1
|
Allois R, Pertusio R, Pagliaro P, Roatta S. Ischemic preconditioning: exploring local ergogenic mechanisms in non-fatiguing voluntary contractions. Front Physiol 2025; 16:1542394. [PMID: 40200986 PMCID: PMC11975927 DOI: 10.3389/fphys.2025.1542394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025] Open
Abstract
Background IPC has been suggested to boost skeletal muscle performance, though its effectiveness remains controversial. This study evaluates whether IPC influences local hemodynamic responses and surface electromyographic (sEMG) activity during non-fatiguing voluntary sustained and intermittent contractions. Methods Ten male participants were subjected to IPC (3 cycles, 5-min ON/5-min OFF right arm ischemia, cuff pressure: 250 mmHg) and SHAM (same protocol at 20 mmHg) in two different sessions. Near-infrared spectroscopy was used to monitor tissue oxygenation (TOI) and deoxy-hemoglobin (HHb) in extensor and flexor forearm muscles. sEMG was also recorded. Measurements were taken during sustained (20-s duration) and intermittent (5 s ON/5 s OFF) isometric contractions at 20, 30, and 40% of the maximal voluntary contraction. These non-fatiguing exercise tasks were performed before and 30 min after the IPC/SHAM intervention. Results sEMG exhibited a significant increase post vs. pre-treatment in both IPC and SHAM in extensors. A significant decrease in TOI at rest was noted pre vs. post-treatment for both IPC and SHAM (p < 0.01). In general, no main effect of treatment was observed, except for HHb changes during contraction in extensor muscles, associated with no effect of time and no time-treatment interaction. All variables exhibited a main effect of force level (p < 0.05), with no interaction with treatment or time. Conclusion IPC had no effect on hemodynamic and electromyographic variables during sustained and intermittent handgrip. These results do not support IPC-related ergogenic effects at the muscle level, aligning with previous findings on electrically stimulated contractions.
Collapse
Affiliation(s)
- Ruben Allois
- Department of Neuroscience, University of Torino, Torino, Italy
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | | |
Collapse
|
2
|
Chen Z, Wu W, Qiang L, Wang C, He Z, Wang Y. The effect of ischemic preconditioning on physical fitness and performance: a meta-analysis in healthy adults. Eur J Appl Physiol 2025; 125:805-821. [PMID: 39422720 DOI: 10.1007/s00421-024-05633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE This meta-analysis aims to assess the impact of ischemic preconditioning (IPC) on physical fitness and performance, with a focus on its specific role in aerobic endurance, anaerobic endurance, explosive power and strength. METHODS Systematic searches were conducted across multiple databases (CNKI, CBM, Cochrane Library, Web of Science, PubMed, and Embase) up to September 6, 2023. We included studies that employed randomized controlled trial methods and sham ischemic preconditioning as the placebo group, and two reviewers independently screened literature and extracted data, using Review Manager 5.3 for analysis. RESULTS This meta-analysis comprises 27 articles with 405 individuals, selected according to specified criteria. IPC significantly increased the blood lactate concentration after anaerobic speed endurance exercise (MD = 0.74, P = 0.03), the blood lactate concentration after incremental exercise (MD = 0.49, P = 0.04), the blood lactate concentration after muscular endurance exercise (MD = 0.68, P = 0.02), and the one-repetition maximum (MD = 1.38, P = 0.00001). Furthermore, it also significantly shortened completion time of the exercises primarily powered by glycolysis (MD = - 0.49, P = 0.01) and completion time of the exercises primarily powered by aerobic system (MD = - 7.27, P = 0.05), while marginally prolonging time to exhaustion (MD = 22.68, P = 0.08). However, IPC had no significant effect on maximum oxygen uptake, blood lactate concentration in fixed-load aerobic endurance exercise, peak power, or peak aerobic power, nor on completion time of the exercises primarily powered by phosphagen system. CONCLUSION IPC could serve as a method to enhance physical performance, particularly for exercises primarily powered by aerobic system and glycolysis. Future research might explore how various cycles, locations, and widths of IPC affect the physical performance of participants with different activity levels.
Collapse
Affiliation(s)
- Zhen Chen
- Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
| | - Wenqiang Wu
- Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China.
| | - Lijun Qiang
- Ningxia Vocational College of Sports, Ningxia, 750021, China
| | - Congshuai Wang
- Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
| | - Zhijian He
- Lanzhou University, Lanzhou, 730000, China
| | - Yufeng Wang
- Beijing Sport University, No. 48 Xinxi Road, Haidian District, Beijing, 100084, China
| |
Collapse
|
3
|
Whitaker-Hilbig AA, Nguyen JN, Wietrzny A, Merkow G, Tarima S, Klevenow E, Nelson L, Hyngstrom AS, Durand MJ. Effects of ischemic conditioning on microvascular reactivity to single passive limb movement in young adults: a pilot study. Eur J Appl Physiol 2025:10.1007/s00421-025-05717-1. [PMID: 39984737 DOI: 10.1007/s00421-025-05717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
PURPOSE Single passive limb movement (sPLM) of the lower extremity is a simple and clinically relevant measure of the microvascular vasodilatory response to movement. A promising stimulus to improve microvascular health is ischemic conditioning (IC). We examined whether a single session of IC could improve microvascular reactivity to sPLM in young adults. METHODS This was a blinded, crossover, randomized clinical trial. Participants were seated in an isokinetic dynamometer that passively moved the knee 90° at a frequency of 1 Hz while superficial femoral artery leg blood flow (LBF) was measured. The absolute and the relative peak changes in LBF were calculated as the difference from baseline. The time to peak was calculated from the start of sPLM to peak LBF. The total area under the curve (AUC) was the sum of LBF above baseline during the hyperemic response. For IC, the cuff was placed around the dominant thigh and repetitively inflated (225 mmHg) for 5 min, then deflated for 5 min (total 45 min). For sham IC, the cuff was inflated to 25 mmHg. The sPLM response was re-assessed ten minutes after IC. RESULTS Twelve individuals completed the study (age 27 ± 3 years, 50% female). When controlling for resting LBF, heart rate, and sex, there was an interaction effect for absolute and relative peak change in LBF (p ≤ 0.048) but not time to peak or total AUC (p ≥ 0.17). CONCLUSION We show an acute bout of IC may improve the peak vasodilatory response to sPLM, potentially due to "preconditioning" the microvasculature.
Collapse
Affiliation(s)
- Alicen A Whitaker-Hilbig
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda Wietrzny
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gabriel Merkow
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sergey Tarima
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emilie Klevenow
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | | | | | - Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
4
|
Kasofsky L, Cross R, Tavoian D, Siegler J. The Efficacy of Ischemic Preconditioning on Handgrip Strength and Strength Endurance in Para-Athletes With Spinal-Cord Injury: A Pilot Study. Int J Sports Physiol Perform 2024; 19:1508-1511. [PMID: 39255959 DOI: 10.1123/ijspp.2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This pilot study investigated the functional outcomes after ischemic preconditioning (IPC) in high-level para-athletes with spinal-cord injury. METHODS Nine athletes completed 2 handgrip exercise trials (an isometric hold to failure at 60% maximal voluntary contraction [ISO] and a progressive, intermittent handgrip to failure [INT]), preceded by either IPC (220 mm Hg) or sham (20 mm Hg) for six 5-minute periods, in a repeated-measures, crossover design. RESULTS Although small performance improvements in time to task failure were observed in the ISO (∼5%) and INT (∼8%) IPC conditions, which are similar to those reported elsewhere, no statistical influence was observed (ISO-IPC, 74.2 [32.6] s; SHAM, 70.7 [27.2] s; P = .73; INT-IPC, 426.0 [80.1] s; SHAM, 392.2 [42.5] s; P = .35). Fatigue was evident in the forearm muscle force (maximal voluntary contraction) ISO (mean decline of 178.1 [76.0] N [95% CI, -10.4 to 366.7 N]; P < .05) and INT (mean decline of 182.2 [72.5] N [95% CI, 34.5-329.8 N]; P < .05) trials but not different between treatments (P > .95). CONCLUSIONS Although small performance improvements in time to task failure were observed, the findings of the present data set suggest that acute bouts of IPC do not meaningfully influence fatigue during handgrip exercise in para-athletes with spinal-cord injury.
Collapse
Affiliation(s)
- Lexi Kasofsky
- Integrative Human Performance Lab, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Rebecca Cross
- Department of Health Science, Torrens University, Sydney, NSW, Australia
| | - Dallin Tavoian
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Jason Siegler
- Integrative Human Performance Lab, College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
5
|
Souza HLR, Oliveira GT, Meireles A, Dos Santos MP, Vieira JG, Arriel RA, Patterson SD, Marocolo M. Does ischemic preconditioning enhance sports performance more than placebo or no intervention? A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:101010. [PMID: 39536913 PMCID: PMC11880722 DOI: 10.1016/j.jshs.2024.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/17/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ischemic preconditioning (IPC) is purported to have beneficial effects on athletic performance, although findings are inconsistent, with some studies reporting placebo effects. The majority of studies have investigated IPC alongside a placebo condition, but without a control condition that was devoid of experimental manipulation, thereby limiting accurate determination of the IPC effects. Therefore, the aims of this study were to assess the impact of the IPC intervention, compared to both placebo and no intervention, on exercise capacity and athletic performance. METHODS A systematic search of PubMed, Embase, SPORTDiscus, Cochrane Library, and Latin American and Caribbean Health Sciences Literature (LILACS) covering records from their inception until July 2023 was conducted. To qualify for inclusion, studies had to apply IPC as an acute intervention, comparing it with placebo and/or control conditions. Outcomes of interest were performance (force, number of repetitions, power, time to exhaustion, and time trial performance), physiological measurements (maximum oxygen consumption, and heart rate), or perceptual measurements (RPE). For each outcome measure, we conducted 3 independent meta-analyses (IPC vs. placebo, IPC vs. control, placebo vs. control) using an inverse-variance random-effects model. The between-treatment effects were quantified by the standardized mean difference (SMD), accompanied by their respective 95% confidence intervals. Additionally, we employed the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach to assess the level of certainty in the evidence. RESULTS Seventy-nine studies were included in the quantitative analysis. Overall, IPC demonstrates a comparable effect to the placebo condition (using a low-pressure tourniquet), irrespective of the subjects' training level (all outcomes presenting p > 0.05), except for the outcome of time to exhaustion, which exhibits a small magnitude effect (SMD = 0.37; p = 0.002). Additionally, the placebo exhibited effects notably greater than the control condition (outcome: number of repetitions; SMD = 0.45; p = 0.03), suggesting a potential influence of participants' cognitive perception on the outcomes. However, the evidence is of moderate to low certainty, regardless of the comparison or outcome. CONCLUSION IPC has significant effects compared to the control intervention, but it did not surpass the placebo condition. Its administration might be influenced by the cognitive perception of the receiving subject, and the efficacy of IPC as an ergogenic strategy for enhancing exercise capacity and athletic performance remains questionable.
Collapse
Affiliation(s)
- Hiago L R Souza
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.
| | - Géssyca T Oliveira
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Anderson Meireles
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Marcelo P Dos Santos
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - João G Vieira
- Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Rhai A Arriel
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
| | - Stephen D Patterson
- Centre for Applied Performance Science, St Mary's University, London TW1 4SX, UK
| | - Moacir Marocolo
- Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil; Department of Training and Exercise Science, Faculty of Sport Science, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
6
|
Jang MH, Kim DH, Han JH, Kim SH, Kim JH. Impact of ischemic preconditioning combined with aerobic exercise on 24-h ambulatory blood pressure in men with prehypertension and stage 1 hypertension. Front Physiol 2024; 15:1495648. [PMID: 39575451 PMCID: PMC11578983 DOI: 10.3389/fphys.2024.1495648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction A single bout of aerobic exercise is known to induce a temporary reduction in post-exercise blood pressure termed post-exercise hypotension (PEH). Meanwhile, an ischemic preconditioning (IPC), a series of short ischemia-reperfusion intervention, has also shown antihypertensive effects showing a potential nonpharmacologic intervention for hypertension. While the acute BP reduction effects of aerobic exercise and IPC are individually well-investigated, it remains unclear if combining both interventions has an additive effect on PEH. Methods A total of twelve pre- or hypertensive men (six prehypertension, six stage 1 hypertension) underwent either 30 min of aerobic exercise at 50% VO2peak (CON) or IPC before exercise, in a counterbalanced order. IPC involved inflating cuffs on both thighs to 200 mmHg for 5 min, alternating between right and left thighs for three cycles, totaling 30 min. Brachial BP was measured during exercise and 1-h post-exercise recovery whereas muscle oxygen saturation (SmO2) from the rectus femoris was monitored using NIRs during exercise and recovery. Heart rate variability (HRV) and baroreflex sensitivity (BRS) together with a head-up tilt test (at 0 and 50°) were measured at the pre-test, post-test, and 24-h post-test. After the completion of each experiment, 24-h ambulatory blood pressure (ABP) was monitored to assess post-exercise hypotension within a 24-h window. Results BP and heart rate responses during exercise and 1-h recovery did not differ between conditions while SmO2 was significantly elevated during exercise in IPC (p = 0.004). There was no difference in HRV and supine BRS. However, significantly reduced titled BRS after exercise was found in CON while IPC preserved BRS similar to pre-exercise value, extending to 24-h post period (p = 0.047). ABP monitoring revealed a significant reduction in systolic BP during sleep in IPC compared to CON (p = 0.046). Conclusion The present findings suggest that IPC with a single session of aerobic exercise results in a notable decrease in systolic ABP, particularly during sleep, compared to aerobic exercise alone. This supplementary antihypertensive effect was associated with a sustained BRS, persisting up to 24 h in contrast to the significant decrease observed in CON. Future studies are warranted to investigate long-term adaptations to IPC.
