1
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2025; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Rodriguez P, Blakely RD. Sink or swim: Does a worm paralysis phenotype hold clues to neurodegenerative disease? J Cell Physiol 2024; 239:e31125. [PMID: 37795580 DOI: 10.1002/jcp.31125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Receiving a neurodegenerative disease (NDD) diagnosis, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, or amyotrophic lateral sclerosis, is devastating, particularly given the limited options for treatment. Advances in genetic technologies have allowed for efficient modeling of NDDs in animals and brought hope for new disease-modifying medications. The complexity of the mammalian brain and the costs and time needed to identify and develop therapeutic leads limits progress. Modeling NDDs in invertebrates, such as the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, offers orders of magnitude increases in speed of genetic analysis and manipulation, and can be pursued at substantially reduced cost, providing an important, platform complement and inform research with mammalian NDD models. In this review, we describe how our efforts to exploit C. elegans for the study of neural signaling and health led to the discovery of a paralytic phenotype (swimming-induced paralysis) associated with altered dopamine signaling and, surprisingly, to the discovery of a novel gene and pathway whose dysfunction in glial cells triggers neurodegeneration. Research to date on swip-10 and its putative mammalian ortholog MBLAC1, suggests that a tandem analysis will offer insights into NDD mechanisms and insights into novel, disease-modifying therapeutics.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Boca Raton, Florida, USA
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
3
|
Petrič B, Redenšek Trampuž S, Dolžan V, Gregorič Kramberger M, Trošt M, Maraković N, Goličnik M, Bavec A. Investigation of Paraoxonase-1 Genotype and Enzyme-Kinetic Parameters in the Context of Cognitive Impairment in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12020399. [PMID: 36829958 PMCID: PMC9952446 DOI: 10.3390/antiox12020399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cognitive impairment is a common non-motor symptom of Parkinson's disease (PD), which often progresses to PD dementia. PD patients with and without dementia may differ in certain biochemical parameters, which could thus be used as biomarkers for PD dementia. The enzyme paraoxonase 1 (PON1) has previously been investigated as a potential biomarker in the context of other types of dementia. In a cohort of PD patients, we compared a group of 89 patients with cognitive impairment with a group of 118 patients with normal cognition. We determined the kinetic parameters Km and Vmax for PON1 for the reaction with dihydrocoumarin and the genotype of four single nucleotide polymorphisms in PON1. We found that no genotype or kinetic parameter correlated significantly with cognitive impairment in PD patients. However, we observed associations between PON1 rs662 and PON1 Km (p < 10-10), between PON1 rs662 and PON1 Vmax (p = 9.33 × 10-7), and between PON1 rs705379 and PON1 Vmax (p = 2.21 × 10-10). The present study is novel in three main aspects. (1) It is the first study to investigate associations between the PON1 genotype and enzyme kinetics in a large number of subjects. (2) It is the first study to report kinetic parameters of PON1 in a large number of subjects and to use time-concentration progress curves instead of initial velocities to determine Km and Vmax in a clinical context. (3) It is also the first study to calculate enzyme-kinetic parameters in a clinical context with a new algorithm for data point removal from progress curves, dubbed iFIT. Although our results suggest that in the context of PD, there is no clinically useful correlation between cognitive status on the one hand and PON1 genetic and enzyme-kinetic parameters on the other hand, this should not discourage future investigation into PON1's potential associations with other types of dementia.
Collapse
Affiliation(s)
- Boštjan Petrič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sara Redenšek Trampuž
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Center, 1000 Ljubljana, Slovenia
- Chair of Neurology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, 141 83 Huddinge, Sweden
| | - Maja Trošt
- Department of Neurology, University Medical Center, 1000 Ljubljana, Slovenia
- Chair of Neurology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nikola Maraković
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marko Goličnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aljoša Bavec
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
4
|
De Miranda BR, Goldman SM, Miller GW, Greenamyre JT, Dorsey ER. Preventing Parkinson's Disease: An Environmental Agenda. JOURNAL OF PARKINSONS DISEASE 2021; 12:45-68. [PMID: 34719434 PMCID: PMC8842749 DOI: 10.3233/jpd-212922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fueled by aging populations and continued environmental contamination, the global burden of Parkinson's disease (PD) is increasing. The disease, or more appropriately diseases, have multiple environmental and genetic influences but no approved disease modifying therapy. Additionally, efforts to prevent this debilitating disease have been limited. As numerous environmental contaminants (e.g., pesticides, metals, industrial chemicals) are implicated in PD, disease prevention is possible. To reduce the burden of PD, we have compiled preclinical and clinical research priorities that highlight both disease prediction and primary prevention. Though not exhaustive, the "PD prevention agenda" builds upon many years of research by our colleagues and proposes next steps through the lens of modifiable risk factors. The agenda identifies ten specific areas of further inquiry and considers the funding and policy changes that will be necessary to help prevent the world's fastest growing brain disease.
Collapse
Affiliation(s)
- Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama atBirmingham, Birmingham, AL, USA
| | - Samuel M Goldman
- Division of Occupational and Environmental Medicine, San Francisco VeteransAffairs Health Care System, School of Medicine, University ofCalifornia-San Francisco, San Francisco, CA, USA
| | - Gary W Miller
- Department of Environmnetal Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, Universityof Pittsburgh, Pittsburgh, PA, USA
| | - E Ray Dorsey
- Center for Health+Technology and Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Villavicencio Tejo F, Quintanilla RA. Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:1069. [PMID: 34356302 PMCID: PMC8301100 DOI: 10.3390/antiox10071069] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in human life expectancy has become a challenge to reduce the deleterious consequences of aging. Nowadays, an increasing number of the population suffer from age-associated neurodegenerative diseases including Parkinson's disease (PD) and Alzheimer's disease (AD). These disorders present different signs of neurodegeneration such as mitochondrial dysfunction, inflammation, and oxidative stress. Accumulative evidence suggests that the transcriptional factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) plays a vital defensive role orchestrating the antioxidant response in the brain. Nrf2 activation promotes the expression of several antioxidant enzymes that exert cytoprotective effects against oxidative damage and mitochondrial impairment. In this context, several studies have proposed a role of Nrf2 in the pathogenesis of PD and AD. Thus, we consider it important to summarize the ongoing literature related to the effects of the Nrf2 pathway in the context of these diseases. Therefore, in this review, we discuss the mechanisms involved in Nrf2 activity and its connection with mitochondria, energy supply, and antioxidant response in the brain. Furthermore, we will lead our discussion to identify the participation of the Nrf2 pathway in mitochondrial impairment and neurodegeneration present in PD and AD. Finally, we will discuss the therapeutic effects that the Nrf2 pathway activation could have on the cognitive impairment, neurodegeneration, and mitochondrial failure present in PD and AD.
Collapse
Affiliation(s)
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
6
|
Rosca EC, Tudor R, Cornea A, Simu M. Parkinson's Disease in Romania: A Scoping Review. Brain Sci 2021; 11:709. [PMID: 34071802 PMCID: PMC8226866 DOI: 10.3390/brainsci11060709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/16/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a significant cause of disability, with a fast-growing prevalence. This review summarizes the epidemiological and clinical data, research on the diagnostic approaches and the interventions available in the Eastern European country of Romania. This scoping review follows the recommendations on the scoping review methodology by Joanna Briggs Institute. We searched four databases (up to 27 January 2021). The data of eligible studies were extracted in standardized forms. We identified 149 unique studies from 1133 records, with 11 epidemiological studies, 52 studies investigating clinical aspects of PD, 35 studies on diagnostic tools, and 51 intervention studies. A narrative synthesis is provided and placed in a historical context. Our review revealed a considerable increase in the Romanian research on PD in the latest 15 years, which largely follows international trends. However, we also identified several research gaps that provide useful information for policymakers, public health specialists, and clinicians.
Collapse
Affiliation(s)
- Elena Cecilia Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy of Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (R.T.); (A.C.); (M.S.)
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
- Neuroscience Research Center Timisoara, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Raluca Tudor
- Department of Neurology, Victor Babes University of Medicine and Pharmacy of Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (R.T.); (A.C.); (M.S.)
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
- Neuroscience Research Center Timisoara, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Amalia Cornea
- Department of Neurology, Victor Babes University of Medicine and Pharmacy of Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (R.T.); (A.C.); (M.S.)
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
- Neuroscience Research Center Timisoara, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| | - Mihaela Simu
- Department of Neurology, Victor Babes University of Medicine and Pharmacy of Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (R.T.); (A.C.); (M.S.)
