1
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
2
|
Marín D, Narváez DM, Sierra A, Molina JS, Ortiz I, Builes JJ, Morales O, Cuellar M, Corredor A, Villamil-Osorio M, Bejarano MA, Vidal D, Basagaña X, Anguita-Ruiz A, Maitre L, Domínguez A, Valencia A, Henao J, Abad JM, Lopera V, Amaya F, Aristizábal LM, Rodríguez-Villamizar LA, Ramos-Contreras C, López L, Hernández-Flórez LJ, Bangdiwala SI, Groot H, Rueda ZV. DNA damage and its association with early-life exposome: Gene-environment analysis in Colombian children under five years old. ENVIRONMENT INTERNATIONAL 2024; 190:108907. [PMID: 39121825 DOI: 10.1016/j.envint.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Environmental exposures and gene-exposure interactions are the major causes of some diseases. Early-life exposome studies are needed to elucidate the role of environmental exposures and their complex interactions with biological mechanisms involved in childhood health. This study aimed to determine the contribution of early-life exposome to DNA damage and the modifying effect of genetic polymorphisms involved in air pollutants metabolism, antioxidant defense, and DNA repair. We conducted a cohort study in 416 Colombian children under five years. Blood samples at baseline were collected to measure DNA damage by the Comet assay and to determine GSTT1, GSTM1, CYP1A1, H2AX, OGG1, and SOD2 genetic polymorphisms. The exposome was estimated using geographic information systems, remote sensing, LUR models, and questionnaires. The association exposome-DNA damage was estimated using the Elastic Net linear regression with log link. Our results suggest that exposure to PM2.5 one year before the blood draw (BBD) (0.83, 95 %CI: 0.76; 0.91), soft drinks consumption (0.94, 0.89; 0.98), and GSTM1 null genotype (0.05, 0.01; 0.36) diminished the DNA damage, whereas exposure to PM2.5 one-week BBD (1.18, 1.06; 1.32), NO2 lag-5 days BBD (1.27, 1.18; 1.36), in-house cockroaches (1.10, 1.00; 1.21) at the recruitment, crowding at home (1.34, 1.08; 1.67) at the recruitment, cereal consumption (1.11, 1.04; 1.19) and H2AX (AG/GG vs. AA) (1.44, 1.11; 1.88) increased the DNA damage. The interactions between H2AX (AG/GG vs. AA) genotypes with crowding and PM2.5 one week BBD, GSTM1 (null vs. present) with humidity at the first year of life, and OGG1 (SC/CC vs. SS) with walkability at the first year of life were significant. The early-life exposome contributes to elucidating the effect of environmental exposures on DNA damage in Colombian children under five years old. The exposome-DNA damage effect appears to be modulated by genetic variants in DNA repair and antioxidant defense enzymes.
Collapse
Affiliation(s)
- Diana Marín
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia.
| | - Diana M Narváez
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Anamaría Sierra
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Juan Sebastián Molina
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Isabel Ortiz
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Olga Morales
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, Hospital San Vicente Fundación, Medellín, Colombia
| | - Martha Cuellar
- Pediaciencias Group, School of Medicine, Universidad de Antioquia, Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina integral del Sueño, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | - Dolly Vidal
- Hospital Universitario San José, Popayán, Colombia
| | - Xavier Basagaña
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Leá Maitre
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Alan Domínguez
- ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ana Valencia
- Systems Biology Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Julián Henao
- Medical and Experimental Mycology, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Verónica Lopera
- Secretaría de Salud, Alcaldía de Medellín, Medellín, Colombia
| | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luis M Aristizábal
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | - Lucelly López
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Canada; Statistics Department, Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Helena Groot
- Human Genetics Laboratory, School of Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Zulma Vanessa Rueda
- Public Health Group, School of Medicine, Universidad Pontificia Bolivariana, Medellín, Colombia; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Ladeira C, Møller P, Giovannelli L, Gajski G, Haveric A, Bankoglu EE, Azqueta A, Gerić M, Stopper H, Cabêda J, Tonin FS, Collins A. The Comet Assay as a Tool in Human Biomonitoring Studies of Environmental and Occupational Exposure to Chemicals-A Systematic Scoping Review. TOXICS 2024; 12:270. [PMID: 38668493 PMCID: PMC11054096 DOI: 10.3390/toxics12040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024]
Abstract
Biomonitoring of human populations exposed to chemical substances that can act as potential mutagens or carcinogens, may enable the detection of damage and early disease prevention. In recent years, the comet assay has become an important tool for assessing DNA damage, both in environmental and occupational exposure contexts. To evidence the role of the comet assay in human biomonitoring, we have analysed original research studies of environmental or occupational exposure that used the comet assay in their assessments, following the PRISMA-ScR method (preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews). Groups of chemicals were designated according to a broad classification, and the results obtained from over 300 original studies (n = 123 on air pollutants, n = 14 on anaesthetics, n = 18 on antineoplastic drugs, n = 57 on heavy metals, n = 59 on pesticides, and n = 49 on solvents) showed overall higher values of DNA strand breaks in the exposed subjects in comparison with the unexposed. In summary, our systematic scoping review strengthens the relevance of the use of the comet assay in assessing DNA damage in human biomonitoring studies.
Collapse
Affiliation(s)
- Carina Ladeira
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1172 Copenhagen, Denmark;
| | - Lisa Giovannelli
- Department NEUROFARBA, Section Pharmacology and Toxicology, University of Florence, 50121 Florence, Italy;
| | - Goran Gajski
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Anja Haveric
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - Amaya Azqueta
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain;
| | - Marko Gerić
- Division of Toxicology, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; (G.G.); (M.G.)
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany; (E.E.B.); (H.S.)
| | - José Cabêda
- Guarda Nacional Republicana, Destacamento Territorial de Vila Franca de Xira, Núcleo de Proteção Ambiental, 1500-124 Lisbon, Portugal;
| | - Fernanda S. Tonin
- Pharmaceutical Care Research Group, Universidad de Granada, 18012 Granada, Spain;
| | - Andrew Collins
- Department of Nutrition, University of Oslo, 0316 Oslo, Norway;
| |
Collapse
|
4
|
Li H, Yao C, He C, Yu H, Yue C, Zhang S, Li G, Ma S, Zhang X, Cao Z, An T. Coking-Produced Aromatic Compounds in Urine of Exposed and Nonexposed Populations: Exposure Levels, Source Identification, and Model-Based Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15379-15391. [PMID: 37775339 DOI: 10.1021/acs.est.3c04906] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Coking contamination in China is complex and poses potential health risks to humans. In this study, we collected urine samples from coking plant workers, nearby residents, and control individuals to analyze 25 coking-produced aromatic compounds (ACs), including metabolites of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, chlorophenols, and nitrophenols. The median concentration of total ACs in urine of workers was 102 μg·g-1 creatinine, significantly higher than that in the other two groups. Hydroxy-PAHs and hydroxy hetero-PAHs were the dominant ACs. Workers directly exposed from coking industrial processes, i.e., coking, coal preparation, and chemical production processes, showed higher concentrations of hydroxy-PAHs and hydroxy hetero-PAHs (excluding 5-hydroxyisoquinoline), while those from indirect exposure workshops had higher levels of other ACs, indicating different sources in the coking plant. The AC mixture in workers demonstrated positive effects on DNA damage and lipid peroxidation with 5-hydroxyisoquinoline and 3-hydroxycarbazole playing a significant role using a quantile g-computation model. Monte Carlo simulation revealed that coking contamination elevated the carcinogenic risk for exposed workers by 5-fold compared to controls with pyrene, pentachlorophenol, and carbazole contributing the most, and workers from coking process are at the highest risk. This study enhances understanding of coking-produced AC levels and provides valuable insights into coking contamination control.
