1
|
Zhong H, Feng Y, Shen J, Rao T, Dai H, Zhong W, Zhao G. Global burden of traumatic brain injury in 204 countries and territories from 1990 to 2021. Am J Prev Med 2025:S0749-3797(25)00001-7. [PMID: 39793770 DOI: 10.1016/j.amepre.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION This study aimed to evaluate the burden and underlying causes of traumatic brain injury (TBI) in 204 countries and territories from 1990 to 2021. METHODS Utilizing data from the Global Burden of Disease (GBD) 2021 study, which derived estimates of TBI burden from hospital and emergency department records, national surveys, and claims data, the incidence, prevalence, and years lived with disability (YLDs) associated with TBI were analyzed. A comparative analysis of TBI burden by location, age, sex, and socio-demographic index was performed, along with an underlying assessment of 15 major causes contributing to age-standardized incidence rates. Analyses were conducted in 2024. RESULTS In 2021, there were 20.84 million (95% UI: 18.13, 23.84) incident cases and 37.93 million (95% UI: 36.33, 39.77) prevalent cases of TBI globally, resulting in 5.48 million (95% UI: 3.87, 7.33) YLDs. While the absolute number increased from 1990 to 2021, age-standardized rates of TBI incidence, prevalence, and YLDs showed a significant decline. These rates generally increased with age and were higher in males than females. The highest age-standardized prevalence and YLD rates were observed in Eastern and Central Europe. Globally, falls were the leading cause of TBI in 2021, followed by road injuries, interpersonal violence, and exposure to mechanical forces. CONCLUSIONS Despite declines in age-standardized rates, the total number of TBI cases and associated disabilities has risen since 1990, indicating a persistent global burden. Targeted interventions are urgently needed in high-burden regions like Eastern and Central Europe, with focus on leading causes and vulnerable populations.
Collapse
Affiliation(s)
- Huiming Zhong
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiping Feng
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jian Shen
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Taiwen Rao
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wen Zhong
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guangfeng Zhao
- Department of Emergency, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
2
|
Kalantari N, Gosselin N. Sleep and circadian rhythms after traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:125-140. [PMID: 39864922 DOI: 10.1016/b978-0-323-90918-1.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Traumatic brain injury (TBI) is a serious public health concern and is one of the major causes of death and chronic disability in young individuals. Sleep-wake disturbances are among the most persistent and debilitating consequences of TBI and are reported by 50%-70% of TBI patients regardless of TBI severity. Excessive daytime sleepiness, fatigue, hypersomnia, and insomnia are the most common sleep disturbances in TBI patients. Post-TBI sleep-wake disturbances are often associated with pain, anxiety, depression, and posttraumatic stress disorder. They may exacerbate cognitive impairment following TBI, reduce community integration, and delay recovery and return to normal life. Changes in sleep architecture following TBI have been reported in the literature but cannot fully explain the extent and intensity of the sleep-wake disturbances reported by TBI patients. The alteration in the circadian timing system is another factor that may partially account for the presence of post-TBI sleep-wake disturbances. Current literature supports cognitive behavioral therapy and sleep hygiene education, light therapy, and certain pharmacologic interventions for treating sleep disturbances in TBI patients. Due to heterogeneous consequences of TBI, early screening and individualized approaches to treatment must be prioritized to improve sleep in TBI patients and consequently speed up recovery.