- Department of Neurology, Clinical Emergency County Hospital Timisoara, Bd. Iosif Bulbuca No. 10, 300736 Timisoara, Romania
| |
Collapse
|
7
|
Innos J, Hickey MA. Using Rotenone to Model Parkinson's Disease in Mice: A Review of the Role of Pharmacokinetics. Chem Res Toxicol 2021; 34:1223-1239. [PMID: 33961406 DOI: 10.1021/acs.chemrestox.0c00522] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rotenone is a naturally occurring toxin that inhibits complex I of the mitochondrial electron transport chain. Several epidemiological studies have shown an increased risk of Parkinson's disease (PD) in individuals exposed chronically to rotenone, and it has received great attention for its ability to reproduce many critical features of PD in animal models. Laboratory studies of rotenone have repeatedly shown that it induces in vivo substantia nigra dopaminergic cell loss, a hallmark of PD neuropathology. Additionally, rotenone induces in vivo aggregation of α-synuclein, the major component of Lewy bodies and Lewy neurites found in the brain of PD patients and another hallmark of PD neuropathology. Some in vivo rotenone models also reproduce peripheral signs of PD, such as reduced intestinal motility and peripheral α-synuclein aggregation, both of which are thought to precede classical signs of PD in humans, such as cogwheel rigidity, bradykinesia, and resting tremor. Nevertheless, variability has been noted in cohorts of animals exposed to the same rotenone exposure regimen and also between cohorts exposed to similar doses of rotenone. Low doses, administered chronically, may reproduce PD symptoms and neuropathology more faithfully than excessively high doses, but overlap between toxicity and parkinsonian motor phenotypes makes it difficult to separate if behavior is examined in isolation. Rotenone degrades when exposed to light or water, and choice of vehicle may affect outcome. Rotenone is metabolized extensively in vivo, and choice of route of exposure influences greatly the dose used. However, male rodents may be capable of greater metabolism of rotenone, which could therefore reduce their total body exposure when compared with female rodents. The pharmacokinetics of rotenone has been studied extensively, over many decades. Here, we review these pharmacokinetics and models of PD using this important piscicide.
Collapse
Affiliation(s)
- Jürgen Innos
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| | - Miriam A Hickey
- Institute of Biomedicine and Translational Medicine, Ravila 19, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
8
|
Magistrelli L, Ferrari M, Furgiuele A, Milner AV, Contaldi E, Comi C, Cosentino M, Marino F. Polymorphisms of Dopamine Receptor Genes and Parkinson's Disease: Clinical Relevance and Future Perspectives. Int J Mol Sci 2021; 22:ijms22073781. [PMID: 33917417 PMCID: PMC8038729 DOI: 10.3390/ijms22073781] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by loss of dopaminergic neurons in the midbrain. PD is clinically characterized by a variety of motor and nonmotor symptoms, and treatment relies on dopaminergic replacement. Beyond a common pathological hallmark, PD patients may present differences in both clinical progression and response to drug therapy that are partly affected by genetic factors. Despite extensive knowledge on genetic variability of dopaminergic receptors (DR), few studies have addressed their relevance as possible influencers of clinical heterogeneity in PD patients. In this review, we summarized available evidence regarding the role of genetic polymorphisms in DR as possible determinants of PD development, progression and treatment response. Moreover, we examined the role of DR in the modulation of peripheral immunity, in light of the emerging role of the peripheral immune system in PD pathophysiology. A better understanding of all these aspects represents an important step towards the development of precise and personalized disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Marco Ferrari
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Alessia Furgiuele
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy; (L.M.); (A.F.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
| | - Anna Vera Milner
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
| | - Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (A.V.M.); (E.C.)
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Correspondence:
| | - Marco Cosentino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Centre of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (M.F.); (M.C.); (F.M.)
- Center of Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
9
|
Lee SE, Park YS. The Emerging Roles of Antioxidant Enzymes by Dietary Phytochemicals in Vascular Diseases. Life (Basel) 2021; 11:life11030199. [PMID: 33806594 PMCID: PMC8001043 DOI: 10.3390/life11030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Vascular diseases are major causes of death worldwide, causing pathologies including diabetes, atherosclerosis, and chronic obstructive pulmonary disease (COPD). Exposure of the vascular system to a variety of stressors and inducers has been implicated in the development of various human diseases, including chronic inflammatory diseases. In the vascular wall, antioxidant enzymes form the first line of defense against oxidative stress. Recently, extensive research into the beneficial effects of phytochemicals has been conducted; phytochemicals are found in commonly used spices, fruits, and herbs, and are used to prevent various pathologic conditions, including vascular diseases. The present review aims to highlight the effects of dietary phytochemicals role on antioxidant enzymes in vascular diseases.
Collapse
|
10
|
De Miranda BR, Castro SL, Rocha EM, Bodle CR, Johnson KE, Greenamyre JT. The industrial solvent trichloroethylene induces LRRK2 kinase activity and dopaminergic neurodegeneration in a rat model of Parkinson's disease. Neurobiol Dis 2021; 153:105312. [PMID: 33636387 DOI: 10.1016/j.nbd.2021.105312] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
Gene-environment interaction is implicated in the majority of idiopathic Parkinson's disease (PD) risk, and some of the most widespread environmental contaminants are selectively toxic to dopaminergic neurons. Pesticides have long been connected to PD incidence, however, it has become increasingly apparent that other industrial byproducts likely influence neurodegeneration. For example, organic solvents, which are used in chemical, machining, and dry-cleaning industries, are of growing concern, as decades of solvent use and their effluence into the environment has contaminated much of the world's groundwater and soil. Like some pesticides, certain organic solvents, such as the chlorinated halocarbon trichloroethylene (TCE), are mitochondrial toxicants, which are collectively implicated in the pathogenesis of dopaminergic neurodegeneration. Recently, we hypothesized a possible gene-environment interaction may occur between environmental mitochondrial toxicants and the protein kinase LRRK2, mutations of which are the most common genetic cause of familial and sporadic PD. In addition, emerging data suggests that elevated wildtype LRRK2 kinase activity also contributes to the pathogenesis of idiopathic PD. To this end, we investigated whether chronic, systemic TCE exposure (200 mg/kg) in aged rats produced wildtype LRRK2 activation and caused nigrostriatal dopaminergic dysfunction. Interestingly, we found that TCE not only induced LRRK2 kinase activity in the brain, but produced a significant dopaminergic lesion in the nigrostriatal tract, elevated oxidative stress, and caused endolysosomal dysfunction and α-synuclein accumulation. Together, these data suggest that TCE-induced LRRK2 kinase activity contributed to the selective toxicity of dopaminergic neurons. We conclude that gene-environment interactions between certain industrial contaminants and LRRK2 likely influence PD risk.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| | - Sandra L Castro
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Christopher R Bodle
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Katrina E Johnson
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
11
|
Gorecki AM, Bakeberg MC, Theunissen F, Kenna JE, Hoes ME, Pfaff AL, Akkari PA, Dunlop SA, Kõks S, Mastaglia FL, Anderton RS. Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease. Front Aging Neurosci 2020; 12:603849. [PMID: 33328979 PMCID: PMC7718032 DOI: 10.3389/fnagi.2020.603849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Research is increasingly focusing on gut inflammation as a contributor to Parkinson's disease (PD). Such gut inflammation is proposed to arise from a complex interaction between various genetic, environmental, and lifestyle factors, however these factors are under-characterized. This study investigated the association between PD and single-nucleotide polymorphisms (SNPs) in genes responsible for binding of bacterial metabolites and intestinal homeostasis, which have been implicated in intestinal infections or inflammatory bowel disease. A case-control analysis was performed utilizing the following cohorts: (i) patients from the Australian Parkinson's Disease Registry (APDR) (n = 212); (ii) a Caucasian subset of the Parkinson's Progression Markers Initiative (PPMI) cohort (n = 376); (iii) a combined control group (n = 404). The following SNPs were analyzed: PGLYRP2 rs892145, PGLYRP4 rs10888557, TLR1 rs4833095, TLR2 rs3804099, TLR4 rs7873784, CD14 rs2569190, MUC1 rs4072037, MUC2 rs11825977, CLDN2 rs12008279 and rs12014762, and CLDN4 rs8629. PD risk was significantly associated with PGLYRP4 rs10888557 genotype in both cohorts. PGLYRP2 rs892145 and TLR1 rs4833095 were also associated with disease risk in the APDR cohort, and TLR2 rs3804099 and MUC2 rs11825977 genotypes in the PPMI cohort. Interactive risk effects between PGLYRP2/PGLYRP4 and PGLYRP4/TLR2 were evident in the APDR and PPMI cohorts, respectively. In the APDR cohort, the PGLYRP4 GC genotype was significantly associated with age of symptom onset, independently of gender, toxin exposure or smoking status. This study demonstrates that genetic variation in the bacterial receptor PGLYRP4 may modulate risk and age-of-onset in idiopathic PD, while variants in PGLYRP2, TLR1/2, and MUC2 may also influence PD risk. Overall, this study provides evidence to support the role of dysregulated host-microbiome signaling and gut inflammation in PD, and further investigation of these SNPs and proteins may help identify people at risk of developing PD or increase understanding of early disease mechanisms.
