1
|
Yagi K, Ethridge AD, Falkowski NR, Huang YJ, Elesela S, Huffnagle GB, Lukacs NW, Fonseca W, Asai N. Microbiome modifications by steroids during viral exacerbation of asthma and in healthy mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L646-L660. [PMID: 39159427 PMCID: PMC11560076 DOI: 10.1152/ajplung.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
In the present studies, the assessment of how viral exacerbation of asthmatic responses with and without pulmonary steroid treatment alters the microbiome in conjunction with immune responses presents striking data. The overall findings identify that although steroid treatment of allergic animals diminished the severity of the respiratory syncytial virus (RSV)-induced exacerbation of airway function and mucus hypersecretion, there were local increases in IL-17 expression. Analysis of the lung and gut microbiome suggested that there are differences in RSV exacerbation that are further altered by fluticasone (FLUT) treatment. Using metagenomic inference software, PICRUSt2, we were able to predict that the metabolite profile produced by the changed gut microbiome was significantly different with multiple metabolic pathways and associated with specific treatments with or without FLUT. Importantly, measuring plasma metabolites in an unbiased manner, our data indicate that there are significant changes associated with chronic allergen exposure, RSV exacerbation, and FLUT treatment that are reflective of responses to the disease and treatment. In addition, the changes in metabolites appeared to have contributions from both host and microbial pathways. To understand if airway steroids on their own altered lung and gut microbiome along with host responses to RSV infection, naïve animals were treated with lung FLUT before RSV infection. The naïve animals treated with FLUT before RSV infection demonstrated enhanced disease that corresponded to an altered microbiome and the related PICRUSt2 metagenomic inference analysis. Altogether, these findings set the foundation for identifying important correlations of severe viral exacerbated allergic disease with microbiome changes and the relationship of host metabolome with a potential for early life pulmonary steroid influence on subsequent viral-induced disease.NEW & NOTEWORTHY These studies outline a novel finding that airway treatment with fluticasone, a commonly used inhaled steroid, has significant effects on not only the local lung environment but also on the mucosal microbiome, which may have significant disease implications. The findings further provide data to support that pulmonary viral exacerbations of asthma with or without steroid treatment alter the lung and gut microbiome, which have an impact on the circulating metabolome that likely alters the trajectory of disease progression.
Collapse
Affiliation(s)
- Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Alexander D Ethridge
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicole R Falkowski
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Molecular, Cellular, and Developmental Biology , University of Michigan, Ann Arbor, Michigan, United States
| | - Yvonne J Huang
- Division of Pulmonary and Critical Medicine, Department of Medicine, University of Michigan, Ann Arbor, United States
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Gary B Huffnagle
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Division of Pulmonary and Critical Medicine, Department of Medicine, University of Michigan, Ann Arbor, United States
- Department of Molecular, Cellular, and Developmental Biology , University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
- Immunology Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Nobuhiro Asai
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Mendez KM, Begum S, Tiwari A, Sharma R, Chen Q, Kelly RS, Prince N, Huang M, Kachroo P, Chu SH, Chen Y, Lee-Sarwar K, Broadhurst DI, Reinke SN, Gerszten R, Clish C, Avila L, Celedón JC, Wheelock CE, Weiss ST, McGeachie M, Lasky-Su JA. Metabolite signatures associated with microRNA miR-143-3p serve as drivers of poor lung function trajectories in childhood asthma. EBioMedicine 2024; 102:105025. [PMID: 38458111 PMCID: PMC10937568 DOI: 10.1016/j.ebiom.2024.105025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Lung function trajectories (LFTs) have been shown to be an important measure of long-term health in asthma. While there is a growing body of metabolomic studies on asthma status and other phenotypes, there are no prospective studies of the relationship between metabolomics and LFTs or their genomic determinants. METHODS We utilized ordinal logistic regression to identify plasma metabolite principal components associated with four previously-published LFTs in children from the Childhood Asthma Management Program (CAMP) (n = 660). The top significant metabolite principal component (PCLF) was evaluated in an independent cross-sectional child cohort, the Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (n = 1151) and evaluated for association with spirometric measures. Using meta-analysis of CAMP and GACRS, we identified associations between PCLF and microRNA, and SNPs in their target genes. Statistical significance was determined using an false discovery rate-adjusted Q-value. FINDINGS The top metabolite principal component, PCLF, was significantly associated with better LFTs after multiple-testing correction (Q-value = 0.03). PCLF is composed of the urea cycle, caffeine, corticosteroid, carnitine, and potential microbial (secondary bile acid, tryptophan, linoleate, histidine metabolism) metabolites. Higher levels of PCLF were also associated with increases in lung function measures and decreased circulating neutrophil percentage in both CAMP and GACRS. PCLF was also significantly associated with microRNA miR-143-3p, and SNPs in three miR-143-3p target genes; CCZ1 (P-value = 2.6 × 10-5), SLC8A1 (P-value = 3.9 × 10-5); and TENM4 (P-value = 4.9 × 10-5). INTERPRETATION This study reveals associations between metabolites, miR-143-3p and LFTs in children with asthma, offering insights into asthma physiology and possible interventions to enhance lung function and long-term health. FUNDING Molecular data for CAMP and GACRS via the Trans-Omics in Precision Medicine (TOPMed) program was supported by the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Kevin M Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rinku Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel S Kelly
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicole Prince
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mengna Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Su H Chu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathleen Lee-Sarwar
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David I Broadhurst
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Stacey N Reinke
- Centre for Integrative Metabolomics & Computational Biology, School of Science, Edith Cowan University, Perth, Australia
| | - Robert Gerszten
- Department of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Lydiana Avila
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael McGeachie
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Tattersall MC, Jarjour NN, Busse PJ. Systemic Inflammation in Asthma: What Are the Risks and Impacts Outside the Airway? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:849-862. [PMID: 38355013 PMCID: PMC11219096 DOI: 10.1016/j.jaip.2024.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Airway inflammation in asthma has been well recognized for several decades, with general agreement on its role in asthma pathogenesis, symptoms, propensity toward exacerbation, and decline in lung function. This has led to universal recommendation in asthma management guidelines to incorporate the use of inhaled corticosteroid as an anti-inflammatory therapy for all patients with persistent asthma symptoms. However, there has been limited attention paid to the presence and potential impact of systemic inflammation in asthma. Accumulating evidence from epidemiological observations and cohort studies points to a host of downstream organ dysfunction in asthma especially among patients with longstanding or more severe disease, frequent exacerbations, and underlying risk factors for organ dysfunction. Most studies to date have focused on cognitive impairment, depression/anxiety, metabolic syndrome, and cardiovascular abnormalities. In this review, we summarize some of the evidence demonstrating these abnormalities and highlight the proposed mechanisms and potential benefits of treatment in limiting these extrapulmonary abnormalities in patients with asthma. The goal of this commentary is to raise awareness of the importance of recognizing potential extrapulmonary conditions associated with systemic inflammation of asthma. This area of treatment of patients with asthma is a large unmet need.
Collapse
Affiliation(s)
- Matthew C Tattersall
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Paula J Busse
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
5
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
6
|
Wang F, Shang Y. Radical S-adenosyl methionine domain-containing 2, a potential target of D-tryptophan in asthma treatment, regulates T helper cell type 1/2 balance. Int Immunopharmacol 2024; 129:111581. [PMID: 38310765 DOI: 10.1016/j.intimp.2024.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/06/2024]
Abstract
Asthma is a common chronic respiratory disease. D-tryptophan (D-TRP) can inhibit allergic airway inflammation and T helper cell type 2 (Th2) immune response. RNA-sequencing results have indicated that radical S-adenosyl methionine domain-containing 2 (RSAD2) might be a potential molecular target of D-TRP in asthma treatment. Herein, we established a mouse model of asthma using ovalbumin (OVA) via intraperitoneal injection and inhalational challenge. Gain- and loss-of-function studies of RSAD2 were performed in mice following the intratracheal delivery of lentiviral vectors (3 × 106 TU/mL). Naïve CD-4+ T cells were isolated from the spleen and used to explore the effects of RSAD2 on Th2 cell differentiation. RSAD2 expression was higher in the asthma group than in the control group. RSAD2 knockdown alleviated inflammatory cell infiltration and reduced the number of goblet cells. Low RSAD2 expression decreased the levels of IgE, IL-25, IL-33, and TSLP, and it reduced the number of inflammatory cells in the bronchoalveolar lavage fluid. RSAD2 silencing suppressed Th2-related cytokine levels (such as IL-4, IL-5, and IL-13) and increased Th1-related cytokine levels (such as IFN-γ). Additionally, RSAD2 knockdown inhibited the phosphorylation of JAK1, JAK3, and STAT6, and downregulated GATA-3 expression. RSAD2 overexpression increased inflammatory cell infiltration and mucus secretion in the lung tissues of mice pretreated with D-TRP. D-TRP pretreatment reduced OVA-specific IgE content and IL-4 and IL-5 levels, and it increased the IFN-γ levels; however, RSAD2 overexpression reversed these effects. In conclusion, RSAD2 knockdown can mitigate OVA-induced asthma by regulating the Th2 immune response via JAK/STAT6 pathway inhibition.