Collapse
Affiliation(s)
- Narges Kalantari
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada
| | - Nadia Gosselin
- Department of Psychology, Université de Montréal, Montreal, QC, Canada; Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, QC, Canada.
| |
Collapse
|
3
|
Wang S, Eckstein KN, Okamoto RJ, McGarry MDJ, Johnson CL, Bayly PV. Force and energy transmission at the brain-skull interface of the minipig in vivo and post-mortem. J Mech Behav Biomed Mater 2025; 161:106775. [PMID: 39515226 DOI: 10.1016/j.jmbbm.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The brain-skull interface plays an important role in the mechano-pathology of traumatic brain injury (TBI). A comprehensive understanding of the mechanical behavior of the brain-skull interface in vivo is significant for understanding the mechanisms of TBI and creating accurate computational models. Here we investigate the force and energy transmission at the minipig brain-skull interface by non-invasive methods in the live (in vivo) and dead animal (in situ). Displacement fields in the brain and skull were measured in four female minipigs by magnetic resonance elastography (MRE), and the relative displacements between the brain and skull were estimated. Surface maps of deviatoric stress, the apparent mechanical properties of the brain-skull interface, and the net energy flux were generated for each animal when alive and at specific times post-mortem. After death, these maps reveal increases in relative motion between brain and skull, brain surface stress, stiffness of brain-skull interface, and net energy flux from skull to brain. These results illustrate the ability to study both skull and brain mechanics by MRE; the observed post-mortem decrease in the protective capability of the brain-skull interface emphasizes the importance of measuring its behavior in vivo.
Collapse
Affiliation(s)
- Shuaihu Wang
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Kevin N Eckstein
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Ruth J Okamoto
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | | | - Philip V Bayly
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States; Washington University in St. Louis, Biomedical Engineering, United States.
| |
Collapse
|
4
|
Xia M, Yi M, Guo C, Xie Y, Yu W, Wang D, Dai X. β-Asarone regulates microglia polarization to alleviate TBI-induced nerve damage via Fas/FasL signaling axis. Hum Cell 2024; 38:33. [PMID: 39718669 DOI: 10.1007/s13577-024-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Acute injury and secondary injury caused by traumatic brain injury (TBI) seriously threaten the health of patients. The purpose of this study was to investigate the role of β-Asarone in TBI-induced neuroinflammation and injury. In this work, the effects of β-Asarone on nerve injury and neuronal apoptosis were investigated in mice with TBI by controlled cortical impingement. The results of this research implied that β-Asarone dose-dependently decreased the mNSS score, brain water content and neuronal apoptosis, but increased the levels of the axonal markers Nrp-1 and Tau in TBI mice. In addition, β-Asarone caused a decrease in the levels of Fas, FasL, and inflammatory factors in cerebrospinal fluid and serum of TBI mice. Therefore, β-Asarone inhibited neuroinflammation and promoted axon regeneration in TBI mice. Besides, β-Asarone treatment inhibited M1 phenotype polarization but promoted M2 phenotype polarization in microglia of TBI mice. Overexpression of Fas and FasL reversed the above effects of β-Asarone. Thus, β-Asarone regulated microglial M1/M2 polarization balance in TBI mice by suppressing Fas/FasL signaling axis. In conclusion, β-Asarone inhibited Fas/FasL signaling pathway to promote the M1/M2 polarization balance of microglia toward M2 polarization, thus alleviating TBI-induced nerve injury.
Collapse
Affiliation(s)
- Mingyue Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Min Yi
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunyuan Guo
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- Jiangxi Provincial, People's Hospital, Clinical College of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Yeli Xie
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Wenting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingping Dai
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Jiangxi Hospital, National Reginal Center for Neurological Disease, Honggutan District, No.266 Fenghe North Avenue, Nanchang, 330038, Jiangxi, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Traditional Chinese Medicine for Gan of State Administration, Changsha, Hunan, China.
| |
Collapse
|
5
|
Allende Labastida J, Motamedi M, Wu P, Szczesny B. Protocol for inducing varying TBI severity in a mouse model using a closed-head, weight-drop, impact-induced acceleration mechanism. STAR Protoc 2024; 5:103370. [PMID: 39392749 PMCID: PMC11736045 DOI: 10.1016/j.xpro.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024] Open
Abstract
Animal models of traumatic brain injury (TBI) are critical for understanding its complex neuropathology. Here, we present a protocol to induce varying TBI severities in mice using a closed-head, weight-drop model that includes an impact-induced acceleration mechanism. We describe steps for habituation with neurological severity score (NSS) equipment, assessing NSS baseline, performing anesthesia and TBI, assessing NSS post-injury, and analyzing data. This protocol requires no prior surgical intervention and is adaptable for rat studies. For complete details on the use and execution of this protocol, please refer to PhD Dissertation of Javier Allende Labastida1 and Tang et al.2.