Collapse
Affiliation(s)
- Anastazja M Gorecki
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Megan C Bakeberg
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Frances Theunissen
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Jade E Kenna
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Madison E Hoes
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Sarah A Dunlop
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia.,Minderoo Foundation, Perth, WA, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,The Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia.,School of Health Sciences, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
12
|
Rebai A, Chbili C, Ben Amor S, Hassine A, Ben Ammou S, Saguem S. Effects of glutathione S-transferase M1 and T1 deletions on Parkinson's disease risk among a North African population. Rev Neurol (Paris) 2020; 177:290-295. [PMID: 32359946 DOI: 10.1016/j.neurol.2020.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE In this study, the effects of glutathione S-transferase polymorphisms Mu1 (GSTM1) and glutathione S-transferase polymorphisms Theta1 (GSTT1) on Parkinson's disease (PD) risk factor were evaluated in a Tunisian population. METHODS These polymorphisms were analyzed in 229 healthy Tunisian subjects and 64 Tunisian patients with PD, using a polymerase chain reaction (PCR). Statistical analysis was performed using SPSS 18.0. The relative associations between the GST genotypes and PD were assessed by calculating the odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS The study results demonstrated that the individuals with GSTM1 [OR=3.93, 95% CI: 1.98-7.92, P=10-6] and GSTT1 [OR=5.45, 95% CI: 2.90-10.30, p=10-6] were statistically associated with the risk of PD. A significant association was also found between the individuals with both GSTM1/T1 null genotypes and PD risk [OR=22.10, 95% CI: 6.99-73.75, P=10-6]. CONCLUSION These genotyping findings suggest that the absence of both GSTM1 and GSTT1 activity could be a contributory factor for the development of PD.
Collapse
Affiliation(s)
- A Rebai
- Metabolic Biophysics and Applied Pharmacology, Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse 4002, Tunisia; Faculty of Physical and Natural Mathematical Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia.
| | - C Chbili
- Metabolic Biophysics and Applied Pharmacology, Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse 4002, Tunisia
| | - S Ben Amor
- Neurology Department of the University Hospital Center (UHC) Sahloul, Sousse University, Sousse 4002, Tunisia
| | - A Hassine
- Neurology Department of the University Hospital Center (UHC) Sahloul, Sousse University, Sousse 4002, Tunisia
| | - S Ben Ammou
- Neurology Department of the University Hospital Center (UHC) Sahloul, Sousse University, Sousse 4002, Tunisia
| | - S Saguem
- Metabolic Biophysics and Applied Pharmacology, Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse 4002, Tunisia
| |
Collapse
|
13
|
Wang H, Liu X, Tan C, Zhou W, Jiang J, Peng W, Zhou X, Mo L, Chen L. Bacterial, viral, and fungal infection-related risk of Parkinson's disease: Meta-analysis of cohort and case-control studies. Brain Behav 2020; 10:e01549. [PMID: 32017453 PMCID: PMC7066372 DOI: 10.1002/brb3.1549] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
AIMS Recent studies showed that patients with various bacterial, viral, and fungal infections might be at increased risk of Parkinson's disease (PD). However, the risk of PD in patients with each specific infection varied. This meta-analysis estimated the association between various infections and PD risk. METHODS Literature published from January 1965 to October 2019 in PubMed and EMBASE databases was searched. Data were extracted and pooled using random/fixed effects model. Sensitivity analysis and meta-regression were also performed to analyze the source of heterogeneity. Publication bias was estimated by the trim and fill. RESULTS Twenty-three out of 6,609 studies were included. Helicobacter pylori (HP; pooled OR = 1.653, 1.426-1.915, p < .001), hepatitis C virus (HCV; pooled OR = 1.195, 1.012-1.410, p = .035), Malassezia (pooled OR = 1.694, 1.367-2.100, p < .001), and pneumoniae (pooled OR = 1.595, 1.020-2.493, p = .041) infection were associated with increased PD risk. Influenza virus, herpes virus, hepatitis B virus, scarlet fever, mumps virus, chicken pox, pertussis, German measles, and measles were not associated with PD risk. After antiviral treatment against HCV reduced the risk of PD in patients with HCV infection (OR = 0.672, 0.571-0.791, p < .001). Significant heterogeneity exists among the included studies. CONCLUSION Patients with infection of HP, HCV, Malassezia, pneumoniae might be an increased risk of PD. Antiviral treatment of HCV could reduce the risk of PD.
Collapse
Affiliation(s)
- Hui Wang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xi Liu
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Changhong Tan
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wen Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Jiang
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wuxue Peng
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xuan Zhou
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lijuan Mo
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lifen Chen
- Department of NeurologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
14
|
Neuroprotection of Indole-Derivative Compound NC001-8 by the Regulation of the NRF2 Pathway in Parkinson's Disease Cell Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5074367. [PMID: 31781339 PMCID: PMC6874971 DOI: 10.1155/2019/5074367] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/05/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease accompanied by a loss of dopaminergic (DAergic) neurons. The development of therapies to prevent disease progression is the main goal of drug discovery. There is increasing evidence that oxidative stress and antioxidants may contribute to the pathogenesis and treatment of PD, respectively. In the present study, we investigated the antioxidative protective effects of the indole-derivative compound NC001-8 in DAergic neurons derived from SH-SY5Y cells and PD-specific induced pluripotent stem cells (PD-iPSCs) carrying a PARKIN ex5del mutation. In SH-SY5Y-differentiated DAergic neurons under 1-methyl-4-phenylpyridinium (MPP+) treatment, NC001-8 remarkably reduced the levels of reactive oxygen species (ROS) and cleaved caspase 3; upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and NAD(P)H dehydrogenase, quinone 1 (NQO1); and promoted neuronal viability. In contrast, NRF2 knockdown abolished the effect of NC001-8 on the reduction of ROS and improvement of neuronal viability. In H2O2-treated DAergic neurons differentiated from PD-iPSCs, NC001-8 rescued the aberrant increase in ROS and cleaved caspase 3 by upregulating NRF2 and NQO1. Our results demonstrated the protective effect of NC001-8 in DAergic neurons via promoting the NRF2 antioxidative pathway and reducing ROS levels. We anticipate that our present in vitro assays may be a starting point for more sophisticated in vivo models or clinical trials that evaluate the potential of NC001-8 as a disease modifier for PD.
Collapse
|
15
|
Shen X, Yang H, Zhang D, Jiang H. Iron Concentration Does Not Differ in Blood but Tends to Decrease in Cerebrospinal Fluid in Parkinson's Disease. Front Neurosci 2019; 13:939. [PMID: 31616238 PMCID: PMC6775209 DOI: 10.3389/fnins.2019.00939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Background Iron accumulation in the substantia nigra in PD patients was acknowledged, but the studies on alteration of iron levels in blood and cerebrospinal fluids (CSF) reported inconsistent results. Objective To determinate the alterations of blood and CSF levels of iron in PD patients, a case-control study and a meta-analysis both in blood and CSF were conducted. Methods In the case-control study, 43 PD patients and 33 controls were recruited to test iron metabolism, 15 normal and 12 PD patients donated CSF. Levels in iron were quantified by inductively coupled atomic emission spectrometry. Iron metabolism was analyzed by routine blood tests. In the meta-analysis, a comprehensive literature search was performed on relevant studies published from Jan 1980 to Dec 2018 in PubMed, Web of Science and EMBASE databases. The pooled standard mean difference (SMD) with random effects model was selected to estimate the association between iron levels and PD. Results In the case-control study, the iron level in serum in the controls and PD patients were 110.00 ± 48.75 μg/dl and 107.21 ± 34.25 μg/dl, respectively, no significant difference was found between them (p = 0.850), with a small effect size (Cohen’s d: 0.12; 95% CI: 0.08–0.17). Ferritin level in PD patients was lower than controls (p = 0.014). The CSF levels of iron in control and the PD patients were 20.14 ± 3.35 ng/dl and 16.26 ± 4.82 ng/dl, respectively. CSF levels of iron were lower in PD compared with that of controls (p = 0.021), with a moderate effect size (Cohen’s d: 0.51; 95% CI: 0.43–0.65). In the meta-analysis, 22 eligible studies and a total of 3607 participants were identified. Blood levels of iron did not differ significant between PD patients and the controls [SMD (95% CI): −0.03 (−0.30, 0.24)], but CSF iron levels tended to be lower in PD patients compared with that in the controls [SMD (95% CI): −0.33 (−0.65, −0.00)]. Conclusion Iron homeostasis may be disturbed in CSF, but not in the peripheral blood in PD.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, Qingdao University, Qingdao, China
| | - Huazhen Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Yu M, Huang F, Wang W, Zhao C. Association between the DRD2 TaqIA gene polymorphism and Parkinson disease risk: an updated meta-analysis. Medicine (Baltimore) 2019; 98:e17136. [PMID: 31517853 PMCID: PMC6750301 DOI: 10.1097/md.0000000000017136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND DRD2 TaqIA polymorphism may be associated with an increased risk of developing Parkinson disease (PD). However, the individual study's results are still inconsistent. METHODS A meta-analysis of 4232 cases and 4774 controls from 14 separate studies were performed to explore the possible relationship between the DRD2 TaqIA gene polymorphism and PD. Pooled odds ratios (ORs) for the association and the corresponding 95% confidence intervals (CIs) were evaluated by a fixed-effect model. RESULTS The pooled results revealed a significant association between DRD2 gene TaqIA polymorphism under recessive genetic model (OR: 0.91, 95% CI:0.83,0.99, P = .031) and additive genetic models (OR:0.93,95%CI:0.87,0.99, P = .032), but not associated with PD susceptibility under other genetic models in the whole population. Moreover, subgroups based on ethnicity and genotyping methods showed this association in the Caucasian subgroup under recessive genetic model (OR: 0.85, 95% CI:0.76,0.95, P = .003) and additive genetic models (OR:0.87,95%CI:0.79,0.96, P = .004) were existed. Besides, no significant association was detected under 6 genetic models in the Asian populations and PCR-RFLP subgroup. CONCLUSIONS The current meta-analysis suggested that a significant association between DRD2 TaqIA polymorphism and PD under the recessive genetic mode, and additive genetic models, especially in Caucasians.