Collapse
Affiliation(s)
- Fei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Tu J, Wen J, Luo Q, Li X, Wang D, Ye J. Causal relationships of metabolites with allergic diseases: a trans-ethnic Mendelian randomization study. Respir Res 2024; 25:94. [PMID: 38378549 PMCID: PMC10880354 DOI: 10.1186/s12931-024-02720-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Allergic diseases exert a considerable impact on global health, thus necessitating investigations into their etiology and pathophysiology for devising effective prevention and treatment strategies. This study employs a Mendelian randomization (MR) analysis and meta-analysis to identify metabolite targets potentially associated with allergic diseases. METHODS A two-sample MR analysis was conducted to explore potential causal relationships between circulating and urinary metabolites and allergic diseases. Exposures were derived from a genome-wide association study (GWAS) of 486 circulating metabolites and a GWAS of 55 targeted urinary metabolites. Outcome data for allergic diseases, including atopic dermatitis (AD), allergic rhinitis (AR), and asthma, were obtained from the FinnGen biobank in Europe (cohort 1) and the Biobank Japan in Asia (cohort 2). MR results from both cohorts were combined using a meta-analysis. RESULTS MR analysis identified 50 circulating metabolites and 6 urinary metabolites in cohort 1 and 54 circulating metabolites and 2 urinary metabolites in cohort 2 as potentially causally related to allergic diseases. A meta-analysis of the MR results revealed stearoylcarnitine (OR 8.654; 95% CI 4.399-17.025; P = 4.06E-10) and 1-arachidonoylglycerophosphoinositol (OR 2.178; 95% CI 1.388-3.419; P = 7.15E-04) as the most reliable causal circulating metabolites for asthma and AR, respectively. Further, histidine (OR 0.734; 95% CI: 0.594-0.907; P = 0.004), tyrosine (OR 0.601; 95% CI: 0.380-0.952; P = 0.030), and alanine (OR 0.280; 95% CI: 0.125-0.628; P = 0.002) emerged as urinary metabolites with the greatest protective effects against asthma, AD, and AR, respectively. CONCLUSIONS Imbalances in numerous circulating and urinary metabolites may be implicated in the development and progression of allergic diseases. These findings have significant implications for the development of targeted strategies for the prevention and treatment of allergic diseases.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jinyang Wen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xin Li
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi Province, China
| | - Deyun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore.
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
- Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi Province, China.
- Department of Allergy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
- Institute of Otorhinolaryngology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
8
|
Losol P, Wolska M, Wypych TP, Yao L, O'Mahony L, Sokolowska M. A cross talk between microbial metabolites and host immunity: Its relevance for allergic diseases. Clin Transl Allergy 2024; 14:e12339. [PMID: 38342758 PMCID: PMC10859320 DOI: 10.1002/clt2.12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses. AIMS AND METHODS Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases. RESULTS AND DISCUSSION We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy. CONCLUSION Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal MedicineSeoul National University Bundang HospitalSeongnamKorea
- Department of Molecular Biology and GeneticsSchool of BiomedicineMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Magdalena Wolska
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Tomasz P. Wypych
- Laboratory of Host‐Microbiota InteractionsNencki Institute of Experimental BiologyPolish Academy of SciencesWarsawPoland
| | - Lu Yao
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Liam O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland
| |
Collapse
|
9
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Nabeya D, Setoguchi M, Ueno S, Kinjo T. Respiratory virus infections of the lower respiratory tract elevate bronchoalveolar lavage eosinophil fraction: a clinical retrospective study and case review. BMC Pulm Med 2023; 23:111. [PMID: 37024839 PMCID: PMC10078074 DOI: 10.1186/s12890-023-02402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Eosinophilic airway inflammation caused by respiratory virus infection has been demonstrated in basic research; however, clinical investigations are lacking. To clarify the extent to which respiratory virus infection induces airway eosinophilic inflammation, we reviewed the results of bronchoalveolar lavage (BAL) and respiratory virus testing performed at our hospital. METHODS Among the BAL procedures performed at the University of the Ryukyu Hospital from August 2012 to September 2016, we collected cases of acute respiratory disease in which multiplex polymerase chain reaction (PCR) was used to search for respiratory viruses. The effect of respiratory virus detection on BAL eosinophil fraction was analyzed using statistical analysis. A case study was conducted on respiratory virus detection, which showed an elevated BAL eosinophil fraction. RESULTS A total of 95 cases were included in this study, of which 17 were PCR-positive. The most common respiratory virus detected was parainfluenza virus (eight cases). The PCR-positive group showed a higher BAL eosinophil fraction than the PCR-negative group (p = 0.030), and more cases had a BAL eosinophil fraction > 3% (p = 0.017). Multivariate analysis revealed that being PCR-positive was significantly associated with BAL eosinophil fraction > 1% and > 3%. There were nine PCR-positive cases with a BAL eosinophil fraction > 1%, of which two cases with parainfluenza virus infection had a marked elevation of BAL eosinophil fraction and were diagnosed with eosinophilic pneumonia. CONCLUSIONS Cases of viral infection of the lower respiratory tract showed an elevated BAL eosinophil fraction. The increase in eosinophil fraction due to respiratory virus infection was generally mild, whereas some cases showed marked elevation and were diagnosed with eosinophilic pneumonia. Respiratory virus infection is not a rare cause of elevated BAL eosinophil fraction and should be listed as a differential disease in the practice of eosinophilic pneumonia.
Collapse
Affiliation(s)
- Daijiro Nabeya
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| | - Michika Setoguchi
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Shiho Ueno
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Takeshi Kinjo
- Department of Infectious, Respiratory and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| |
Collapse
|
12
|
Adel-Patient K, Campeotto F, Grauso M, Guillon B, Moroldo M, Venot E, Dietrich C, Machavoine F, Castelli FA, Fenaille F, Molina TJ, Barbet P, Delacourt C, Leite-de-Moraes M, Lezmi G. Assessment of local and systemic signature of eosinophilic esophagitis (EoE) in children through multi-omics approaches. Front Immunol 2023; 14:1108895. [PMID: 37006253 PMCID: PMC10050742 DOI: 10.3389/fimmu.2023.1108895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundEosinophilic oesophagitis (EoE) is a chronic food allergic disorder limited to oesophageal mucosa whose pathogenesis is still only partially understood. Moreover, its diagnosis and follow-up need repeated endoscopies due to absence of non-invasive validated biomarkers. In the present study, we aimed to deeply describe local immunological and molecular components of EoE in well-phenotyped children, and to identify potential circulating EoE-biomarkers.MethodsBlood and oesophageal biopsies were collected simultaneously from French children with EoE (n=17) and from control subjects (n=15). Untargeted transcriptomics analysis was performed on mRNA extracted from biopsies using microarrays. In parallel, we performed a comprehensive analysis of immune components on both cellular and soluble extracts obtained from both biopsies and blood, using flow cytometry. Finally, we performed non-targeted plasma metabolomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Uni/multivariate supervised and non-supervised statistical analyses were then conducted to identify significant and discriminant components associated with EoE within local and/or systemic transcriptomics, immunologic and metabolomics datasets. As a proof of concept, we conducted multi-omics data integration to identify a plasmatic signature of EoE.ResultsFrench children with EoE shared the same transcriptomic signature as US patients. Network visualization of differentially expressed (DE) genes highlighted the major dysregulation of innate and adaptive immune processes, but also of pathways involved in epithelial cells and barrier functions, and in perception of chemical stimuli. Immune analysis of biopsies highlighted EoE is associated with dysregulation of both type (T) 1, T2 and T3 innate and adaptive immunity, in a highly inflammatory milieu. Although an immune signature of EoE was found in blood, untargeted metabolomics more efficiently discriminated children with EoE from control subjects, with dysregulation of vitamin B6 and various amino acids metabolisms. Multi-blocks integration suggested that an EoE plasma signature may be identified by combining metabolomics and cytokines datasets.ConclusionsOur study strengthens the evidence that EoE results from alterations of the oesophageal epithelium associated with altered immune responses far beyond a simplistic T2 dysregulation. As a proof of concept, combining metabolomics and cytokines data may provide a set of potential plasma biomarkers for EoE diagnosis, which needs to be confirmed on a larger and independent cohort.
