dermatomyositis: A Review of the Literature. Clin Cosmet Investig Dermatol 2022; 15:1815-1831. [PMID: 36105749 PMCID: PMC9467686 DOI: 10.2147/ccid.s382628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
Background Cutaneous lupus erythematosus (CLE) and dermatomyositis (DM) are autoimmune diseases that present with a wide variety of cutaneous manifestations. In both cases, first-line therapy includes topical corticosteroids. Patients may present with more widespread disease requiring systemic treatments, including corticosteroids, traditional immunosuppressants, or antimalarials. Due to their complex nature, both CLE and DM remain difficult to treat and continue to cause significant distress to patients. Objective To summarize the most recent literature on the safety and efficacy of novel treatment modalities for CLE and DM. Methods A literature search was conducted on PubMed using search terms “(dermatomyositis) AND (treatment)” and “(cutaneous lupus) AND (treatment)”. Additional search terms included specific names of biologic agents, phosphodiesterase inhibitors (apremilast), and JAK inhibitors. Results JAK inhibitors, PDE-4 inhibitors, and biologics have shown promise in reducing cutaneous symptoms of both CLE and DM, including reduction in SLE Disease Activity Index 2000 (SLEDAI-2K), Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI), British Isles Lupus Assessment Group (BILAG), Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), and Disease Activity Score (DAS). Conclusion While there have been recent advancements in the treatment for CLE and DM, further research and clinical trials are required to better elucidate which therapy is best for individual patients.
Collapse
Affiliation(s)
- Kareem G Elhage
- University of California San Francisco, San Francisco, CA, USA
| | | | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Psarras A, Wittmann M, Vital EM. Emerging concepts of type I interferons in SLE pathogenesis and therapy. Nat Rev Rheumatol 2022; 18:575-590. [PMID: 36097207 DOI: 10.1038/s41584-022-00826-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/09/2022]
Abstract
Type I interferons have been suspected for decades to have a crucial role in the pathogenesis of systemic lupus erythematosus (SLE). Evidence has now overturned several long-held assumptions about how type I interferons are regulated and cause pathological conditions, providing a new view of SLE pathogenesis that resolves longstanding clinical dilemmas. This evidence includes data on interferons in relation to genetic predisposition and epigenetic regulation. Importantly, data are now available on the role of interferons in the early phases of the disease and the importance of non-haematopoietic cellular sources of type I interferons, such as keratinocytes, renal tubular cells, glial cells and synovial stromal cells, as well as local responses to type I interferons within these tissues. These local effects are found not only in inflamed target organs in established SLE, but also in histologically normal skin during asymptomatic preclinical phases, suggesting a role in disease initiation. In terms of clinical application, evidence relating to biomarkers to characterize the type I interferon system is complex, and, notably, interferon-blocking therapies are now licensed for the treatment of SLE. Collectively, the available data enable us to propose a model of disease pathogenesis that invokes the unique value of interferon-targeted therapies. Accordingly, future approaches in SLE involving disease reclassification and preventative strategies in preclinical phases should be investigated.
Collapse
Affiliation(s)
- Antonios Psarras
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.,Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK. .,NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
27
|
Shen M, Duan C, Xie C, Wang H, Li Z, Li B, Wang T. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13:962393. [PMID: 35967341 PMCID: PMC9365928 DOI: 10.3389/fimmu.2022.962393] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous clinical symptoms and severity. There is complex pathogenesis of SLE, one of which is IFNs overproduction and downstream IFN-stimulated genes (ISGs) upregulation. Identifying the key ISGs differentially expressed in peripheral blood mononuclear cells (PBMCs) of patients with SLE and healthy people could help to further understand the role of the IFN pathway in SLE and discover potential diagnostic biomarkers.The differentially expressed ISGs (DEISG) in PBMCs of SLE patients and healthy persons were screened from two datasets of the Gene Expression Omnibus (GEO) database. A total of 67 DEISGs, including 6 long noncoding RNAs (lncRNAs) and 61 messenger RNAs (mRNAs) were identified by the “DESeq2” R package. According to Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, those DEISGs were mainly concentrated in the response to virus and immune system processes. Protein-protein interaction (PPI) network showed that most of these DEISGs could interact strongly with each other. Then, IFIT1, RSAD2, IFIT3, USP18, ISG15, OASL, MX1, OAS2, OAS3, and IFI44 were considered to be hub ISGs in SLE by “MCODE” and “Cytohubba” plugins of Cytoscape, Moreover, the results of expression correlation suggested that 3 lncRNAs (NRIR, FAM225A, and LY6E-DT) were closely related to the IFN pathway.The lncRNA NRIR and mRNAs (RSAD2, USP18, IFI44, and ISG15) were selected as candidate ISGs for verification. RT-qPCR results showed that PBMCs from SLE patients had substantially higher expression levels of 5 ISGs compared to healthy controls (HCs). Additionally, statistical analyses revealed that the expression levels of these ISGs were strongly associated to various clinical symptoms, including thrombocytopenia and facial erythema, as well as laboratory indications, including the white blood cell (WBC) count and levels of autoantibodies. The Receiver Operating Characteristic (ROC) curve demonstrated that the IFI44, USP18, RSAD2, and IFN score had good diagnostic capabilities of SLE.According to our study, SLE was associated with ISGs including NRIR, RSAD2, USP18, IFI44, and ISG15, which may contribute to the future diagnosis and new personalized targeted therapies.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Congcong Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Changhao Xie
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhijun Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Baiqing Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Tao Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
- *Correspondence: Tao Wang,
| |
Collapse
|
28
|
Dörner T, Vital EM, Ohrndorf S, Alten R, Bello N, Haladyj E, Burmester G. A Narrative Literature Review Comparing the Key Features of Musculoskeletal Involvement in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Rheumatol Ther 2022; 9:781-802. [PMID: 35359260 PMCID: PMC9127025 DOI: 10.1007/s40744-022-00442-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Although the clinical approach to the management of musculoskeletal manifestations in systemic lupus erythematosus (SLE) is often similar to that of rheumatoid arthritis (RA), there are distinct differences in immunopathogenesis, structural and imaging phenotypes and therapeutic evidence. Additionally, there are few published comparisons of these diseases. The objective of this narrative literature review is to compare the immunopathogenesis, structural features, magnetic resonance imaging (MRI) and musculoskeletal ultrasound (MSUS) studies and management of joint manifestations in RA and SLE. We highlight the key similarities and differences between the two diseases. Overall, the literature evaluated indicates that synovitis and radiographical progression are the key features in RA, while inflammation without swelling, tendinitis and tenosynovitis are more prominent features in SLE. In addition, the importance of defining patients with RA by the presence or absence of autoantibodies and categorizing patients with SLE by synovitis detected by musculoskeletal ultrasound and by structural phenotype (non-deforming, non-erosive arthritis, Jaccoud’s arthropathy and ‘Rhupus’) with respect to joint manifestations will also be discussed. An increased understanding of the joint manifestations in RA and SLE may inform evidence-based clinical decisions for both diseases.