Collapse
Affiliation(s)
- Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University
- Jiangsu University, Zhenjiang
| | - Feiran Huang
- Department of Neurology, The Affiliated Hospital of Jiangsu University
- Jiangsu University, Zhenjiang
| | - Wei Wang
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University
- Medical Technology School, Xuzhou Medical University, Xuzhou
| | - Chen Zhao
- Jiangsu University, Zhenjiang
- Department of Gastroenterology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:147-165. [PMID: 31468077 DOI: 10.1007/s00210-019-01715-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Besides the effects on the striatum, the impairment of visceral organs including liver functions has been reported in Parkinson's disease (PD) patients. However, it is yet unclear if liver functions are affected in the early stage of the disease before the motor phase has appeared. The aim of our present study was thus to assess the effect of intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in different doses on striatum and liver functions. Deterioration of non-motor activities appeared on single exposure to MPTP along with rise in striatum oxidative stress and decline in antioxidant levels. Decreases in dopamine, noradrenaline, and GABA and increase in serotonin were detected in striatum. Motor coordination was impaired with a single dose of MPTP, and with repeated MPTP exposure, there was further significant impairment. Locomotor activity was affected from second exposure of MPTP, and the impairment increased with third MPTP exposure. Impairment of liver function through increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels was observed after first MPTP insult, and it worsened with second and third administrations. First administration of MPTP triggered systemic inflammation showing significant increase in inflammatory markers in the liver. Our data shows for the first time that an intranasal route of entry of MPTP affects liver from the non-motor phase of PD itself, occurring concomitantly with the reduction of striatal dopamine. It also suggests that a single dose is not enough to bring about progression of the disease from non-motor to locomotor deficiency, and a repeated dose is needed to establish the motor severity phase in the rat intranasal MPTP model.
Collapse
|
18
|
Zeng R, Zhou Q, Zhang W, Fu X, Wu Q, Lu Y, Shi J, Zhou S. Icariin-mediated activation of autophagy confers protective effect on rotenone induced neurotoxicity in vivo and in vitro. Toxicol Rep 2019; 6:637-644. [PMID: 31334034 PMCID: PMC6624214 DOI: 10.1016/j.toxrep.2019.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023] Open
Abstract
Rotenone (ROT) is an environmental neurotoxin which has been demonstrated to cause characteristic loss of dopamine (DA) neurons in Parkinson's disease (PD). Icariin (ICA) is a flavonoid glucoside isolated from Herba Epimedii that has been shown to display neuroprotective functions. The present study evaluated protective effects of ICA on ROT-induced neurotoxicity and determined the modulation of ICA on the regulation of autophagy in vivo and in vitro. Rats were treated with ROT (1.0 mg/kg/day) with a co-administration of ICA (15 or 30 mg/kg/day) for 5 weeks. Immunohistochemical analysis showed a significant loss in DA neurons in the substantia nigra (SN) of rats treated with ROT, accompanied by an increase in the accumulation of α-synuclein and a compromised mitochondrial respiration. However, co-administration of ICA potently ameliorated the ROT-induced neuronal cell injury and improved mitochondrial function and decreased the accumulation of α-synuclein. ROT treatment resulted in a decrease in the protein expression of LC3-II and Beclin-1, and an increase in the protein level of P62, and upregulated the activation of mammalian target of rapamycin (mTOR), whereas ICA significantly reversed these aberrant changes caused by ROT. Furthermore, the neuroprotective effect of ICA was further verified in PC12 cells. Cells treated with ROT displayed an increased cytotoxicity and a decreased oxygen consumption which were rescued by the presence of ICA. Furthermore, ROT decreased the protein expression level of LC3-II, enhanced Beclin-1 expression, and activated phosphorylation of mTOR, whereas ICA markedly reversed this dysregulation of autophagy caused by ROT in the PC12 cells. Collectively, these results suggest that ICA mediated activation of autophagic flux confers a neuroprotective action on ROT-induced neurotoxicity.
Collapse
Key Words
- Autophagy
- BCA, bicinchoninic acid
- DA, dopamine
- DMEM, Dulbecco's modified Eagle's medium
- HRP, horseradish peroxidase
- ICA, icariin
- Icariin
- LDH, lactate dehydrogenase
- Mitochondrial function
- Neurotoxicity
- OCR, oxygen consumption rate
- PD, Parkinson`s disease
- PE, phosphatidylethano-lamine
- ROT, rotenone
- Rotenone
- SN, substantia nigra
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Ru Zeng
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Zhou
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zhang
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaolong Fu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qin Wu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuanfu Lu
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Environmental Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
19
|
Sarkar S, Rokad D, Malovic E, Luo J, Harischandra DS, Jin H, Anantharam V, Huang X, Lewis M, Kanthasamy A, Kanthasamy AG. Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells. Sci Signal 2019; 12:12/563/eaat9900. [PMID: 30622196 DOI: 10.1126/scisignal.aat9900] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic, sustained inflammation underlies many pathological conditions, including neurodegenerative diseases. Divalent manganese (Mn2+) exposure can stimulate neurotoxicity by increasing inflammation. In this study, we examined whether Mn2+ activates the multiprotein NLRP3 inflammasome complex to promote neuroinflammation. Exposing activated mouse microglial cells to Mn2+ substantially augmented NLRP3 abundance, caspase-1 cleavage, and maturation of the inflammatory cytokine interleukin-1β (IL-1β). Exposure of mice to Mn2+ had similar effects in brain microglial cells. Furthermore, Mn2+ impaired mitochondrial ATP generation, basal respiratory rate, and spare capacity in microglial cells. These data suggest that Mn-induced mitochondrial defects drove the inflammasome signal amplification. We found that Mn induced cell-to-cell transfer of the inflammasome adaptor protein ASC in exosomes. Furthermore, primed microglial cells exposed to exosomes from Mn-treated mice released more IL-1β than did cells exposed to exosomes from control-treated animals. We also observed that welders exposed to manganese-containing fumes had plasma exosomes that contained more ASC than did those from a matched control group. Together, these results suggest that the divalent metal manganese acts as a key amplifier of NLRP3 inflammasome signaling and exosomal ASC release.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Dharmin Rokad
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Emir Malovic
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Jie Luo
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Dilshan S Harischandra
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Xuemei Huang
- Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mechelle Lewis
- Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Iowa State University, 2062 Veterinary Medicine Building, Ames, IA 50011, USA.
| |
Collapse
|
20
|
|
21
|
Ghatak S, Trudler D, Dolatabadi N, Ambasudhan R. Parkinson's disease: what the model systems have taught us so far. J Genet 2018; 97:729-751. [PMID: 30027906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder, for which people above the age of 60 show an increased risk. Although there has been great advancement in understanding the disease-related abnormalities in brain circuitry and development of symptomatic treatments, a cure for PD remains elusive. The discovery of PD associated gene mutations and environmental toxins have yielded animal models of the disease. These models could recapitulate several key aspects of PD, and provide more insights into the disease pathogenesis. They have also revealed novel aspects of the disease mechanism including noncell autonomous events and spreading of pathogenic protein species across the brain. Nevertheless, none of these models so far can comprehensively represent all aspects of the human disease. While the field is still searching for the perfect model system, recent developments in stem cell biology have provided a new dimension to modelling PD, especially doing it in a patient-specific manner. In the current review, we attempt to summarize the key findings in the areas discussed above, and highlight how the core PD pathology distinguishes itself from other neurodegenerative disorders while also resembling them in many aspects.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
22
|
Ritz BR, Chatterjee N, Garcia-Closas M, Gauderman WJ, Pierce BL, Kraft P, Tanner CM, Mechanic LE, McAllister K. Lessons Learned From Past Gene-Environment Interaction Successes. Am J Epidemiol 2017; 186:778-786. [PMID: 28978190 PMCID: PMC5860326 DOI: 10.1093/aje/kwx230] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/01/2017] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
Genetic and environmental factors are both known to contribute to susceptibility to complex diseases. Therefore, the study of gene-environment interaction (G×E) has been a focus of research for several years. In this article, select examples of G×E from the literature are described to highlight different approaches and underlying principles related to the success of these studies. These examples can be broadly categorized as studies of single metabolism genes, genes in complex metabolism pathways, ranges of exposure levels, functional approaches and model systems, and pharmacogenomics. Some studies illustrated the success of studying exposure metabolism for which candidate genes can be identified. Moreover, some G×E successes depended on the availability of high-quality exposure assessment and longitudinal measures, study populations with a wide range of exposure levels, and the inclusion of ethnically and geographically diverse populations. In several examples, large population sizes were required to detect G×Es. Other examples illustrated the impact of accurately defining scale of the interactions (i.e., additive or multiplicative). Last, model systems and functional approaches provided insights into G×E in several examples. Future studies may benefit from these lessons learned.