Collapse
Affiliation(s)
- Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
- *Correspondence: Karine Adel-Patient, ; Guillaume Lezmi,
| | - Florence Campeotto
- AP-HP, Hôpital Necker-Enfants Malades, Service de Gastro-Entérologie et Nutrition Pédiatriques, Paris, France
- Université de Paris Cité, INSERM UMR1139, Laboratoire de Microbiologie, Faculté de Pharmacie, Paris, France
| | - Marta Grauso
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Blanche Guillon
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Marco Moroldo
- Université Paris Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Eric Venot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Céline Dietrich
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - François Machavoine
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - Florence A. Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Thierry Jo Molina
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France
- AP-HP, Centre-Université de Paris, hôpital Necker-Enfant-Malades, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Patrick Barbet
- Université de Paris, UMRS 1138, INSERM, Sorbonne Paris-Cité, Paris, France
- AP-HP, Centre-Université de Paris, hôpital Necker-Enfant-Malades, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Christophe Delacourt
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, CNRS UMR 8253, Inserm UMR 1151, Institut Necker Enfants Malades, Equipe Immunorégulation et Immunopathologie, Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, Paris, France
- *Correspondence: Karine Adel-Patient, ; Guillaume Lezmi,
| |
Collapse
|
13
|
Esmaeili SA, Hajavi J. The role of indoleamine 2,3-dioxygenase in allergic disorders. Mol Biol Rep 2022; 49:3297-3306. [PMID: 35028850 DOI: 10.1007/s11033-021-07067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
The amino acid tryptophan (TRP) is critical for the expansion and survival of cells. During the past few years, the manipulation of tryptophan metabolism via indoleamine 2,3 dioxygenase (IDO) has been presented as a significant regulatory mechanism for tolerance stimulation and the regulation of immune responses. Currently, a considerable number of studies suggest that the role of IDO in T helper 2 (Th2) cell regulation may be different from that of T helper 1 (Th1) immune responses. IDO acts as an immunosuppressive tolerogenic enzyme to decrease allergic responses through the stimulation of the Kynurenine-IDO pathway, the subsequent reduction of TRP, and the promotion of Kynurenine products. Kynurenine products motivate T-cell apoptosis and anergy, the propagation of Treg and Th17 cells, and the aberration of the Th1/Th2 response. We suggest that the IDO-kynurenine pathway can function as a negative reaction round for Th1 cells; however, it may play a different role in upregulating principal Th2 immune responses. In this review, we intend to integrate novel results on this pathway in correlation with allergic diseases.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, 9691793718, Gonabad, Iran.
| |
Collapse
|
14
|
Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Tanveer M, Uyangaa E, Kim K, Eo SK. Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses. Immune Netw 2021; 21:e26. [PMID: 34522439 PMCID: PMC8410990 DOI: 10.4110/in.2021.21.e26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan 54596, Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Maryum Tanveer
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| |
Collapse
|
15
|
Research Progress of Metabolomics in Asthma. Metabolites 2021; 11:metabo11090567. [PMID: 34564383 PMCID: PMC8466166 DOI: 10.3390/metabo11090567] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Asthma is a highly heterogeneous disease, but the pathogenesis of asthma is still unclear. It is well known that the airway inflammatory immune response is the pathological basis of asthma. Metabolomics is a systems biology method to analyze the difference of low molecular weight metabolites (<1.5 kDa) and explore the relationship between metabolic small molecules and pathophysiological changes of the organisms. The functional interdependence between immune response and metabolic regulation is one of the cores of the body's steady-state regulation, and its dysfunction will lead to a series of metabolic disorders. The signal transduction effect of specific metabolites may affect the occurrence of the airway inflammatory immune response, which may be closely related to the pathogenesis of asthma. Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of asthma. The review aims to analyze the changes of metabolites in blood/serum/plasma, urine, lung tissue, and exhaled breath condensate (EBC) samples, and further reveals the potential pathogenesis of asthma according to the disordered metabolic pathways.
Collapse
|
16
|
Lammers A, Brinkman P, te Nijenhuis LH, Vries R, Dagelet YWF, Duijvelaar E, Xu B, Abdel‐Aziz MI, Vijverberg SJ, Neerincx AH, Frey U, Lutter R, Maitland‐van der Zee AH, Sterk PJ, Sinha A. Increased day-to-day fluctuations in exhaled breath profiles after a rhinovirus challenge in asthma. Allergy 2021; 76:2488-2499. [PMID: 33704785 PMCID: PMC8360186 DOI: 10.1111/all.14811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 11/28/2022]
Abstract
Background Early detection/prediction of flare‐ups in asthma, commonly triggered by viruses, would enable timely treatment. Previous studies on exhaled breath analysis by electronic nose (eNose) technology could discriminate between stable and unstable episodes of asthma, using single/few time‐points. To investigate its monitoring properties during these episodes, we examined day‐to‐day fluctuations in exhaled breath profiles, before and after a rhinovirus‐16 (RV16) challenge, in healthy and asthmatic adults. Methods In this proof‐of‐concept study, 12 atopic asthmatic and 12 non‐atopic healthy adults were prospectively followed thrice weekly, 60 days before, and 30 days after a RV16 challenge. Exhaled breath profiles were detected using an eNose, consisting of 7 different sensors. Per sensor, individual means were calculated using pre‐challenge visits. Absolute deviations (|%|) from this baseline were derived for all visits. Within‐group comparisons were tested with Mann‐Whitney U tests and receiver operating characteristic (ROC) analysis. Finally, Spearman's correlations between the total change in eNose deviations and fractional exhaled nitric oxide (FeNO), cold‐like symptoms, and pro‐inflammatory cytokines were examined. Results Both groups had significantly increased eNose fluctuations post‐challenge, which in asthma started 1 day post‐challenge, before the onset of symptoms. Discrimination between pre‐ and post‐challenge reached an area under the ROC curve of 0.82 (95% CI = 0.65–0.99) in healthy and 0.97 (95% CI = 0.91–1.00) in asthmatic adults. The total change in eNose deviations moderately correlated with IL‐8 and TNFα (ρ ≈ .50–0.60) in asthmatics. Conclusion Electronic nose fluctuations rapidly increase after a RV16 challenge, with distinct differences between healthy and asthmatic adults, suggesting that this technology could be useful in monitoring virus‐driven unstable episodes in asthma.
Collapse
Affiliation(s)
- Ariana Lammers
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Louwrina H. te Nijenhuis
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Rianne Vries
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Breathomix BV Leiden The Netherlands
| | - Yennece W. F. Dagelet
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Erik Duijvelaar
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Binbin Xu
- EuroMov Digital Health in Motion Univ Montpellier IMT Mines Ales Ales France
| | - Mahmoud I. Abdel‐Aziz
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Urs Frey
- University Children's Hospital Basel UKBB University of Basel Basel Switzerland
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
- Department of Experimental Immunology Amsterdam UMC University of Amsterdam Amsterdam Infection & Immunity Institute Amsterdam The Netherlands
| | | | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
17
|
Metabolomics in asthma: A platform for discovery. Mol Aspects Med 2021; 85:100990. [PMID: 34281719 DOI: 10.1016/j.mam.2021.100990] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Asthma, characterized by airway hyperresponsiveness, inflammation and remodeling, is a chronic airway disease with complex etiology. Severe asthma is characterized by frequent exacerbations and poor therapeutic response to conventional asthma therapy. A clear understanding of cellular and molecular mechanisms of asthma is critical for the discovery of novel targets for optimal therapeutic control of asthma. Metabolomics is emerging as a powerful tool to elucidate novel disease mechanisms in a variety of diseases. In this review, we summarize the current status of knowledge in asthma metabolomics at systemic and cellular levels. The findings demonstrate that various metabolic pathways, related to energy metabolism, macromolecular biosynthesis and redox signaling, are differentially modulated in asthma. Airway smooth muscle cell plays pivotal roles in asthma by contributing to airway hyperreactivity, inflammatory mediator release and remodeling. We posit that metabolomic profiling of airway structural cells, including airway smooth muscle cells, will shed light on molecular mechanisms of asthma and airway hyperresponsiveness and help identify novel therapeutic targets.
Collapse
|
18
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
19
|
Application of Metabolomics in Pediatric Asthma: Prediction, Diagnosis and Personalized Treatment. Metabolites 2021; 11:metabo11040251. [PMID: 33919626 PMCID: PMC8072856 DOI: 10.3390/metabo11040251] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Asthma in children remains a significant public health challenge affecting 5–20% of children in Europe and is associated with increased morbidity and societal healthcare costs. The high variation in asthma incidence among countries may be attributed to differences in genetic susceptibility and environmental factors. This respiratory disorder is described as a heterogeneous syndrome of multiple clinical manifestations (phenotypes) with varying degrees of severity and airway hyper-responsiveness, which is based on patient symptoms, lung function and response to pharmacotherapy. However, an accurate diagnosis is often difficult due to diversities in clinical presentation. Therefore, identifying early diagnostic biomarkers and improving the monitoring of airway dysfunction and inflammatory through non-invasive methods are key goals in successful pediatric asthma management. Given that asthma is caused by the interaction between genes and environmental factors, an emerging approach, metabolomics—the systematic analysis of small molecules—can provide more insight into asthma pathophysiological mechanisms, enable the identification of early biomarkers and targeted personalized therapies, thus reducing disease burden and societal cost. The purpose of this review is to present evidence on the utility of metabolomics in pediatric asthma through the analysis of intermediate metabolites of biochemical pathways that involve carbohydrates, amino acids, lipids, organic acids and nucleotides and discuss their potential application in clinical practice. Also, current challenges on the integration of metabolomics in pediatric asthma management and needed next steps are critically discussed.