Collapse
Affiliation(s)
- Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Yao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Congcong Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Wong JY, Blechter B, Bassig BA, Dai Y, Vermeulen R, Hu W, Rahman ML, Duan H, Niu Y, Downward GS, Leng S, Ji BT, Fu W, Xu J, Meliefste K, Zhou B, Yang J, Ren D, Ye M, Jia X, Meng T, Bin P, Hosgood HD, Rothman N, Silverman DT, Zheng Y, Lan Q. Alterations to biomarkers related to long-term exposure to diesel exhaust at concentrations below occupational exposure limits in the European Union and the USA. Occup Environ Med 2023; 80:260-267. [PMID: 36972977 PMCID: PMC10337808 DOI: 10.1136/oemed-2022-108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND We previously found that occupational exposure to diesel engine exhaust (DEE) was associated with alterations to 19 biomarkers that potentially reflect the mechanisms of carcinogenesis. Whether DEE is associated with biological alterations at concentrations under existing or recommended occupational exposure limits (OELs) is unclear. METHODS In a cross-sectional study of 54 factory workers exposed long-term to DEE and 55 unexposed controls, we reanalysed the 19 previously identified biomarkers. Multivariable linear regression was used to compare biomarker levels between DEE-exposed versus unexposed subjects and to assess elemental carbon (EC) exposure-response relationships, adjusted for age and smoking status. We analysed each biomarker at EC concentrations below the US Mine Safety and Health Administration (MSHA) OEL (<106 µg/m3), below the European Union (EU) OEL (<50 µg/m3) and below the American Conference of Governmental Industrial Hygienists (ACGIH) recommendation (<20 µg/m3). RESULTS Below the MSHA OEL, 17 biomarkers were altered between DEE-exposed workers and unexposed controls. Below the EU OEL, DEE-exposed workers had elevated lymphocytes (p=9E-03, false discovery rate (FDR)=0.04), CD4+ count (p=0.02, FDR=0.05), CD8+ count (p=5E-03, FDR=0.03) and miR-92a-3p (p=0.02, FDR=0.05), and nasal turbinate gene expression (first principal component: p=1E-06, FDR=2E-05), as well as decreased C-reactive protein (p=0.02, FDR=0.05), macrophage inflammatory protein-1β (p=0.04, FDR=0.09), miR-423-3p (p=0.04, FDR=0.09) and miR-122-5p (p=2E-03, FDR=0.02). Even at EC concentrations under the ACGIH recommendation, we found some evidence of exposure-response relationships for miR-423-3p (ptrend=0.01, FDR=0.19) and gene expression (ptrend=0.02, FDR=0.19). CONCLUSIONS DEE exposure under existing or recommended OELs may be associated with biomarkers reflective of cancer-related processes, including inflammatory/immune response.
Collapse
Affiliation(s)
- Jason Yy Wong
- Epidemiology and Community Health Branch, National Heart Lung and Blood Institute, Bethesda, Maryland, USA
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Roel Vermeulen
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George S Downward
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shuguang Leng
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Jun Xu
- Division of Community Medicine and Public Health Practice, Hong Kong University, Hong Kong, Hong Kong, China
| | - Kees Meliefste
- The Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- China Medical University, Liaoning, Shenyang, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Lianing, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - H Dean Hosgood
- Division of Epidemiology, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Mohamed A, Ohtonen S, Giudice L, Schroderus AM, Závodná T, Krejčik Z, Rössner P, Kanninen K, Kinnunen T, Topinka J, Muala A, Sandström T, Korhonen P, Malm T. P07-16 Biometrics for the impact of acute air pollution on human peripheral immunity. Toxicol Lett 2022. [DOI: 10.1016/j.toxlet.2022.07.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Luna-Carrascal J, Quintana-Sosa M, Olivero-Verbel J. Genotoxicity biomarkers in car repair workers from Barranquilla, a Colombian Caribbean City. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:263-275. [PMID: 34839807 DOI: 10.1080/15287394.2021.2000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exposure to chemicals and particles generated in automotive repair shops is a common and underestimated problem. The objective of this study was to assess the genotoxic status of auto repair workers with (1) a questionnaire to gather sociodemographic information and self-reported exposure to hazardous chemicals and (2) measurement of various biochemical parameters. Blood and oral mucosa samples were collected from 174 male volunteers from Barranquilla, Colombia, aged 18-55 years: 87 were active car repairmen and 87 were individuals with no known exposure to hazardous chemicals. Peripheral blood lymphocytes were collected for the comet and cytokinesis-blocking micronucleus (CBMN) assays, while oral mucosal epithelium extracted to quantify micronucleated cells (MNC). DNA was extracted to assess polymorphisms in the DNA repair (XRCC1) and metabolism-related genes (GSTT1 and GSTM1) using PCR-RFLP. DNA damage and frequency of micronuclei (MN) in lymphocytes and oral mucosa were significantly higher in exposed compared to control group. In both groups genotypes and allelic variants for XRCC1 and GSTT1 met the Hardy-Weinberg equilibrium (HWE). In contrast, GSTM1 deviated from HWE. In the exposed group genotypic variants were not correlated with DNA damage or MN presence in cells. DNA damage and occurrence of MN in mucosa and lymphocytes correlated with age and time of service (occupational exposure ≥ 3 years). In summary, workers in car repair shops exhibited genotoxic effects depending upon exposure duration in the workplace which occurred independent of DNA repair XRCC1 gene and metabolism genes GSTT1 and GSTM1. Date demonstrate that health authorities improve air quality in auto repair facilities to avoid occupational DNA damage.
Collapse
Affiliation(s)
- Jaime Luna-Carrascal
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Milton Quintana-Sosa
- Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
9
|
Cheng W, Pang H, Campen MJ, Zhang J, Li Y, Gao J, Ren D, Ji X, Rothman N, Lan Q, Zheng Y, Leng S, Hu Z, Tang J. Circulatory metabolites trigger ex vivo arterial endothelial cell dysfunction in population chronically exposed to diesel exhaust. Part Fibre Toxicol 2022; 19:20. [PMID: 35313899 PMCID: PMC8939222 DOI: 10.1186/s12989-022-00463-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022] Open
Abstract
Background Chronic exposure to diesel exhaust has a causal link to cardiovascular diseases in various environmental and occupational settings. Arterial endothelial cell function plays an important role in ensuring proper maintenance of cardiovascular homeostasis and the endothelial cell dysfunction by circulatory inflammation is a hallmark in cardiovascular diseases. Acute exposure to diesel exhaust in controlled exposure studies leads to artery endothelial cells dysfunction in previous study, however the effect of chronic exposure remains unknown. Results We applied an ex vivo endothelial biosensor assay for serum samples from 133 diesel engine testers (DETs) and 126 non-DETs with the aim of identifying evidence of increased risk for cardiovascular diseases. Environmental monitoring suggested that DETs were exposed to high levels of diesel exhaust aerosol (282.3 μg/m3 PM2.5 and 135.2 μg/m3 elemental carbon). Surprisingly, chronic diesel exhaust exposure was associated with a pro-inflammatory phenotype in the ex vivo endothelial cell model, in a dose-dependent manner with CCL5 and VCAM as most affected genes. This dysfunction was not mediated by reduction in circulatory pro-inflammatory factors but significantly associated with a reduction in circulatory metabolites cGMP and an increase in primary DNA damage in leucocyte in a dose-dependent manner, which also explained a large magnitude of association between diesel exhaust exposure and ex vivo endothelial biosensor response. Exogenous cGMP addition experiment further confirmed the induction of ex vivo biosensor gene expressions in endothelial cells treated with physiologically relevant levels of metabolites cGMP. Conclusion Serum-borne bioactivity caused the arterial endothelial cell dysfunction may attribute to the circulatory metabolites based on the ex vivo biosensor assay. The reduced cGMP and increased polycyclic aromatic hydrocarbons metabolites-induced cyto/geno-toxic play important role in the endothelial cell dysfunction of workers chronic exposure to diesel exhaust. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00463-0.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Huanhuan Pang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jianzhong Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Jinling Gao
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Dunqiang Ren
- Department of Respiratory Medicine, Affiliated Hospital of Medical College of Qingdao University, Qingdao University, Qingdao, 266021, Shandong, China
| | - Xiaoya Ji
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM, 87131, USA. .,Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87131, USA.