Collapse
Affiliation(s)
- Min-Hyeok Jang
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Dae-Hwan Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Jean-Hee Han
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
| | - Seok-Ho Kim
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| | - Jung-Hyun Kim
- Department of Physical Education, General Graduate School, Kyung Hee University, Yongin, Republic of Korea
- Department of Sports Medicine, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
7
|
Gao X, Wang A, Fan J, Zhang T, Li C, Yue T, Hurr C. The effect of ischemic preconditioning on repeated sprint cycling performance: a randomized crossover study. J Sports Med Phys Fitness 2024; 64:1147-1156. [PMID: 39023202 DOI: 10.23736/s0022-4707.24.16015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
BACKGROUND Ischemic preconditioning (IPC) has been suggested to improve exercise performance by 1-8%. Prior research concerning its impact on short-duration exercises, such as sprints, has been limited and yielded conflicting results. The aim of this study, which included a non-occlusion-based placebo control, was to determine whether IPC improves repeated sprint performance in a manner that accounted for psychophysiological effects. METHODS Twenty-two healthy males participated in this study, which employed a randomized crossover design. Following the 10-min baseline period, participants received intervention under four different conditions: 1) no-intervention control (CON); 2) non-occlusion-based placebo control (SHAM); 3) remote IPC (RIPC); and 4) local IPC (LIPC). Participants then performed a standardized repeated sprint cycling (5×10s maximal cycling sprint, separated by a 40-s rest in each set). RESULTS Repeated sprint performance, as indexed by average power output, peak power output, and total work, the improvement was observed in the RIPC and LIPC during the initial phase (set 1-3) when compared with CON (P<0.05). SHAM condition also showed an increase in peak power output in the set 1 (CON 9.97±1.05 vs. SHAM 10.30±1.13 w/kg, P<0.05), which may represent a psychophysiological component in the IPC-induced improvement. Higher lactate concertation was found in the SHAM and LIPC groups, than in the CON group, 5 minutes after the exercise (CON 15.72±0.68 vs. SHAM 16.82±0.41 vs. LIPC 17.19±0.39 mmol/L, P<0.0001 for both, respectively). CONCLUSIONS In conclusion, LIPC enhanced repeated sprint cycling performance during the initial phase, beyond what could be accounted for entirely by a psychophysiological effect. The improvement associated with RIPC, however, did not surpass the effect of a placebo intervention.
Collapse
Affiliation(s)
- Xinpeng Gao
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Anjie Wang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Junli Fan
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Tingran Zhang
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Caiyan Li
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Ting Yue
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea
| | - Chansol Hurr
- Integrative Exercise Physiology Laboratory, Department of Physical Education, College of Education, Jeonbuk National University, Jeonju, South Korea -
| |
Collapse
|
8
|
Niu X, Xia Q, Xu J, Tang L. Assessment of the Impact of Sensor-Based Ischemic Preconditioning with Different Cycling Periods on Upper Limb Strength in Bodybuilding Athletes. SENSORS (BASEL, SWITZERLAND) 2024; 24:5943. [PMID: 39338688 PMCID: PMC11435447 DOI: 10.3390/s24185943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Objective: This study designed experiments to explore the effects of ischemic preconditioning (IPC) intervention with different cycling periods on the upper limb strength performance of college male bodybuilding athletes. Methods: Ten bodybuilding athletes were recruited for a randomized, double-blind, crossover experimental study. All subjects first underwent pre-tests with two sets of exhaustive bench presses at 60% of their one-repetition maximum (1RM) to assess upper limb strength performance. They then experienced three different IPC intervention modes (T1: 1 × 5 min, T2: 2 × 5 min, T3: 3 × 5 min), as well as a non-IPC intervention mode (CON), followed by a retest of the bench press. An Enode pro device was used to record the barbell's velocity during the bench press movement (peak velocity (PV), mean velocity (MV)); power (peak power (PP), mean power (MP)); and time under tension (TUT) to evaluate upper limb strength performance. Results: PV values: T1 showed significant increases compared to pre-tests in the first (p = 0.02) and second (p = 0.024) tests, and were significantly greater than the CON (p = 0.032); T2 showed a significant increase in PV in the first test (p = 0.035), with no significant differences in other groups. MV values: T1 showed a significant increase in MV in the first test compared to the pre-test (p = 0.045), with no significant differences in other groups. PP values: T1 showed a highly significant increase in PP in the first test compared to the pre-test (p = 0.001), and was significantly higher than the CON (p = 0.025). MP values: T1 showed highly significant increases in MP in both the first (p = 0.004) and second (p = 0.003) tests compared to the pre-test; T2 showed a highly significant increase in MP in the first test (p = 0.039) and a significant increase in the second test (p = 0.039). T1's MP values were significantly higher than the CON in both tests; T2's MP values were significantly higher than the CON in the first (p = 0.005) and second (p = 0.024) tests. TUT values: T1 showed highly significant increases in TUT in the first (p < 0.001) and second (p = 0.002) tests compared to the pre-test, and were significantly higher than the CON. Conclusions: (1) Single-cycle and double-cycle IPC interventions both significantly enhance upper limb strength performance, significantly improving the speed and power in exhaustive bench press tests, with the single-cycle IPC intervention being more effective than the double-cycle IPC intervention. (2) The triple-cycle IPC intervention does not improve the upper limb strength performance of bodybuilding athletes in exhaustive bench presses.
Collapse
Affiliation(s)
- Xuehan Niu
- Physical Science College, Jishou University, Jishou 416000, China;
- College of Aeronautics, Binzhou University, Binzhou 256600, China
- Graduate School, University of Perpetual Help, Las Navas 6420, Philippines
| | - Qifei Xia
- School of Physical Education, Ankang University, Ankang 725000, China;
- Institute of Sports Training, Xi’an Physical Education University, Xi’an 710064, China
| | - Jie Xu
- College of Art, Wuhan Sports University, Wuhan 430079, China;
| | - Li Tang
- Physical Science College, Jishou University, Jishou 416000, China;
| |
Collapse
|
9
|
Cruz R, Tramontin AF, Oliveira AS, Caputo F, Denadai BS, Greco CC. Ischemic preconditioning increases spinal excitability and voluntary activation during maximal plantar flexion contractions in men. Scand J Med Sci Sports 2024; 34:e14591. [PMID: 38429941 DOI: 10.1111/sms.14591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The enigmatic benefits of acute limb ischemic preconditioning (IP) in enhancing muscle force and exercise performance have intrigued researchers. This study sought to unravel the underlying mechanisms, focusing on increased neural drive and the role of spinal excitability while excluding peripheral factors. Soleus Hoffmann (H)-reflex /M-wave recruitment curves and unpotentiated supramaximal responses were recorded before and after IP or a low-pressure control intervention. Subsequently, the twitch interpolation technique was applied during maximal voluntary contractions to assess conventional parameters of neural output. Following IP, there was an increase in both maximum normalized force and voluntary activation (VA) for the plantar flexor group, with negligible peripheral alterations. Greater benefits were observed in participants with lower VA levels. Despite greater H-reflex gains, soleus volitional (V)-wave and sEMG amplitudes remained unchanged. In conclusion, IP improves muscle force via enhanced neural drive to the muscles. This effect appears associated, at least in part, to reduced presynaptic inhibition and/or increased motoneuron excitability. Furthermore, the magnitude of the benefit is inversely proportional to the skeletal muscle's functional reserve, making it particularly noticeable in under-recruited muscles. These findings have implications for the strategic application of the IP procedure across diverse populations.
Collapse
Affiliation(s)
- Rogério Cruz
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
- Human Performance Research Group, Santa Catarina State University, Florianópolis, Brazil
| | | | | | - Fabrizio Caputo
- Human Performance Research Group, Santa Catarina State University, Florianópolis, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, São Paulo State University (UNESP), Biosciences Institute, Campus Rio Claro, Brazil
| |
Collapse
|
10
|
Baffour-Awuah B, Man M, Goessler KF, Cornelissen VA, Dieberg G, Smart NA, Pearson MJ. Effect of exercise training on the renin-angiotensin-aldosterone system: a meta-analysis. J Hum Hypertens 2024; 38:89-101. [PMID: 38017087 PMCID: PMC10844078 DOI: 10.1038/s41371-023-00872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023]
Abstract
Blood pressure (BP) management reduces the risk of cardiovascular disease (CVD). The renin-angiotensin-aldosterone system (RAAS) plays an important role in regulating and maintaining blood volume and pressure. This analysis aimed to investigate the effect of exercise training on plasma renin, angiotensin-II and aldosterone, epinephrine, norepinephrine, urinary sodium and potassium, BP and heart rate (HR). We systematically searched PubMed, Web of Science, and the Cochrane Library of Controlled Trials until 30 November 2022. The search strategy included RAAS key words in combination with exercise training terms and medical subject headings. Manual searching of reference lists from systematic reviews and eligible studies completed the search. A random effects meta-analysis model was used. Eighteen trials with a total of 803 participants were included. After exercise training, plasma angiotensin-II (SMD -0.71; 95% CI -1.24, -0.19; p = 0.008; n = 9 trials), aldosterone (SMD -0.37; 95% CI -0.65, -0.09; p = 0.009; n = 8 trials) and norepinephrine (SMD -0.82; 95% CI -1.18, -0.46; p < 0.001; n = 8 trials) were reduced. However, plasma renin activity, epinephrine, and 24-h urinary sodium and potassium excretion remained unchanged with exercise training. Systolic BP was reduced (MD -6.2 mmHg; 95% CI -9.9, -2.6; p = 0.001) as was diastolic BP (MD -4.5 mmHg; 95% CI -6.9, -2.1; p < 0.001) but not HR (MD -3.0 bpm; 95% CI -6.0, 0.4; p = 0.053). Exercise training may reduce some aspects of RAAS and sympathetic nervous system activity, and this explains some of the anti-hypertensive response.
Collapse
Affiliation(s)
- Biggie Baffour-Awuah
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melody Man
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Karla F Goessler
- Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Véronique A Cornelissen
- Cardiovascular Exercise Physiology Unit, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Gudrun Dieberg
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia.
| | - Neil A Smart
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melissa J Pearson
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
11
|
Marocolo M, Hohl R, Arriel RA, Mota GR. Ischemic preconditioning and exercise performance: are the psychophysiological responses underestimated? Eur J Appl Physiol 2023; 123:683-693. [PMID: 36478078 DOI: 10.1007/s00421-022-05109-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
The findings of the ischemic preconditioning (IPC) on exercise performance are mixed regarding types of exercise, protocols and participants' training status. Additionally, studies comparing IPC with sham (i.e., low-pressure cuff) and/or control (i.e., no cuff) interventions are contentious. While studies comparing IPC versus a control group generally show an IPC significant effect on performance, sham interventions show the same performance improvement. Thus, the controversy over IPC ergogenic effect may be due to limited discussion on the psychophysiological mechanisms underlying cuff maneuvers. Psychophysiology is the study of the interrelationships between mind, body and behavior, and mental processes are the result of the architecture of the nervous system and voluntary exercise is a behavior controlled by the central command modulated by sensory inputs. Therefore, this narrative review aims to associate potential IPC-induced positive effects on performance with sensorimotor pathways (e.g., sham influencing bidirectional body-brain integration), hemodynamic and metabolic changes (i.e., blood flow occlusion reperfusion cycles). Overall, IPC and sham-induced mechanisms on exercise performance may be due to a bidirectional body-brain integration of muscle sensory feedback to the central command resulting in delayed time to exhaustion, alterations on perceptions and behavior. Additionally, hemodynamic responses and higher muscle oxygen extraction may justify the benefits of IPC on muscle contractile function.