Collapse
|
20
|
Ravi A, Goorsenberg AWM, Dijkhuis A, Dierdorp BS, Dekker T, van Weeghel M, Sabogal Piñeros YS, Shah PL, Ten Hacken NHT, Annema JT, Sterk PJ, Vaz FM, Bonta PI, Lutter R. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty. J Allergy Clin Immunol 2021; 148:1236-1248. [PMID: 33556463 DOI: 10.1016/j.jaci.2020.12.653] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Asthma is a heterogeneous disease with differences in onset, severity, and inflammation. Bronchial epithelial cells (BECs) contribute to asthma pathophysiology. OBJECTIVE We determined whether transcriptomes of BECs reflect heterogeneity in inflammation and severity in asthma, and whether this was affected in BECs from patients with severe asthma after their regeneration by bronchial thermoplasty. METHODS RNA sequencing was performed on BECs obtained by bronchoscopy from healthy controls (n = 16), patients with mild asthma (n = 17), patients with moderate asthma (n = 5), and patients with severe asthma (n = 17), as well as on BECs from treated and untreated airways of the latter (also 6 months after bronchial thermoplasty) (n = 23). Lipidome and metabolome analyses were performed on cultured BECs from healthy controls (n = 7); patients with severe asthma (n = 9); and, for comparison, patients with chronic obstructive pulmonary disease (n = 7). RESULTS Transcriptome analysis of BECs from patients showed a reduced expression of oxidative phosphorylation (OXPHOS) genes, most profoundly in patients with severe asthma but less profoundly and more heterogeneously in patients with mild asthma. Genes related to fatty acid metabolism were significantly upregulated in asthma. Lipidomics revealed enhanced levels of lipid species (phosphatidylcholines, lysophosphatidylcholines. and bis(monoacylglycerol)phosphate), whereas levels of OXPHOS metabolites were reduced in BECs from patients with severe asthma. BECs from patients with mild asthma characterized by hyperresponsive production of mediators implicated in neutrophilic inflammation had decreased expression of OXPHOS genes compared with that in BECs from patients with mild asthma with normoresponsive production. BECs obtained after thermoplasty had significantly increased expression of OXPHOS genes and decreased expression of fatty acid metabolism genes compared with BECs obtained from untreated airways. CONCLUSION BECs in patients with asthma are metabolically different from those in healthy individuals. These differences are linked with inflammation and asthma severity, and they can be reversed by bronchial thermoplasty.
Collapse
Affiliation(s)
- Abilash Ravi
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Annika W M Goorsenberg
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara S Dierdorp
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yanaika S Sabogal Piñeros
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Pallav L Shah
- Royal Brompton Hospital, London, United Kingdom; National Heart and Lung Institute, Imperial College, London, United Kingdom; Chelsea and Westminster Hospital, London, United Kingdom
| | - Nick H T Ten Hacken
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jouke T Annema
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Laboratory Genetic Metabolic Diseases, Core Facility Metabolomics, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
The Metabolomics of Childhood Atopic Diseases: A Comprehensive Pathway-Specific Review. Metabolites 2020; 10:metabo10120511. [PMID: 33339279 PMCID: PMC7767195 DOI: 10.3390/metabo10120511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Asthma, allergic rhinitis, food allergy, and atopic dermatitis are common childhood diseases with several different underlying mechanisms, i.e., endotypes of disease. Metabolomics has the potential to identify disease endotypes, which could beneficially promote personalized prevention and treatment. Here, we summarize the findings from metabolomics studies of children with atopic diseases focusing on tyrosine and tryptophan metabolism, lipids (particularly, sphingolipids), polyunsaturated fatty acids, microbially derived metabolites (particularly, short-chain fatty acids), and bile acids. We included 25 studies: 23 examined asthma or wheezing, five examined allergy endpoints, and two focused on atopic dermatitis. Of the 25 studies, 20 reported findings in the pathways of interest with findings for asthma in all pathways and for allergy and atopic dermatitis in most pathways except tyrosine metabolism and short-chain fatty acids, respectively. Particularly, tyrosine, 3-hydroxyphenylacetic acid, N-acetyltyrosine, tryptophan, indolelactic acid, 5-hydroxyindoleacetic acid, p-Cresol sulfate, taurocholic acid, taurochenodeoxycholic acid, glycohyocholic acid, glycocholic acid, and docosapentaenoate n-6 were identified in at least two studies. This pathway-specific review provides a comprehensive overview of the existing evidence from metabolomics studies of childhood atopic diseases. The altered metabolic pathways uncover some of the underlying biochemical mechanisms leading to these common childhood disorders, which may become of potential value in clinical practice.
Collapse
|
22
|
Sinha A, Lutter R, Dekker T, Dierdorp B, J. Sterk P, Frey U, Delgado-Eckert E. Can Measurements of Inflammatory Biomarkers be Used to Spot Respiratory Viral Infections? Viruses 2020; 12:v12101175. [PMID: 33080844 PMCID: PMC7594027 DOI: 10.3390/v12101175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Accurate detection of human respiratory viral infections is highly topical. We investigated how strongly inflammatory biomarkers (FeNO, eosinophils, neutrophils, and cytokines in nasal lavage fluid) and lung function parameters change upon rhinovirus 16 infection, in order to explore their potential use for infection detection. To this end, within a longitudinal cohort study, healthy and mildly asthmatic volunteers were experimentally inoculated with rhinovirus 16, and time series of these parameters/biomarkers were systematically recorded and compared between the pre- and post-infection phases of the study, which lasted two months and one month, respectively. We found that the parameters’/biomarkers’ ability to discriminate between the infected and the uninfected state varied over the observation time period. Consistently over time, the concentration of cytokines, in nasal lavage fluid, showed moderate to very good discrimination performance, thereby qualifying for disease progression monitoring, whereas lung function and FeNO, while quickly and non-invasively measurable using cheap portable devices (e.g., at airports), performed poorly.
Collapse
Affiliation(s)
- Anirban Sinha
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.L.); (P.J.S.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (T.D.); (B.D.)
- Correspondence: ; Tel.: +31-20-566-4356
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.L.); (P.J.S.)
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (T.D.); (B.D.)
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (T.D.); (B.D.)
| | - Barbara Dierdorp
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (T.D.); (B.D.)
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (R.L.); (P.J.S.)
| | - Urs Frey
- Computational Physiology and Biostatistics, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| | - Edgar Delgado-Eckert
- University Children’s Hospital (UKBB), University of Basel, Spitalstrasse 33, Postfach, 4031 Basel, Switzerland; (U.F.); (E.D.-E.)
- Computational Physiology and Biostatistics, Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14, 4123 Allschwil, Switzerland
| |
Collapse
|
23
|
Maniscalco M, Cutignano A, Paris D, Melck DJ, Molino A, Fuschillo S, Motta A. Metabolomics of Exhaled Breath Condensate by Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: A Methodological Approach. Curr Med Chem 2020; 27:2381-2399. [DOI: 10.2174/0929867325666181008122749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
:
Respiratory diseases present a very high prevalence in the general population, with an
increase in morbidity, mortality and health-care expenses worldwide. They are complex and heterogeneous
pathologies that may present different pathological facets in different subjects, often
with personal evolution. Therefore, there is a need to identify patients with similar characteristics,
prognosis or treatment, defining the so-called phenotype, but also to mark specific differences
within each phenotype, defining the endotypes.
:
Biomarkers are very useful to study respiratory phenotypes and endotypes. Metabolomics, one of
the recently introduced “omics”, is becoming a leading technique for biomarker discovery. For the
airways, metabolomics appears to be well suited as the respiratory tract offers a natural matrix, the
Exhaled Breath Condensate (EBC), in which several biomarkers can be measured. In this review,
we will discuss the main methodological issues related to the application of Nuclear Magnetic
Resonance (NMR) spectroscopy and Mass Spectrometry (MS) to EBC metabolomics for investigating
respiratory diseases.
Collapse
Affiliation(s)
- Mauro Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA IRCCS, Via Bagni Vecchi 1, 82037 Telese Terme (Benevento), Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Dominique J. Melck
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Antonio Molino
- Department of Respiratory Medicine, University Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA IRCCS, Via Bagni Vecchi 1, 82037 Telese Terme (Benevento), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| |
Collapse
|
24
|
Lee-Sarwar KA, Lasky-Su J, Kelly RS, Litonjua AA, Weiss ST. Gut Microbial-Derived Metabolomics of Asthma. Metabolites 2020; 10:E97. [PMID: 32155960 PMCID: PMC7142494 DOI: 10.3390/metabo10030097] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
In this review, we discuss gut microbial-derived metabolites involved with the origins and pathophysiology of asthma, a chronic respiratory disease that is influenced by the microbiome. Although both gut and airway microbiomes may be important in asthma development, we focus here on the gut microbiome and metabolomic pathways involved in immune system ontogeny. Metabolite classes with existing evidence that microbial-derived products influence asthma risk include short chain fatty acids, polyunsaturated fatty acids and bile acids. While tryptophan metabolites and sphingolipids have known associations with asthma, additional research is needed to clarify the extent to which the microbiome contributes to the effects of these metabolites on asthma. These metabolite classes can influence immune function in one of two ways: (i) promoting growth or maturity of certain immune cell populations or (ii) influencing antigenic load by enhancing the number or species of specific bacteria. A more comprehensive understanding of how gut microbes and metabolites interact to modify asthma risk and morbidity will pave the way for targeted diagnostics and treatments.
Collapse
Affiliation(s)
- Kathleen A. Lee-Sarwar
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.L.-S.); (R.S.K.); (S.T.W.)
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.L.-S.); (R.S.K.); (S.T.W.)