Collapse
Affiliation(s)
- Javier Allende Labastida
- Departments of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Massoud Motamedi
- Departments of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Bartosz Szczesny
- Departments of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA; Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA.
| |
Collapse
|
6
|
To KW, Hsu SY, Yu CY, Tsai YC, Lin YC, Hsieh CH. Correlation Between Low Platelet-to-Lymphocyte Ratio and High Mortality Rates in Adult Trauma Patients With Moderate-to-Severe Brain Injuries. Emerg Med Int 2024; 2024:8099416. [PMID: 39734657 PMCID: PMC11671657 DOI: 10.1155/emmi/8099416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/12/2024] [Indexed: 12/31/2024] Open
Abstract
Background: White blood cell (WBC) subtypes reflect immune and inflammatory conditions in patients. This study aimed to examine the association between the ratio of platelets to WBC subtypes and mortality outcomes in patients with moderate-to-severe traumatic brain injury (TBI). Method: The Trauma Registry System of the hospital was retrospectively reviewed to gather medical records of 2397 adult patients who were hospitalized from 2009 to 2020 and had moderate-to-severe TBI with a head abbreviated injury scale (AIS) score of 3 or higher. The monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) were compared between the survivors (n = 2, 138) and nonsurvivors (n = 259). A multivariate logistic regression analysis was performed to investigate the independent effects of the univariate prognostic factors on mortality outcomes. The survival variations among the PLR subgroups were evaluated by the Kaplan-Meier survival analysis including a log-rank test. Results: The PLR of the deceased patients was considerably lower than that of the survivors (129.5 ± 130.1 vs. 153.2 ± 102.1, p < 0.001). However, no significant differences were observed in monocyte and neutrophil counts, MLR, or NLR between the deceased and survivor groups. A lower PLR was recognized as an independent risk factor for mortality (odds ratio: 1.26, 95% confidence interval: 1.06-1.51, p=0.010). The receiver operating characteristic (ROC) established PLR as the most strong predictor among the three ratios (area under the ROC curve = 0.627, sensitivity = 0.846, and specificity = 0.382, according to the cut-off value = 68.57). When the patient groups were divided by PLR quartile, the Kaplan-Meier analysis showed significantly worse survival in the lowest PLR quartile group (< 83.1) compared with the highest quartile group (≥ 189.1) (p < 0.001). Conclusion: Lower PLR is associated with greater mortality in adult patients with moderate-to-severe TBI. PLR may be a valuable measure for classifying mortality risk in this population.