Collapse
Affiliation(s)
- Thomas Dörner
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany.
| | - Edward M Vital
- Faculty of Medicine and Health, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Biomedical Research Centre, National Institute for Health Research, Leeds Teaching Hospitals, Leeds, UK
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rieke Alten
- Department of Internal Medicine and Rheumatology, Schlosspark-Klinik, Teaching Hospital of the Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ewa Haladyj
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Gerd Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
29
|
Skudalski L, Shahriari N, Torre K, Santiago S, Bibb L, Kodomudi V, Grant-Kels JM, Lu J. Emerging Therapeutics in the Management of Connective Tissue Disease. Part I. Lupus Erythematosus and Sjögren's Syndrome. J Am Acad Dermatol 2022; 87:1-18. [PMID: 35202775 DOI: 10.1016/j.jaad.2021.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
The management of connective tissue diseases is dramatically evolving with the advent of biologics and novel oral systemic therapeutics. Despite involvement in the care of these complex patients, there is a knowledge gap in the field of dermatology regarding these emerging agents. The first article in this continuing medical education series discusses new and emerging therapeutics for lupus erythematosus and Sjögren's syndrome that target cells, intracellular signaling pathways, and cytokines.
Collapse
Affiliation(s)
| | - Neda Shahriari
- Department of Dermatology, Brigham and Women's Hospital; Harvard Medical School, Boston, MA
| | - Kristin Torre
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Sueheidi Santiago
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Lorin Bibb
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Vijay Kodomudi
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT
| | - Jun Lu
- Department of Dermatology, University of Connecticut Health Center, Farmington, CT.
| |
Collapse
|
30
|
Skácelová M. What is new in the treatment of Systemic Lupus Erythematosus? VNITRNI LEKARSTVI 2022; 68:273-278. [PMID: 36283816 DOI: 10.36290/vnl.2022.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Systemic lupus erythematosus treatment is targeted to achieve remission or low disease activity and protection from disease flares. A number of immunosupresive drugs in combination with glucocorticoids are used for this purpose and there is an increased possibility of the use of biologic treatment, especially of belimumab. Calcineurin inhibitor voclosporin is a novelty in lupus nephritis treatment. Another novelty is anifrolumab, a biologic drug which inhibits the activity of type I interferons. An integral part of care is the prevention of late disease complications, especially cardiovascular risk management.
Collapse
|
31
|
Abstract
Anifrolumab (anifrolumab-fnia; Saphnelo™) is a monoclonal antibody antagonist of the type 1 interferon receptor (IFNAR). It is being developed by AstraZeneca (under license from Medarex, now Bristol-Myers Squibb) for the treatment of autoimmune disorders, including systemic lupus erythematosus (SLE) and lupus nephritis, the underlying pathogenesis of which involves type 1 interferon. In July 2021, intravenous anifrolumab was approved in the USA for the treatment of adult patients with moderate to severe SLE who are receiving standard therapy. Anifrolumab (intravenous or subcutaneous) continues to be assessed in clinical studies in SLE in various countries, and the intravenous formulation is under regulatory review in the EU and Japan. This article summarizes the milestones in the development of anifrolumab leading to this first approval for the treatment of moderate to severe SLE.