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.L.-S.); (R.S.K.); (S.T.W.)
| | - Augusto A. Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14612, USA;
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA; (J.L.-S.); (R.S.K.); (S.T.W.)
| |
Collapse
|
25
|
Ravi A, Chang M, van de Pol M, Yang S, Aliprantis A, Thornton B, Carayannopoulos LN, Bautmans A, Robberechts M, De Lepeleire I, Singh D, Hohlfeld JM, Sterk PJ, Krug N, Lutter R. Rhinovirus-16 induced temporal interferon responses in nasal epithelium links with viral clearance and symptoms. Clin Exp Allergy 2019; 49:1587-1597. [PMID: 31400236 PMCID: PMC6972523 DOI: 10.1111/cea.13481] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The temporal in vivo response of epithelial cells to a viral challenge and its association with viral clearance and clinical outcomes has been largely unexplored in asthma. OBJECTIVE To determine gene expression profiles over time in nasal epithelial cells (NECs) challenged in vivo with rhinovirus-16 (RV16) and compare to nasal symptoms and viral clearance. METHODS Patients with stable mild to moderate asthma (n = 20) were challenged intranasally with RV16. Nasal brush samples for RNA sequencing were taken 7 days prior to infection and 3, 6 and 14 days post-infection, and blood samples 4 days prior to infection and day 6 post-infection. Viral load was measured in nasal lavage fluid at day 3, 6 and 14. RESULTS Top differentially (>2.5-fold increase) expressed gene sets in NECs post-RV16 at days 3 and 6, compared with baseline, were interferon alpha and gamma response genes. Patients clearing the virus within 6 days (early resolvers) had a significantly increased interferon response at day 6, whereas those having cleared the virus by day 14 (late resolvers) had significantly increased responses at day 3, 6 and 14. Interestingly, patients not having cleared the virus by day 14 (non-resolvers) had no enhanced interferon responses at any of these days. The daily Cold Symptom Scores (CSS) peaked at days 3 to 5 and correlated positively with interferon response genes at day 3 (R = 0.48), but not at other time-points. Interferon response genes were also enhanced in blood at day 6 after RV16 challenge. CONCLUSION AND CLINICAL RELEVANCE This study shows that viral load and clearance varies markedly over time in mild to moderate asthma patients exposed to a fixed RV16 dose. The host's nasal interferon response to RV16 at day 3 is associated with upper respiratory tract symptoms. The temporal interferon response in nasal epithelium associates with viral clearance in the nasal compartment.
Collapse
Affiliation(s)
- Abilash Ravi
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Marianne van de Pol
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Shan Yang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | - An Bautmans
- Merck Sharp and Dohme, Europe Inc., Brussels, Belgium
| | | | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Jens M Hohlfeld
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - Peter J Sterk
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,German Center for Lung Research (DZL), Hannover, Germany
| | - René Lutter
- Amsterdam UMC, Department of Respiratory Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Kertys M, Grendar M, Kosutova P, Mokra D, Mokry J. Plasma based targeted metabolomic analysis reveals alterations of phosphatidylcholines and oxidative stress markers in guinea pig model of allergic asthma. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165572. [PMID: 31672552 DOI: 10.1016/j.bbadis.2019.165572] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 01/03/2023]
Abstract
Bronchial asthma is one of the most common, chronic respiratory diseases, characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyperresponsiveness and airway remodelling; with many cells and mediators involved. Metabolomics is a relatively new field in "omics" sciences enabling the identification of metabolome for better diagnostics and studying of diseases phenotype. The aim of this study was to investigate the role of targeted metabolomics study for better understanding of the bronchial asthma pathophysiology and finding potential biomarkers in experimental models of eosinophilic inflammation. Plasma level of 185 metabolites was measured with the AbsoluteIDQ™ p180 kit in guinea pigs with experimentally-induced allergic inflammation (n = 15) compared to naïve non-sensitised and non-challenged controls (n = 18). Of the 185 metabolites identified in plasma, 22 were significantly different and changed in ovalbumin sensitised animals. Plasma level of 13 phosphatidylcholines with saturated and unsaturated long-chain fatty acids, total phosphatidylcholines count, carnitine, symmetric dimethylarginine and its ratio to total unmodified arginine, and kynurenine to tryptophan ratio were found to be decreased, while phospholipase A2 activity indicator, tryptophan, taurine and ratio of methionine sulfoxide to unmodified methionine were found to be increased in sensitised guinea pigs compared to naïve controls. Targeted metabolomic analysis revealed significant differences in plasma metabolome of sensitised guinea pigs. Our observations point to the activation of inflammatory and immune pathways, as well as the involvement of oxidative stress.
Collapse
Affiliation(s)
- Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Kosutova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
27
|
Sabogal Piñeros YS, Bal SM, Dijkhuis A, Majoor CJ, Dierdorp BS, Dekker T, Hoefsmit EP, Bonta PI, Picavet D, van der Wel NN, Koenderman L, Sterk PJ, Ravanetti L, Lutter R. Eosinophils capture viruses, a capacity that is defective in asthma. Allergy 2019; 74:1898-1909. [PMID: 30934128 PMCID: PMC6852198 DOI: 10.1111/all.13802] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 01/15/2023]
Abstract
Background Activated eosinophils cause major pathology in stable and exacerbating asthma; however, they can also display protective properties like an extracellular antiviral activity. Initial murine studies led us to further explore a potential intracellular antiviral activity by eosinophils. Methods To follow eosinophil‐virus interaction, respiratory syncytial virus (RSV) and influenza virus were labeled with a fluorescent lipophilic dye (DiD). Interactions with eosinophils were visualized by confocal microscopy, electron microscopy, and flow cytometry. Eosinophil activation was assessed by both flow cytometry and ELISA. In a separate study, eosinophils were depleted in asthma patients using anti‐IL‐5 (mepolizumab), followed by a challenge with rhinovirus‐16 (RV16). Results DiD‐RSV and DiD‐influenza rapidly adhered to human eosinophils and were internalized and inactivated (95% in ≤ 2 hours) as reflected by a reduced replication in epithelial cells. The capacity of eosinophils to capture virus was reduced up to 75% with increasing severity of asthma. Eosinophils were activated by virus in vitro and in vivo. In vivo this correlated with virus‐induced loss of asthma control. Conclusions This previously unrecognized and in asthma attenuated antiviral property provides a new perspective to eosinophils in asthma. This is indicative of an imbalance between protective and cytotoxic properties by eosinophils that may underlie asthma exacerbations.
Collapse
Affiliation(s)
- Yanaika S. Sabogal Piñeros
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Suzanne M. Bal
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Cell Biology and Histology, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Annemiek Dijkhuis
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Christof J. Majoor
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Barbara S. Dierdorp
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Tamara Dekker
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Esmée P. Hoefsmit
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Peter I. Bonta
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Daisy Picavet
- Department Cell Biology and Histology, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Electron Microscopy Center Amsterdam, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Nicole N. van der Wel
- Department Cell Biology and Histology, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Electron Microscopy Center Amsterdam, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine University Medical Center Utrecht Utrecht The Netherlands
| | - Peter J. Sterk
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - Lara Ravanetti
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| | - René Lutter
- Department Respiratory Medicine, Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
- Department Experimental Immunology (Amsterdam Infection & Immunity Institute), Amsterdam University Medical Centers University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
28
|
Tao JL, Chen YZ, Dai QG, Tian M, Wang SC, Shan JJ, Ji JJ, Lin LL, Li WW, Yuan B. Urine metabolic profiles in paediatric asthma. Respirology 2019; 24:572-581. [PMID: 30763984 DOI: 10.1111/resp.13479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Asthma is a global problem and complex disease suited for metabolomic profiling. This study explored the candidate biomarkers specific to paediatric asthma and provided insights into asthmatic pathophysiology. METHODS Children (aged 6-11 years) meeting the criteria for healthy control (n = 29), uncontrolled asthma (n = 37) or controlled asthma (n = 43) were enrolled. Gas chromatography-mass spectrometry was performed on urine samples of the patients to explore the different types of metabolite profile in paediatric asthma. Additionally, we employed a comprehensive strategy to elucidate the relationship between significant metabolites and asthma-related genes. RESULTS We identified 51 differential metabolites mainly related to dysfunctional amino acid, carbohydrate and purine metabolism. A combination of eight candidate metabolites, including uric acid, stearic acid, threitol, acetylgalactosamine, heptadecanoic acid, aspartic acid, xanthosine and hypoxanthine (adjusted P < 0.05 and fold-change >1.5 or <0.67), showed excellent discriminatory performance for the presence of asthma and the differentiation of poor-controlled or well-controlled asthma, and area under the curve values were >0.97 across groups. Enrichment analysis based on these targets revealed that the Fc receptor, intracellular steroid hormone receptor signalling pathway, DNA damage and fibroblast proliferation were involved in inflammation, immunity and stress-related biological progression of paediatric asthma. CONCLUSION Metabolomic analysis of patient urine combined with network-biology approaches allowed discrimination of asthma profiles and subtypes according to the metabolic patterns. The results provided insight into the potential mechanism of paediatric asthma.