Collapse
Affiliation(s)
- Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Rodrigo Hohl
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Rhaí André Arriel
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gustavo R Mota
- Exercise Science, Health and Human Performance Research Group, Department of Sport Sciences, Institute of Health Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
12
|
Allois R, Pagliaro P, Roatta S. Ischemic Conditioning to Reduce Fatigue in Isometric Skeletal Muscle Contraction. BIOLOGY 2023; 12:biology12030460. [PMID: 36979152 PMCID: PMC10044801 DOI: 10.3390/biology12030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Ischemic preconditioning (IPC) is a non-invasive protective maneuver that alternates short periods of occlusion and reperfusion of tissue blood flow. Given the heterogeneity in the magnitude and frequency of IPC-induced improvements in physical performance, here we aimed to investigate, in a well-controlled experimental set-up, the local effects of IPC in exposed muscles in terms of tissue oxygenation and muscle fatigue. Nineteen subjects were enrolled in one of the two groups, IPC (3 × 5/5 min right arm ischemia/reperfusion; cuff inflations 250 mmHg) and SHAM (3 × 5/5 min pseudo ischemia/reperfusion; 20 mmHg). The subjects performed a fatiguing contraction protocol before and 30 min after the IPC treatment, consisting of unilateral intermittent isometric elbow flexions (3 s ON/OFF, 80% of maximal voluntary contraction) until exhaustion. While muscle strength did not differ between groups, post- vs. pre-treatment endurance was significantly reduced in the SHAM group (4.1 ± 1.9 vs. 6.4 ± 3.1 repetitions until exhaustion, p < 0.05) but maintained in IPC (7.3 ± 2.0 vs. 7.1 ± 4.3, n.s.). The decrease in tissue oxygenation and the increase in deoxygenated hemoglobin were significantly reduced post- vs. pre-IPC (p < 0.05), but not post- vs. pre-SHAM. The results suggest that IPC delays the onset of fatigue likely through improved metabolic efficiency of muscles.
Collapse
Affiliation(s)
- Ruben Allois
- Department of Neuroscience, University of Turin, 10125 Torino, Italy (S.R.)
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
- Correspondence: ; Tel.: +39-011-6705450
| | - Silvestro Roatta
- Department of Neuroscience, University of Turin, 10125 Torino, Italy (S.R.)
| |
Collapse
|
13
|
Held S, Rappelt L, Wiedenmann T, Deutsch JP, Röttgen J, Donath L. Blood Flow Restricted Cycling Impairs Subsequent Jumping But Not Balance Performance Slightly More Than Non-Restricted Cycling: An Acute Randomized Controlled Cross-Over Trial. J Sports Sci Med 2023; 22:44-50. [PMID: 36876181 PMCID: PMC9982535 DOI: 10.52082/jssm.2023.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023]
Abstract
Chronic blood flow restriction (BFR) training has been shown to improve drop jumping (DJ) and balance performance. However, the acute effects of low intensity BFR cycling on DJ and balance indices have not yet been examined. 28 healthy young adults (9 female; 21.8 ± 2.7years; 1.79 ± 0.08m; 73.9 ± 9.5kg) performed DJ and balance testing before and immediately after 20min low intensity cycling (40% of power at maximal oxygen uptake) with (BFR) and without BFR (noBFR). For DJ related parameters, no significant mode × time interactions were found (p ≥ 0.221, ηp 2 ≤ 0.06). Large time effects for DJ heights and the reactive strength index were observed (p < 0.001, ηp 2 ≥ 0.42). Pairwise comparison revealed notably lower values for both DJ jumping height and reactive strength index at post compared to pre (BFR: -7.4 ± 9.4%, noBFR: -4.2 ± 7.4%). No statistically significant mode × time interactions (p ≥ 0.36; ηp 2 ≤ 0.01) have been observed for balance testing. Low intensity cycling with BFR results in increased (p ≤ 0.01; SMD ≥ 0.72) mean heart rate (+14 ± 8bpm), maximal heart rate (+16 ± 12 bpm), lactate (+0.7 ± 1.2 mmol/L), perceived training intensity (+2.5 ± 1.6au) and pain scores (+4.9 ± 2.2au) compared to noBFR. BFR cycling induced acutely impaired DJ performance, but balance performance was not affected, compared to noBFR cycling. Heart rate, lactate, perceived training intensity, and pain scores were increased during BFR cycling.
Collapse
Affiliation(s)
- Steffen Held
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Ludwig Rappelt
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Tim Wiedenmann
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Jan-Phillip Deutsch
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Julian Röttgen
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| | - Lars Donath
- Intervention Research in Exercise Training, German Sports University Cologne, Germany
| |
Collapse
|
14
|
Salagas A, Tsoukos A, Terzis G, Paschalis V, Katsikas C, Krzysztofik M, Wilk M, Zajac A, Bogdanis GC. Effectiveness of either short-duration ischemic pre-conditioning, single-set high-resistance exercise, or their combination in potentiating bench press exercise performance. Front Physiol 2022; 13:1083299. [PMID: 36589445 PMCID: PMC9797974 DOI: 10.3389/fphys.2022.1083299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
This study compared the effects of short-duration ischemic preconditioning, a single-set high-resistance exercise and their combination on subsequent bench press performance. Twelve men (age: 25.8 ± 6.0 years, bench press 1-RM: 1.21 ± 0.17 kg kg-1 body mass) performed four 12 s sets as fast as possible, with 2 min of recovery between sets, against 60% 1-RM, after: a) 5 min ischemic preconditioning (IPC; at 100% of full arterial occlusion pressure), b) one set of three bench press repetitions at 90% 1-RM (PAPE), c) their combination (PAPE + IPC) or d) control (CTRL). Mean barbell velocity in ischemic preconditioning was higher than CTRL (by 6.6-9.0%, p < 0.05) from set 1 to set 3, and higher than PAPE in set 1 (by 4.4%, p < 0.05). Mean barbell velocity in PAPE was higher than CTRL from set 2 to set 4 (by 6.7-8.9%, p < 0.05), while mean barbell velocity in PAPE + IPC was higher than CTRL only in set 1 (+5.8 ± 10.0%). Peak barbell velocity in ischemic preconditioning and PAPE was higher than CTRL (by 7.8% and 8.5%, respectively; p < 0.05). Total number of repetitions was similarly increased in all experimental conditions compared with CTRL (by 7.0-7.9%, p < 0.05). Rating of perceived exertion was lower in ischemic preconditioning compared with CTRL (p < 0.001) and PAPE (p = 0.045), respectively. These results highlight the effectiveness of short-duration ischemic preconditioning in increasing bench press performance, and suggest that it may be readily used by strength and conditioning coaches during resistance training due to its brevity and lower perceived exertion.
Collapse
Affiliation(s)
- Andreas Salagas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsoukos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Terzis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Katsikas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Michal Krzysztofik
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Gregory C. Bogdanis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athens, Greece,*Correspondence: Gregory C. Bogdanis,
| |
Collapse
|
15
|
O’Brien L, Jacobs I. Potential physiological responses contributing to the ergogenic effects of acute ischemic preconditioning during exercise: A narrative review. Front Physiol 2022; 13:1051529. [PMID: 36518104 PMCID: PMC9742576 DOI: 10.3389/fphys.2022.1051529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 09/26/2023] Open
Abstract
Ischemic preconditioning (IPC) has been reported to augment exercise performance, but there is considerable heterogeneity in the magnitude and frequency of performance improvements. Despite a burgeoning interest in IPC as an ergogenic aid, much is still unknown about the physiological mechanisms that mediate the observed performance enhancing effects. This narrative review collates those physiological responses to IPC reported in the IPC literature and discusses how these responses may contribute to the ergogenic effects of IPC. Specifically, this review discusses documented central and peripheral cardiovascular responses, as well as selected metabolic, neurological, and perceptual effects of IPC that have been reported in the literature.
Collapse
Affiliation(s)
- Liam O’Brien
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ira Jacobs
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
- The Tannenbaum Institute for Science in Sport, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Peden DL, Mitchell EA, Bailey SJ, Ferguson RA. Ischaemic preconditioning blunts exercise-induced mitochondrial dysfunction, speeds oxygen uptake kinetics but does not alter severe-intensity exercise capacity. Exp Physiol 2022; 107:1241-1254. [PMID: 36030522 PMCID: PMC9826326 DOI: 10.1113/ep090264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 01/11/2023]
Abstract
NEW FINDINGS What is the central question of this study? Ischaemic preconditioning is a novel pre-exercise priming strategy. We asked whether ischaemic preconditioning would alter mitochondrial respiratory function and pulmonary oxygen uptake kinetics and improve severe-intensity exercise performance. What is the main finding and its importance? Ischaemic preconditioning expedited overall pulmonary oxygen uptake kinetics and appeared to prevent an increase in leak respiration, proportional to maximal electron transfer system and ADP-stimulated respiration, that was evoked by severe-intensity exercise in sham-control conditions. However, severe-intensity exercise performance was not improved. The results do not support ischaemic preconditioning as a pre-exercise strategy to improve exercise performance in recreationally active participants. ABSTRACT We examined the effect of ischaemic preconditioning (IPC) on severe-intensity exercise performance, pulmonary oxygen uptake ( V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ) kinetics, skeletal muscle oxygenation (muscle tissue O2 saturation index) and mitochondrial respiration. Eight men underwent contralateral IPC (4 × 5 min at 220 mmHg) or sham-control (SHAM; 20 mmHg) before performing a cycling time-to-exhaustion test (92% maximum aerobic power). Muscle (vastus lateralis) biopsies were obtained before IPC or SHAM and ∼1.5 min postexercise. The time to exhaustion did not differ between SHAM and IPC (249 ± 37 vs. 240 ± 32 s; P = 0.62). Pre- and postexercise ADP-stimulated (P) and maximal (E) mitochondrial respiration through protein complexes (C) I, II and IV did not differ (P > 0.05). Complex I leak respiration was greater postexercise compared with baseline in SHAM, but not in IPC, when normalized to wet mass (P = 0.01 vs. P = 0.19), mitochondrial content (citrate synthase activity, P = 0.003 vs. P = 0.16; CI+IIP, P = 0.03 vs. P = 0.23) and expressed relative to P (P = 0.006 vs. P = 0.30) and E (P = 0.004 vs. P = 0.26). The V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ mean response time was faster (51.3 ± 15.5 vs. 63.7 ± 14.5 s; P = 0.003), with a smaller slow component (270 ± 105 vs. 377 ± 188 ml min-1 ; P = 0.03), in IPC compared with SHAM. The muscle tissue O2 saturation index did not differ between trials (P > 0.05). Ischaemic preconditioning expedited V ̇ O 2 ${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ kinetics and appeared to prevent an increase in leak respiration through CI, when expressed proportional to E and P evoked by severe-intensity exercise, but did not improve exercise performance.