Collapse
Affiliation(s)
- Emma D Deeks
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
32
|
Askanase AD, Wright D, Zhao E, Zhu J, Bilyk R, Furie RA. Post Hoc Biomarker Analyses from a Phase 4, Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of Repository Corticotropin Injection (Acthar® Gel) for Persistently Active Systemic Lupus Erythematosus. Rheumatol Ther 2021; 8:1871-1886. [PMID: 34478124 PMCID: PMC8572274 DOI: 10.1007/s40744-021-00351-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION We conducted post hoc analyses of biomarker results from a multicenter, randomized, double-blind, placebo-controlled study of repository corticotropin injection (RCI; Acthar® Gel) in patients with persistently active systemic lupus erythematosus (SLE) despite treatment with moderate-dose glucocorticoids. METHODS Adults with active SLE and moderate to severe rash and/or arthritis were enrolled in the primary study. Patients had active SLE despite treatment with stable glucocorticoids, antimalarials, and nonsteroidal anti-inflammatory drugs and/or immunosuppressants. Patients were randomly assigned to 80 U of RCI or placebo subcutaneously every other day for 4 weeks and then twice weekly through week 24. Blood samples were analyzed for serum cytokines and complement proteins using enzyme-linked immunosorbent or Luminex assays and for circulating leukocytes using flow cytometry. Biomarker levels were reported as percentages of the baseline and were further evaluated in subgroups stratified by baseline SLE Disease Activity Index-2000 (SLEDAI-2K) scores (< 10 vs. ≥ 10), baseline anti-double-stranded DNA levels (< 15 IU/mL vs. ≥ 15 IU/mL), and BILAG-based Combined Lupus Assessment (BICLA) responses at week 20 and 24. RESULTS RCI treatment resulted in reduced levels of B cell-activating factor and interleukin-6 cytokines in all subgroups compared with placebo. RCI treatment also resulted in lower levels of CD19+ B cells and CD19+IgD-CD27-CD95+ atypical activated memory B cells than did placebo in the higher baseline disease activity subgroups and in BICLA non-responders. Furthermore, RCI treatment led to greater increases in complement component (C)3 and C4 levels than did placebo in the higher baseline disease activity subgroups and in BICLA responders. CONCLUSIONS RCI may reduce inflammation through B cell immunomodulation in patients with persistently active SLE, particularly in those with higher disease activity. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02953821.
Collapse
Affiliation(s)
- Anca D Askanase
- Columbia University Medical Center, 630 West 168th Street, P&S 3-3450, New York, NY, 10032, USA.
| | - Dale Wright
- Mallinckrodt Pharmaceuticals, Hampton, NJ, USA
| | - Enxu Zhao
- Mallinckrodt Pharmaceuticals, Hampton, NJ, USA
| | - Julie Zhu
- Mallinckrodt Pharmaceuticals, Hampton, NJ, USA
| | - Roman Bilyk
- Mallinckrodt Pharmaceuticals, Hampton, NJ, USA
| | - Richard A Furie
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| |
Collapse
|
33
|
Sim JH, Ambler WG, Sollohub IF, Howlader MJ, Li TM, Lee HJ, Lu TT. Immune Cell-Stromal Circuitry in Lupus Photosensitivity. THE JOURNAL OF IMMUNOLOGY 2021; 206:302-309. [PMID: 33397744 DOI: 10.4049/jimmunol.2000905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
Photosensitivity is a sensitivity to UV radiation (UVR) commonly found in systemic lupus erythematosus (SLE) patients who have cutaneous disease. Upon even ambient UVR exposure, patients can develop inflammatory skin lesions that can reduce the quality of life. Additionally, UVR-exposed skin lesions can be associated with systemic disease flares marked by rising autoantibody titers and worsening kidney disease. Why SLE patients are photosensitive and how skin sensitivity leads to systemic disease flares are not well understood, and treatment options are limited. In recent years, the importance of immune cell-stromal interactions in tissue function and maintenance is being increasingly recognized. In this review, we discuss SLE as an anatomic circuit and review recent findings in the pathogenesis of photosensitivity with a focus on immune cell-stromal circuitry in tissue health and disease.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065
| | - William G Ambler
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| | - Isabel F Sollohub
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Mir J Howlader
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021.,Biochemistry and Structural Biology, Cell Biology, Developmental Biology, and Molecular Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; and
| | - Thomas M Li
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021
| | - Henry J Lee
- Department of Dermatology, Weill Cornell Medical College, New York, NY 10065
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; .,Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065.,Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021
| |
Collapse
|
34
|
Desai K, Miteva M. Recent Insight on the Management of Lupus Erythematosus Alopecia. Clin Cosmet Investig Dermatol 2021; 14:333-347. [PMID: 33833540 PMCID: PMC8020452 DOI: 10.2147/ccid.s269288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/13/2021] [Indexed: 12/25/2022]
Abstract
Lupus erythematosus (LE) is a chronic autoimmune condition with a wide spectrum of clinical presentations. Alopecias, both non-scarring and scarring, frequently occur in the context of LE and can assume several different patterns. Furthermore, alopecia occurring with LE may be considered LE-specific if LE-specific features are present on histology; otherwise, alopecia is considered non-LE-specific. Non-scarring alopecia is highly specific to systemic LE (SLE), and therefore has been regarded as a criterion for the diagnosis of SLE. Variants of cutaneous LE (CLE), including acute, subacute, and chronic forms, are also capable of causing hair loss, and chronic CLE is an important cause of primary cicatricial alopecia. Other types of hair loss not specific to LE, including telogen effluvium, alopecia areata, and anagen effluvium, may also occur in a patient with lupus. Lupus alopecia may be difficult to treat, particularly in cases that have progressed to scarring. The article summarizes the types of lupus alopecia and recent insight regarding their management. Data regarding the management of lupus alopecia are sparse and limited to case reports, and therefore, many studies including in this review report the efficacy of treatments on CLE as a broader entity. In general, for patients with non-scarring alopecia in SLE, management is aimed at controlling SLE activity with subsequent hair regrowth. Topical medications can be used to expedite recovery. Prompt treatment is crucial in the case of chronic CLE due to potential for scarring and irreversible damage. First-line therapies for CLE include topical corticosteroids and oral antimalarials, with or without oral corticosteroids as bridging therapy. Second and third-line systemic treatments for CLE include methotrexate, retinoids, dapsone, mycophenolate mofetil, and mycophenolate acid. Additional topical and systemic medications as well as physical modalities used for the treatment of lupus alopecia and CLE are discussed herein.