Collapse
Affiliation(s)
- Beate R. Ritz
- Correspondence to Dr. Beate R. Ritz, Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, 650 Charles Young Drive South, Los Angeles, CA 90095 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sanders LH, Paul KC, Howlett EH, Lawal H, Boppana S, Bronstein JM, Ritz B, Greenamyre JT. Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicol Sci 2017; 158:188-198. [PMID: 28460087 PMCID: PMC6075191 DOI: 10.1093/toxsci/kfx086] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exposure to certain pesticides induces oxidative stress and increases Parkinson's disease (PD) risk. Mitochondrial DNA (mtDNA) damage is found in dopaminergic neurons in idiopathic PD and following pesticide exposure in experimental models thereof. Base excision repair (BER) is the major pathway responsible for repairing oxidative DNA damage in cells. Whether single nucleotide polymorphisms (SNPs) in BER genes alone or in combination with pesticide exposure influence PD risk is unknown. We investigated the contributions of functional SNPs in 2 BER genes (APEX1 and OGG1) and mitochondrial dysfunction- or oxidative stress-related pesticide exposure, including paraquat, to PD risk. We also studied the effect of paraquat on levels of mtDNA damage and mitochondrial bioenergetics. 619 PD patients and 854 population-based controls were analyzed for the 2 SNPs, APEX1 rs1130409 and OGG1 rs1052133. Ambient pesticide exposures were assessed with a geographic information system. Individually, or in combination, the BER SNPs did not influence PD risk. Mitochondrial-inhibiting (OR = 1.79, 95% CI [1.32, 2.42]), oxidative stress-inducing pesticides (OR = 1.61, 95% CI [1.22, 2.11]), and paraquat (OR = 1.54, 95% CI [1.23, 1.93]) were associated with PD. Statistical interactions were detected, including for a genetic risk score based on rs1130409 and rs1052133 and oxidative stress inducing pesticides, where highly exposed carriers of both risk genotypes were at the highest risk of PD (OR = 2.21, 95% CI [1.25, 3.86]); similar interactions were estimated for mitochondrial-inhibiting pesticides and paraquat alone. Additionally, paraquat exposure was found to impair mitochondrial respiration and increase mtDNA damage in in vivo and in vitro systems. Our findings provide insight into possible mechanisms involved in increased PD risk due to pesticide exposure in the context of BER genotype variants.
Collapse
Affiliation(s)
- Laurie H. Sanders
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kimberly C. Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
| | - Evan H. Howlett
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hakeem Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Sridhar Boppana
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, Delaware 19901
| | - Jeff M. Bronstein
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, California 90095
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - J. Timothy Greenamyre
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
24
|
Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep 2016; 3:40-52. [PMID: 26857251 DOI: 10.1007/s40572-016-0083-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the start of the postgenomics era, most Parkinson's disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene-environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case-control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood-brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides' neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.
Collapse
Affiliation(s)
- Beate R Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA. .,Center for Occupational and Environmental Health, UCLA, Los Angeles, CA, USA. .,Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA
| | - Jeff M Bronstein
- Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Zahra C, Tabone C, Camilleri G, Felice AE, Farrugia R, Bezzina Wettinger S. Genetic causes of Parkinson's disease in the Maltese: a study of selected mutations in LRRK2, MTHFR, QDPR and SPR. BMC MEDICAL GENETICS 2016; 17:65. [PMID: 27613114 PMCID: PMC5016953 DOI: 10.1186/s12881-016-0327-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/27/2016] [Indexed: 12/05/2022]
Abstract
Background Mutations in Leucine-rich repeat kinase 2 NM_198578 (LRRK2 c.6055G > A (p.G2019S), LRRK2 c.4321C > G (p.R1441G)) and alpha-synuclein NM_000345 (SNCA c.209G > A (p.A53T)) genes causing Parkinson’s disease (PD) are common in Mediterranean populations. Variants in the Quinoid Dihydropteridine Reductase NM_000320 (QDPR c.68G > A (p.G23D)), Sepiapterin Reductase NM_003124 (SPR c.596-2A > G) and Methylenetetrahydrofolate Reductase NM_005957 (MTHFR c.677C > T and c.1298A > C) genes are frequent in Malta and potential candidates for PD. Methods 178 cases and 402 control samples from Malta collected as part of the Geoparkinson project were genotyped for MTHFR polymorphisms, QDPR and SPR mutations. Only PD and parkinsonism cases were tested for SNCA and LRRK2 mutations. Results LRRK2 c.4321C > G and SNCA c.209G > A were not detected. The LRRK2 c.6055G > A mutation was found in 3.1 % of Maltese PD cases. The QDPR mutation was found in both cases and controls and did not increase risk for PD. The SPR mutation was found in controls only. The odds ratios for MTHFR polymorphisms were not elevated. Conclusions The LRRK2 c.6055G > A is a cause of PD in the Maltese, whilst QDPR c.68G > A, SPR c.596-2A > G and MTHFR c.677C > T and c.1298A > C are not important determinants of PD. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0327-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charmaine Zahra
- Laboratory of Molecular Genetics, Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Christine Tabone
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Graziella Camilleri
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Alex E Felice
- Laboratory of Molecular Genetics, Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Rosienne Farrugia
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Stephanie Bezzina Wettinger
- Laboratory of Molecular Genetics, Department of Physiology and Biochemistry, University of Malta, Msida, Malta. .,Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.
| |
Collapse
|
26
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. NAT2 polymorphisms and risk for Parkinson's disease: a systematic review and meta-analysis. Expert Opin Drug Metab Toxicol 2016; 12:937-46. [PMID: 27216438 DOI: 10.1080/17425255.2016.1192127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several studies suggested a possible association between certain polymorphisms in the N-acetyl-transferase 2 (NAT2) gene (which encodes a very important enzyme involved in xenobiotic metabolism) and the risk for Parkinson's disease (PD). As the results of studies on this issue are controversial, we conducted a systematic review and a meta-analysis of eligible studies on this putative association. AREAS COVERED The authors revised the relationship between NAT2 polymorphisms and the risk of developing PD using several databases, and performed a meta-analysis using the software Meta-Disc1.1.1. In addition heterogeneity between studies was analyzed. A description of studies regarding gene-gene interactions and gene-environmental interactions involving NAT2 polymorphisms is also made. EXPERT OPINION Despite several recent meta-analyses showing an association between several polymorphisms in genes related with detoxification mechanisms such as cytochrome P4502D6 (CYP2D6), and glutathione transferases M1 and T1 (GSTM1, and GSTT1), data on NAT2 gene polymorphisms obtained from the current meta-analysis do not support a major association with PD risk, except in Asian populations. However, data from many studies are incomplete and therefore insufficient data exists to draw definitive conclusions. Several studies suggesting gene-gene and gene-environmental factors involving NAT2 gene in PD risk await confirmation.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- a Section of Neurology , Hospital Universitario del Sureste , Arganda del Rey , Madrid , Spain.,b Department of Medicine-Neurology, Hospital 'Príncipe de Asturias' , Universidad de Alcalá , Alcalá de Henares , Madrid , Spain
| | | | | | - José A G Agúndez
- c Department of Pharmacology , University of Extremadura , Cáceres , Spain
| |
Collapse
|
27
|
Todorovic M, Wood SA, Mellick GD. Nrf2: a modulator of Parkinson’s disease? J Neural Transm (Vienna) 2016; 123:611-9. [DOI: 10.1007/s00702-016-1563-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 01/23/2023]
|
28
|
Wang D, Zhai JX, Liu DW. Glutathione S-transferase M1 polymorphisms and Parkinson’s disease risk: a meta-analysis. Neurol Res 2016; 38:144-50. [DOI: 10.1080/01616412.2015.1126996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Chang KH, Lee-Chen GJ, Wu YR, Chen YJ, Lin JL, Li M, Chen IC, Lo YS, Wu HC, Chen CM. Impairment of proteasome and anti-oxidative pathways in the induced pluripotent stem cell model for sporadic Parkinson's disease. Parkinsonism Relat Disord 2016; 24:81-8. [DOI: 10.1016/j.parkreldis.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
|
30
|
Genetic Profile, Environmental Exposure, and Their Interaction in Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:6465793. [PMID: 26942037 PMCID: PMC4752982 DOI: 10.1155/2016/6465793] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The discovery of causative mutations for Parkinson's disease (PD) as well as their functional characterization in cellular and animal models has provided crucial insight into the pathogenesis of this disorder. Today, we know that PD pathogenesis involves multiple related processes including mitochondrial dysfunction, oxidative and nitrative stress, microglial activation and inflammation, and aggregation of α-synuclein and impaired autophagy. However, with the exception of a few families with Mendelian inheritance, the cause of PD in most individuals is yet unknown and the identified genetic susceptibility factors have only small effect size. Epidemiologic studies have found increased risk of PD associated with exposure to environmental toxicants such as pesticides, organic solvents, metals, and air pollutants, while reduced risk of PD associated with smoking cigarettes and coffee consumption. The role of environmental exposure, as well as the contribution of single genetic risk factors, is still controversial. In most of PD cases, disease onset is probably triggered by a complex interplay of many genetic and nongenetic factors, each of which conveys a minor increase in the risk of disease. This review summarizes the current knowledge on causal mutation for PD, susceptibility factors increasing disease risk, and the genetic factors that modify the impact of environmental exposure.