Collapse
Affiliation(s)
- Donald L. Peden
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Emma A. Mitchell
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stephen J. Bailey
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Richard A. Ferguson
- School of SportExercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|
17
|
Zhong Z, Dong H, Wu Y, Zhou S, Li H, Huang P, Tian H, Li X, Xiao H, Yang T, Xiong K, Zhang G, Tang Z, Li Y, Fan X, Yuan C, Ning J, Li Y, Xie J, Li P. Remote ischemic preconditioning enhances aerobic performance by accelerating regional oxygenation and improving cardiac function during acute hypobaric hypoxia exposure. Front Physiol 2022; 13:950086. [PMID: 36160840 PMCID: PMC9500473 DOI: 10.3389/fphys.2022.950086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) may improve exercise performance. However, the influence of RIPC on aerobic performance and underlying physiological mechanisms during hypobaric hypoxia (HH) exposure remains relatively uncertain. Here, we systematically evaluated the potential performance benefits and underlying mechanisms of RIPC during HH exposure. Seventy-nine healthy participants were randomly assigned to receive sham intervention or RIPC (4 × 5 min occlusion 180 mm Hg/reperfusion 0 mm Hg, bilaterally on the upper arms) for 8 consecutive days in phases 1 (24 participants) and phase 2 (55 participants). In the phases 1, we measured the change in maximal oxygen uptake capacity (VO2max) and muscle oxygenation (SmO2) on the leg during a graded exercise test. We also measured regional cerebral oxygenation (rSO2) on the forehead. These measures and physiological variables, such as cardiovascular hemodynamic parameters and heart rate variability index, were used to evaluate the intervention effect of RIPC on the changes in bodily functions caused by HH exposure. In the phase 2, plasma protein mass spectrometry was then performed after RIPC intervention, and the results were further evaluated using ELISA tests to assess possible mechanisms. The results suggested that RIPC intervention improved VO2max (11.29%) and accelerated both the maximum (18.13%) and minimum (53%) values of SmO2 and rSO2 (6.88%) compared to sham intervention in hypobaric hypoxia exposure. Cardiovascular hemodynamic parameters (SV, SVRI, PPV% and SpMet%) and the heart rate variability index (Mean RR, Mean HR, RMSSD, pNN50, Lfnu, Hfnu, SD1, SD2/SD1, ApEn, SampEn, DFA1and DFA2) were evaluated. Protein sequence analysis showed 42 unregulated and six downregulated proteins in the plasma of the RIPC group compared to the sham group after HH exposure. Three proteins, thymosin β4 (Tβ4), heat shock protein-70 (HSP70), and heat shock protein-90 (HSP90), were significantly altered in the plasma of the RIPC group before and after HH exposure. Our data demonstrated that in acute HH exposure, RIPC mitigates the decline in VO2max and regional oxygenation, as well as physiological variables, such as cardiovascular hemodynamic parameters and the heart rate variability index, by influencing plasma Tβ4, HSP70, and HSP90. These data suggest that RIPC may be beneficial for acute HH exposure.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Dong
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wu
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Simin Zhou
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Pei Huang
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaijun Tian
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaoxu Li
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Heng Xiao
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tian Yang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Kun Xiong
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Zhang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhongwei Tang
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaling Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xueying Fan
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Yuan
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaolin Ning
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Li
- Department of Anesthesiology, First Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaxin Xie
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| | - Peng Li
- Department of High Altitude Operational Medicine, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Army Medical University (Third Military Medical University), Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jiaxin Xie, ; Peng Li,
| |
Collapse
|
18
|
Chen Y, Yang J, Muradov O, Li X, Lee JKW, Qiu J. Effect of ischemic preconditioning on maximum accumulated oxygen deficit in 400-meter runners. Eur J Sport Sci 2022; 23:789-796. [PMID: 35400298 DOI: 10.1080/17461391.2022.2064769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The main aim of this study was to examine the influence of ischemic preconditioning (IPC) on maximal accumulated oxygen deficit (MAOD). We conducted a three-arm and assessor-blinded randomized, controlled crossover study. Sixteen 400-meter running male athletes (19.9±1.3 years; 1.78±0.05 m; 67.9±5.5 kg) completed three supramaximal intensity tests separated with Control, Local (legs), and Remote (arms) IPC interventions. IPC was induced on the limbs on both sides (4×5 min alternating unilateral occlusion 220 mmHg and reperfusion; arms or thighs; right side first) before participants performed the supramaximal intensity test on a treadmill at 110% VO2max intensity to exhaustion. During each test, indices of respiratory gas exchange, blood lactate, and heart rate were determined. The MAOD was calculated as the difference between the theoretical VO2 demand and the actual VO2 during the supramaximal intensity test. Differences from three trials were analyzed using ANOVA with repeated measures. IPC increased MAOD (RIPC, 59±17 ml/kg/min, p=0.018; LIPC, 57±15 ml/kg/min, p=0.037; p<0.05) compared with Control (49±9 ml/kg/min). Time to exhaustion was enhanced after IPC (Control: 257.2±69.5 s, RIPC, 292.3±66.6 s, p= 0.048; LIPC, 291.6±79.2 s, p=0.042; p<0.05). In contrast, the enhancements of RIPC and LIPC trials were similar (p=1.000). Blood lactate concentrations were similar across the three intervention conditions (p>0.05). Acute IPC improved MAOD and supramaximal intensity exercise capacity in 400-meter running athletes. The increased MAOD indicated greater anaerobic capacity, which can be the potential mediator for improvement in exhaustion time.
Collapse
Affiliation(s)
- Yuyang Chen
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, People's Republic of China
| | - Junchao Yang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, People's Republic of China
| | - Orhan Muradov
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, People's Republic of China
| | - Xinyuan Li
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, People's Republic of China
| | - Jason Kai Wei Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, People's Republic of China
| |
Collapse
|
19
|
Active Relative to Passive Ischemic Preconditioning Enhances Intense Endurance Performance in Well-Trained Men. Int J Sports Physiol Perform 2022; 17:979-990. [PMID: 35338107 DOI: 10.1123/ijspp.2021-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE This study tested the hypothesis of whether ischemic exercise preconditioning (IPC-Ex) elicits a better intense endurance exercise performance than traditional ischemic preconditioning at rest (IPC-rest) and a SHAM procedure. METHODS Twelve men (average V˙O2max ∼61 mL·kg-1·min-1) performed 3 trials on separate days, each consisting of either IPC-Ex (3 × 2-min cycling at ∼40 W with a bilateral-leg cuff pressure of ∼180 mm Hg), IPC-rest (4 × 5-min supine rest at 220 mm Hg), or SHAM (4 × 5-min supine rest at <10 mm Hg) followed by a standardized warm-up and a 4-minute maximal cycling performance test. Power output, blood lactate, potassium, pH, rating of perceived exertion, oxygen uptake, and gross efficiency were assessed. RESULTS Mean power during the performance test was higher in IPC-Ex versus IPC-rest (+4%; P = .002; 95% CI, +5 to 18 W). No difference was found between IPC-rest and SHAM (-2%; P = .10; 95% CI, -12 to 1 W) or between IPC-Ex and SHAM (+2%; P = .09; 95% CI, -1 to 13 W). The rating of perceived exertion increased following the IPC-procedure in IPC-Ex versus IPC-rest and SHAM (P < .001). During warm-up, IPC-Ex elevated blood pH versus IPC-rest and SHAM (P ≤ .027), with no trial differences for blood potassium (P > .09) or cycling efficiency (P ≥ .24). Eight subjects anticipated IPC-Ex to be best for their performance. Four subjects favored SHAM. CONCLUSIONS Performance in a 4-minute maximal test was better following IPC-Ex than IPC-rest and tended to be better than SHAM. The IPC procedures did not affect blood potassium, while pH was transiently elevated only by IPC-Ex. The performance-enhancing effect of IPC-Ex versus IPC-rest may be attributed to a placebo effect, improved pH regulation, and/or a change in the perception of effort.
Collapse
|
20
|
Cheng CF, Kuo YH, Hsu WC, Chen C, Pan CH. Local and Remote Ischemic Preconditioning Improves Sprint Interval Exercise Performance in Team Sport Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10653. [PMID: 34682399 PMCID: PMC8535734 DOI: 10.3390/ijerph182010653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
The aim of this study was to investigate the effects of local (LIPC) and remote (RIPC) ischemic preconditioning on sprint interval exercise (SIE) performance. Fifteen male collegiate basketball players underwent a LIPC, RIPC, sham (SHAM), or control (CON) trial before conducting six sets of a 30-s Wingate-based SIE test. The oxygen uptake and heart rate were continuously measured during SIE test. The total work in the LIPC (+2.2%) and RIPC (+2.5%) conditions was significantly higher than that in the CON condition (p < 0.05). The mean power output (MPO) at the third and fourth sprint in the LIPC (+4.5%) and RIPC (+4.9%) conditions was significantly higher than that in the CON condition (p < 0.05). The percentage decrement score for MPO in the LIPC and RIPC condition was significantly lower than that in the CON condition (p < 0.05). No significant interaction effects were found in pH and blood lactate concentrations. There were no significant differences in the accumulated exercise time at ≥80%, 90%, and 100% of maximal oxygen uptake during SIE. Overall, both LIPC and RIPC could improve metabolic efficiency and performance during SIE in athletes.
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Athletic Performance, National Taiwan Normal University, Taipei 11677, Taiwan
- Sports Performance Lab, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-C.H.); (C.C.); (C.-H.P.)
| | - Yu-Hsuan Kuo
- Department of Physical Education, Chinese Culture University, Taipei 11114, Taiwan;
| | - Wei-Chieh Hsu
- Sports Performance Lab, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-C.H.); (C.C.); (C.-H.P.)
- Graduate Institute of Sports Training, University of Taipei, Taipei 11153, Taiwan
| | - Chu Chen
- Sports Performance Lab, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-C.H.); (C.C.); (C.-H.P.)
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei 10610, Taiwan
| | - Chi-Hsueh Pan
- Sports Performance Lab, National Taiwan Normal University, Taipei 11677, Taiwan; (W.-C.H.); (C.C.); (C.-H.P.)
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei 10610, Taiwan
| |
Collapse
|
21
|
Bouffard S, Paradis-Deschênes P, Billaut F. Neuromuscular Adjustments Following Sprint Training with Ischemic Preconditioning in Endurance Athletes: Preliminary Data. Sports (Basel) 2021; 9:124. [PMID: 34564329 PMCID: PMC8470678 DOI: 10.3390/sports9090124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
This preliminary study examined the effect of chronic ischemic preconditioning (IPC) on neuromuscular responses to high-intensity exercise. In a parallel-group design, twelve endurance-trained males (VO2max 60.0 ± 9.1 mL·kg-1·min-1) performed a 30-s Wingate test before, during, and after 4 weeks of sprint-interval training. Training consisted of bi-weekly sessions of 4 to 7 supra-maximal all-out 30-s cycling bouts with 4.5 min of recovery, preceded by either IPC (3 × 5-min of compression at 220 mmHg/5-min reperfusion, IPC, n = 6) or placebo compressions (20 mmHg, PLA, n = 6). Mechanical indices and the root mean square and mean power frequency of the electromyographic signal from three lower-limb muscles were continuously measured during the Wingate tests. Data were averaged over six 5-s intervals and analyzed with Cohen's effect sizes. Changes in peak power output were not different between groups. However, from mid- to post-training, IPC improved power output more than PLA in the 20 to 25-s interval (7.6 ± 10.0%, ES 0.51) and the 25 to 30-s interval (8.8 ± 11.2%, ES 0.58), as well as the fatigue index (10.0 ± 2.3%, ES 0.46). Concomitantly to this performance difference, IPC attenuated the decline in frequency spectrum throughout the Wingate (mean difference: 14.8%, ES range: 0.88-1.80). There was no difference in root mean square amplitude between groups. These preliminary results suggest that using IPC before sprint training may enhance performance during a 30-s Wingate test, and such gains occurred in the last 2 weeks of the intervention. This improvement may be due, in part, to neuromuscular adjustments induced by the chronic use of IPC.
Collapse
Affiliation(s)
- Stéphan Bouffard
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada; (S.B.); (P.P.-D.)
| | | | - François Billaut
- Department of Kinesiology, Laval University, Quebec, QC G1V 0A6, Canada; (S.B.); (P.P.-D.)
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| |
Collapse
|
22
|
Zhang H, Liu M, Kim HT, Feeley BT, Liu X. Preconditioning improves muscle regeneration after ischemia-reperfusion injury. J Orthop Res 2021; 39:1889-1897. [PMID: 33232533 PMCID: PMC9257970 DOI: 10.1002/jor.24909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition associated with serious clinical manifestations. Extensive research has focused on the strategies increasing organ tolerance to IRI. Preconditioning (PC) has been shown to provide protection to various organs toward IRI. However, the underlying mechanisms remain unknown. This study aimed to evaluate the role of PC on muscle regeneration after IRI and the potential underlying mechanisms. Three-month-old male UCP-1 reporter mice underwent unilateral hindlimb IRI with or without PC, the tissue viability and injury index were measured at 24 h after IRI. Hindlimb gait, muscle contractility, muscle histology were analyzed at 2 weeks after IRI. In another group of animals, β3 adrenergic receptor (β3AR) agonist amibegron and β3AR antagonist SR-59230A were administrated before PC/IRI, the hindlimb function and muscle regeneration were evaluated at 2 weeks after IRI. Our results showed that PC has little effect on improving the tissue viability at the acute phase of IRI, but it showed a long-term beneficial role of improving hindlimb function and muscle regeneration as evidenced by increased central nuclei regenerating myofibers. The effects of PC are related to inducing muscle fibro-adipogenic progenitor (FAP) brown/beige-like adipocyte (BAT) differentiation. Amibegron treatment displayed a similar role of PC while SR-59230A abolished the effect of PC. This study suggests PC has a beneficial role in promoting muscle regeneration after IRI through β3AR signaling pathway-stimulated FAP-BAT differentiation.