Collapse
Affiliation(s)
- Kang-Wei To
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Shiun-Yuan Hsu
- Department of Trauma Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan
| | - Chia-Ying Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Yu-Chin Tsai
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - You-Cheng Lin
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, Kaohsiung 83301, Taiwan
| |
Collapse
|
7
|
Du H, Lai J, Lin B, Pan J, Zhou Y, Feng Y. LCN2 Regulates Microglia Polarization Through the p38MAPK-PGC-1α-PPARγ Pathway to Alleviate Traumatic Brain Injury. Cell Biochem Biophys 2024:10.1007/s12013-024-01642-w. [PMID: 39688655 DOI: 10.1007/s12013-024-01642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Traumatic brain injury (TBI) is a common traumatic event that imposes a significant burden on families and society. Lipocalin (LCN) is a class of multifunctional secreted lipoprotein molecules. This study aimed to explore the role and possible mechanism of LCN2 in TBI. A rat model of TBI was constructed and adeno-associated virus-coated shRNA-LCN2 was used to silence LCN2 expression. The modified neurological severity score (mNSS), learning and memory ability, pathological injury of brain tissue, number of neurons, and expression of neurotrophic factors were analyzed, and the expression of inflammatory factors, M1/M2 polarization of microglia, and p38MAPK-PGC-1α-PPARγ pathway after LCN2 silencing were further detected. Results found that LCN2 was highly expressed in the brain tissue of TBI rats, and there were obvious learning and cognitive impairments and pathological injury of brain tissue. After silencing LCN2, the mNSS was further increased, and the learning and cognitive ability was weakened. Similarly, silencing LCN2 increased the brain tissue water content, aggravated the histopathology degree, decreased the number of surviving neurons, and reduced the expression of neurotrophic factors in TBI model rats. In addition, the expression of M1 proinflammatory cytokines and polarization markers in microglia of TBI was increased, and the expression of M2 cytokines and markers was decreased after silencing LCN2. Silencing LCN2 also inhibited the activation of the p38MAPK-PGC-1α-PPARγ pathway. In conclusion, LCN2 was released by surviving neurons after TBI, and the increased LCN2 activated the p38MAPK-PGC-1α-PPARγ pathway, which promoted M2 polarization of microglia, and secreted neurotrophic factors, thereby alleviating secondary brain injury.
Collapse
Affiliation(s)
- Hanjian Du
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jun Lai
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Bo Lin
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Yanghao Zhou
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Yimo Feng
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
8
|
Ribeiro RN, Oliveira DVD, Paiva WS, Sousa RMC, Vieira RDCA. Incidence of pressure injury in patients with moderate and severe traumatic brain injury: a systematic review. BMJ Open 2024; 14:e089243. [PMID: 39675829 DOI: 10.1136/bmjopen-2024-089243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Patients with moderate and severe traumatic brain injury (TBI) admitted to the intensive care unit (ICU) may develop pressure injury (PI) due to haemodynamic instability caused by the disease, lack of mobility in bed, as well as intense and prolonged compression in prominent bone areas. OBJECTIVE The objective of this review is to assess the incidence and identify risk factor for the development of PI in patients with moderate and severe TBI admitted to the ICU. METHOD Searches were conducted in the PubMed, CINAHL, Scopus, Embase, Web of Science, Google Scholar, Trove and Open Grey databases, including all records found up to May 2023. Patients with moderate and severe TBI admitted to the ICU were included in this review. RESULTS A total of 368 studies on PI and TBI were identified in the databases. Two authors assessed study bias and extracted data, wit. h a third reviewer as arbitrator. Six studies met the inclusion and exclusion criteria in the review. The incidence of PI varied between 6.5% and 20% among the included studies. Only two studies applied the Braden Scale, which identified stage II lesions (52.6% and 51.5%), located in the sacral region (78.9% and 54.6%). The risk factors identified in the studies for the development of PI were mechanical ventilation, TBI severity, vasoactive drugs, age, fever, use of enteral nutrition, haemoglobin levels and time to perform tracheostomy. CONCLUSION The incidence of PI in moderate and severe patients was similar to that found in ICU patients. There were significant differences across the various studies in the ways in which data were collected and reported. TRIAL REGISTRATION NUMBER The protocol has been deposited in the PROSPERO repository (CRD42023428817).