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, 266021, Shandong, China.
| |
Collapse
|
10
|
Long E, Carlsten C. Controlled human exposure to diesel exhaust: results illuminate health effects of traffic-related air pollution and inform future directions. Part Fibre Toxicol 2022; 19:11. [PMID: 35139881 PMCID: PMC8827176 DOI: 10.1186/s12989-022-00450-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Air pollution is an issue of increasing interest due to its globally relevant impacts on morbidity and mortality. Controlled human exposure (CHE) studies are often employed to investigate the impacts of pollution on human health, with diesel exhaust (DE) commonly used as a surrogate of traffic related air pollution (TRAP). This paper will review the results derived from 104 publications of CHE to DE (CHE-DE) with respect to health outcomes. CHE-DE studies have provided mechanistic evidence supporting TRAP’s detrimental effects on related to the cardiovascular system (e.g., vasomotor dysfunction, inhibition of fibrinolysis, and impaired cardiac function) and respiratory system (e.g., airway inflammation, increased airway responsiveness, and clinical symptoms of asthma). Oxidative stress is thought to be the primary mechanism of TRAP-induced effects and has been supported by several CHE-DE studies. A historical limitation of some air pollution research is consideration of TRAP (or its components) in isolation, limiting insight into the interactions between TRAP and other environmental factors often encountered in tandem. CHE-DE studies can help to shed light on complex conditions, and several have included co-exposure to common elements such as allergens, ozone, and activity level. The ability of filters to mitigate the adverse effects of DE, by limiting exposure to the particulate fraction of polluted aerosols, has also been examined. While various biomarkers of DE exposure have been evaluated in CHE-DE studies, a definitive such endpoint has yet to be identified. In spite of the above advantages, this paradigm for TRAP is constrained to acute exposures and can only be indirectly applied to chronic exposures, despite the critical real-world impact of living long-term with TRAP. Those with significant medical conditions are often excluded from CHE-DE studies and so results derived from healthy individuals may not apply to more susceptible populations whose further study is needed to avoid potentially misleading conclusions. In spite of limitations, the contributions of CHE-DE studies have greatly advanced current understanding of the health impacts associated with TRAP exposure, especially regarding mechanisms therein, with important implications for regulation and policy.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
11
|
Møller P, Roursgaard M. Biomarkers of DNA Oxidation Products: Links to Exposure and Disease in Public Health Studies. Chem Res Toxicol 2021; 34:2235-2250. [PMID: 34704445 DOI: 10.1021/acs.chemrestox.1c00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposure can increase the production of reactive oxygen species and deplete cellular antioxidants in humans, resulting in oxidatively generated damage to DNA that is both a useful biomarker of oxidative stress and indicator of carcinogenic hazard. Methods of oxidatively damaged DNA analysis have been developed and used in public health research since the 1990s. Advanced techniques detect specific lesions, but they might not be applicable to complex matrixes (e.g., tissues), small sample volume, and large-scale studies. The most reliable methods are characterized by (1) detecting relevant DNA oxidation products (e.g., premutagenic lesions), (2) not harboring technical problems, (3) being applicable to complex biological mixtures, and (4) having the ability to process a large number of samples in a reasonable period of time. Most effort has been devoted to the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxodG), which can be analyzed by chromatographic, enzymic, and antibody-based methods. Results from validation trials have shown that certain chromatographic and enzymic assays (namely the comet assay) are superior techniques. The enzyme-modified comet assay has been popular because it is technically simpler than chromatographic assays. It is widely used in public health studies on environmental exposures such as outdoor air pollution. Validated biomarker assays on oxidatively damaged DNA have been used to fill knowledge gaps between findings in prospective cohort studies and hazards from contemporary sources of air pollution exposures. Results from each of these research fields feed into public health research as approaches to conduct primary prevention of diseases caused by environmental or occupational agents.
Collapse
Affiliation(s)
- Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
12
|
Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine. ENERGIES 2021. [DOI: 10.3390/en14164942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the environmental performance and energy efficiency of electricity generation from rice straw using a combined gasification and internal combustion engine (G/ICE). A life cycle assessment (LCA) was performed to consider the conversion to electricity of rice straw, the production of which was based on the Philippine farming practice. Rice straw is treated as a milled rice coproduct and assumes an environmental burden which is allocated by mass. The results of an impact assessment for climate change was used directly in a system dynamic model to plot the accumulated greenhouse gas emissions from the system and compare with various cases in order to perform sensitivity analyses. At a productivity of 334 kWh/t, the global warming potential (GWP) of the system is equal to 0.642 kg CO2-eq/MJ, which is 27% lower than the GWP of rice straw on-site burning. Mitigating biogenic methane emissions from flooded rice fields could reduce the GWP of the system by 34%, while zero net carbon emissions can be achieved at 2.78 kg CO2/kg of milled rice carbon sequestration. Other sources of greenhouse gas (GHG) emissions are the use of fossil fuels and production of chemicals for agricultural use. The use of agricultural machinery and transport lorries has the highest impact on eutrophication potential and human toxicity, while the application of pesticides and fertilizers has the highest impact on ecotoxicity. The biomass energy ratio (BER) and net energy ratio (NER) of the system is 0.065 and 1.64, respectively. The BER and NER can be improved at a higher engine efficiency from 22% to 50%. The use of electricity produced by the G/ICE system to supply farm and plant operations could reduce the environmental impact and efficiency of the process.