Collapse
Affiliation(s)
- Karishma Desai
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
35
|
Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: A systematic review. Autoimmun Rev 2021; 20:102794. [PMID: 33722754 DOI: 10.1016/j.autrev.2021.102794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a high burden of cardiovascular disease (CVD) of multifactorial origin. The aim of this systematic review is to analyze the role of the interferon I (IFN-I) signature and fibroblast growth factor-23 (FGF-23) in patients with SLE or cutaneous lupus erythematosus (CLE) herein. MATERIALS AND METHODS We conducted a systematic literature search in PubMed and Scopus using keywords for major adverse cardiovascular events (MACE) and intermediate outcomes (endothelial dysfunction, subclinical atherosclerosis, platelet activation) associated with IFN-I or FGF-23 in patients with SLE and CLE. RESULTS 4745 citations were screened, of which 12 studies were included. IFN-I was associated with MACE in two third of the studies and the association was strongest for cardiac events. An association of IFN-I was found in all studies investigating impaired vascular function, but only in 50% (respectively 40%) of reports examining the relation of IFN-I and platelet activation (respectively subclinical atherosclerosis). Altogether the reports were of variable bias and quality due to high variability of examined IFN-I biomarkers and inconsistent results for different outcome measures. No studies investigating the cardiovascular risk of circulating IFN-I in CLE, nor FGF-23 in SLE or CLE were found. CONCLUSION Clinical studies measuring the association between IFN-I and direct / intermediate measures of CVD are rare and ambiguous in SLE and nonexistent in CLE, hampering a definite conclusion.
Collapse
|
36
|
Hannon CW, McCourt C, Lima HC, Chen S, Bennett C. Interventions for cutaneous disease in systemic lupus erythematosus. Cochrane Database Syst Rev 2021; 3:CD007478. [PMID: 33687069 PMCID: PMC8092459 DOI: 10.1002/14651858.cd007478.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lupus erythematosus is an autoimmune disease with significant morbidity and mortality. Cutaneous disease in systemic lupus erythematosus (SLE) is common. Many interventions are used to treat SLE with varying efficacy, risks, and benefits. OBJECTIVES To assess the effects of interventions for cutaneous disease in SLE. SEARCH METHODS We searched the following databases up to June 2019: the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase, Wiley Interscience Online Library, and Biblioteca Virtual em Saude (Virtual Health Library). We updated our search in September 2020, but these results have not yet been fully incorporated. SELECTION CRITERIA We included randomised controlled trials (RCTs) of interventions for cutaneous disease in SLE compared with placebo, another intervention, no treatment, or different doses of the same intervention. We did not evaluate trials of cutaneous lupus in people without a diagnosis of SLE. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. Primary outcomes were complete and partial clinical response. Secondary outcomes included reduction (or change) in number of clinical flares; and severe and minor adverse events. We used GRADE to assess the quality of evidence. MAIN RESULTS Sixty-one RCTs, involving 11,232 participants, reported 43 different interventions. Trials predominantly included women from outpatient clinics; the mean age range of participants was 20 to 40 years. Twenty-five studies reported baseline severity, and 22 studies included participants with moderate to severe cutaneous lupus erythematosus (CLE); duration of CLE was not well reported. Studies were conducted mainly in multi-centre settings. Most often treatment duration was 12 months. Risk of bias was highest for the domain of reporting bias, followed by performance/detection bias. We identified too few studies for meta-analysis for most comparisons. We limited this abstract to main comparisons (all administered orally) and outcomes. We did not identify clinical trials of other commonly used treatments, such as topical corticosteroids, that reported complete or partial clinical response or numbers of clinical flares. Complete clinical response Studies comparing oral hydroxychloroquine against placebo did not report complete clinical response. Chloroquine may increase complete clinical response at 12 months' follow-up compared with placebo (absence of skin lesions) (risk ratio (RR) 1.57, 95% confidence interval (CI) 0.95 to 2.61; 1 study, 24 participants; low-quality evidence). There may be little to no difference between methotrexate and chloroquine in complete clinical response (skin rash resolution) at 6 months' follow-up (RR 1.13, 95% CI 0.84 to 1.50; 1 study, 25 participants; low-quality evidence). Methotrexate may be superior to placebo with regard to complete clinical response (absence of malar/discoid rash) at 6 months' follow-up (RR 3.57, 95% CI 1.63 to 7.84; 1 study, 41 participants; low-quality evidence). At 12 months' follow-up, there may be little to no difference between azathioprine and ciclosporin in complete clinical response (malar rash resolution) (RR 0.83, 95% CI 0.46 to 1.52; 1 study, 89 participants; low-quality evidence). Partial clinical response Partial clinical response was reported for only one key comparison: hydroxychloroquine may increase partial clinical response at 12 months compared to placebo, but the 95% CI indicates that hydroxychloroquine may make no difference or may decrease response (RR 7.00, 95% CI 0.41 to 120.16; 20 pregnant participants, 1 trial; low-quality evidence). Clinical flares Clinical flares were reported for only two key comparisons: hydroxychloroquine is probably superior to placebo at 6 months' follow-up for reducing clinical flares (RR 0.49, 95% CI 0.28 to 0.89; 1 study, 47 participants; moderate-quality evidence). At 12 months' follow-up, there may be no difference between methotrexate and placebo, but the 95% CI indicates there may be more or fewer flares with methotrexate (RR 0.77, 95% CI 0.32 to 1.83; 1 study, 86 participants; moderate-quality evidence). Adverse events Data for adverse events were limited and were inconsistently reported, but hydroxychloroquine, chloroquine, and methotrexate have well-documented adverse effects including gastrointestinal symptoms, liver problems, and retinopathy for hydroxychloroquine and chloroquine and teratogenicity during pregnancy for methotrexate. AUTHORS' CONCLUSIONS Evidence supports the commonly-used treatment hydroxychloroquine, and there is also evidence supporting chloroquine and methotrexate for treating cutaneous disease in SLE. Evidence is limited due to the small number of studies reporting key outcomes. Evidence for most key outcomes was low or moderate quality, meaning findings should be interpreted with caution. Head-to-head intervention trials designed to detect differences in efficacy between treatments for specific CLE subtypes are needed. Thirteen further trials are awaiting classification and have not yet been incorporated in this review; they may alter the review conclusions.