Collapse
|
31
|
Hassan A, Heckman MG, Ahlskog JE, Wszolek ZK, Serie DJ, Uitti RJ, van Gerpen JA, Okun MS, Rayaprolu S, Ross OA. Association of Parkinson disease age of onset with DRD2, DRD3 and GRIN2B polymorphisms. Parkinsonism Relat Disord 2015; 22:102-5. [PMID: 26627941 DOI: 10.1016/j.parkreldis.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/26/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Dopamine and glutamate are crucial neurotransmitters in Parkinson disease (PD). While recent large meta-analyses reported that genetic variation of dopamine (DRD2, DRD3) and glutamine (NMDA, GRIN2B) neurotransmitter receptors was not associated with PD risk, they could conceivably influence PD phenotype. We studied the association of these receptor polymorphisms relating to PD age of onset. METHODS There were 664 PD patients and 718 controls, all Caucasian, with stored DNA at Mayo Clinic, Jacksonville, Florida. Genotyping was performed for DRD2 (Taq 1A, rs1800497), DRD3 (rs6280), and NMDA (GRIN2B, rs7301328) polymorphisms with ABI Taqman assays. Single nucleotide polymorphism associations with age of onset were evaluated using dominant, recessive, and additive genotypic models. RESULTS DRD3 variant carriers had an approximate 4.4-year decrease in mean age of onset when both copies of the minor allele were present (P = 0.0034) and an approximate 1.5-year decrease in mean age at onset for every additional minor allele (P = 0.023) (recessive and additive models, respectively). There was no association with age of onset for DRD2 or GRIN2B under any statistical model (all P ≥ 0.22). CONCLUSIONS The DRD3 (rs6280) polymorphism, but not DRD2 (Taq1A) or GRIN2B, influences younger PD age of onset in the US Caucasian population. Validation of these findings in larger studies with other ethnic groups is indicated.
Collapse
Affiliation(s)
- Anhar Hassan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - J E Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Daniel J Serie
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Michael S Okun
- Center for Movement Disorders and Neurorestoration, University of Florida, Gainesville, FL, USA
| | - Sruti Rayaprolu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
32
|
Liu H, Peng J, Gao J, Zheng F, Tie C. Glutathione S-transferase T1 and M1 null genotypes and Parkinson’s disease risk: evidence from an updated meta-analysis. Neurol Sci 2015; 36:1559-65. [DOI: 10.1007/s10072-015-2159-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/07/2015] [Indexed: 12/28/2022]
|
33
|
Han W, Liu Y, Mi Y, Zhao J, Liu D, Tian Q. Alpha-synuclein (SNCA) polymorphisms and susceptibility to Parkinson's disease: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2015; 168B:123-34. [PMID: 25656566 DOI: 10.1002/ajmg.b.32288] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 11/25/2014] [Indexed: 02/04/2023]
Abstract
It has been reported that single nucleotide polymorphisms (SNPs) of Alpha-synuclein (SNCA) are associated with Parkinson's disease (PD). Some researchers have attempted to validate this finding in various ethnic populations. The results of studies concerning SNCA polymorphisms and PD susceptibility remain conflicting. To evaluate the association between these SNPs and PD, the authors conducted a series of meta-analyses using a predefined protocol. Databases including PubMed, MEDLINE and PD gene were searched to identify relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the association. All analyses were calculated using STATA11.0. A total of 19 studies on the SNPS rs181489, rs356186, rs356219, rs894278, rs2583988, rs2619363, rs2619364, rs2737029, rs10005233 and rs11931074 were included. This meta-analysis showed that eight out of these 10 candidate SNPs may be associated with PD risk. Significant association was found between PD and the following SNPs: rs181489, rs356186, rs356219, rs894278 rs2583988, rs2619364, rs10005233 and rs11931074. Among these SNPs, rs356186 was found to be the only SNP that may play a protective role in Parkinson's disease. These results suggest that the SNCA gene may be associated with PD.
Collapse
Affiliation(s)
- Wei Han
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Worldwide, several hundred million tons of organic solvents are used annually in household, industry, and other occupational settings. Millions of workers are regularly exposed to organic solvents considered neurotoxic. Acute neurotoxicity due to high exposure of solvent is usually evident, but the nature of long-term effects, such as chronic solvent encephalopathy (CSE), has raised uncertainty even among experts. Earlier studies were criticized for their methodology, mainly epidemiologic studies or investigations of exposed groups with many possible confounders and inadequate exposure assessment. However, an increasing number of studies have been performed since, also on workers with defined CSE based on differential diagnostics. During the last decade, evidence has emerged to enable identification of CSE, a necessity for the early recognition and prevention of progression of dysfunction and disability. Selected chemicals are presented here due to their widespread use, neurotoxic potential, and ability to cause solvent encephalopathy. Constant introduction of new chemicals may introduce new hazardous chemicals or known chemicals may reveal new health effects. It is important to keep an open mind for new findings of solvent-related neurobehavioral effects.
Collapse
|
35
|
Campdelacreu J. Parkinson's disease and Alzheimer disease: environmental risk factors. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2012.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
36
|
Sanders LH, Howlett EH, McCoy J, Greenamyre JT. Mitochondrial DNA damage as a peripheral biomarker for mitochondrial toxin exposure in rats. Toxicol Sci 2014; 142:395-402. [PMID: 25237061 DOI: 10.1093/toxsci/kfu185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Demonstrating or verifying a current or past exposure to an environmental mitochondrial toxin or toxicant is extraordinarily difficult. Thus, there is a pressing need to develop a biomarker for exposure to environmental mitochondrial inhibitors. Rotenone, an environmental toxicant, is a potent inhibitor of the mitochondrial electron transfer chain. Rotenone specifically inhibits complex I throughout the body and brain, thereby producing systemic mitochondrial impairment. As such, rotenone is a prototypical clinically relevant, environmental mitochondrial toxicant that may be used as an ideal initial platform to develop accessible biomarkers of exposure. The over-arching goal of this work is to explore and validate peripheral (blood and skeletal muscle) DNA damage as a biomarker of mitochondrial toxicant exposure using the rat rotenone model. In this effort, we utilized an extremely sensitive quantitative polymerase chain reaction (QPCR)-based assay that simultaneously allows the assessment of multiple forms of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage. We found mtDNA damage in blood is detected after subclinical rotenone exposure and the damage persists even after complex I activity has returned to normal. With a more sustained rotenone exposure, mtDNA damage is also detected in skeletal muscle, suggesting that mtDNA damage in this tissue simply lags behind blood. Using the QPCR-based assay, we have no evidence for nDNA damage in peripheral tissues after rotenone exposure either acutely or chronically. Overall, these data support the idea that mtDNA damage in peripheral tissues in the rotenone model may provide a biomarker of past or ongoing mitochondrial toxin exposure.
Collapse
Affiliation(s)
- Laurie H Sanders
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Evan H Howlett
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| | - Jennifer McCoy
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
37
|
Wang D, Zhai JX, Zhang LM, Liu DW. Null genotype of GSTT1 contributes to increased Parkinson's disease risk in Caucasians: evidence from a meta-analysis. Mol Biol Rep 2014; 41:7423-30. [PMID: 25086621 DOI: 10.1007/s11033-014-3631-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/21/2014] [Indexed: 11/25/2022]
Abstract
Conflicting results in previous case-control studies on the association between Glutathione S-transferase T1 (GSTT1) gene polymorphism and Parkinson's disease (PD) risk have been reported, so we conducted this meta-analysis. We searched and extracted data from 3 Chinese and 3 English web-based electronic databases to evaluate the associations by odds ratio (OR) and its 95% confidence interval (CI) under the recessive genetic comparison model (null genotype vs. present genotype). We also conducted subgroup analyses by ethnicity and adjusted status of OR, respectively. Meta-analyses and subgroup analyses of larger studies (sample size ≥300) were also reanalyzed. When 18 eligible studies (3,963 PD cases and 5,472 controls) were pooled to analyze the association, we found no statistically significant result (OR 1.24, 95% CI 0.96-1.60). In the subgroup analyses by ethnicity, there was statistically significant association between the null genotype of GSTT1 and PD risk among Caucasians, while the associations were not found among Asians and Latinos. In the subgroup analyses by adjusted status of OR, there were no significant associations both in studies with crude OR and adjusted OR. Meta-analyses and subgroup analyses of larger studies (sample size ≥300) were also confirmed the associations mentioned above. Power analysis indicated only meta-analysis of Caucasians had enough evidence to claim the association. In conclusion, the meta-analysis suggests that the null genotype of GSTT1 contributes to PD risk in Caucasians, and no association in Asians is needed more studies to confirm.