Collapse
|
13
|
Mishra PK, Bunkar N, Singh RD, Kumar R, Gupta PK, Tiwari R, Lodhi L, Bhargava A, Chaudhury K. Comparative profiling of epigenetic modifications among individuals living in different high and low air pollution zones: A pilot study from India. ENVIRONMENTAL ADVANCES 2021; 4:100052. [DOI: 10.1016/j.envadv.2021.100052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
14
|
Wong JYY, Cawthon R, Dai Y, Vermeulen R, Bassig BA, Hu W, Duan H, Niu Y, Downward GS, Leng S, Ji BT, Fu W, Xu J, Meliefste K, Zhou B, Yang J, Ren D, Ye M, Jia X, Meng T, Bin P, Hosgood Iii HD, Silverman DT, Rothman N, Zheng Y, Lan Q. Elevated Alu retroelement copy number among workers exposed to diesel engine exhaust. Occup Environ Med 2021; 78:823-828. [PMID: 34039759 DOI: 10.1136/oemed-2021-107462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Millions of workers worldwide are exposed to diesel engine exhaust (DEE), a known genotoxic carcinogen. Alu retroelements are repetitive DNA sequences that can multiply and compromise genomic stability. There is some evidence linking altered Alu repeats to cancer and elevated mortality risks. However, whether Alu repeats are influenced by environmental pollutants is unexplored. In an occupational setting with high DEE exposure levels, we investigated associations with Alu repeat copy number. METHODS A cross-sectional study of 54 male DEE-exposed workers from an engine testing facility and a comparison group of 55 male unexposed controls was conducted in China. Personal air samples were assessed for elemental carbon, a DEE surrogate, using NIOSH Method 5040. Quantitative PCR (qPCR) was used to measure Alu repeat copy number relative to albumin (Alb) single-gene copy number in leucocyte DNA. The unitless Alu/Alb ratio reflects the average quantity of Alu repeats per cell. Linear regression models adjusted for age and smoking status were used to estimate relations between DEE-exposed workers versus unexposed controls, DEE tertiles (6.1-39.0, 39.1-54.5 and 54.6-107.7 µg/m3) and Alu/Alb ratio. RESULTS DEE-exposed workers had a higher average Alu/Alb ratio than the unexposed controls (p=0.03). Further, we found a positive exposure-response relationship (p=0.02). The Alu/Alb ratio was highest among workers exposed to the top tertile of DEE versus the unexposed controls (1.12±0.08 SD vs 1.06±0.07 SD, p=0.01). CONCLUSION Our findings suggest that DEE exposure may contribute to genomic instability. Further investigations of environmental pollutants, Alu copy number and carcinogenesis are warranted.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George S Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Shuguang Leng
- Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Bu-Tian Ji
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jun Xu
- Hong Kong University, Hong Kong, China
| | - Kees Meliefste
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- China Medical University, Shenyang, Liaoning, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Meng Ye
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - H Dean Hosgood Iii
- Division of Epidemiology, Albert Einstein College of Medicine, Yeshiva University, New York, New York, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yuxin Zheng
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
15
|
Wadikar DL, Farooqui MO, Middey A, Bafana A, Pakade Y, Naoghare P, Vanisree AJ, Kannan K, Sivanesan S. Assessment of occupational exposure to diesel particulate matter through evaluation of 1-nitropyrene and 1-aminopyrene in surface coal miners, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:342. [PMID: 34002328 DOI: 10.1007/s10661-021-09121-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
DPM (diesel particulate matter) is ubiquitously present in the mining environment and is known for mutagenicity and carcinogenicity to humans. However, its health effects in surface coal mines are not well studied, particularly in India. In this study, DPM exposure and corresponding exposure biomarkers were investigated in four different surface coal mines in Central India. To document and evaluate the DPM exposure in surface coal miners, we characterized 1-NP (1-nitropyrene) in the mining environment as surrogate for DPM using Sioutas Cascade Impactor. Exposure biomarkers were analyzed by collecting post work shift (8-h work shift) urine samples and determining the concentrations of 1-aminopyrene (1-AP) as a metabolite of 1-NP and 8-hydroxydeoxyguanosine (8OHdG) as DNA damage marker. We observed high concentration of 1-NP (7.13-52.46 ng/m3) in all the mines compared with the earlier reported values. The average creatinine corrected 1-AP and 8OHdG levels ranged 0.07-0.43 [Formula: see text]g/g and 32.47-64.16 [Formula: see text]g/g, respectively, in different mines. We found 1-AP in majority of the mine workers' urine (55.53%) and its level was higher than that reported for general environmental exposure in earlier studies. Thus, the study finding indicates occupational exposure to DPM in all the four mines. However, the association between 1-NP level and exposure biomarkers (1-AP and 8OHdG) was inconsistent, which may be due to individual physiological variations. The data on exposure levels in this study will help to understand the epidemiological risk assessment of DPM in surface coal miners. Further biomonitoring and cohort study are needed to exactly quantify the occupational health impacts caused by DPM among coal miners.
Collapse
Affiliation(s)
- Dinesh L Wadikar
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI) Nehru Marg, Nagpur, India
- Department of Plant Biology & Biotechnology, Presidency College, Chennai, India
| | - M O Farooqui
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI) Nehru Marg, Nagpur, India
| | - Anirban Middey
- Air Pollution Control Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Amit Bafana
- Director's Research Cell, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Yogesh Pakade
- Cleaner Technology and Modelling Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Pravin Naoghare
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - A J Vanisree
- Department of Biochemistry, Guindy Campus University of Madras, Chennai, India
| | - Krishnamurthi Kannan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI) Nehru Marg, Nagpur, India
| | - Saravanadevi Sivanesan
- Health and Toxicity Cell, CSIR-National Environmental Engineering Research Institute (NEERI) Nehru Marg, Nagpur, India.
| |
Collapse
|
16
|
Orach J, Rider CF, Carlsten C. Concentration-dependent health effects of air pollution in controlled human exposures. ENVIRONMENT INTERNATIONAL 2021; 150:106424. [PMID: 33596522 DOI: 10.1016/j.envint.2021.106424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is a leading contributor to premature mortality worldwide and is often represented by particulate matter (PM), a key contributor to its harmful health effects. Concentration-response relationships are useful for quantifying the effects of air pollution in relevant populations and in considering potential effect thresholds. Controlled human exposures can provide data on acute effects and concentration-response relationships that complement epidemiological studies. OBJECTIVES We examined PM concentration-responses after controlled human air pollution exposures to examine exposure-response markers, assess effect modifiers, and identify potential effect thresholds. METHODS We reviewed primary research from published controlled human exposure studies where responses were reported at multiple target PM concentrations or summarized per unit change in PM to identify concentration-dependent effects. RESULTS Of the 191 publications identified through PubMed and supplementary searches, 31 were eligible. Eligible studies collectively represented four pollutant models: concentrated ambient particles, engineered carbon nanoparticles, diesel exhaust, and woodsmoke. We identified concentration-dependent effects on oxidative stress markers, inflammation, and cardiovascular function that overlapped across different pollutants. Metabolic syndrome and glutathione s-transferase mu 1 genotype were identified as potential effect modifiers. DISCUSSION Improved understanding of concentration-response relationships is integral to biomonitoring and mitigation of health effects through impact assessment and policy. Although we identified potential concentration-response markers, thresholds, and modifiers, our conclusions on these relationships were limited by a dearth of eligible publications, considerable variability in methodology, and inconsistent reporting standards between studies. More research is required to validate these observations. We recommend that future studies harmonize estimate reporting to facilitate the identification of robust response markers across research and applied settings.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Nieto Marín V, Echavarría Mazo LV, Londoño Berrio M, Orozco Jiménez LY, Estrada Vélez V, Isaza JP, Ortiz-Trujillo IC. Genotoxicity of organic material extracted from particulate matter of alternative fuels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17844-17852. [PMID: 33400118 DOI: 10.1007/s11356-020-10894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Global demand for energy is rapidly increasing, and resources for the production of petroleum-based fuels are running out. For this, renewable fuels like biodiesel and hydrotreated vegetable oil biofuel are considered important alternatives to replace such fuels. In this study, we evaluated the in vitro genotoxicity effect on HepG2 cells of organic material extracted from particulate matter emissions of an engine fueled with conventional diesel or mixtures of diesel with 10% of biomass. The emissions were collected in two operational modes, 2410 rpm (slope simulation) and 1890 rpm (plane). Genotoxicity was evaluated through two methods, chromosomal aberration test and the alkaline comet assay. The former did not show any genotoxic effect, but the latter exhibited a statistically significant effect despite the operational mode of the engine and the concentration organic material extracted. In conclusion, regardless of the concentration of organic material extracted from particulate matter, the operational mode of the engine, or the fuel used, a significant damage of the DNA was found. In general, at the physicochemical level, a decrease in the amount of emissions of the used fuels is not directly related to a decrease in the genotoxicity potential.