Collapse
Affiliation(s)
- Cora W Hannon
- Dermatologist, Masters of Public Health Program, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | - Hermenio C Lima
- Department of Dermatology, Clinical Unit for Research Trials and Outcomes in Skin (CURTIS), Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Suephy Chen
- Emory University Hospital, Emory Healthcare, Atlanta, Georgia, USA
| | - Cathy Bennett
- Office of Research and Innovation, Royal College of Surgeons in Ireland Coláiste Ríoga na Máinleá in Éirinn, Dublin, Ireland
| |
Collapse
|
37
|
Bruce IN, Nami A, Schwetje E, Pierson ME, Rouse T, Chia YL, Kuruvilla D, Abreu G, Tummala R, Lindholm C. Pharmacokinetics, pharmacodynamics, and safety of subcutaneous anifrolumab in patients with systemic lupus erythematosus, active skin disease, and high type I interferon gene signature: a multicentre, randomised, double-blind, placebo-controlled, phase 2 study. THE LANCET. RHEUMATOLOGY 2021; 3:e101-e110. [PMID: 38279367 DOI: 10.1016/s2665-9913(20)30342-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND 300 mg of intravenous anifrolumab every 4 weeks added to standard-of-care treatment for patients with systemic lupus erythematosus (SLE) reduced disease activity and glucocorticoid requirement in a previous phase 3 trial. Because patients might find subcutaneous administration more convenient than intravenous delivery, we aimed to evaluate the pharmacokinetics, pharmacodynamics, safety, and efficacy of subcutaneous anifrolumab in patients with SLE, active skin disease, and a high type I interferon gene signature. METHODS This multicentre, randomised, double-blind, placebo-controlled, phase 2 study was done at 12 hospitals and outpatient clinics in Hungary, South Korea, Poland, and the USA. Eligible patients were aged 18-70 years, and had SLE with high type I interferon gene signature and an activity score on the Cutaneous Lupus Erythematosus Disease Area and Severity Index (CLASI) of at least 10. Enrolled participants were randomly assigned (3:1:3:1) by use of a voice-web response system to receive either 150 mg of subcutaneous anifrolumab or corresponding placebo, or 300 mg of subcutaneous anifrolumab or corresponding placebo in addition to stable standard-of-care treatment. The study was double-blinded with respect to intervention but not dose, until 12 weeks. Doses of oral glucocorticoids were tapered after week 12. The primary pharmacokinetic endpoint was the serum concentration of anifrolumab based on the maximum concentration after the first dose and the minimum (trough) concentration before subsequent doses and was measured in all patients who received anifrolumab and had at least one quantifiable serum pharmacokinetics observation following the first dose. The primary pharmacodynamic endpoint was neutralisation of the type I interferon pharmacodynamic signature at week 12 and was assessed in all patients with a high type I interferon pharmacodynamics signature at baseline based on a 21-gene test. Safety was evaluated in the full analysis set, which included all patients who received at least one dose of anifrolumab. This trial is completed and is registered at ClinicalTrials.gov, NCT02962960. FINDINGS Between March 14, 2017, and Oct 26, 2017, 36 patients were randomly assigned to receive 150 mg of anifrolumab (n=14), 300 mg of anifrolumab (n=13), or placebo (n=9). Two patients in the anifrolumab 150 mg group were excluded from the pharmacodynamic analysis set (n=34). Ten (71%) of 14 patients in the anifrolumab 150 mg group, ten (77%) of 13 patients in the anifrolumab 300 mg group, and nine (100%) of the nine patients in the placebo group completed 52 weeks of treatment. At week 12, pre-dose mean trough serum concentrations of anifrolumab were more than dose proportional between the anifrolumab 150 mg group (19·82 μg/mL [SD 15·01]) and the anifrolumab 300 mg group (60·28 μg/mL [43·66]), and the pharmacokinetics were non-linear. At week 12, the median percentage neutralisation of the type I interferon gene signature was higher with 150 mg (88·0% [median absolute deviation 7·4]) and 300 mg (90·7% [3·3]) of anifrolumab than with placebo (18·5% [8·1]), and more patients in the anifrolumab 150 mg group and the anifrolumab 300 mg group than in the placebo group had neutralisation of 75% or more (eight [67%] of 12 vs ten [77%] of 13 vs one [11%] of nine). At least one adverse event was reported by 23 (85%) of 27 patients in the anifrolumab groups and by seven (78%) of nine patients in the placebo group; most adverse events were of mild-to-moderate severity. Serious adverse events were reported in six (22%) of 27 patients in the anifrolumab groups (four patients in the 150 mg group and two in the 300 mg group). No serious adverse events were reported in the placebo group. Herpes zoster infection was reported by three (11%) of 27 patients in the anifrolumab groups and by one (11%) of nine patients in the placebo group. There were no treatment-related deaths. INTERPRETATION Anifrolumab, administered subcutaneously every 2 weeks to patients with SLE and moderate-to-severe skin manifestations, had non-linear pharmacokinetics that were more than dose proportional, and neutralised the type I interferon gene signature in a dose-dependent manner. The safety profile was consistent with previous studies of intravenous anifrolumab, supporting the continued development of anifrolumab as a subcutaneously administered therapy for patients with SLE. FUNDING AstraZeneca.