Collapse
Affiliation(s)
- Jia-Lei Tao
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan-Zhen Chen
- Oncology Department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Gang Dai
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Man Tian
- Respiratory Department, Nanjing Children's Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Shou-Chuan Wang
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Jun Shan
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Jian Ji
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Li Lin
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Wei Li
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Yuan
- Department of Paediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Paediatric Respiratory Disease, Institute of Paediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Ravi A, Koster J, Dijkhuis A, Bal SM, Sabogal Piñeros YS, Bonta PI, Majoor CJ, Sterk PJ, Lutter R. Interferon-induced epithelial response to rhinovirus 16 in asthma relates to inflammation and FEV 1. J Allergy Clin Immunol 2018; 143:442-447.e10. [PMID: 30296526 DOI: 10.1016/j.jaci.2018.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Abilash Ravi
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemiek Dijkhuis
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne M Bal
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Yanaika S Sabogal Piñeros
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter I Bonta
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Christof J Majoor
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Peter J Sterk
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - René Lutter
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Carraro S, Bozzetto S, Giordano G, El Mazloum D, Stocchero M, Pirillo P, Zanconato S, Baraldi E. Wheezing preschool children with early-onset asthma reveal a specific metabolomic profile. Pediatr Allergy Immunol 2018; 29:375-382. [PMID: 29468750 DOI: 10.1111/pai.12879] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Many children of preschool age present with recurrent wheezing. Most of them outgrow their symptoms, while some have early-onset asthma. Aim of this prospective preliminary study was to apply a metabolomic approach to see whether biochemical-metabolic urinary profiles can have a role in the early identification of the children with asthma. METHODS Preschool children with recurrent wheezing were recruited and followed up for 3 years, after which they were classified as cases of transient wheezing or early-onset asthma. A urine sample was collected at recruitment and analyzed using a metabolomic approach based on UPLC mass spectrometry. RESULTS Among 34 children aged 4.0 ± 1.1 years recruited, at the end of the 3-year follow-up, 16 were classified as having transient wheezing and 16 as cases of early-onset asthma. Through a joint multivariate and univariate statistical analyses, we identified a subset of metabolomic variables that enabled the 2 groups to be clearly distinguished. The model built using the identified variables showed an AUC = 0.99 and an AUC = 0.88 on sevenfold full cross-validation (P = .002). CONCLUSIONS Metabolomic urinary profile can discriminate preschoolers with recurrent wheezing who will outgrow their symptoms from those who have early-onset asthma. These results may pave the way to the characterization of early non-invasive biomarkers capable of predicting asthma development.
Collapse
Affiliation(s)
- Silvia Carraro
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Sara Bozzetto
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Giuseppe Giordano
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Dania El Mazloum
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Matteo Stocchero
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Paola Pirillo
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,Città della Speranza Institute of Pediatric Research (IRP), Padova, Italy
| | - Stefania Zanconato
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Eugenio Baraldi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| |
Collapse
|
31
|
Konieczna L, Pyszka M, Okońska M, Niedźwiecki M, Bączek T. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2018; 1542:72-81. [DOI: 10.1016/j.chroma.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
|
32
|
Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide. Ann Allergy Asthma Immunol 2017; 119:429-434. [PMID: 29150070 DOI: 10.1016/j.anai.2017.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND The tryptophan metabolic pathway mediated by indolamine 2,3-dioxygenase (IDO), a tryptophan-degrading enzyme, plays an important role in controlling the development of allergic inflammation. The fractional concentration of exhaled nitric oxide (FeNO) is closely associated with the allergic state and is extensively used for the clinical evaluation of airway allergic inflammation. Clinical trials have rarely assessed the expression of IDO in childhood allergic asthma and its correlation with FeNO. OBJECTIVE To evaluate the IDO level in children with childhood allergic asthma and the relation between IDO levels and FeNO. METHODS Thirty children older than 5 years who were diagnosed the first time with allergic asthma were selected from the pediatric outpatient department. Another 30 healthy children were selected as controls. The subjects were evaluated by complete medical history, pulmonary function test results, skin prick test reaction, FeNO concentration test result, eosinophil count, and a disease severity score. Peripheral venous blood and induced sputum were obtained to measure the concentrations of IDO metabolites (ie, tryptophan and kynurenine). RESULTS The IDO levels in the peripheral blood and induced sputum were significantly lower in patients with childhood allergic asthma than in children in the control group. The IDO level was negatively correlated with FeNO but was not significantly correlated with age, sex, blood eosinophil count, or disease severity scale. CONCLUSION The expression of IDO was significantly lower in childhood allergic asthma, particularly in children with high FeNO levels. There was no significant relation between IDO levels and asthma severity. TRIAL REGISTRATION Chinese Clinical Trial Register (www.chictr.org.cn) Identifier: ChiCTR-COC-15006080.
Collapse
|
33
|
Chang HY, Seo JH, Kwon JW, Suh DI, Cho HJ, Yoon J, Kim EJ, Lee JS, Shin YJ, Hong SJ. Independent association among suicidal ideation, asthma, and bronchial hyperresponsiveness in adolescents. Clin Exp Allergy 2017; 47:1671-1674. [PMID: 28985451 DOI: 10.1111/cea.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- H Y Chang
- Department of Psychiatry and Behavioral Sciences, Ajou University School of Medicine, Suwon, Korea.,Sunflower Center of Southern Gyeonggi for Women and Children Victims of Violence, Suwon, Korea
| | - J-H Seo
- Department of Pediatrics, Dangook University Hospital, Cheonan, Korea
| | - J-W Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - D I Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - H-J Cho
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - J Yoon
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - E-J Kim
- Division of Allergy and Chronic Respiratory Diseases, Center for Biomedical Sciences, Korean National Institute of Health, Korea Center for Diseases Control and Prevention, Osong, Korea
| | - J-S Lee
- Korean National Institute of Health, Korea Center for Diseases Control and Prevention, Osong, Korea
| | - Y-J Shin
- Department of Psychiatry and Behavioral Sciences, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - S-J Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Yu M, Jia HM, Cui FX, Yang Y, Zhao Y, Yang MH, Zou ZM. The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations. Int J Mol Sci 2017; 18:ijms18030602. [PMID: 28287417 PMCID: PMC5372618 DOI: 10.3390/ijms18030602] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/14/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic inflammatory disorder of the airway and is characterized by airway remodeling, hyperresponsiveness, and shortness of breath. Modified Kushen Gancao Formula (mKG), derived from traditional Chinese herbal medicines (TCM), has been demonstrated to have good therapeutic effects on experimental allergic asthma. However, its anti-asthma mechanism remains currently unknown. In the present work, metabolomics studies of biochemical changes in the lung tissue and plasma of ovalbumin (OVA)-induced allergic asthma mice with mKG treatment were performed using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Partial least squares–discriminate analysis (PLS−DA) indicated that the metabolic perturbation induced by OVA was reduced after mKG treatment. A total of twenty-four metabolites involved in seven metabolic pathways were identified as potential biomarkers in the development of allergic asthma. Among them, myristic acid (L3 or P2), sphinganine (L6 or P4), and lysoPC(15:0) (L12 or P16) were detected both in lung tissue and plasma. Additionally, l-acetylcarnitine (L1), thromboxane B2 (L2), 10-HDoHE (L10), and 5-HETE (L11) were first reported to be potential biomarkers associated with allergic asthma. The treatment of mKG mediated all of those potential biomarkers except lysoPC(15:0) (P16). The anti-asthma mechanism of mKG can be achieved through the comprehensive regulation of multiple perturbed biomarkers and metabolic pathways.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Feng-Xia Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yang Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Mao-Hua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
35
|
Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan Metabolism in Allergic Disorders. Int Arch Allergy Immunol 2016; 169:203-15. [PMID: 27161289 PMCID: PMC5433561 DOI: 10.1159/000445500] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Allergic diseases such as asthma and rhinitis, as well the early phase of atopic dermatitis, are characterized by a Th2-skewed immune environment. Th2-type cytokines are upregulated in allergic inflammation, whereas there is downregulation of the Th1-type immune response and related cytokines, such as interferon-x03B3; (IFN-x03B3;). The latter is a strong inducer of indoleamine 2,3-dioxygenase-1 (IDO-1), which degrades the essential amino acid tryptophan, as part of an antiproliferative strategy of immunocompetent cells to halt the growth of infected and malignant cells, and also of T cells - an immunoregulatory intervention to avoid overactivation of the immune system. Raised serum tryptophan concentrations have been reported in patients with pollen allergy compared to healthy blood donors. Moreover, higher baseline tryptophan concentrations have been associated with a poor response to specific immunotherapy. It has been shown that the increase in tryptophan concentrations in patients with pollen allergy only exists outside the pollen season, and not during the season. Interestingly, there is only a minor alteration of the kynurenine to tryptophan ratio (Kyn/Trp, an index of tryptophan breakdown). The reason for the higher tryptophan concentrations in patients with pollen allergy outside the season remains a matter of discussion. To this regard, the specific interaction of nitric oxide (NO∙) with the tryptophan-degrading enzyme IDO-1 could be important, because an enhanced formation of NO∙ has been reported in patients with asthma and allergic rhinitis. Importantly, NO∙ suppresses the activity of the heme enzyme IDO-1, which could explain the higher tryptophan levels. Thus, inhibitors of inducible NO∙ synthase should be reconsidered as candidates for antiallergic therapy out of season that may abrogate the arrest of IDO-1 by decreasing the production of NO∙. Considering its association with the pathophysiology of atopic disease, tryptophan metabolism may play a relevant role in the pathophysiology of allergic disorders.