Collapse
Affiliation(s)
- He Zhang
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA,Department of Exercise Physiology, Beijing Sports University, Beijing, China
| | - Mengyao Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Hubert T. Kim
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA,Department of Orthopedic Surgery, University of California-San Francisco, San Francisco, California, USA
| |
Collapse
|
23
|
Seeley AD, Jacobs KA. IPC recovery length of 45 minutes improves muscle oxygen saturation during active sprint recovery. Eur J Sport Sci 2021; 22:1383-1390. [PMID: 34110272 DOI: 10.1080/17461391.2021.1939429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ischemic preconditioning (IPC) involves brief, repeated bouts of limb occlusion and reperfusion capable of improving exercise performance at least partially by enhancing local skeletal muscle oxygenation. This study sought to investigate the effect of a lower limb IPC protocol, with either a 5-min or 45-min post-application delay, on vastus lateralis tissue saturation index (TSI) and systemic cardiac hemodynamics at rest and during short-duration intense cycling. Twelve young adults randomly completed four interventions: IPC (at 220 mmHg) with 5-min delay (IPC5), IPC with 45-min delay (IPC45), SHAM (at 20 mmHg) with 5-min delay (SHAM5), and SHAM with 45-min delay (SHAM45). Following IPC intervention and recovery delay, participants completed 5, 60-s high-intensity (100% Wpeak) cycle sprints separated by 120-sec of active recovery (30% Wpeak). Compared to baseline, TSI immediately following IPC5, but pre-exercise, remained lower than the equivalent for IPC45 (-5.9 ± 1.5%, p = .002). IPC, imposed at least 45-min before the completion of five 60-s sprint cycling efforts, significantly enhanced TSI during active recovery between sprint intervals compared to a 5-min delay (6.6 ± 2.4%, p = .021), and identical SHAM conditions (SHAM5: 5.8 ± 2.2%, p = .024; SHAM45: 6.2 ± 2.5%, p = .029). A 45-min delay following IPC appears to provide heightened skeletal muscle metabolic rebound prior to intense sprint cycling as compared to a 5-min delay. Furthermore, IPC followed by a 45-min delay enhanced recovery of skeletal muscle oxygenation during low intensity active sprint recovery, despite an unchanged decline in skeletal muscle oxygenation during near-maximal sprinting efforts.
Collapse
Affiliation(s)
- Afton D Seeley
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, FL, USA
| | - Kevin A Jacobs
- Department of Kinesiology and Sport Sciences, School of Education and Human Development, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
24
|
O'Brien L, Jacobs I. Methodological Variations Contributing to Heterogenous Ergogenic Responses to Ischemic Preconditioning. Front Physiol 2021; 12:656980. [PMID: 33995123 PMCID: PMC8117357 DOI: 10.3389/fphys.2021.656980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic preconditioning (IPC) has been repeatedly reported to augment maximal exercise performance over a range of exercise durations and modalities. However, an examination of the relevant literature indicates that the reproducibility and robustness of ergogenic responses to this technique are variable, confounding expectations about the magnitude of its effects. Considerable variability among study methodologies may contribute to the equivocal responses to IPC. This review focuses on the wide range of methodologies used in IPC research, and how such variability likely confounds interpretation of the interactions of IPC and exercise. Several avenues are recommended to improve IPC methodological consistency, which should facilitate a future consensus about optimizing the IPC protocol, including due consideration of factors such as: location of the stimulus, the time between treatment and exercise, individualized tourniquet pressures and standardized tourniquet physical characteristics, and the incorporation of proper placebo treatments into future study designs.
Collapse
Affiliation(s)
- Liam O'Brien
- Human Physiology Laboratory, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Ira Jacobs
- Human Physiology Laboratory, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Baffour-Awuah B, Dieberg G, Pearson MJ, Smart NA. The effect of remote ischaemic conditioning on blood pressure response: A systematic review and meta-analysis. Int J Cardiol Hypertens 2021; 8:100081. [PMID: 33748739 PMCID: PMC7972960 DOI: 10.1016/j.ijchy.2021.100081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous work has evaluated the effect of remote ischaemic conditioning (RIC) in a number of clinical conditions (e.g. cardiac surgery and acute kidney injury), but only one analysis has examined blood pressure (BP) changes. While individual studies have reported the effects of acute bouts and repeated RIC exposure on resting BP, efficacy is equivocal. We conducted a systematic review and meta-analysis to evaluate the effects of acute and repeat RIC on BP. METHODS A systematic search was performed using PubMed, Web of Science, EMBASE, and Cochrane Library of Controlled Trials up until October 31, 2020. Additionally, manual searches of reference lists were performed. Studies that compared BP responses after exposing participants to either an acute bout or repeated cycles of RIC with a minimum one-week intervention period were considered. RESULTS Eighteen studies were included in this systematic review, ten examined acute effects while eight investigated repeat effects of RIC. Mean differences (MD) for outcome measures from acute RIC studies were: systolic BP 0.18 mmHg (95%CI -0.95, 1.31; p = 0.76), diastolic BP -0.43 mmHg (95%CI -2.36, 1.50; p = 0.66), MAP -1.73 mmHg (95%CI -3.11, -0.34; p = 0.01) and HR -1.15 bpm (95%CI -2.92, 0.62; p = 0.20). Only MAP was significantly reduced. Repeat RIC exposure showed non-significant change in systolic BP -3.23 mmHg (95%CI -6.57, 0.11; p = 0.06) and HR -0.16 bpm (95%CI -7.08, 6.77; p = 0.96) while diastolic BP -2.94 mmHg (95%CI -4.08, -1.79; p < 0.00001) and MAP -3.21 mmHg (95%CI -4.82, -1.61; p < 0.0001) were significantly reduced. CONCLUSIONS Our data suggests repeated, but not acute, RIC produced clinically meaningful reductions in diastolic BP and MAP.
Collapse
Affiliation(s)
- Biggie Baffour-Awuah
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Gudrun Dieberg
- Biomedical Sciences, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Melissa J. Pearson
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| | - Neil A. Smart
- Clinical Exercise Physiology, School of Science and Technology, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW, 2351, Australia
| |
Collapse
|
26
|
Hyngstrom AS, Nguyen JN, Wright MT, Tarima SS, Schmit BD, Gutterman DD, Durand MJ. Two weeks of remote ischemic conditioning improves brachial artery flow mediated dilation in chronic stroke survivors. J Appl Physiol (1985) 2020; 129:1348-1354. [PMID: 33090908 DOI: 10.1152/japplphysiol.00398.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many stroke survivors have reduced cardiorespiratory fitness as a result of their stroke. Ischemic conditioning (IC) is a noninvasive, cost-effective, easy-to-administer intervention that can be performed at home and has been shown to improve both motor function in stroke survivors and vascular endothelial function in healthy individuals. In this study, we examined the effects of 2 wk of remote IC (RIC) on brachial artery flow mediated dilation (FMD) in chronic stroke survivors. We hypothesized that FMD would be improved following RIC compared with a sham RIC control group. This was a prospective, randomized, double-blinded, controlled study. Twenty-four chronic stroke survivors (>6 mo after stroke) were enrolled and randomized to receive either RIC or sham RIC on their affected thigh every other day for 2 wk. For the RIC group, a blood pressure cuff was inflated to 225 mmHg for 5 min, followed by 5 min of recovery, and repeated a total of five times per session. For the sham RIC group, the inflation pressure was 10 mmHg. Brachial artery FMD was assessed on the nonaffected arm at study enrollment and following the 2-wk intervention period. Nine men and fourteen women completed all study procedures. Brachial artery FMD increased from 5.4 ± 4.8 to 7.8 ± 4.4% (P = 0.030; n = 12) in the RIC group, while no significant change was observed in the sham RIC group (3.5 ± 3.9% pretreatment versus 2.4 ± 3.1% posttreatment; P = 0.281, n = 11). Two weeks of RIC increases brachial artery FMD in chronic stroke survivors.NEW & NOTEWORTHY In this study, we report that 2 wk of remote ischemic conditioning (RIC) improves brachial artery flow-mediated dilation in chronic stroke survivors. Because poor cardiovascular health puts stroke survivors at a heightened risk for recurrent stroke and other cardiovascular events, an intervention that is simple, cost-effective, and easy to perform like RIC holds promise as a means to improve cardiovascular health in this at-risk population.
Collapse
Affiliation(s)
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael T Wright
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sergey S Tarima
- Institute of Health and Equity, Division of Biostatistics, Medical College of Wisconsin Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
27
|
Vangsoe MT, Nielsen JK, Paton CD. A Comparison of Different Prerace Warm-Up Strategies on 1-km Cycling Time-Trial Performance. Int J Sports Physiol Perform 2020; 15:1109-1116. [PMID: 32294619 DOI: 10.1123/ijspp.2019-0557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/10/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Ischemic preconditioning (IPC) and postactivation potentiation (PAP) are warm-up strategies proposed to improve high-intensity sporting performance. However, only few studies have investigated the benefits of these strategies compared with an appropriate control (CON) or an athlete-selected (SELF) warm-up protocol. Therefore, this study examined the effects of 4 different warm-up routines on 1-km time-trial (TT) performance with competitive cyclists. METHODS In a randomized crossover study, 12 well-trained cyclists (age 32 [10] y, mass 77.7 [4.6] kg, peak power output 1141 [61] W) performed 4 different warm-up strategies-(CON) 17 minutes CON only, (SELF) a self-determined warm-up, (IPC) IPC + CON, or (PAP) CON + PAP-prior to completing a maximal-effort 1-km TT. Performance time and power, quadriceps electromyograms, muscle oxygen saturation (SmO2), and blood lactate were measured to determine differences between trials. RESULTS There were no significant differences (P > .05) in 1-km performance time between CON (76.9 [5.2] s), SELF (77.3 [6.0] s), IPC (77.0 [5.5] s), or PAP (77.3 [5.9] s) protocols. Furthermore, there were no significant differences in mean or peak power output between trials. Finally, electromyogram activity, SmO2, and recovery blood lactate concentration were not different between conditions. CONCLUSIONS Adding IPC or PAP protocols to a short CON warm-up appears to provide no additional benefit to 1-km TT performance with well-trained cyclists and is therefore not recommended. Furthermore, additional IPC and PAP protocols had no effect on electromyograms and SmO2 values during the TT or peak lactate concentration during recovery.
Collapse
|
28
|
Paradis-Deschênes P, Joanisse DR, Mauriège P, Billaut F. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function. Front Sports Act Living 2020; 2:41. [PMID: 33345033 PMCID: PMC7739728 DOI: 10.3389/fspor.2020.00041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023] Open
Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: -1.6%, Cohen's ES ± 90% confidence limits -0.24, -0.40;-0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, -0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, -0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, -0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, -0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, -0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: -8.4%, ES -0.37, -0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
Collapse
Affiliation(s)
- Pénélope Paradis-Deschênes
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Denis R. Joanisse
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Pascale Mauriège
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - François Billaut
- Département de kinésiologie, Université Laval, Québec, QC, Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
29
|
Changes in the quadriceps spinal reflex pathway after repeated sprint cycling are not influenced by ischemic preconditioning. Eur J Appl Physiol 2020; 120:1189-1202. [PMID: 32239310 DOI: 10.1007/s00421-020-04359-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE We examined the effect of ischemic preconditioning (IPC) on changes in muscle force, activation, and the spinal reflex pathway during and after repeated sprint cycling. METHODS Eight recreationally active men (high-intensity cardiorespiratory training > 3 times per week, > 6 months) completed two exercise sessions (5 sets of 5 cycling sprints, 150% max W), preceded by either IPC (3 × 5 min leg occlusions at 220 mmHg) or SHAM (3 × 5 min at 20 mmHg). Knee extensor maximal force and rate of force were measured before (PRE), immediately post (POST), 1H, and 24H after cycling. Twitch interpolation and resting potentiated twitches were applied to estimate voluntary activation and muscle contractility, respectively. Quadriceps H-reflex recruitment curves were collected at all time-points using 10 Hz doublet stimulation to allow estimation of H-reflex post-activation depression. Surface electromyograms and tissue oxygenation (via near-infrared spectroscopy) were continuously recorded during cycling. RESULTS IPC did not affect any measure of neuromuscular function or performance during cycling. Maximal force and muscle contractility were significantly lower at POST and 1H compared to PRE and 24H by up to 50% (p < 0.01). Maximal force was lower than PRE at 24H by 8.7% (p = 0.028). Voluntary activation and rate of force were unchanged. A rightwards shift was observed for the H-reflex recruitment curve POST, and post-activation depression was higher than all other time-points at 24H (p < 0.05). Muscle activation and oxygenation decreased during cycling. CONCLUSIONS IPC has a nominal effect on mechanisms associated with neuromuscular function during and after exercise in healthy populations.