Collapse
Affiliation(s)
- Ian N Bruce
- National Institute for Health Research Manchester Biomedical Research Centre, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Turnier JL, Kahlenberg JM. The Role of Cutaneous Type I IFNs in Autoimmune and Autoinflammatory Diseases. THE JOURNAL OF IMMUNOLOGY 2020; 205:2941-2950. [PMID: 33229366 DOI: 10.4049/jimmunol.2000596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
IFNs are well known as mediators of the antimicrobial response but also serve as important immunomodulatory cytokines in autoimmune and autoinflammatory diseases. An increasingly critical role for IFNs in evolution of skin inflammation in these patients has been recognized. IFNs are produced not only by infiltrating immune but also resident skin cells, with increased baseline IFN production priming for inflammatory cell activation, immune response amplification, and development of skin lesions. The IFN response differs by cell type and host factors and may be modified by other inflammatory pathway activation specific to individual diseases, leading to differing clinical phenotypes. Understanding the contribution of IFNs to skin and systemic disease pathogenesis is key to development of new therapeutics and improved patient outcomes. In this review, we summarize the immunomodulatory role of IFNs in skin, with a focus on type I, and provide insight into IFN dysregulation in autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Turnier
- Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109; and
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Arora S, Isenberg DA, Castrejon I. Measures of Adult Systemic Lupus Erythematosus: Disease Activity and Damage. Arthritis Care Res (Hoboken) 2020; 72 Suppl 10:27-46. [PMID: 33091256 DOI: 10.1002/acr.24221] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Shilpa Arora
- Rush University Medical Center, Chicago, Illinois
| | | | | |
Collapse
|
40
|
Goulden B, Isenberg D. Anti-IFNαR Mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther 2020; 21:519-528. [PMID: 33085537 DOI: 10.1080/14712598.2021.1841164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The type 1 interferon pathway is known to play a role in the immunopathology of systemic lupus erythematosus (SLE). As a result, biologic agents targeting this pathway have been developed and are currently being investigated in clinical trials. AREAS COVERED We review the biologic agents which have been developed to antagonize type I interferons in SLE. We focus on anifrolumab, a type I interferon receptor antagonist, and consider the complexities of defining efficacy in SLE clinical trials. EXPERT OPINION Anifrolumab shows promise as an addition to the SLE therapeutic armamentarium. Despite discordant results between its two phase III studies, there is a convincing suggestion of benefit in both trials to encourage the view that this approach might be effective. Data acquired thus far look particularly useful for cutaneous disease. We await data on its effect on renal, pulmonary, cardiac, and central nervous system involvement, on patient reported outcomes, and its safety and efficacy with long-term use.
Collapse
Affiliation(s)
- Bethan Goulden
- Rheumatology Department, University College London, London, UK
| | - David Isenberg
- Rheumatology Department, University College London, London, UK
| |
Collapse
|
41
|
Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs 2020; 29:1025-1041. [PMID: 32700979 PMCID: PMC7924012 DOI: 10.1080/13543784.2020.1797677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a severe chronic and incurable autoimmune disease. Treatment includes glucocorticoids and immunosuppressants which typically result in partial responses, and hence there is a great need for new therapies. The type I interferon (IFN) pathway is activated in more than 50% of SLE patients, and it is strongly implicated as a pathogenic factor in SLE. AREAS COVERED We searched the literature using 'SLE and interferon antagonists' as search terms. This identified a number of therapeutics that have entered clinical development targeting type I IFN in SLE. These include monoclonal antibodies against type I IFN cytokines and a kinoid vaccination strategy to induce anti-IFN antibodies. EXPERT OPINION Type I IFN antagonists have had some success, but many molecules have not progressed to phase III. These varied results are likely attributed to the multiple concurrent cytokine abnormalities present in SLE, the imprecise nature of the IFN signature as a readout for type I IFN and difficulties with clinical trials such as background medication use and diffuse composite disease activity measures. Despite these challenges, it seems likely that a type I IFN antagonist will come to clinical utility for SLE given the large unmet need and the recent phase III success with anifrolumab.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| |
Collapse
|
42
|
Moore E, Putterman C. Are lupus animal models useful for understanding and developing new therapies for human SLE? J Autoimmun 2020; 112:102490. [PMID: 32535128 PMCID: PMC7384952 DOI: 10.1016/j.jaut.2020.102490] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a systemic autoimmune disease driven by a complex combination of genetic, environmental, and other immunoregulatory factors. The development of targeted therapies is complicated by heterogeneous clinical manifestations, varying organ involvement, and toxicity. Despite advances in understanding the mechanisms contributing to SLE, only one biologic drug, belimumab, is FDA-approved. The identification and development of potential therapies have largely been driven by studies in lupus animal models. Therefore, direct comparison of both the therapeutic and immunological findings in human and murine SLE studies is critical and can reveal important insights into indeed how useful and relevant are murine studies in SLE drug development. Studies involving belimumab, mycophenolate mofetil, abatacept, rituximab, and anti-interferon strategies generally demonstrated analogous findings in the attenuation of SLE manifestations and modulation of select immune cell populations in human and murine SLE. While further basic and translational studies are needed to identify SLE patient subsets likely to respond to particular therapeutic modalities and in dissecting complex mechanisms, we believe that despite some inherent weaknesses SLE mouse models will continue to be integral in developing targeted SLE therapies.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA; Bar-Ilan University Azrieli Faculty of Medicine, Safed, Israel; Research Institute, Galilee Medical Center, Nahariya, Israel.