Collapse
Affiliation(s)
- Dan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Hebei Medical University, No. 361 Zhongshan East Road, Shijiazhuang, 050017, Hebei, China
| | | | | | | |
Collapse
|
38
|
Zhai D, Li S, Zhao Y, Lin Z. SLC6A3 is a risk factor for Parkinson's disease: a meta-analysis of sixteen years' studies. Neurosci Lett 2014; 564:99-104. [PMID: 24211691 PMCID: PMC5352947 DOI: 10.1016/j.neulet.2013.10.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022]
Abstract
The human dopamine transporter gene (gene symbol: SLC6A3) is considered as a candidate risk factor for Parkinson's disease because dopamine transporter accumulates cytotoxic dopamine or other toxins in the dopamine neurons. However, findings from numerous association studies in different populations have been inconsistent with each other. In this study, we performed a combined analysis of published case-control genetic association data between SLC6A3 and Parkinson's disease. The results indicate that SLC6A3 confers a modest but significant risk for Parkinson's disease in various populations. Allele 10-repeat of the 40-base pair variable number tandem repeat, a well studied polymorphism in the 3' untranslated region of SLC6A3, confers neuroprotection in East Asian (OR: 0.78, 95% CI: 0.65, 0.94 and p=0.009) but not in Caucasian populations. Genotype GG and allele G of the promoter single nucleotide polymorphism rs2652510 is associated with a risk in Caucasians (allelic G, OR: 1.26, 95% CI: 1.04-1.54, and p=0.018; genotypic GG OR: 1.37, 95% CI: 1.03-1.84 and p=0.032). Such information implies a population-dependent involvement of SLC6A3 in the etiology of Parkinson's disease.
Collapse
Affiliation(s)
- Desheng Zhai
- Department of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Songji Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Department of Psychiatry and Harvard NeuroDiscovery Center, Harvard Medical School and Laboratory of Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA.
| | - Zhicheng Lin
- Department of Psychiatry and Harvard NeuroDiscovery Center, Harvard Medical School and Laboratory of Psychiatric Neurogenomics, Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA.
| |
Collapse
|
39
|
Iorio A, Piacentini S, Polimanti R, De Angelis F, Calderon R, Fuciarelli M. Functional variability of glutathione S-transferases in basque populations. Am J Hum Biol 2014; 26:361-6. [DOI: 10.1002/ajhb.22520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/11/2014] [Accepted: 01/21/2014] [Indexed: 01/12/2023] Open
Affiliation(s)
- Andrea Iorio
- Department of Biology; University of Rome “Tor Vergata,”; Rome Italy
- Clinical Pathophysiology Center; AFaR-“San Giovanni Calibita” Fatebenefratelli Hospital; Isola Tiberina Rome Italy
| | - Sara Piacentini
- Department of Biology; University of Rome “Tor Vergata,”; Rome Italy
| | - Renato Polimanti
- Department of Biology; University of Rome “Tor Vergata,”; Rome Italy
| | - Flavio De Angelis
- Department of Biology; University of Rome “Tor Vergata,”; Rome Italy
| | - Rosario Calderon
- Departamento de Zoologia y Antropologìa Fìsica; Facultad de Biologìa, Universidad Complutense; Madrid Spain
| | - Maria Fuciarelli
- Department of Biology; University of Rome “Tor Vergata,”; Rome Italy
| |
Collapse
|
40
|
Abstract
Parkinson's disease (PD) is an idiopathic disease and its pathological feature is a loss of pigmented neurons in the substantia nigra. Some commonly used pesticides possess neurotoxicity, and exposure to such compounds may trigger mechanisms similar to those in the development of idiopathic PD. We conducted a systematic review of epidemiological studies, aiming at a critical evaluation of the association between the development of PD and pesticide exposure. Reported effect sizes (ES) in the relevant studies were pooled into the meta-analysis to derive summary ES. The summary ES suggested a significantly positive association between PD and overall pesticide use (non-occupational and/or occupational pesticide use) [1.42; 95% confidence interval (CI) 1.32 to 1.52, the fixed-effects model], as well as between PD and occupational pesticide exposure (1.49 with a 95% CI of 1.34-1.66). Both occupational herbicide and occupational insecticide exposure showed a significant association with PD. The results of the meta-analysis reported in this study suggest the existence of a statistically positive association between PD and pesticide exposure. The majority of the studies that were pooled in the meta-analysis were case-control design with very few cohort studies and most with poor exposure characterization thus, any further case-control studies using similar methodologies are unlikely to have a significant impact or understanding on the currently-reported association between pesticide exposure and the development of idiopathic PD. Therefore, we believe that if further epidemiological studies are going to be conducted in the area, they should be prospective cohort studies that will include accurate exposure assessment.
Collapse
Affiliation(s)
- Minako Takamiya Allen
- Institute of Environment and Health, Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom.
| | | |
Collapse
|
41
|
Sexual dimorphism in xenobiotic genetic variants-mediated risk for Parkinson’s disease. Neurol Sci 2014; 35:897-903. [DOI: 10.1007/s10072-013-1622-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/24/2013] [Indexed: 01/12/2023]
|
42
|
Dai D, Wang Y, Wang L, Li J, Zhou H, Ma Q, Zhou X, Pan J, Pan G, Chen C, Xu L, Ru P, Wang H, Zhu S, Lv Y, Xu L, Ye M, Duan S. Association of four GSTs gene polymorphisms with Parkinson disease: A meta-analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abb.2014.52014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Wang T, Wang B. Association between Glutathione S-transferase M1/Glutathione S-transferase T1 polymorphisms and Parkinson's disease: a meta-analysis. J Neurol Sci 2013; 338:65-70. [PMID: 24382428 DOI: 10.1016/j.jns.2013.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 11/03/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
The Glutathione S-transferase M1 (GSTM1) and Glutathione S-transferase T1 (GSTT1) genes have been studied extensively as potential candidate genes for the risk of Parkinson's disease (PD). However, direct evidence from genetic association studies remains inconclusive. In order to address this issue, we performed an updated and refined meta-analysis to determine the effect of GSTM1 and GSTT1 polymorphisms on Parkinson's disease. A fixed-effect model was utilized to calculate the combined odds ratio (OR), OR of different ethnicities, and 95% confidence intervals (CIs). Potential publication bias was estimated. Homogeneity of the included studies was also evaluated. The pooled OR was 1.13 [95% CI (1.03, 1.24)] and 0.96 [95% CI (0.82, 1.12)] for GSTM1 and GSTT1 polymorphisms, respectively. Analysis according to different races found no association between GSTM1/GSTT1 polymorphisms and PD risks except for GSTM1 variant in Caucasians, which showed a weak correlation (OR 1.16 [95% CI (1.04, 1.29), I squared=6.2%, p=0.384]). Neither publication bias nor heterogeneity was found among the included studies. The results of this meta-analysis suggest that GSTM1 polymorphism is weakly associated with the risk of PD in Caucasians whereas GSTT1 polymorphism is not a PD risk factor.
Collapse
Affiliation(s)
- Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Bin Wang
- Department of Pharmacology, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, PR China.
| |
Collapse
|
44
|
Rhodes SL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease. ENVIRONMENTAL RESEARCH 2013; 126:1-8. [PMID: 23988235 PMCID: PMC3832349 DOI: 10.1016/j.envres.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 07/07/2013] [Accepted: 08/02/2013] [Indexed: 05/06/2023]
Abstract
Cytoplasmic inclusions known as Lewy bodies, a hallmark of Parkinson's disease (PD) pathology, may protect against cytotoxic proteins. Since the ubiquitin-proteasome system (UPS) degrades cytotoxic proteins, dysfunction in the UPS may contribute to PD etiology. Our goal in this study was to screen pesticides for proteasome inhibition and investigate (i) whether ambient exposures to pesticides that inhibit the UPS increase PD risk and (ii) whether genetic variation in candidate genes of the UPS pathway modify those increased risks. We assessed 26S UPS activity in SK-N-MC(u) cells by fluorescence. We recruited idiopathic PD cases (n=360) and population-based controls (n=816) from three counties in California with considerable commercial agriculture. We determined ambient pesticide exposure by our validated GIS-based model utilizing residential and workplace address histories. We limited effect measure modification assessment to Caucasians (287 cases, 453 controls). Eleven of 28 pesticides we screened inhibited 26S UPS activity at 10 µM. Benomyl, cyanazine, dieldrin, endosulfan, metam, propargite, triflumizole, and ziram were associated with increased PD risk. We estimated an odds ratio of 2.14 (95% CI: 1.42, 3.22) for subjects with ambient exposure to any UPS-inhibiting pesticide at both residential and workplace addresses; this association was modified by genetic variation in the s-phase kinase-associated protein 1 gene (SKP1; interaction p-value=0.005). Our results provide evidence that UPS-inhibiting pesticides play a role in the etiology of PD and suggest that genetic variation in candidate genes involved in the UPS pathway might exacerbate the toxic effects of pesticide exposures.