Collapse
|
30
|
Cocking S, Ihsan M, Jones H, Hansen C, Timothy Cable N, Thijssen DHJ, Wilson MG. Repeated sprint cycling performance is not enhanced by ischaemic preconditioning or muscle heating strategies. Eur J Sport Sci 2020; 21:166-175. [PMID: 32223385 DOI: 10.1080/17461391.2020.1749312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Both ischaemic preconditioning (IPC) and muscle heat maintenance can be effective in enhancing repeated-sprint performance (RSA) when applied individually, acting mechanisms of these interventions, however, likely differ. It is unclear if, when combined, these interventions could further improve RSA. Methods: Eleven trained cyclists undertook experimental test sessions, whereby IPC (4 × 5-min at 220 mmHg) and SHAM (4 × 5-min at 20 mmHg) were each performed on two separate visits, each combined with either passive muscle heating or thermoneutral insulation prior to an "all-out" repeated-sprint task (10 × 6-s sprints with 24-s recovery). Primary outcome measures were peak and average power output (W), whist secondary measures were muscular activation and muscular oxygenation, measured via Electromyography (EMG) and Near-infrared spectroscopy (NIRS), respectively. Results: IPC did not enhance peak [6 (-14-26)W; P = 0.62] or average [12 (-7-31)W; P = 0.28] power output versus SHAM. Additionally, no performance benefits were observed when increasing muscle temperature in combination with IPC [5 (-14-19) watts; P = 0.67], or in isolation to IPC [9 (-9-28)W; P = 0.4] versus SHAM. No changes in EMG or microvascular changes were present (P > 0.05, respectively) between conditions. Conclusion: Overall, neither IPC, muscle heating, or a combination of both enhances RSA cycling performance in trained individuals.
Collapse
Affiliation(s)
- Scott Cocking
- Department of Sport Science, Aspire Academy, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Mohammed Ihsan
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Helen Jones
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Clint Hansen
- Department of Neurology, Christian-Albrechts University, Kiel, Germany
| | - N Timothy Cable
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Dick H J Thijssen
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.,Department of Physiology, Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mathew G Wilson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK.,Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Institute of Sport, Exercise and Health, University College London, London, UK
| |
Collapse
|
31
|
Surkar SM, Bland MD, Mattlage AE, Chen L, Gidday JM, Lee JM, Hershey T, Lang CE. Effects of remote limb ischemic conditioning on muscle strength in healthy young adults: A randomized controlled trial. PLoS One 2020; 15:e0227263. [PMID: 32017777 PMCID: PMC6999897 DOI: 10.1371/journal.pone.0227263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Remote limb ischemic conditioning (RLIC) is a clinically feasible method in which brief, sub-lethal bouts of ischemia protects remote organs or tissues from subsequent ischemic injury. A single session of RLIC can improve exercise performance and increase muscle activation. The purpose of this study, therefore, was to assess the effects of a brief, two-week protocol of repeated RLIC combined with strength training on strength gain and neural adaptation in healthy young adults. Participants age 18–40 years were randomized to receive either RLIC plus strength training (n = 15) or sham conditioning plus strength training (n = 15). Participants received RLIC or sham conditioning over 8 visits using a blood pressure cuff on the dominant arm with 5 cycles of 5 minutes each alternating inflation and deflation. Visits 3–8 paired conditioning with wrist extensors strength training on the non-dominant (non-conditioned) arm using standard guidelines. Changes in one repetition maximum (1 RM) and electromyography (EMG) amplitude were compared between groups. Both groups were trained at a similar workload. While both groups gained strength over time (P = 0.001), the RLIC group had greater strength gains (9.38 ± 1.01 lbs) than the sham group (6.3 ± 1.08 lbs, P = 0.035). There was not a significant group x time interaction in EMG amplitude (P = 0.231). The RLIC group had larger percent changes in 1 RM (43.8% vs. 26.1%, P = 0.003) and EMG amplitudes (31.0% vs. 8.6%, P = 0.023) compared to sham conditioning. RLIC holds promise for enhancing muscle strength in healthy young and older adults, as well as clinical populations that could benefit from strength training.
Collapse
Affiliation(s)
- Swati M Surkar
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marghuretta D Bland
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Anna E Mattlage
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, and Neuroscience, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Catherine E Lang
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States of America.,Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America.,Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
32
|
Halley SL, Marshall P, Siegler JC. Effect of ischemic preconditioning and changing inspired O2 fractions on neuromuscular function during intense exercise. J Appl Physiol (1985) 2019; 127:1688-1697. [DOI: 10.1152/japplphysiol.00539.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to determine whether ischemic preconditioning (IPC)-mediated effects on neuromuscular function are dependent on tissue oxygenation. Eleven resistance-trained males completed four exercise trials (6 sets of 11 repetitions of maximal effort dynamic single-leg extensions) in either normoxic [fraction of inspired oxygen ([Formula: see text]): 21%) or hypoxic [Formula: see text]: 14%] conditions, preceded by treatments of either IPC (3 × 5 min bilateral leg occlusions at 220 mmHg) or sham (3 × 5 min at 20 mmHg). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch characteristics during maximal voluntary contractions (MVCs). Tissue oxygenation (via near-infrared spectroscopy) and surface electromyography activity were measured throughout the exercise task. MVC and twitch torque declined 62 and 54%, respectively (MVC: 96 ± 24 N·m, Cohen’s d = 2.9, P < 0.001; twitch torque: 37 ± 11 N·m, d = 1.6, P < 0.001), between pretrial measurements and the sixth set without reductions in voluntary activation ( P > 0.21); there were no differences between conditions. Tissue oxygenation was reduced in both hypoxic conditions compared with normoxia ( P < 0.001), with an even further reduction of 3% evident in the hypoxic IPC compared with the sham trial (mean decrease 1.8 ± 0.7%, d = 1.0, P < 0.05). IPC did not affect any measure of neuromuscular function regardless of tissue oxygenation. A reduction in [Formula: see text] did invoke a humoral response and improved muscle O2 extraction during exercise, however, it did not manifest into any performance benefit. NEW & NOTEWORTHY Ischemic preconditioning did not affect any facet of neuromuscular function regardless of the degree of tissue oxygenation. Reducing the fraction of inspired oxygen induced localized tissue deoxygenation, subsequently invoking a humoral response, which improved muscle oxygen extraction during exercise. This physiological response, however, did not manifest into any performance benefits.
Collapse
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Paul Marshall
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jason C. Siegler
- Sport and Exercise Science, School of Health Sciences, Western Sydney University, Sydney, Australia
| |
Collapse
|
33
|
Durand MJ, Beckert AK, Peterson CY, Ludwig KA, Ridolfi TJ, Lauer KK, Freed JK. You Are Only as Frail as Your Arteries: Prehabilitation of Elderly Surgical Patients. CURRENT ANESTHESIOLOGY REPORTS 2019. [DOI: 10.1007/s40140-019-00357-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Purpose of Review
To discuss the concept of prehabilitation for the elderly frail surgical patient as well as strategies to improve preoperative functional capacity and vascular function to decrease postoperative complications.
Recent Findings
Frailty is associated with poor surgical outcomes yet there is no consensus on how frailty should be measured or mitigated in the preoperative period. Prehabilitation, or improving functional capacity prior to surgery typically through exercise, has been shown to be an effective strategy to decrease preoperative frailty and improves surgical outcomes. Use of remote ischemic preconditioning (RIPC) may serve as an alternative to exercise in this fragile patient population.
Summary
Prehabilitation programs using strategies targeted at improving vascular function may decrease frailty in the preoperative period and improve surgical outcomes in the elderly population.
Collapse
|
34
|
Wiggins CC, Constantini K, Paris HL, Mickleborough TD, Chapman RF. Ischemic Preconditioning, O2 Kinetics, and Performance in Normoxia and Hypoxia. Med Sci Sports Exerc 2019; 51:900-911. [PMID: 30601792 DOI: 10.1249/mss.0000000000001882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ischemic preconditioning (IPC) before exercise has been shown to be a novel approach to improve performance in different exercise modes in normoxia (NORM). Few studies have been conducted examining potential mechanisms behind these improvements, and less has been done examining its influence during exercise in hypoxia (HYP). Oxygen uptake and extraction kinetics are factors that have been implicated as possible determinants of cycling performance. We hypothesized that IPC would lead to improvements in oxygen extraction and peripheral blood flow kinetics, and this would translate to improvements in cycling time trial (TT) performance in both NORM and HYP. METHODS Thirteen men (age, 24 ± 7 yr; V˙O2max, 63.1 ± 5.1 mL·kg·min) participated in the study. Subjects completed trials of each combination of normobaric HYP (FiO2 = 0.16, simulating ~8000 ft/2500 m) or NORM (FiO2 = 0.21) with preexercise IPC protocol (4 × 5 min at 220 mm Hg) or SHAM procedure. Trials included submaximal constant load cycle exercise bouts (power outputs of 15% below gas exchange threshold, and 85% of V˙O2max), and a 5-km cycling performance TT. RESULTS Ischemic preconditioning significantly improved 5-km TT time in NORM by 0.9% ± 1.8% compared with SHAM (IPC, 491.2 ± 35.2 s vs SHAM, 495.9 ± 36.0 s; P < 0.05). Ischemic preconditioning did not alter 5-km TT performance times in HYP (P = 0.231). Ischemic preconditioning did, however, improve tissue oxygen extraction in HYP (deoxygenated hemoglobin/myoglobin: IPC, 21.23 ± 10.95 μM; SHAM, 19.93 ± 9.91 μM; P < 0.05) during moderate-intensity exercise. CONCLUSIONS Our data confirm that IPC is an effective ergogenic aid for athletes performing 5-km cycling TT bouts in NORM. Ischemic preconditioning did mitigate the declines in tissue oxygen during moderate-intensity exercise in HYP, but this did not translate to a significant effect on mean group performance. These data suggest that IPC may be of benefit for athletes training and competing in NORM.
Collapse
Affiliation(s)
- Chad C Wiggins
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN.,Department of Anesthesiology, Mayo Clinic, Rochester, MN
| | - Keren Constantini
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Hunter L Paris
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Timothy D Mickleborough
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| | - Robert F Chapman
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, IN
| |
Collapse
|
35
|
Marocolo M, Simim MAM, Bernardino A, Monteiro IR, Patterson SD, da Mota GR. Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur J Appl Physiol 2019; 119:2123-2149. [PMID: 31451953 DOI: 10.1007/s00421-019-04214-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Ischemic preconditioning (IPC) has been suggested as a potential ergogenic aid to improve exercise performance, although controversial findings exist. The controversies may be explained by several factors, including the mode of exercise, the ratio between the magnitude of improvement, or the error of measurement and physiological meaning. However, a relevant aspect has been lacking in the literature: the interpretation of the findings considering statistical tests and adequate effect size (ES) according to the fitness level of individuals. Thus, we performed a systematic review with meta-analysis to update the effects of IPC on exercise performance and physiological responses, using traditional statistics (P values), ES, and smallest worth change (SWC) approach contextualizing the IPC application to applied Sports and Exercise performance. Forty-five studies met the inclusion criteria. Overall, the results show that IPC has a minimal or nonsignificant effect on performance considering the fitness level of the individuals, using statistical approaches (i.e., tests with P value, ES, and SWC). Therefore, IPC procedures should be revised and refined in future studies to evaluate if IPC promotes positive effects on performance in a real-world scenario with more consistent interpretation.
Collapse
Affiliation(s)
- Moacir Marocolo
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| | - Mario A Moura Simim
- Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | - Anderson Bernardino
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Iury Reis Monteiro
- Department of Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Stephen D Patterson
- Faculty of Sport, Health, and Applied Science, St. Mary's University, Twickenham, London, UK
| | - Gustavo R da Mota
- Department of Sport Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
36
|
Caru M, Levesque A, Lalonde F, Curnier D. An overview of ischemic preconditioning in exercise performance: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2019; 8:355-369. [PMID: 31333890 PMCID: PMC6620415 DOI: 10.1016/j.jshs.2019.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/29/2018] [Accepted: 12/03/2018] [Indexed: 06/10/2023]
Abstract
Ischemic preconditioning (IPC) is an attractive method for athletes owing to its potential to enhance exercise performance. However, the effectiveness of the IPC intervention in the field of sports science remains mitigated. The number of cycles of ischemia and reperfusion, as well as the duration of the cycle, varies from one study to another. Thus, the aim of this systematic review was to provide a comprehensive review examining the IPC literature in sports science. A systematic literature search was performed in PubMed (MEDLINE) (from 1946 to May 2018), Web of Science (sport sciences) (from 1945 to May 2018), and EMBASE (from 1974 to May 2018). We included all studies investigating the effects of IPC on exercise performance in human subjects. To assess scientific evidence for each study, this review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. The electronic database search generated 441 potential articles that were screened for eligibility. A total of 52 studies were identified as eligible and valid for this systematic review. The studies included were of high quality, with 48 of the 52 studies having a randomized, controlled trial design. Most studied showed that IPC intervention can be beneficial to exercise performance. However, IPC intervention seems to be more beneficial to healthy subjects who wish to enhance their performance in aerobic exercises than athletes. Thus, this systematic review highlights that a better knowledge of the mechanisms generated by the IPC intervention would make it possible to optimize the protocols according to the characteristics of the subjects with the aim of suggesting to the subjects the best possible experience of IPC intervention.