| |
Collapse
|
43
|
Garelli CJ, Refat MA, Nanaware PP, Ramirez-Ortiz ZG, Rashighi M, Richmond JM. Current Insights in Cutaneous Lupus Erythematosus Immunopathogenesis. Front Immunol 2020; 11:1353. [PMID: 32714331 PMCID: PMC7343764 DOI: 10.3389/fimmu.2020.01353] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
Cutaneous Lupus Erythematosus (CLE) is a clinically diverse group of autoimmune skin diseases with shared histological features of interface dermatitis and autoantibodies deposited at the dermal-epidermal junction. Various genetic and environmental triggers of CLE promote infiltration of T cells, B cells, neutrophils, antigen presenting cells, and NK cells into lesional skin. In this mini-review, we will discuss the clinical features of CLE, insights into CLE immunopathogenesis, and novel treatment approaches.
Collapse
Affiliation(s)
- Colton J. Garelli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Zaida G. Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
44
|
Shi H, Gudjonsson JE, Kahlenberg JM. Treatment of cutaneous lupus erythematosus: current approaches and future strategies. Curr Opin Rheumatol 2020; 32:208-214. [PMID: 32141953 PMCID: PMC7357847 DOI: 10.1097/bor.0000000000000704] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Cutaneous lupus erythematosus (CLE) is a highly heterogeneous autoimmune disease. No specific Federal Drug Administration-approved therapies for CLE-alone are available, and resistance to conventional treatments is common. This review will summarize current treatment approaches and pending treatment strategies. RECENT FINDINGS Research into the pathogenesis of CLE is accelerating. A skewed type I interferon production and response contribute to CLE lesions. The pathophysiology of lesions may be similar among the lesional subtypes, and patients with a more TLR9-driven disease mechanism may have more benefit from hydroxychloroquine. Case reports continue to support the use of dapsone for CLE, especially bullous lupus erythematosus. Rituximab and Belimumab have efficacy in patients with systemic lupus erythematosus and severe active CLE. The significant role for type I interferons in CLE and encouraging clinical data suggest anifrolumab as a very promising agent for CLE. Dapirolizumab, BIIB059, Ustekinumab and Janus kinase inhibitors also have supportive early data as promising new strategies for CLE treatment. SUMMARY Continued research to understand the mechanisms driving CLE will facilitate the development and approval of new targets. The pipeline for new treatments is rich.
Collapse
Affiliation(s)
- Hong Shi
- Department of Internal Medicine, Division of Rheumatology, University of Michigan
| | | | | |
Collapse
|
45
|
Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations. Immunotherapy 2020; 12:275-286. [PMID: 32237942 DOI: 10.2217/imt-2020-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is potentially life-threatening and can affect any organ. The complex pathogenesis and heterogeneity of the disease, among other factors, present significant challenges in developing new therapies. Knowledge gained over many years has implicated type I interferon (IFN) in the pathogenesis of SLE and anti-IFN therapies hold promise as a much-needed future treatment for SLE. Anifrolumab, a human monoclonal antibody against the type I IFN receptor, has recently been evaluated in two Phase III clinical trials for the treatment of moderate-to-severe SLE. Here, we review the clinical efficacy and safety of anifrolumab and discuss the potential challenges in determining the optimal SLE patient subgroup for treatment.
Collapse
Affiliation(s)
- Erik Anderson
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Richard Furie
- Division of Rheumatology, Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Great Neck, NY 11021, USA
| |
Collapse
|
46
|
Abstract
Biological therapies have widened the therapeutic armamentarium for immune-mediated inflammatory diseases, providing in many cases a broad range of treatment options with different mechanisms of action. The widespread use of biological agents in systemic lupus erythematosus is currently limited to belimumab and rituximab, although results of promising larger Phase III clinical trials are awaited or have been recently circulated, especially for anti-cytokine therapies. The loss of exclusivity over the last years for several originator biologics has started the successful introduction of biosimilar products into clinical practice. There is an abbreviated pathway to biosimilar approval, but this is underpinned by the same standards of pharmaceutical quality, safety and efficacy that apply to all biological medicines. Nevertheless, there are unique reasons why development of biosimilars may be particularly challenging in lupus.