Collapse
Affiliation(s)
- Valentina Nieto Marín
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Leidy Vanessa Echavarría Mazo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Maritza Londoño Berrio
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Luz Yaneth Orozco Jiménez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Verónica Estrada Vélez
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Juan Pablo Isaza
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia
| | - Isabel Cristina Ortiz-Trujillo
- Grupo de Investigación Biología de Sistemas, Facultad de Medicina, Universidad Pontificia Bolivariana, Circular 1ra 70-01, Campus Laureles, Medellin, Colombia.
| |
Collapse
|
18
|
Hu W, Wang Y, Wang T, Ji Q, Jia Q, Meng T, Ma S, Zhang Z, Li Y, Chen R, Dai Y, Luan Y, Sun Z, Leng S, Duan H, Zheng Y. Ambient particulate matter compositions and increased oxidative stress: Exposure-response analysis among high-level exposed population. ENVIRONMENT INTERNATIONAL 2021; 147:106341. [PMID: 33383389 DOI: 10.1016/j.envint.2020.106341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Oxidative stress has been suggested to be one of the key drivers of health impact of particulate matter (PM). More studies on the oxidative potential of PM alone, but fewer studies have comprehensively evaluated the effects of external and internal exposure to PM compositions on oxidative stress in population. OBJECTIVE To comprehensively investigate the exposure-response relationship between PM and its main compositions with oxidative stress indicators. METHODS We conducted a cross-sectional study including 768 participants exposed to particulates. Environmental levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and metals in PM were measured, and urinary levels of PAHs metabolites and metals were measured as internal dose, respectively. Multivariable linear regression models were used to analyze the correlations of PM exposure and urinary levels of 8-hydroxy-2́'-deoxyguanosine (8-OHdG), and 8-iso-prostaglandin-F2α (8-iso-PGF2α) and malondialdehyde (MDA). RESULTS The concentration of both PM2.5 and total PAHs was significantly correlated with increased urinary 8-OHdG, 8-iso-PGF2α and MDA levels (all p < 0.05). The levels of 4 essential metals all showed significant exposure-response increase in urinary 8-OHdG in both current and non-current smokers (all p < 0.05); ambient selenium, cobalt and zinc were found to be significantly correlated with urinary 8-iso-PGF2α (p = 0.002, 0.003, 0.01, respectively); only selenium and cobalt were significantly correlated with urinary MDA (p < 0.001, 0.01, respectively). Furthermore, we found each one-unit increase in urinary total OH-PAHs generated a 0.32 increase in urinary 8-OHdG, a 0.22 increase in urinary 8-iso-PGF2α and a 0.19 increase in urinary MDA (all p < 0.001). Furthermore, it was found that the level of 12 urinary metals all showed significant and positive correlations with three oxidative stress biomarkers in all subjects (all p < 0.001). CONCLUSIONS Our systematic molecular epidemiological study showed that particulate matter components could induce increased oxidative stress on DNA and lipid. It may be more important to monitor and control the harmful compositions in PM rather than overall particulate mass.
Collapse
Affiliation(s)
- Wei Hu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qianpeng Ji
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong, China
| | - Tao Meng
- School of Medicine, Shanxi Datong University, Datong, China
| | - Sai Ma
- International Travel health Care Center, Qingdao Customs, Qingdao, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shangdong, China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, Qingdao, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
Mishra PK, Bunkar N, Singh RD, Kumar R, Gupta PK, Tiwari R, Lodhi L, Bhargava A, Chaudhury K. Comparative profiling of epigenetic modifications among individuals living in different high and low air pollution zones: A pilot study from India.. [DOI: 10.1101/2020.09.15.20194928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
Abstract
AbstractEpigenetic modifications act as an important bridge to regulate the complex network of gene-environment interaction. As these mechanisms determines the gene-expression patterns via regulating the transcriptomic machinery, environmental stress induced epigenetic modifications may interrupt distinct cellular functions resulting into generation of diseased phenotypes. In the present study, we used a multi-city approach to compare the epigenomic signatures of individuals living in two tiers of Indian cities categorized as low-risk and high-risk air pollution zones. The high-risk group reported marked changes in the expression levels of epigenetic modifiers (DNMT1, DNMT3a, EZH2, EHMT2 and HAT), that maintains the levels of specific epigenetic marks essential for appropriate gene functioning. These results also coincided with the observed alterations in the levels of DNA methylation (LINE-1 and % 5mC), and histone modifications (H3 and H4), among the high-risk group. In addition, higher degree of changes reported in the expression profile of a selected miRNA panel in the high-risk group indicated the probability of deregulated transcriptional machinery. This was further confirmed by the analysis of a target gene panel involved in various signalling pathways, which revealed differential expression of the gene transcripts regulating cell cycle, inflammation, cell survival, apoptosis and cell adhesion. Together, our results provide first insights of epigenetic modifications among individuals living in different high and low levels of air pollution zones of India. However, further steps to develop a point-of-care epigenomic assay for human bio-monitoring may be immensely beneficial to reduce the health burden of air pollution especially in lower-middle-income countries.
Collapse
|
20
|
León-Mejía G, Quintana-Sosa M, de Moya Hernandez Y, Rodríguez IL, Trindade C, Romero MA, Luna-Carrascal J, Ortíz LO, Acosta-Hoyos A, Ruiz-Benitez M, Valencia KF, Rohr P, da Silva J, Henriques JAP. DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20516-20526. [PMID: 32246425 DOI: 10.1007/s11356-020-08533-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Milton Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | | | - Ibeth Luna Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Paula Rohr
- Laboratório de Genética, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Campus Carreiros, Av. Itália km 8, Rio Grande, RS, 96201-900, Brazil
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21113743. [PMID: 32466448 PMCID: PMC7313038 DOI: 10.3390/ijms21113743] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine. 8-hydroxy-2-deoxyguanosine is considered a biomarker for oxidative damage of DNA. It is needed to define background ranges for 8-OHdG, to use it as a measure of oxidative stress overproduction. We established a standardized protocol for a systematic review and meta-analysis to assess background ranges for urinary 8-OHdG concentrations in healthy populations. We computed geometric mean (GM) and geometric standard deviations (GSD) as the basis for the meta-analysis. We retrieved an initial 1246 articles, included 84 articles, and identified 128 study subgroups. We stratified the subgroups by body mass index, gender, and smoking status reported. The pooled GM value for urinary 8-OHdG concentrations in healthy adults with a mean body mass index (BMI) ≤ 25 measured using chemical methods was 3.9 ng/mg creatinine (interquartile range (IQR): 3 to 5.5 ng/mg creatinine). A significant positive association was observed between smoking and urinary 8-OHdG concentrations when measured by chemical analysis. No gender effect was observed.
Collapse
|
22
|
Meng T, Zhang M, Song J, Dai Y, Duan H. Development of a co-culture model of mouse primary hepatocytes and splenocytes to evaluate xenobiotic genotoxicity using the medium-throughput Comet assay. Toxicol In Vitro 2020; 66:104874. [PMID: 32339639 DOI: 10.1016/j.tiv.2020.104874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023]
Abstract
To date, only a limited number of toxicological studies have focused on the establishment and validation of in vitro genotoxicity screening systems using primary hepatocytes, and the results of these studies have been inconsistent. Therefore, the aim of this study was to develop an effective co-culture model of mouse-derived primary hepatocytes and splenocytes for screening chemicals for genotoxicity using the medium-throughput Comet assay. This cocultured model was constructed and verified using known genotoxic and non-genotoxic compounds as positive and negative controls, respectively. Cytotoxicity was measured using Cell Counting Kit-8 and lactate dehydrogenase methods. DNA damage was detected using both alkaline and formamidopyrimidine DNA glycosylase (FPG) Comet assays. Compared with the controls, DNA strand breaks and FPG-sensitive sites showed significant concentration-dependent increases in genotoxic-agent-treated groups. In contrast, DNA damage remained unchanged in non-genotoxic-agent-treated groups. In addition, different types of genotoxic agents resulted in different time-dependent DNA lesions. Our results indicated that the % tail DNA indicating both DNA strand breaks and FPG-sensitive sites might be effective markers for predicting chemical-induced DNA damage and oxidative DNA damage using the cocultured model of hepatocytes and splenocytes. Collectively, these findings provide reliable experimental data for the establishment of in vitro genotoxicity screening methods.