Collapse
Affiliation(s)
- Johanna M. Gostner
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | - Katrin Becker
- Division of Biological Chemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | | | - Barbara Strasser
- Division of Medical Biochemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical
University, Innsbruck
| |
Collapse
|
36
|
Li C, Liu T, Zhao N, Zhu L, Wang P, Dai X. Dendritic cells transfected with indoleamine 2,3-dioxygenase gene suppressed acute rejection of cardiac allograft. Int Immunopharmacol 2016; 36:31-38. [PMID: 27107370 DOI: 10.1016/j.intimp.2016.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/15/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Immunomodulation by indoleamine 2,3-dioxygenase (IDO) has been documented in many studies yet its underlying mechanisms remain undefined, especially in solid organ transplantation. Recent research demonstrated that the active expression of IDO in dendritic cells (DCs) regulates immune reaction. This study assessed whether DCs transfected with IDO gene inhibit T cells responses and suppress cardiac allograft rejection. METHODS Adenovirus vector containing IDO gene was transfected into DCs to obtain IDO-positive DCs (IDO(+) DCs). To evaluate the effect of IDO(+) DCs on T cells in vitro, CD4(+) T cell proliferation and apoptosis was assessed in mixed lymphocyte reactions and measured by flow cytometry, respectively. IDO(+) DCs from C57BL/6 mice were injected into BALB/c recipients before heterotopic cardiac transplantation. RESULTS Supernatant fluids from cultures of IDO(+) DCs had decreased tryptophan and increased kynurenine levels, reflecting IDO activity. IDO(+) DCs suppressed CD4(+) T cell responses in vitro, as reflected by decreased proliferation and increased apoptosis. In the transplant model, IDO(+) DCs prolonged survival and alleviated rejection of cardiac allograft in recipients injected with IDO(+) DCs. In vivo, IDO(+) DCs also significantly impaired CD4(+) T cell responses promoting increased apoptosis and a Th2-dominant cytokine shift. CONCLUSIONS IDO overexpression in DCs suppressed T cells alloresponses in vitro, and IDO(+) DCs attenuated acute allograft rejection in vivo. Regulation of tryptophan catabolism by means of IDO overexpression in DCs may be a useful approach in cardiac transplantation and immunological tolerance.
Collapse
Affiliation(s)
- Chuan Li
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| | - Tong Liu
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| | - Na Zhao
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| | - Liwei Zhu
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| | - Pengzhi Wang
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| | - Xiangchen Dai
- Department of General Surgery, Tianjin General Surgery Institute, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District,Tianjin 300052, China.
| |
Collapse
|
37
|
Magnus MC, Karlstad Ø, Midtun Ø, Håberg SE, Tunheim G, Parr CL, Nafstad P, London SJ, Nilsen RM, Ueland PM, Nystad W. Maternal plasma total neopterin and kynurenine/tryptophan levels during pregnancy in relation to asthma development in the offspring. J Allergy Clin Immunol 2016; 138:1319-1325.e4. [PMID: 27221136 DOI: 10.1016/j.jaci.2016.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/08/2016] [Accepted: 02/26/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Neopterin levels and kynurenine/tryptophan ratios (KTRs) increase with IFN-γ stimulation, indicating TH1 immunity, and thus might be inversely associated with asthma. OBJECTIVE We sought to examine the association of maternal neopterin levels and KTRs during pregnancy with asthma in the offspring. METHODS We analyzed the associations of maternal plasma total neopterin levels and KTRs in midpregnancy with asthma at age 7 years among 2883 children in the Norwegian Mother and Child Cohort Study. Asthma was classified either based on registered dispensed asthma medications in the Norwegian Prescription Database or maternal report. We calculated adjusted relative risks using log-binomial regression. RESULTS The median gestational week of blood sampling was 18 weeks (interquartile range, 17-19 weeks). The risk of dispensed asthma medications at age 7 years was highest among children of mothers in the highest quartile of neopterin levels, whereas the risk was similar in the 3 lowest quartiles. The adjusted relative risk of dispensed asthma medications was 1.66 (95% CI, 1.16-2.38) when comparing children of mothers in the highest quartile with those in the 3 lowest quartiles. A similar association was observed for maternal report of asthma at age 7 years. When we evaluated allergic versus nonallergic asthma, neopterin levels tended to be associated with nonallergic asthma. Maternal KTR was not associated with asthma development. CONCLUSIONS Our findings indicate that high maternal levels of neopterin, a marker of cellular immune activation, during pregnancy were positively associated with asthma in offspring. Experimental studies would be needed to further elucidate underlying mechanisms.
Collapse
Affiliation(s)
- Maria C Magnus
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Øystein Karlstad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Siri E Håberg
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro Tunheim
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine L Parr
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Nafstad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Community Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Roy M Nilsen
- Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway; Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Wenche Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
38
|
Zissler UM, Esser-von Bieren J, Jakwerth CA, Chaker AM, Schmidt-Weber CB. Current and future biomarkers in allergic asthma. Allergy 2016; 71:475-94. [PMID: 26706728 DOI: 10.1111/all.12828] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Diagnosis early in life, sensitization, asthma endotypes, monitoring of disease and treatment progression are key motivations for the exploration of biomarkers for allergic rhinitis and allergic asthma. The number of genes related to allergic rhinitis and allergic asthma increases steadily; however, prognostic genes have not yet entered clinical application. We hypothesize that the combination of multiple genes may generate biomarkers with prognostic potential. The current review attempts to group more than 161 different potential biomarkers involved in respiratory inflammation to pave the way for future classifiers. The potential biomarkers are categorized into either epithelial or infiltrate-derived or mixed origin, epithelial biomarkers. Furthermore, surface markers were grouped into cell-type-specific categories. The current literature provides multiple biomarkers for potential asthma endotypes that are related to T-cell phenotypes such as Th1, Th2, Th9, Th17, Th22 and Tregs and their lead cytokines. Eosinophilic and neutrophilic asthma endotypes are also classified by epithelium-derived CCL-26 and osteopontin, respectively. There are currently about 20 epithelium-derived biomarkers exclusively derived from epithelium, which are likely to innovate biomarker panels as they are easy to sample. This article systematically reviews and categorizes genes and collects current evidence that may promote these biomarkers to become part of allergic rhinitis or allergic asthma classifiers with high prognostic value.
Collapse
Affiliation(s)
- U. M. Zissler
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - J. Esser-von Bieren
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - C. A. Jakwerth
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| | - A. M. Chaker
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
- Department of Otorhinolaryngology and Head and Neck Surgery; Medical School; Technical University of Munich; Munich Germany
| | - C. B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM); Technical University of Munich and Helmholtz Center Munich; German Research Center for Environmental Health member of the German Center for Lung Research (DZL); Munich Germany
| |
Collapse
|
39
|
Yu M, Cui FX, Jia HM, Zhou C, Yang Y, Zhang HW, Ding G, Zou ZM. Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics. J Pharm Biomed Anal 2015; 120:181-9. [PMID: 26744988 DOI: 10.1016/j.jpba.2015.12.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 12/30/2022]
Abstract
Asthma is a disease characterized by chronic relapsing airways, and its etiology remains incompletely understood. To better understand the metabolic phenotypes of asthma, we investigated a plasma metabolic signature associated with allergic asthma in ovalbumin (OVA)-sensitized mice by using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Sixteen metabolites were characterized as potential pathological biomarkers related to asthma. Among them, 6 (dodecanoic acid (P1), myristic acid (P2), phytosphingosine (P3), sphinganine (P4), inosine (P13) and taurocholic acid (P15)) were first reported to have potential relevance in the pathogenesis of experimental asthma. The identified potential biomarkers were involved in 6 metabolic pathways and achieved the most entire metabolome contributing to the formation of allergic asthma. Purine metabolism was the most prominently influenced in OVA-induced asthma mice according to the metabolic pathway analysis (MetPA), suggesting that significantly changes in inflammatory responses in the pathophysiologic process of asthma. The metabolites of purine metabolism, especially uric acid (P12) and inosine (P13), may denote their potential as targeted biomarkers related to experimental asthma. The decreased plasma uric acid (P12) suggested that inflammation responses of allergic asthma inhibited the activity of xanthine oxidase in purine metabolism, and manifested the severity of asthma exacerbation. The increased level of inosine (P13) suggests that inflammatory cells induce adenosine triphosphate (ATP) breakdown, resulting in excessive expression of adenosine deaminase (ADA) in the formation of allergic asthma. These findings provided a novel perspective on the metabolites signatures related to allergic asthma, which provided us with new insights into the pathogenesis of asthma, and the discovery of targets for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Feng-Xia Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Chao Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Gang Ding
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
40
|
Hofstra JJ, Matamoros S, van de Pol MA, de Wever B, Tanck MW, Wendt-Knol H, Deijs M, van der Hoek L, Wolthers KC, Molenkamp R, Visser CE, Sterk PJ, Lutter R, de Jong MD. Changes in microbiota during experimental human Rhinovirus infection. BMC Infect Dis 2015; 15:336. [PMID: 26271750 PMCID: PMC4659412 DOI: 10.1186/s12879-015-1081-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/04/2015] [Indexed: 01/25/2023] Open
Abstract
Background Human Rhinovirus (HRV) is responsible for the majority of common colds and is frequently accompanied by secondary bacterial infections through poorly understood mechanisms. We investigated the effects of experimental human HRV serotype 16 infection on the upper respiratory tract microbiota. Methods Six healthy volunteers were infected with HRV16. We performed 16S ribosomal RNA-targeted pyrosequencing on throat swabs taken prior, during and after infection. We compared overall community diversity, phylogenetic structure of the ecosystem and relative abundances of the different bacteria between time points. Results During acute infection strong trends towards increases in the relative abundances of Haemophilus parainfluenzae and Neisseria subflava were observed, as well as a weaker trend towards increases of Staphylococcus aureus. No major differences were observed between day-1 and day 60, whereas differences between subjects were very high. Conclusions HRV16 infection is associated with the increase of three genera known to be associated with secondary infections following HRV infections. The observed changes of upper respiratory tract microbiota could help explain why HRV infection predisposes to bacterial otitis media, sinusitis and pneumonia. Electronic supplementary material The online version of this article (doi:10.1186/s12879-015-1081-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J J Hofstra
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Anaesthesiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - S Matamoros
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M A van de Pol
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - B de Wever
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M W Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - H Wendt-Knol
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - M Deijs
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - L van der Hoek
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - K C Wolthers
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - R Molenkamp
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - C E Visser
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - P J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - R Lutter
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - M D de Jong
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
41
|
Fens N, van der Sluijs KF, van de Pol MA, Dijkhuis A, Smids BS, van der Zee JS, Lutter R, Zwinderman AH, Sterk PJ. Electronic nose identifies bronchoalveolar lavage fluid eosinophils in asthma. Am J Respir Crit Care Med 2015; 191:1086-8. [PMID: 25932767 DOI: 10.1164/rccm.201411-2010le] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Niki Fens
- 1 University of Amsterdam Amsterdam, the Netherlands and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The incidence of allergic diseases is increasing, both in developed and developing countries, concomitantly with the rise in living standards and the adoption of a 'western lifestyle'. For two decades, the hygiene hypothesis - which proposes that the lack of early childhood exposure to infectious agents increases susceptibility to allergic diseases in later life - provided the conceptual framework for unravelling the mechanisms that could account for the increased incidence of allergic diseases. In this Review, we discuss recent evidence that highlights the role of diet as a key factor influencing immune homeostasis and the development of allergic diseases through a complex interplay between nutrients, their metabolites and immune cell populations. Although further investigations are still required to understand these complex relationships, recent data have established a possible connection between metabolic homeostasis and allergic diseases.