Collapse
Affiliation(s)
- Shannon L. Rhodes
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
| | | | - Myles Cockburn
- Dept of Preventive Medicine, USC Keck School of Medicine, Los Angeles, CA
- Dept of Geography, USC, Los Angeles, CA
| | - Jeff M. Bronstein
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Janet S. Sinsheimer
- Depts of Human Genetics and Biomathematics, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA
| | - Beate Ritz
- Dept of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA
- Dept of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Dept of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA
| |
Collapse
|
45
|
Živković M, Životić I, Dinčić E, Stojković L, Vojinović S, Stanković A. The glutathione S-transferase T1 deletion is associated with susceptibility to multiple sclerosis. J Neurol Sci 2013; 334:6-9. [PMID: 23932298 DOI: 10.1016/j.jns.2013.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) occurs as a result of interaction between genetic and environmental factors. Recent data support the view that oxidative damage is one of an early event in MS tissue injury. The safe elimination of reactive oxygen species and toxins via glutathione S-transferase (GST) pathways is required in order to protect cells against reactive oxygen-induced damage. The aim of our study was to analyze the possible association of GSTM1 and GSTT1 gene polymorphisms with the susceptibility and clinical parameters of MS, in 455 consecutive patients and 366 controls. METHODS A multiplex polymerase chain reaction (PCR) was used to detect the deletions in GSTM1 and GSTT1 genes. RESULTS Patients with MS had significantly higher frequency of GSTT1 null genotype compared to controls (37.36% vs. 21.86%, respectively, p<0.0001, adjusted OR 2.13 (1.56-2.90)), as well as double deletions (15.38% vs. 10.38%, respectively, p<0.05). The carriers of GSTM1 deletion had significantly earlier onset of MS compared to the wild-type carriers (28.31 ± 8.45 vs. 30.64 ± 9.30 years, respectively, p = 0.03). CONCLUSION This study suggests the potential pathogenic role of GSTT1 deletion on MS susceptibility. There are no similar data published so far, yet this study should be replicated in other populations.
Collapse
Affiliation(s)
- Maja Živković
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
46
|
Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, Tsatsakis AM, Wilks MF, Hadjigeorgiou GM. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: The evidence for pesticides. Toxicology 2013; 307:17-23. [DOI: 10.1016/j.tox.2012.12.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 12/23/2012] [Accepted: 12/25/2012] [Indexed: 11/29/2022]
|
47
|
Horsfall L, Petersen I, Walters K, Schrag A. Time trends in incidence of Parkinson's disease diagnosis in UK primary care. J Neurol 2012; 260:1351-7. [PMID: 23263597 DOI: 10.1007/s00415-012-6804-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
To examine time trends and the influence of socio-demographic and geographic factors on incidence of Parkinson's disease (PD) diagnosis in a large UK population-based cohort from The Health Improvement Network (THIN), a UK primary care database. All patients aged over 50 years and contributing data to THIN between January 1999 and December 2009 were extracted and the incidence rates of PD diagnoses were determined by age, gender, time period, social deprivation score and urban/rural status. The overall incidence of PD diagnosis for people over 50 years was 84 per 100,000 person years (95 % CI 82-85). After accounting for socio-demographic factors, the adjusted incidence rates in men were 46 % higher (95 % CI 43-48 %) than in women. Adjusted incidence rates were also 12 % higher in urban than rural areas (95 % CI 4-20 %) and slightly lower in less socially deprived areas. Over time there was a downward trend in PD diagnosis with the adjusted incidence rates declining by around 6 % every calendar year (95 % CI 5-6 %) between 1999 and 2009. Broadening the definition of PD from diagnostic codes to include symptoms and antiparkinsonian drug prescriptions increased the overall incidence to 118 per 100,000 person years (95 % CI 116-120) and showed a much weaker downward trend over time of around 1 % per calendar year (95 % CI 1-2 %). With the broader definition, the adjusted incidence rates remained significantly higher in men compared to women and in urban areas compared with rural areas but not in socially deprived areas. The PD diagnosis rates in the primary care setting were, as expected, higher in men, and slightly higher in urban areas, but not different between socio-economic groups. There was a decline in PD diagnosis in the primary care setting, which may largely represent changes in diagnosis and/or coding rather than a true decline in incidence.
Collapse
Affiliation(s)
- Laura Horsfall
- Research Department of Primary Care and Population Health, University College London, London, UK
| | | | | | | |
Collapse
|
48
|
Pihlstrøm L, Axelsson G, Bjørnarå KA, Dizdar N, Fardell C, Forsgren L, Holmberg B, Larsen JP, Linder J, Nissbrandt H, Tysnes OB, Ohman E, Dietrichs E, Toft M. Supportive evidence for 11 loci from genome-wide association studies in Parkinson's disease. Neurobiol Aging 2012; 34:1708.e7-13. [PMID: 23153929 DOI: 10.1016/j.neurobiolaging.2012.10.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/31/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Genome-wide association studies have identified a number of susceptibility loci in sporadic Parkinson's disease (PD). Recent larger studies and meta-analyses have greatly expanded the list of proposed association signals. We performed a case-control replication study in a Scandinavian population, analyzing samples from 1345 unrelated PD patients and 1225 control subjects collected by collaborating centers in Norway and Sweden. Single-nucleotide polymorphisms representing 18 loci previously reported at genome-wide significance levels were genotyped, as well as 4 near-significant, suggestive, loci. We replicated 11 association signals at p < 0.05 (SNCA, STK39, MAPT, GPNMB, CCDC62/HIP1R, SYT11, GAK, STX1B, MCCC1/LAMP3, ACMSD, and FGF20). The more recently nominated susceptibility loci were well represented among our positive findings, including 3 which have not previously been validated in independent studies. Conversely, some of the more well-established loci failed to replicate. While future meta-analyses should corroborate disease associations further on the level of common markers, efforts to pinpoint functional variants and understand the biological implications of each risk locus in PD are also warranted.
Collapse
Affiliation(s)
- Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Goldman SM, Kamel F, Ross GW, Bhudhikanok GS, Hoppin JA, Korell M, Marras C, Meng C, Umbach DM, Kasten M, Chade AR, Comyns K, Richards MB, Sandler DP, Blair A, Langston JW, Tanner CM. Genetic modification of the association of paraquat and Parkinson's disease. Mov Disord 2012; 27:1652-8. [PMID: 23045187 PMCID: PMC3572192 DOI: 10.1002/mds.25216] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 01/22/2023] Open
Abstract
Paraquat is one of the most widely used herbicides worldwide. It produces a Parkinson's disease (PD) model in rodents through redox cycling and oxidative stress (OS) and is associated with PD risk in humans. Glutathione transferases provide cellular protection against OS and could potentially modulate paraquat toxicity. We investigated PD risk associated with paraquat use in individuals with homozygous deletions of the genes encoding glutathione S-transferase M1 (GSTM1) or T1 (GSTT1). Eighty-seven PD subjects and 343 matched controls were recruited from the Agricultural Health Study, a study of licensed pesticide applicators and spouses in Iowa and North Carolina. PD was confirmed by in-person examination. Paraquat use and covariates were determined by interview. We genotyped subjects for homozygous deletions of GSTM1 (GSTM1*0) and GSTT1 (GSTT1*0) and tested interaction between paraquat use and genotype using logistic regression. Two hundred and twenty-three (52%) subjects had GSTM1*0, 95 (22%) had GSTT1*0, and 73 (17%; all men) used paraquat. After adjustment for potential confounders, there was no interaction with GSTM1. In contrast, GSTT1 genotype significantly modified the association between paraquat and PD. In men with functional GSTT1, the odds ratio (OR) for association of PD with paraquat use was 1.5 (95% confidence interval [CI]: 0.6-3.6); in men with GSTT1*0, the OR was 11.1 (95% CI: 3.0-44.6; P interaction: 0.027). Although replication is needed, our results suggest that PD risk from paraquat exposure might be particularly high in individuals lacking GSTT1. GSTT1*0 is common and could potentially identify a large subpopulation at high risk of PD from oxidative stressors such as paraquat.
Collapse
|
50
|
Silva BA, Breydo L, Fink AL, Uversky VN. Agrochemicals, α-synuclein, and Parkinson's disease. Mol Neurobiol 2012; 47:598-612. [PMID: 22933040 DOI: 10.1007/s12035-012-8333-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.
Collapse
Affiliation(s)
- Blanca A Silva
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|