Collapse
Affiliation(s)
- Tao Meng
- School of Medicine, Shanxi Datong University, Shanxi Datong 037009, China; The First Hospital of Shanxi Datong University, Shanxi Datong 037009, China.
| | - Man Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiayang Song
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
23
|
León-Mejía G, Luna-Rodríguez I, Trindade C, Oliveros-Ortíz L, Anaya-Romero M, Luna-Carrascal J, Navarro-Ojeda N, Ruiz-Benitez M, Franco-Valencia K, Da Silva J, Henriques JAP, Muñoz-Acevedo A, Quintana-Sosa M. Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:264-273. [PMID: 30612014 DOI: 10.1016/j.ecoenv.2018.12.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Diesel engine exhaust (DEE), which is the product of diesel combustion, is considered carcinogenic in humans. It comprises toxic gases, polycyclic aromatic hydrocarbons (PAHs) and particulate matter which can reach the pulmonary parenchyma and trigger various diseases, including cancer. The aim of the present study was to evaluate the potential cytotoxic and genotoxic effects of DEE exposure on peripheral blood and buccal epithelial cells in mechanics occupationally exposed to DEE. We recruited 120 exposed mechanics and 100 non-exposed control individuals. Significant differences were observed between the two groups in terms of percentage of tail DNA and damage index (DI) in the alkaline comet assay; levels of biomarkers by cytokinesis-block micronucleus cytome (CBMN-Cyt) assay; frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD) and apoptotic cells (APOP) and levels of biomarkers for micronucleus, karyorrhexis (KRX), karyolysis (KRL) and condensed chromatin (CC) by the buccal micronucleus cytome (BM-Cyt) assay. A significant and positive correlation was found between the frequency of MN in lymphocytes and buccal cells in the exposed group. Also, there was a significant correlation between age and percentage of tail DNA and DI in the comet assay, APOP and MN in the CBMN-Cyt assay and NBUD and MN in the BM-Cyt assay. Additionally, we found a positive and significant correlation of MN frequency in lymphocytes and buccal cells and age and MN frequency in lymphocytes with the time of service (years). Regarding lifestyle-related factors, a significant correlation was observed between meat and vitamin consumption and NBUD formation on CBMN-Cyt and between meat consumption and MN formation on CBMN-Cyt. Of the BM-Cyt biomarkers, there was a correlation between alcohol consumption and NBUD formation and between binucleated cell (BN), pyknosis (PYC), CC and KRL occurrence and family cancer history. These results are the first data in Colombia on the cytotoxic and genotoxic effects induced by continuous exposure to DEE and thus showed the usefulness of biomarkers of the comet, CBMN-Cyt and BM-Cyt assays for human biomonitoring and evaluation of cancer risk in the exposed populations.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| | - Ibeth Luna-Rodríguez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Cristiano Trindade
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Ludis Oliveros-Ortíz
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Marco Anaya-Romero
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Jaime Luna-Carrascal
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Nebis Navarro-Ojeda
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Karen Franco-Valencia
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | - João Antônio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Amner Muñoz-Acevedo
- Grupo de Investigación en Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - M Quintana-Sosa
- Universidad Simón Bolívar, Facultad de Ciencias Básicas y Biomédicas, Barranquilla, Colombia.
| |
Collapse
|
24
|
Rynning I, Arlt VM, Vrbova K, Neča J, Rossner Jr P, Klema J, Ulvestad B, Petersen E, Skare Ø, Haugen A, Phillips DH, Machala M, Topinka J, Mollerup S. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occup Environ Med 2019; 76:10-16. [PMID: 30425118 PMCID: PMC6327869 DOI: 10.1136/oemed-2018-105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Rossner Jr
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Bente Ulvestad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Elisabeth Petersen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
25
|
Zhang HW, Kok VC, Chuang SC, Tseng CH, Lin CT, Li TC, Sung FC, Wen CP, Hsiung CA, Hsu CY. Long-Term Exposure to Ambient Hydrocarbons Increases Dementia Risk in People Aged 50 Years and above in Taiwan. Curr Alzheimer Res 2019; 16:1276-1289. [PMID: 31902365 DOI: 10.2174/1567205017666200103112443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alzheimer's disease, the most common cause of dementia among the elderly, is a progressive and irreversible neurodegenerative disease. Exposure to air pollutants is known to have adverse effects on human health, however, little is known about hydrocarbons in the air that can trigger a dementia event. OBJECTIVE We aimed to investigate whether long-term exposure to airborne hydrocarbons increases the risk of developing dementia. METHOD The present cohort study included 178,085 people aged 50 years and older in Taiwan. Cox proportional hazards regression analysis was used to fit the multiple pollutant models for two targeted pollutants, including total hydrocarbons and non-methane hydrocarbons, and estimated the risk of dementia. RESULTS Before controlling for multiple pollutants, hazard ratios with 95% confidence intervals for the overall population were 7.63 (7.28-7.99, p <0.001) at a 0.51-ppm increases in total hydrocarbons, and 2.94 (2.82-3.05, p <0.001) at a 0.32-ppm increases in non-methane hydrocarbons. The highest adjusted hazard ratios for different multiple-pollutant models of each targeted pollutant were statistically significant (p <0.001) for all patients: 11.52 (10.86-12.24) for total hydrocarbons and 9.73 (9.18-10.32) for non-methane hydrocarbons. CONCLUSION Our findings suggest that total hydrocarbons and non-methane hydrocarbons may be contributing to dementia development.
Collapse
Affiliation(s)
- Han-Wei Zhang
- Program for Aging, China Medical University, Taichung, Taiwan
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Victor C Kok
- Disease Informatics Research Group, Asia University, Taichung, Taiwan
- Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Shu-Chun Chuang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chun-Hung Tseng
- Department of Neurology, China Medical University Hospital, and School of Medicine, China Medical University, Taichung, Taiwan
| | - Chin-Teng Lin
- Institute of Electrical Control Engineering, Department of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Chiao Tung University, Hsinchu, Taiwan
- Co- Director, Centre for Artificial Intelligence School of Software, Faculty of Engineering & IT, University of Technology Sydney Broadway 2007, New South Wales, Australia
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan
| | - Fung-Chang Sung
- Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chi P Wen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chao A Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
26
|
Niu Y, Zhang X, Meng T, Wang H, Bin P, Shen M, Chen W, Yu S, Leng S, Zheng Y. Exposure characterization and estimation of benchmark dose for cancer biomarkers in an occupational cohort of diesel engine testers. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:579-588. [PMID: 30185938 DOI: 10.1038/s41370-018-0061-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Exposure to diesel engine exhaust (DEE) was associated with various adverse health effects including lung cancer. Particle size distribution and profiles of organic compounds in both particle and gas phases of DEE that could provide valuable insights into related health effects were measured in a diesel engine testing workshop. Concentrations of urinary 6 mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 137 DEE-exposed workers and 127 non-DEE-exposed workers were determined. Benchmark dose method was applied to estimate lower limit of benchmark dose (BMDL) of urinary OH-PAHs most specific to DEE exposure for previously reported cancer biomarkers. We found that 84.3% of diesel exhaust particles were ultrafine particles. Indeno[123-cd]pyrene and phenanthrene were the most abundant carcinogenic and noncarcinogenic PAHs in the particle phase of DEE, respectively. Principal component analysis demonstrated that urinary hydroxyphenanthrene (OHPhe) had highest loading value on principal component (PC) representative of DEE exposure and lowest loading value on PC representative of smoking status. BMDLs of urinary OHPhe from best-fitting models for cancer biomarkers including micronucleus and 1,N6-ethenodeoxyadenosine were 1.08 μg/g creatinine and 2.82 μg/g creatinine, respectively. These results provided basis for understanding DEE exposure induced health effects and potential threshold for regulating DEE levels in an occupational setting.