Collapse
Affiliation(s)
- Maxime Caru
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Psychology, University of Paris-Nanterre, Nanterre 92000, France
- Laboratoire EA 4430 – Clinique Psychanalyse Developpement (CliPsyD), University of Paris-Nanterre, Nanterre 92000, France
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| | - Ariane Levesque
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - François Lalonde
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- Department of Physical Activity Sciences, Faculty of Sciences, Université du Québec à Montréal, Montreal, Quebec H2L 2C4, Canada
| | - Daniel Curnier
- Laboratory of Pathophysiology of EXercise (LPEX), School of Kinesiology and Physical Activity Sciences, Faculty of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
- CHU Ste-Justine Research Center, CHU Ste-Justine, Montreal H3T 1C5, Canada
| |
Collapse
|
37
|
Effects of ischemic conditioning on maximal voluntary plantar flexion contractions. J Electromyogr Kinesiol 2019; 48:37-43. [PMID: 31226630 DOI: 10.1016/j.jelekin.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
Intermittent blood flow restriction to local or remote vascular beds induces endogenous protection against ischemia-reperfusion injury in several tissues and organs. When applied non-invasively by placing occlusion cuffs on the limbs, this ischemic conditioning has been shown to elicit an acute ergogenic response. However, the underlying mechanisms behind this phenomenon remain unknown. Prior research suggest that ischemic conditioning may operate via improved motor discharges from the central nervous system, thus enhancing the electrochemical activation and force generation of agonist muscles. Here we show that, for healthy individuals performing maximal voluntary contractions of the plantar flexors, the acute benefit elicited by ischemic conditioning on maximal isometric ankle torque production is largely explained by parallel gains in the surface myoelectrical activity of the triceps surae. However, the magnitude of this response appears to vary between individuals. These findings indicate that enhanced levels of agonist activity contribute to the ergogenic effect of ischemic conditioning during maximal efforts, thereby enabling more direct assessments of neural output following the procedure.
Collapse
|
38
|
Paull EJ, Van Guilder GP. Remote ischemic preconditioning increases accumulated oxygen deficit in middle-distance runners. J Appl Physiol (1985) 2019; 126:1193-1203. [DOI: 10.1152/japplphysiol.00585.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mediators underlying the putative benefits of remote ischemic preconditioning (IPC) on dynamic whole body exercise performance have not been widely investigated. Our objective was to test the hypothesis that remote IPC improves supramaximal exercise performance in National Collegiate Athletic Association (NCAA) Division I middle-distance runners by increasing accumulated oxygen deficit (AOD), an indicator of glycolytic capacity. A randomized sham-controlled crossover study was employed. Ten NCAA Division I middle-distance athletes [age: 21 ± 1 yr; maximal oxygen uptake (V̇o2max): 65 ± 7 ml·kg−1·min−1] completed three supramaximal running trials (baseline, after mock IPC, and with remote IPC) at 110% V̇o2max to exhaustion. Remote IPC was induced in the right arm with 4 × 5 min cycles of brachial artery ischemia with 5 min of reperfusion. Supramaximal AOD (ml/kg) was calculated as the difference between the theoretical oxygen demand required for the supramaximal running bout (linear regression extrapolated from ~12 × 5 min submaximal running stages) and the actual oxygen demand for these bouts. Remote IPC [122 ± 38 s, 95% confidence interval (CI): 94–150] increased ( P < 0.001) time to exhaustion 22% compared with baseline (99 ± 23 s, 95% CI: 82–116, P = 0.014) and sham (101 ± 30 s, 95% CI: 80–123, P = 0.001). In the presence of IPC, AOD was 47 ± 36 ml/kg (95% CI: 20.8–73.9), a 29% increase compared with baseline (36 ± 28 ml/kg, 95% CI: 16.3–56.9, P = 0.008) and sham (38 ± 32 ml/kg, 95% CI: 16.2–63.0, P = 0.024). Remote IPC considerably improved supramaximal exercise performance in NCAA Division I middle-distance athletes. Greater glycolytic capacity, as estimated by increased AOD, is a potential mediator for these performance improvements. NEW & NOTEWORTHY Our novel findings indicate that ischemic preconditioning enhanced glycolytic exercise capacity, enabling National Collegiate Athletic Association (NCAA) middle-distance track athletes to run ~22 s longer before exhaustion compared with baseline and mock ischemic preconditioning. The increase in “all-out” performance appears to be due to increased accumulated oxygen deficit, an index of better supramaximal capacity. Of note, enhanced exercise performance was demonstrated in a specific group of in-competition NCAA elite athletes that has already undergone substantial training of the glycolytic energy systems.
Collapse
Affiliation(s)
- Emily J. Paull
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| | - Gary P. Van Guilder
- Vascular Protection Research Laboratory, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
39
|
Halley SL, Marshall P, Siegler JC. The effect of IPC on central and peripheral fatiguing mechanisms in humans following maximal single limb isokinetic exercise. Physiol Rep 2019; 7:e14063. [PMID: 31025549 PMCID: PMC6483935 DOI: 10.14814/phy2.14063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemic preconditioning (IPC) has been suggested to preserve neural drive during fatiguing dynamic exercise, however, it remains unclear as to whether this may be the consequence of IPC-enhanced muscle oxygenation. We hypothesized that the IPC-enhanced muscle oxygenation during a dynamic exercise task would subsequently attenuate exercise-induced reductions in voluntary activation. Ten resistance trained males completed three 3 min maximal all-out tests (AOTs) via 135 isokinetic leg extensions preceded by treatments of IPC (3 × 5 min bilateral leg occlusions at 220 mmHg), SHAM (3 × 5 min at 20 mmHg) or CON (30 min passive rest). Femoral nerve stimulation was utilized to assess voluntary activation and potentiated twitch torque during maximal voluntary contractions (MVCs) performed at baseline (BL), prior to the AOT (Pre), and then 10 sec post (Post). Tissue oxygenation (via near-infrared spectroscopy) and sEMG activity was measured throughout the AOT. MVC and twitch torque levels declined (MVC: -87 ± 23 Nm, 95% CI = -67 to -107 Nm; P < 0.001, twitch: -30 ± 13 Nm; 95% CI = -25 to -35 Nm; P < 0.001) between Pre and Post without reductions in voluntary activation (P = 0.72); there were no differences between conditions (MVC: P = 0.75, twitch: P = 0.55). There were no differences in tissue saturation index (P = 0.27), deoxyhemoglobin concentrations (P = 0.86) or sEMG activity (P = 0.92) throughout the AOT. These findings demonstrate that IPC does not preserve neural drive during an all-out 3 min isokinetic leg extension task.
Collapse
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Paul Marshall
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Jason C. Siegler
- Sport and Exercise ScienceSchool of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
40
|
Herrod PJJ, Blackwell JEM, Moss BF, Gates A, Atherton PJ, Lund JN, Williams JP, Phillips BE. The efficacy of 'static' training interventions for improving indices of cardiorespiratory fitness in premenopausal females. Eur J Appl Physiol 2019; 119:645-652. [PMID: 30591963 PMCID: PMC6394674 DOI: 10.1007/s00421-018-4054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death worldwide. Many risk factors for CVD can be modified pharmacologically; however, uptake of medications is low, especially in asymptomatic people. Exercise is also effective at reducing CVD risk, but adoption is poor with time-commitment and cost cited as key reasons for this. Repeated remote ischaemic preconditioning (RIPC) and isometric handgrip (IHG) training are both inexpensive, time-efficient interventions which have shown some promise in reducing blood pressure (BP) and improving markers of cardiovascular health and fitness. However, few studies have investigated the effectiveness of these interventions in premenopausal women. METHOD Thirty healthy females were recruited to twelve supervised sessions of either RIPC or IHG over 4 weeks, or acted as non-intervention controls (CON). BP measurements, flow-mediated dilatation (FMD) and cardiopulmonary exercise tests (CPET) were performed at baseline and after the intervention period. RESULTS IHG and RIPC were both well-tolerated with 100% adherence to all sessions. A statistically significant reduction in both systolic (- 7.2 mmHg) and diastolic (- 6 mmHg) BP was demonstrated following IHG, with no change following RIPC. No statistically significant improvements were observed in FMD or CPET parameters in any group. CONCLUSIONS IHG is an inexpensive and well-tolerated intervention which may improve BP; a key risk factor for CVD. Conversely, our single arm RIPC protocol, despite being similarly well-tolerated, did not elicit improvements in any cardiorespiratory parameters in our chosen population.
Collapse
Affiliation(s)
- P J J Herrod
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - J E M Blackwell
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - B F Moss
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - A Gates
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
| | - P J Atherton
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
| | - J N Lund
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - J P Williams
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK
| | - B E Phillips
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Nottingham, Royal Derby Hospital Centre, DE22 3DT, Derby, UK.
- Department of Anaesthetics and Surgery, Royal Derby Hospital, Derby, UK.
| |
Collapse
|
41
|
Lin J, Huang H, Yang S, Duan J, Xu W, Zeng Z. Protective Effects of Ischemic Preconditioning Protocols on Ischemia-Reperfusion Injury in Rat Liver. J INVEST SURG 2019; 33:876-883. [PMID: 30821527 DOI: 10.1080/08941939.2018.1556753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Lin
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hanfei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shikun Yang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Duan
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanggang Xu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
42
|
Durand MJ, Boerger TF, Nguyen JN, Alqahtani SZ, Wright MT, Schmit BD, Gutterman DD, Hyngstrom AS. Two weeks of ischemic conditioning improves walking speed and reduces neuromuscular fatigability in chronic stroke survivors. J Appl Physiol (1985) 2019; 126:755-763. [PMID: 30653420 DOI: 10.1152/japplphysiol.00772.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This pilot study examined whether ischemic conditioning (IC), a noninvasive, cost-effective, and easy-to-administer intervention, could improve gait speed and paretic leg muscle function in stroke survivors. We hypothesized that 2 wk of IC training would increase self-selected walking speed, increase paretic muscle strength, and reduce neuromuscular fatigability in chronic stroke survivors. Twenty-two chronic stroke survivors received either IC or IC Sham on their paretic leg every other day for 2 wk (7 total sessions). IC involved 5-min bouts of ischemia, repeated five times, using a cuff inflated to 225 mmHg on the paretic thigh. For IC Sham, the cuff inflation pressure was 10 mmHg. Self-selected walking speed was assessed using the 10-m walk test, and paretic leg knee extensor strength and fatigability were assessed using a Biodex dynamometer. Self-selected walking speed increased in the IC group (0.86 ± 0.21 m/s pretest vs. 1.04 ± 0.22 m/s posttest, means ± SD; P < 0.001) but not in the IC Sham group (0.92 ± 0.47 m/s pretest vs. 0.96 ± 0.46 m/s posttest; P = 0.25). Paretic leg maximum voluntary contractions were unchanged in both groups (103 ± 57 N·m pre-IC vs. 109 ± 65 N·m post-IC; 103 ± 59 N·m pre-IC Sham vs. 108 ± 67 N·m post-IC Sham; P = 0.81); however, participants in the IC group maintained a submaximal isometric contraction longer than participants in the IC Sham group (278 ± 163 s pre-IC vs. 496 ± 313 s post-IC, P = 0.004; 397 ± 203 s pre-IC Sham vs. 355 ± 195 s post-IC Sham; P = 0.46). The results from this pilot study thus indicate that IC training has the potential to improve walking speed and paretic muscle fatigue resistance poststroke. NEW & NOTEWORTHY This pilot study is the first to demonstrate that ischemic conditioning can improve self-selected walking speed and reduce paretic muscle fatigue in stroke survivors. Ischemic conditioning has been shown to be safe in numerous patient populations, can be accomplished at home or at the bedside in only 45 min, and requires no specialized training. Future larger studies are warranted to determine the efficacy of ischemic conditioning as a neurorehabilitation therapy poststroke.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Timothy F Boerger
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Jennifer N Nguyen
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Saad Z Alqahtani
- Department of Physical Therapy, Marquette University , Milwaukee, Wisconsin
| | - Michael T Wright
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University , Milwaukee, Wisconsin
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | | |
Collapse
|
43
|
Slysz JT, Burr JF. Enhanced Metabolic Stress Augments Ischemic Preconditioning for Exercise Performance. Front Physiol 2018; 9:1621. [PMID: 30498458 PMCID: PMC6249303 DOI: 10.3389/fphys.2018.01621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
Purpose: To identify the combined effect of increasing tissue level oxygen consumption and metabolite accumulation on the ergogenic efficacy of ischemic preconditioning (IPC) during both maximal aerobic and maximal anaerobic exercise. Methods: Twelve healthy males (22 ± 2 years, 179 ± 2 cm, 80 ± 10 kg, 48 ± 4 ml.kg−1.min−1) underwent four experimental conditions: (i) no IPC control, (ii) traditional IPC, (iii) IPC with EMS, and (iv) IPC with treadmill walking. IPC involved bilateral leg occlusion at 220 mmHg for 5 min, repeated three times, separated by 5 min of reperfusion. Within 10 min following the IPC procedures, a 30 s Wingate test and subsequent (after 25 min rest) incremental maximal aerobic test were performed on a cycle ergometer. Results: There was no statistical difference in anaerobic peak power between the no IPC control (1211 ± 290 W), traditional IPC (1209 ± 300 W), IPC + EMS (1206 ± 311 W), and IPC + Walk (1220 ± 288 W; P = 0.7); nor did VO2max change between no IPC control (48 ± 2 ml.kg−1.min−1), traditional IPC (48 ± 6 ml.kg−1.min−1), IPC + EMS (49 ± 4 ml.kg−1.min−1) and IPC + Walk (48 ± 6 ml.kg−1.min−1; P = 0.3). However, the maximal watts during the VO2max increased when IPC was combined with both EMS (304 ± 38 W) and walking (308 ± 40 W) compared to traditional IPC (296 ± 39 W) and no IPC control (293 ± 48 W; P = 0.02). Conclusion: This study shows that in a group of participants for whom a traditional IPC stimulus was not effective, the magnification of the IPC stress through muscle contractions while under occlusion led to a subsequent exercise performance response. These findings support that amplification of the ischemic preconditioning stimulus augments the effect for exercise capacity.