Collapse
|
43
|
Arumuggam N, Bhowmick NA, Rupasinghe HPV. A Review: Phytochemicals Targeting JAK/STAT Signaling and IDO Expression in Cancer. Phytother Res 2015; 29:805-17. [PMID: 25787773 DOI: 10.1002/ptr.5327] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 01/12/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Cancer remains a major health problem worldwide. Among many other factors, two regulatory defects that are present in most cancer cells are constitutive activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway and the induction of indoleamine 2, 3-dioxygenase (IDO), an enzyme that catalyzes tryptophan degradation, through JAK/STAT signaling. Cytokine signaling activates STAT proteins in regulating cell proliferation, differentiation, and survival through modulation of target genes. Many phytochemicals can inhibit both JAK/STAT signaling and IDO expression in antigen-presenting cells by targeting different pathways. Some of the promising phytochemicals that are discussed in this review include resveratrol, cucurbitacin, curcumin, (-)-epigallocatechin gallate, and others. It is now evident that phytochemicals play key roles in inhibition of tumor proliferation and development and provide novel means for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Niroshaathevi Arumuggam
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Greater Los Angeles Veterans Administration, Los Angeles, CA, 90048, USA
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4H7, Canada
| |
Collapse
|
44
|
Del Vecchio AM, Branigan PJ, Barnathan ES, Flavin SK, Silkoff PE, Turner RB. Utility of animal and in vivo experimental infection of humans with rhinoviruses in the development of therapeutic agents for viral exacerbations of asthma and chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2015; 30:32-43. [PMID: 25445932 PMCID: PMC7110859 DOI: 10.1016/j.pupt.2014.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 12/16/2022]
Abstract
There is an association with acute viral infection of the respiratory tract and exacerbations of asthma and chronic obstructive pulmonary disease (COPD). Although these exacerbations are associated with several types of viruses, human rhinoviruses (HRVs) are associated with the vast majority of disease exacerbations. Due to the lack of an animal species that is naturally permissive for HRVs to use as a facile model system, and the limitations associated with animal models of asthma and COPD, studies of controlled experimental infection of humans with HRVs have been used and conducted safely for decades. This review discusses how these experimental infection studies with HRVs have provided a means of understanding the pathophysiology underlying virus-induced exacerbations of asthma and COPD with the goal of developing agents for their prevention and treatment.
Collapse
Affiliation(s)
- Alfred M Del Vecchio
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Patrick J Branigan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Elliot S Barnathan
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Susan K Flavin
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Philip E Silkoff
- Janssen Research and Development, Immunology Clinical Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA.
| | - Ronald B Turner
- University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
45
|
Hrusch CL, Tjota MY, Sperling AI. The role of dendritic cells and monocytes in the maintenance and loss of respiratory tolerance. Curr Allergy Asthma Rep 2015; 15:494. [PMID: 25430955 PMCID: PMC4737703 DOI: 10.1007/s11882-014-0494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Promoting tolerance to inhaled antigens is an active area of study with the potential to benefit the millions of Americans currently suffering from respiratory allergies and asthma. Interestingly, not all individuals with atopy are symptomatic, arguing that sensitization alone does not lead to an allergic clinical phenotype. Respiratory dendritic cells (rDCs), classically associated with inducing inflammatory responses, can actively promote tolerance. Tolerance can be broken when inflammatory stimuli, including viral infections and other environmental exposures, inhibit rDC-mediated tolerance by allowing innocuous antigen to be presented to initiate type-2 immunity. Importantly, rDCs are composed of multiple subsets, each with a unique response to an inhaled antigen that can lead to either tolerance or inflammation. In this review, we will discuss how rDC subsets actively maintain tolerance or, alternatively, break tolerance in response to environmental cues.
Collapse
Affiliation(s)
- Cara L. Hrusch
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Melissa Y. Tjota
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Medical Scientist Training Program, University of Chicago, Chicago, IL, USA
| | - Anne I. Sperling
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
46
|
|
47
|
Majoor CJ, van de Pol MA, Kamphuisen PW, Meijers JCM, Molenkamp R, Wolthers KC, van der Poll T, Nieuwland R, Johnston SL, Sterk PJ, Bel EHD, Lutter R, van der Sluijs KF. Evaluation of coagulation activation after rhinovirus infection in patients with asthma and healthy control subjects: an observational study. Respir Res 2014; 15:14. [PMID: 24502801 PMCID: PMC3922343 DOI: 10.1186/1465-9921-15-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/31/2014] [Indexed: 01/06/2023] Open
Abstract
Background Asthma exacerbations are frequently triggered by rhinovirus infections. Both asthma and respiratory tract infection can activate haemostasis. Therefore we hypothesized that experimental rhinovirus-16 infection and asthmatic airway inflammation act in synergy on the haemostatic balance. Methods 28 patients (14 patients with mild allergic asthma and 14 healthy non-allergic controls) were infected with low-dose rhinovirus type 16. Venous plasma and bronchoalveolar lavage fluid (BAL fluid) were obtained before and 6 days after infection to evaluate markers of coagulation activation, thrombin-antithrombin complexes, von Willebrand factor, plasmin-antiplasmin complexes, plasminogen activator inhibitor type-1, endogenous thrombin potential and tissue factor-exposing microparticles by fibrin generation test, in plasma and/or BAL fluid. Data were analysed by nonparametric tests (Wilcoxon, Mann Whitney and Spearman correlation). Results 13 patients with mild asthma (6 females, 19-29 y) and 11 healthy controls (10 females, 19-31 y) had a documented Rhinovirus-16 infection. Rhinovirus-16 challenge resulted in a shortening of the fibrin generation test in BAL fluid of asthma patients (t = -1: 706 s vs. t = 6: 498 s; p = 0.02), but not of controls (t = -1: 693 s vs. t = 6: 636 s; p = 0.65). The fold change in tissue factor-exposing microparticles in BAL fluid inversely correlated with the fold changes in eosinophil cationic protein and myeloperoxidase in BAL fluid after virus infection (r = -0.517 and -0.528 resp., both p = 0.01). Rhinovirus-16 challenge led to increased plasminogen activator inhibitor type-1 levels in plasma in patients with asthma (26.0 ng/mL vs. 11.5 ng/mL in healthy controls, p = 0.04). Rhinovirus-16 load in BAL showed a linear correlation with the fold change in endogenous thrombin potential, plasmin-antiplasmin complexes and plasminogen activator inhibitor type-1. Conclusions Experimental rhinovirus infection induces procoagulant changes in the airways of patients with asthma through increased activity of tissue factor-exposing microparticles. These microparticle-associated procoagulant changes are associated with both neutrophilic and eosinophilic inflammation. Systemic activation of haemostasis increases with Rhinoviral load. Trial registration This trial was registered at the Dutch trial registry (http://www.trialregister.nl): NTR1677.
Collapse
Affiliation(s)
- Christof J Majoor
- Department of Respiratory Medicine, Academic Medical Centre, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|