Collapse
Affiliation(s)
- Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Rd, Beijing, 100050, China
| | | | | | - Haisheng Wang
- Luoyang Center for Disease Control and Prevention, 9 Zhenghe Rd, Luoyang, 471000, China
| | | | | | - Wen Chen
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, 2 Zhongshan Rd, Guangdong, 510080, China
| | - Shanfa Yu
- Henan Institute of Occupational Medicine, Kangfuxi Street, Zhengzhou, 450052, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, 38 Dengzhou Rd, Qingdao, 266021, China.
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 38 Dengzhou Rd, Qingdao, 266021, China
| |
Collapse
|
27
|
Brugha R, Edmondson C, Davies JC. Outdoor air pollution and cystic fibrosis. Paediatr Respir Rev 2018; 28:80-86. [PMID: 29793860 DOI: 10.1016/j.prrv.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/01/2023]
Abstract
Outdoor air pollution is increasingly identified as a contributor to respiratory and cardiovascular disease. Pro-inflammatory particles and gases are inhaled deep into the lungs, and are associated with impaired lung growth and exacerbations of chronic respiratory diseases. The magnitude of these effects are of interest to patients and families, and have been assessed in studies specific to CF. Using systematic review methodology, we sought to collate these studies in order to summarise the known effects of air pollution in cystic fibrosis, and to present information on decreasing personal air pollution exposures.
Collapse
Affiliation(s)
- Rossa Brugha
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Claire Edmondson
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| | - Jane C Davies
- Gene Therapy, National Heart and Lung Institute, Imperial College London, Emmanuel Kaye Building, Manresa Road, London SW3 6LR, United Kingdom.
| |
Collapse
|
28
|
Wong JYY, Margolis HG, Machiela M, Zhou W, Odden MC, Psaty BM, Robbins J, Jones RR, Rotter JI, Chanock SJ, Rothman N, Lan Q, Lee JS. Outdoor air pollution and mosaic loss of chromosome Y in older men from the Cardiovascular Health Study. ENVIRONMENT INTERNATIONAL 2018; 116:239-247. [PMID: 29698900 PMCID: PMC5971001 DOI: 10.1016/j.envint.2018.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/09/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Mosaic loss of chromosome Y (mLOY) can occur in a fraction of cells as men age, which is potentially linked to increased mortality risk. Smoking is related to mLOY; however, the contribution of air pollution is unclear. OBJECTIVE We investigated whether exposure to outdoor air pollution, age, and smoking were associated with mLOY. METHODS We analyzed baseline (1989-1993) blood samples from 933 men ≥65 years of age from the prospective Cardiovascular Health Study. Particulate matter ≤10 μm (PM10), carbon monoxide, nitrogen dioxide, sulfur dioxide, and ozone data were obtained from the U.S. EPA Aerometric Information Retrieval System for the year prior to baseline. Inverse-distance weighted air monitor data were used to estimate each participants' monthly residential exposure. mLOY was detected with standard methods using signal intensity (median log-R ratio (mLRR)) of the male-specific chromosome Y regions from Illumina array data. Linear regression models were used to evaluate relations between mean exposure in the prior year, age, smoking and continuous mLRR. RESULTS Increased PM10 was associated with mLOY, namely decreased mLRR (p-trend = 0.03). Compared with the lowest tertile (≤28.5 μg/m3), the middle (28.5-31.0 μg/m3; β = -0.0044, p = 0.09) and highest (≥31 μg/m3; β = -0.0054, p = 0.04) tertiles had decreased mLRR, adjusted for age, clinic, race/cohort, smoking status and pack-years. Additionally, increasing age (β = -0.00035, p = 0.06) and smoking pack-years (β = -0.00011, p = 1.4E-3) were associated with decreased mLRR, adjusted for each other and race/cohort. No significant associations were found for other pollutants. CONCLUSIONS PM10 may increase leukocyte mLOY, a marker of genomic instability. The sample size was modest and replication is warranted.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Helene G Margolis
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Mitchell Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Leidos Biomedical Research Inc., Bethesda, MD, USA
| | - Michelle C Odden
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, WA, USA.; Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - John Robbins
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Rena R Jones
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jennifer S Lee
- Division of Endocrinology, Gerontology, and Metabolism, Department of Medicine, and Division of Epidemiology, Department of Health Research and Policy, School of Medicine, Stanford University, Stanford, CA, USA; Medical Services, Veteran Affairs, Palo Alto, Health Care System, CA, USA
| |
Collapse
|
29
|
Yang D, Yang X, Deng F, Guo X. Ambient Air Pollution and Biomarkers of Health Effect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1017:59-102. [PMID: 29177959 DOI: 10.1007/978-981-10-5657-4_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.
Collapse
Affiliation(s)
- Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Xuan Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China
| |
Collapse
|
30
|
Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite for pipette-tip solid phase extraction of 16 polycyclic aromatic hydrocarbons in human blood sample. J Chromatogr A 2018; 1552:1-9. [PMID: 29673765 DOI: 10.1016/j.chroma.2018.03.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitously found in the environment and have been proved to be prospectively associated with the risk of cancer. In this study, a simple method based on pipette-tip solid phase extraction (PT-SPE) and gas chromatography-mass spectrometry (GC-MS) has been firstly developed for the determination of 16 PAHs in human whole blood. Three-dimensional ionic liquid-ferrite functionalized graphene oxide nanocomposite (3D-IL-Fe3O4-GO) was used as sorbent in PT-SPE. Compared with conventional SPE method, the PT-SPE method was solvent-saving (1.0 mL), reusable (at least 10 times) and required less blood sample (200 μL). Affecting parameters on extraction efficiency were investigated and optimized. Under the optimized conditions, a good linearity was obtained and the recoveries of 16 PAHs at three spiked levels ranged from 85.0% to 115%. The limits of quantification (LOQs) were in the range of 0.007-0.013 μg/L. Furthermore, the developed method was successfully applied to the analysis of 16 PAHs in 14 human blood samples. The results showed that the predominant PAHs in human whole blood was low-molecular-weight PAHs, with the rank order phenanthrene (PHE)> naphthalene (NAP)> fluorene (FLU)> fluoranthene (FLT)> pyrene (PYR). Because of its simplicity, accuracy and reliability, the PT-SPE method combined with GC-MS demonstrated the applicability for clinical analysis and provided more information for PAHs exposure studies.
Collapse
|
31
|
Peixoto MS, de Oliveira Galvão MF, Batistuzzo de Medeiros SR. Cell death pathways of particulate matter toxicity. CHEMOSPHERE 2017; 188:32-48. [PMID: 28865791 DOI: 10.1016/j.chemosphere.2017.08.076] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models.