Collapse
Affiliation(s)
- Joshua T Slysz
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Jamie F Burr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
44
|
Halley SL, Marshall P, Siegler JC. The effect of ischaemic preconditioning on central and peripheral fatiguing mechanisms in humans following sustained maximal isometric exercise. Exp Physiol 2018; 103:976-984. [DOI: 10.1113/ep086981] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Samuel L. Halley
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| | - Paul Marshall
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| | - Jason C. Siegler
- Sport and Exercise Science; School of Science and Health; Western Sydney University; Sydney NSW Australia
| |
Collapse
|
45
|
Impact of ischaemia-reperfusion cycles during ischaemic preconditioning on 2000-m rowing ergometer performance. Eur J Appl Physiol 2018; 118:1599-1607. [PMID: 29796856 DOI: 10.1007/s00421-018-3891-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Although ischaemic preconditioning (IPC), induced by cycles of transient limb ischaemia and reperfusion, seems to improve exercise performance, the optimal duration of ischaemia-reperfusion cycles is not established. The present study investigated the effect of ischaemia-reperfusion duration within each IPC cycle on performance in a 2000-m rowing ergometer test. METHODS After incremental and familiarization tests, 16 trained rowers (mean ± SD: age, 24 ± 11 years; weight, 74.1 ± 5.9 kg; [Formula: see text] peak, 67.2 ± 7.4 mL·kg-1·min-1) were randomly submitted to a 2000-m rowing test preceded by intermittent bilateral cuff inflation of the lower limbs with three cycles of ischaemia-reperfusion, lasting 5 min (IPC-5) or 10 min (IPC-10) at 220 or 20 mmHg (control). Power output, [Formula: see text], heart rate, blood lactate concentration, pH, ratings of perceived exertion (RPE), and near-infrared spectroscopy-derived measurements of the vastus lateralis muscle were continuously recorded. RESULTS No differences among treatments were found in the 2000-m test (control: 424 ± 17; IPC-5: 425 ± 16; IPC-10: 424 ± 17 s; P = 0.772). IPC-10 reduced the tissue saturation index and oxy-haemoglobin concentration during exercise compared with control. The power output during the last 100-m segment was significantly lower with IPC-10. The IPC treatments increased the heart rate over the first 500 m and decreased the pH after exercise. No alterations were observed in [Formula: see text], blood lactate, or RPE among the trials. CONCLUSION In conclusion, IPC does not improve the 2000-m rowing ergometer performance of trained athletes regardless of the length of ischaemia-reperfusion cycles.
Collapse
|
46
|
Incognito AV, Doherty CJ, Lee JB, Burns MJ, Millar PJ. Ischemic preconditioning does not alter muscle sympathetic responses to static handgrip and metaboreflex activation in young healthy men. Physiol Rep 2018; 5:5/14/e13342. [PMID: 28720715 PMCID: PMC5532483 DOI: 10.14814/phy2.13342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022] Open
Abstract
Ischemic preconditioning (IPC) has been hypothesized to elicit ergogenic effects by reducing feedback from metabolically sensitive group III/IV muscle afferents during exercise. If so, reflex efferent neural outflow should be attenuated. We investigated the effects of IPC on muscle sympathetic nerve activity (MSNA) during static handgrip (SHG) and used post‐exercise circulatory occlusion (PECO) to isolate for the muscle metaboreflex. Thirty‐seven healthy men (age: 24 ± 5 years [mean ± SD]) were randomized to receive sham (n = 16) or IPC (n = 21) interventions. Blood pressure, heart rate, and MSNA (microneurography; sham n = 11 and IPC n = 18) were collected at rest and during 2 min of SHG (30% maximal voluntary contraction) and 3 min of PECO before (PRE) and after (POST) sham or IPC treatment (3 × 5 min 20 mmHg or 200 mmHg unilateral upper arm cuff inflation). Resting mean arterial pressure was higher following sham (79 ± 7 vs. 83 ± 6 mmHg, P < 0.01) but not IPC (81 ± 6 vs. 82 ± 6 mmHg, P > 0.05), while resting MSNA burst frequency was unchanged (P > 0.05) with sham (18 ± 7 vs. 19 ± 9 bursts/min) or IPC (17 ± 7 vs. 19 ± 7 bursts/min). Mean arterial pressure, heart rate, stroke volume, cardiac output, and total vascular conductance responses during SHG and PECO were comparable PRE and POST following sham and IPC (All P > 0.05). Similarly, MSNA burst frequency, burst incidence, and total MSNA responses during SHG and PECO were comparable PRE and POST with sham and IPC (All P > 0.05). These findings demonstrate that IPC does not reduce hemodynamic responses or central sympathetic outflow directed toward the skeletal muscle during activation of the muscle metaboreflex using static exercise or subsequent PECO.
Collapse
Affiliation(s)
- Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Connor J Doherty
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jordan B Lee
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Matthew J Burns
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada .,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Is There an Optimal Ischemic-Preconditioning Dose to Improve Cycling Performance? Int J Sports Physiol Perform 2018; 13:274-282. [PMID: 28657799 DOI: 10.1123/ijspp.2017-0114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Ischemic preconditioning (IPC) may enhance endurance performance. No previous study has directly compared distinct IPC protocols for optimal benefit. PURPOSE To determine whether a specific IPC protocol (ie, number of cycles, amount of muscle tissue, and local vs remote occlusion) elicits greater performance outcomes. METHODS Twelve cyclists performed 5 different IPC protocols 30 min before a blinded 375-kJ cycling time trial (TT) in a laboratory. Responses to traditional IPC (4 × 5-min legs) were compared with those to 8 × 5-min legs and sham (dose cycles), 4 × 5-min unilateral legs (dose tissue), and 4 × 5-min arms (remote). Rating of perceived exertion and blood lactate were recorded at each 25% TT completion. Power (W), heart rate (beats/min), and oxygen uptake ([Formula: see text]) (mL · kg-1 · min-1) were measured continuously throughout TTs. Magnitude-based-inference statistics were employed to compare variable differences to the minimal practically important difference. RESULTS Traditional IPC was associated with a 17-s (0, 34) faster TT time than sham. Applying more dose cycles (8 × 5 min) had no impact on performance. Traditional IPC was associated with likely trivial higher blood lactate and possibly beneficial lower [Formula: see text] responses vs sham. Unilateral IPC was associated with 18-s (-11, 48) slower performance than bilateral (dose tissue). TT times after remote and local IPC were not different (0 [-16, 16] s). CONCLUSION The traditional 4 × 5-min (local or remote) IPC stimulus resulted in the fastest TT time compared with sham; there was no benefit of applying a greater number of cycles or employing unilateral IPC.
Collapse
|
48
|
Kaur G, Binger M, Evans C, Trachte T, Van Guilder GP. No influence of ischemic preconditioning on running economy. Eur J Appl Physiol 2016; 117:225-235. [PMID: 28012036 DOI: 10.1007/s00421-016-3522-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE Many of the potential performance-enhancing properties of ischemic preconditioning suggest that the oxygen cost for a given endurance exercise workload will be reduced, thereby improving the economy of locomotion. The aim of this study was to identify whether ischemic preconditioning improves exercise economy in recreational runners. METHODS A randomized sham-controlled crossover study was employed in which 18 adults (age 27 ± 7 years; BMI 24.6 ± 3 kg/m2) completed two, incremental submaximal (65-85% VO2max) treadmill running protocols (3 × 5 min stages from 7.2-14.5 km/h) coupled with indirect calorimetry to assess running economy following ischemic preconditioning (3 × 5 min bilateral upper thigh ischemia) and sham control. Running economy was expressed as mlO2/kg/km and as the energy in kilocalories required to cover 1 km of horizontal distance (kcal/kg/km). RESULTS Ischemic preconditioning did not influence steady-state heart rate, oxygen consumption, minute ventilation, respiratory exchange ratio, energy expenditure, and blood lactate. Likewise, running economy was similar (P = 0.647) between the sham (from 201.6 ± 17.7 to 204.0 ± 16.1 mlO2/kg/km) and ischemic preconditioning trials (from 202.8 ± 16.2 to 203.1 ± 15.6 mlO2/kg/km). There was no influence (P = 0.21) of ischemic preconditioning on running economy expressed as the caloric unit cost (from 0.96 ± 0.12 to 1.01 ± 0.11 kcal/kg/km) compared with sham (from 1.00 ± 0.10 to 1.00 ± 0.08 kcal/kg/km). CONCLUSIONS The properties of ischemic preconditioning thought to affect exercise performance at vigorous to severe exercise intensities, which generate more extensive physiological challenge, are ineffective at submaximal workloads and, therefore, do not change running economy.
Collapse
Affiliation(s)
- Gungeet Kaur
- Vascular Protection Research Laboratory, Box 2203, Intramural 116, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Megan Binger
- Vascular Protection Research Laboratory, Box 2203, Intramural 116, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Claire Evans
- Vascular Protection Research Laboratory, Box 2203, Intramural 116, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Tiffany Trachte
- Vascular Protection Research Laboratory, Box 2203, Intramural 116, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Gary P Van Guilder
- Vascular Protection Research Laboratory, Box 2203, Intramural 116, Department of Health and Nutritional Sciences, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
49
|
Cruz RSDO, Pereira KL, Lisbôa FD, Caputo F. Could small-diameter muscle afferents be responsible for the ergogenic effect of limb ischemic preconditioning? J Appl Physiol (1985) 2016; 122:718-720. [PMID: 27815369 DOI: 10.1152/japplphysiol.00662.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Kayo Leonardo Pereira
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| | - Felipe Domingos Lisbôa
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Brazil
| |
Collapse
|
50
|
Cruz RSDO, Turnes T, de Aguiar RA, Caputo F. Could the pulmonary V˙O 2 off-transient response to maximal short-term exercise be better characterized by a triexponential decay? Respir Physiol Neurobiol 2016; 235:83-87. [PMID: 27743811 DOI: 10.1016/j.resp.2016.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 11/16/2022]
Abstract
The off-transient pulmonary oxygen uptake (V˙O2) response to a single bout of intense, exhaustive exercise has been characterized over the years by a second-order exponential model. In this paper, we report the superiority of a third-order exponential decay in describing the V˙O2 off-kinetics after a maximal cycling exercise lasting 60-s. Our findings are in accordance with a biphasic pattern of phosphocreatine resynthesis when muscle pH is affected.
Collapse
Affiliation(s)
- Rogério Santos de Oliveira Cruz
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil.
| | - Tiago Turnes
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Rafael Alves de Aguiar
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| | - Fabrizio Caputo
- Human Performance Research Group, College of Health and Sport Science, Santa Catarina State University, Florianópolis, Brazil
| |
Collapse
|