Collapse
Affiliation(s)
- Christopher J Edwards
- Department of Rheumatology and NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Salvatore Bellinvia
- Department of Rheumatology and NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
47
|
Smith MA, Chiang CC, Zerrouki K, Rahman S, White WI, Streicher K, Rees WA, Schiffenbauer A, Rider LG, Miller FW, Manna Z, Hasni S, Kaplan MJ, Siegel R, Sinibaldi D, Sanjuan MA, Casey KA. Using the circulating proteome to assess type I interferon activity in systemic lupus erythematosus. Sci Rep 2020; 10:4462. [PMID: 32157125 PMCID: PMC7064569 DOI: 10.1038/s41598-020-60563-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/13/2020] [Indexed: 12/27/2022] Open
Abstract
Type I interferon (IFN) drives pathology in systemic lupus erythematosus (SLE) and can be tracked via IFN-inducible transcripts in blood. Here, we examined whether measurement of circulating proteins, which enter the bloodstream from inflamed tissues, also offers insight into global IFN activity. Using a novel protocol we generated 1,132 aptamer-based protein measurements from anti-dsDNApos SLE blood samples and derived an IFN protein signature (IFNPS) that approximates the IFN 21-gene signature (IFNGS). Of 82 patients with SLE, IFNPS was elevated for 89% of IFNGS-high patients (49/55) and 26% of IFNGS-low patients (7/27). IFNGS-high/IFNPS-high patients exhibited activated NK, CD4, and CD8 T cells, while IFNPS-high only patients did not. IFNPS correlated with global disease activity in lymphopenic and non-lymphopenic patients and decreased following type I IFN neutralisation with anifrolumab in the SLE phase IIb study, MUSE. In summary, we developed a protein signature that reflects IFNGS and identifies a new subset of patients with SLE who have IFN activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adam Schiffenbauer
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Zerai Manna
- Lupus Clinical Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarfaraz Hasni
- Lupus Clinical Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Richard Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
48
|
Benninghoff AD, Bates MA, Chauhan PS, Wierenga KA, Gilley KN, Holian A, Harkema JR, Pestka JJ. Docosahexaenoic Acid Consumption Impedes Early Interferon- and Chemokine-Related Gene Expression While Suppressing Silica-Triggered Flaring of Murine Lupus. Front Immunol 2019; 10:2851. [PMID: 31921124 PMCID: PMC6923248 DOI: 10.3389/fimmu.2019.02851] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Exposure of lupus-prone female NZBWF1 mice to respirable crystalline silica (cSiO2), a known human autoimmune trigger, initiates loss of tolerance, rapid progression of autoimmunity, and early onset of glomerulonephritis. We have previously demonstrated that dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) suppresses autoimmune pathogenesis and nephritis in this unique model of lupus flaring. In this report, we utilized tissues from prior studies to test the hypothesis that DHA consumption interferes with upregulation of critical genes associated with cSiO2-triggered murine lupus. A NanoString nCounter platform targeting 770 immune-related genes was used to assess the effects cSiO2 on mRNA signatures over time in female NZBWF1 mice consuming control (CON) diets compared to mice fed diets containing DHA at an amount calorically equivalent to human consumption of 2 g per day (DHA low) or 5 g per day (DHA high). Experimental groups of mice were sacrificed: (1) 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) 1 d after four weekly single instillations of vehicle or 1 mg cSiO2, and (3) 1, 5, 9, and 13 weeks after four weekly single instillations of vehicle or 1 mg cSiO2. Genes associated with inflammation as well as innate and adaptive immunity were markedly upregulated in lungs of CON-fed mice 1 d after four weekly cSiO2 doses but were significantly suppressed in mice fed DHA high diets. Importantly, mRNA signatures in lungs of cSiO2-treated CON-fed mice over 13 weeks reflected progressive amplification of interferon (IFN)- and chemokine-related gene pathways. While these responses in the DHA low group were suppressed primarily at week 5, significant downregulation was observed at weeks 1, 5, 9, and 13 in mice fed the DHA high diet. At week 13, cSiO2 treatment of CON-fed mice affected 214 genes in kidney tissue associated with inflammation, innate/adaptive immunity, IFN, chemokines, and antigen processing, mostly by upregulation; however, feeding DHA dose-dependently suppressed these responses. Taken together, dietary DHA intake in lupus-prone mice impeded cSiO2-triggered mRNA signatures known to be involved in ectopic lymphoid tissue neogenesis, systemic autoimmunity, and glomerulonephritis.
Collapse
Affiliation(s)
- Abby D. Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and The School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Melissa A. Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Preeti S. Chauhan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kathryn A. Wierenga
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Kristen N. Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Jack R. Harkema
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
49
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
50
|
Pin A, Monasta L, Taddio A, Piscianz E, Tommasini A, Tesser A. An Easy and Reliable Strategy for Making Type I Interferon Signature Analysis Comparable among Research Centers. Diagnostics (Basel) 2019; 9:E113. [PMID: 31487897 PMCID: PMC6787630 DOI: 10.3390/diagnostics9030113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
Interferon-stimulated genes (ISGs) are a set of genes whose transcription is induced by interferon (IFN). The measure of the expression of ISGs enables calculating an IFN score, which gives an indirect estimate of the exposition of cells to IFN-mediated inflammation. The measure of the IFN score is proposed for the screening of monogenic interferonopathies, like the Aicardi-Goutières syndrome, or to stratify subjects with systemic lupus erythematosus to receive IFN-targeted treatments. Apart from these scenarios, there is no agreement on the diagnostic value of the score in distinguishing IFN-related disorders from diseases dominated by other types of cytokines. Since the IFN score is currently measured in several research hospitals, merging experiences could help define the potential of scoring IFN inflammation in clinical practice. However, the IFN score calculated at different laboratories may be hardly comparable due to the distinct sets of IFN-stimulated genes assessed and to different controls used for data normalization. We developed a reliable approach to minimize the inter-laboratory variability, thereby providing shared strategies for the IFN signature analysis and allowing different centers to compare data and merge their experiences.
Collapse
Affiliation(s)
- Alessia Pin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Lorenzo Monasta
- Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Andrea Taddio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Department of Paediatrics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Elisa Piscianz
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Alberto Tommasini
- Department of Paediatrics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Alessandra Tesser
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| |
Collapse
|