Collapse
Affiliation(s)
- Milena Simões Peixoto
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Marcos Felipe de Oliveira Galvão
- Graduate Program in Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | | |
Collapse
|
32
|
Wang H, Duan H, Meng T, Yang M, Cui L, Bin P, Dai Y, Niu Y, Shen M, Zhang L, Zheng Y, Leng S. Local and Systemic Inflammation May Mediate Diesel Engine Exhaust–Induced Lung Function Impairment in a Chinese Occupational Cohort. Toxicol Sci 2017; 162:372-382. [DOI: 10.1093/toxsci/kfx259] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Haitao Wang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mo Yang
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Lianhua Cui
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Ping Bin
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Meili Shen
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Liping Zhang
- Department of Environmental Health, Faculty of Public Health, Weifang Medical University, Weifang 261053, China
| | - Yuxin Zheng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Shuguang Leng
- Department of Environmental and Occupational Health, School of Public Health, Qingdao University, Qingdao 266021, China
| |
Collapse
|
33
|
Tan C, Lu S, Wang Y, Zhu Y, Shi T, Lin M, Deng Z, Wang Z, Song N, Li S, Yang P, Yang L, Liu Y, Chen Z, Xu K. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 593-594:330-336. [PMID: 28346906 DOI: 10.1016/j.scitotenv.2017.03.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/19/2017] [Accepted: 03/19/2017] [Indexed: 06/06/2023]
Abstract
The specific effects of long-term exposure to high air pollution on human health and biological remain unclear. To explore the adverse health effects as well as biological mechanisms and biomarkers for durative exposure to air pollution, 183 traffic policemen and 88 office policemen were enrolled in this study. The concentration of PM2.5 in both the traffic and office policemen's working environments were obtained. Detailed personal questionnaires were completed and levels of inflammation, oxidative stress and DNA damage markers of all participants were analyzed in this study. The average PM2.5 concentration of the intersections of main roads and the offices of control group were 132.4±48.9μg/m3 and 50.80±38.6μg/m3, respectively. The traffic policemen, who stably exposed to at least 2 times higher PM2.5 in their work area as compared with the control group, have a median average duration of 7.00years, and average cumulative intersection duty time reached 8030h. No statistically significant differences in the levels of inflammation markers were observed between the traffic and office policemen. However, the DNA damage markers in traffic policemen shared significant positive correlation with cumulative intersection duty time and higher than those in the office policemen. Multiple linear regression analysis demonstrated that the increase of cumulative intersection duty time by 1h per day for one year was associated with the increase in 8-hydroxy-20-deoxyguanosine of 0.329% (95% CI: 0.249% to 0.409%), tail DNA of 0.051% (95% CI: 0.041% to 0.061%), micronucleus frequency of 0.036‰ (95% CI: 0.03‰ to 0.043‰), and a decrease in glutathione of 0.482% (95% CI: -0.652% to -0.313%). These findings suggest that long-term exposure to high air pollution could induce cumulative DNA damages, supporting the hypothesis that durative exposure to air pollution is associated with an increased risk of cancer.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Shijie Lu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yupeng Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yan Zhu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Ting Shi
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Mingyue Lin
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhonghua Deng
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhu Wang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Nana Song
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Shuna Li
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Pingting Yang
- Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China
| | - Liyan Yang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yuanyuan Liu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Zhiheng Chen
- Health Management Centre, The Third Xiangya Hospital, Central South University, Changsha 410013, PR China.
| | - Keqian Xu
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| |
Collapse
|
34
|
Turner MC, Krewski D, Diver WR, Pope CA, Burnett RT, Jerrett M, Marshall JD, Gapstur SM. Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087013. [PMID: 28886601 PMCID: PMC5783657 DOI: 10.1289/ehp1249] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/31/2017] [Accepted: 03/31/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer classified both outdoor air pollution and airborne particulate matter as carcinogenic to humans (Group 1) for lung cancer. There may be associations with cancer at other sites; however, the epidemiological evidence is limited. OBJECTIVE The aim of this study was to clarify whether ambient air pollution is associated with specific types of cancer other than lung cancer by examining associations of ambient air pollution with nonlung cancer death in the Cancer Prevention Study II (CPS-II). METHODS Analysis included 623,048 CPS-II participants who were followed for 22 y (1982-2004). Modeled estimates of particulate matter with aerodynamic diameter <2.5µm (PM2.5) (1999-2004), nitrogen dioxide (NO2) (2006), and ozone (O3) (2002-2004) concentrations were linked to the participant residence at enrollment. Cox proportional hazards models were used to estimate associations per each fifth percentile-mean increment with cancer mortality at 29 anatomic sites, adjusted for individual and ecological covariates. RESULTS We observed 43,320 nonlung cancer deaths. PM2.5 was significantly positively associated with death from cancers of the kidney {adjusted hazard ratio (HR) per 4.4 μg/m3=1.14 [95% confidence interval (CI): 1.03, 1.27]} and bladder [HR=1.13 (95% CI: 1.03, 1.23)]. NO2 was positively associated with colorectal cancer mortality [HR per 6.5 ppb=1.06 (95% CI: 1.02, 1.10). The results were similar in two-pollutant models including PM2.5 and NO2 and in three-pollutant models with O3. We observed no statistically significant positive associations with death from other types of cancer based on results from adjusted models. CONCLUSIONS The results from this large prospective study suggest that ambient air pollution was not associated with death from most nonlung cancers, but associations with kidney, bladder, and colorectal cancer death warrant further investigation. https://doi.org/10.1289/EHP1249.
Collapse
Affiliation(s)
- Michelle C Turner
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa, Canada
- Barcelona Institute for Global Health (ISGlobal) , Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP) , Madrid, Spain
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa , Ottawa, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa , Ottawa, Canada
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society , Atlanta, Georgia, USA
| | - C Arden Pope
- Department of Economics, Brigham Young University , Provo, Utah, USA
| | | | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles , Los Angeles, California, USA
| | - Julian D Marshall
- Department of Civil and Environmental Engineering, University of Washington , Seattle, Washington, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society , Atlanta, Georgia, USA
| |
Collapse
|
35
|
Yang J, Zhang H, Zhang H, Wang W, Liu Y, Fan Y. Smoking modify the effects of polycyclic aromatic hydrocarbons exposure on oxidative damage to DNA in coke oven workers. Int Arch Occup Environ Health 2017; 90:423-431. [PMID: 28181029 DOI: 10.1007/s00420-017-1206-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Coke oven emissions containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Numerous epidemiological studies have suggested that oxidative DNA damage may play a pivotal role in the carcinogenic mechanism of lung cancer. Little is known about the effect of interaction between PAHs exposure and lifestyle on DNA oxidative damage. METHODS The study population is composed by coke oven workers (365) and water treatment workers (144), and their urinary levels of four PAH metabolites and 8-hydroxydeoxyguanosine (8-OHdG) were determined. Airborne samples of exposed sites (4) and control sites (3) were collected, and eight carcinogenic PAHs were detected by high-performance liquid chromatography. RESULTS The median values of the sum of eight carcinogenic PAHs and BaP in exposed sites were significantly higher than control sites (P < 0.01). The study found that the urinary PAH metabolites were significantly elevated in coke oven workers (P < 0.01). Multivariate logistic regression analysis revealed that the risk of high levels of urinary 8-OHdG will increase with increasing age, cigarette consumption, and levels of urinary 1-hydroxypyrene, and P for trend were all <0.05. Smoking can significantly modify the effects of urinary 1-hydroxypyrene on high concentrations urinary 8-OHdG, during co-exposure to both light or heavy smoking and high 1-hydroxypyrene levels (OR 4.28, 95% CI 1.32-13.86 and OR 5.05, 95% CI 1.63-15.67, respectively). CONCLUSIONS Our findings quantitatively demonstrate that workers exposed to coke oven fumes and smoking will cause more serious DNA oxidative damage.
Collapse
Affiliation(s)
- Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China.
| | - Hongjie Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Huitao Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Wubin Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Yanli Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| | - Yanfeng Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, 030001, Taiyuan, China
| |
Collapse
|
36
|
Meng X, Liu Q, Ding Y. Paper-based solid-phase microextraction for analysis of 8-hydroxy-2’-deoxyguanosine in urine sample by CE-LIF. Electrophoresis 2016; 38:494-500. [DOI: 10.1002/elps.201600439] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangying Meng
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Qinrui Liu
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| | - Yongsheng Ding
- College of Life Sciences; University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
37
|
Comet assay: an essential tool in toxicological research. Arch Toxicol 2016; 90:2315-36. [DOI: 10.1007/s00204-016-1767-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|