Collapse
Affiliation(s)
| | | | - Wellingson S Paiva
- Neurosurgery, Sao Paulo University Faculty of Medicine, Sao Paulo, Brazil
| | | | | |
Collapse
|
9
|
Suchy-Dicey AM, Howard BV, Verney SP, Buchwald DS, Rhoads K, Longstreth WT. Epidemiology of Head Injury and Associations with Clinical and Neuropsychological Test Scores in Older American Indians: Data from the Strong Heart Study. J Racial Ethn Health Disparities 2024:10.1007/s40615-024-02240-5. [PMID: 39666240 DOI: 10.1007/s40615-024-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/10/2024] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND American Indians have the highest mortality and hospitalizations from head injury of all US groups; however, little is known about prevalence, risk, or outcomes in this population. METHODS The Strong Heart Study recruited American Indians representing 11 tribes and communities across three regions for two sequential examinations in 2010-2019. Participants were asked to self-report prior head injury, loss of consciousness (LOC), cause, sociodemographics, and behaviors (age, sex, education, bilingual, smoking, alcohol use, stroke). Cognitive testing covered executive function, phonemic fluency, processing speed, and memory. Analyses tabulated summaries and multivariate logistic regressions estimated risk associations. RESULTS This older cohort of American Indians (visit 1 N = 818, follow-up visit 2 N = 403) was mean age 73 at intake, with mean 6.7 years between exams. At visit 1, 40% reported prior head injury, majority with LOC; 4-6% reported injury with LOC > 20 min. Incidence analysis estimated 3.5 cases per 100 person-years. Primary causes were falls, motor vehicles, sports, fight or assault, military (bullet, blast, fragment), and horse-riding incidents. Male sex and prior stroke were independently associated with higher risk, but age, education, bilingual, smoking, and alcohol use were not associated with risk. Those with previous head injury had significantly worse depressive symptoms, quality of life, fatigue, social functioning, pain, general health, and processing speed. CONCLUSION These findings suggest very high prevalence, incidence, and risk of head injury in older American Indians, with substantial impacts on quality of life and well-being. Future research should prospectively evaluate risk and prevention opportunities in this population.
Collapse
Affiliation(s)
- Astrid M Suchy-Dicey
- Huntington Medical Research Institutes, Pasadena, CA, USA.
- Washington State University, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Cui C, Xu B, Liu H, Wang C, Zhang T, Jiang P, Feng L. Exploring the Role of SMPD3 in the lncRNA-miRNA-mRNA Regulatory Network in TBI Progression by Influencing Energy Metabolism. J Inflamm Res 2024; 17:10835-10848. [PMID: 39677286 PMCID: PMC11646434 DOI: 10.2147/jir.s491290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Traumatic brain injury (TBI) is associated with disturbances in energy metabolism. This study aimed to construct a lncRNA-miRNA-mRNA network through bioinformatics methods to explore energy metabolism-related genes in the pathogenesis of TBI. Methods Data from datasets GSE171718, GSE131695, and GSE223245 obtained from the Gene Expression Omnibus, were analyzed to identify differentially expressed (DE) genes. Regulatory relationships were investigated through miRDB, miRTarBase, and TargetScan, thereby forming a lncRNA-miRNA-mRNA network. The Molecular Signatures Database (MSigDB) was utilized to identify energy metabolism-related genes, and a protein-protein interaction (PPI) network was established through the STRING database. Functional annotation and enrichment analysis were conducted using GO and KEGG. The TBI mouse model was established to detect the expression levels of GOLGA8B, ZNF367, and SMPD3 in brain tissues. Results SMPD3 emerged as the key DE gene linked to energy metabolism in TBI, demonstrating a negative correlation with miR-218-5p and being associated with moderate unconsciousness and female patients. The PPI network revealed SMPD3 interactions with proteins associated with cell death, sphingolipid metabolism, and neurodegenerative diseases such as Alzheimer's disease. In vivo, GOLGA8B, ZNF367, and SMPD3 mRNA levels were significantly lower in TBI mice. Conclusion In summary, SMPD3 represents a crucial metabolic gene in the progression of TBI. It potentially provides a new therapeutic target for metabolic disorders caused by traumatic brain injury (TBI) and holds significant theoretical value for further research.
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Biao Xu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Hui Liu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Tao Zhang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
11
|
Lirio PHC, Gonçalves JV, Filho WNP, Amancio TA, Carlini JT, Dalpiaz PLM, Sartório CL, Rodrigues LCDM, Areas FZDS. A novel weight-drop closed head focal traumatic brain injury: A candidate to translational studies? MethodsX 2024; 13:102806. [PMID: 39071990 PMCID: PMC11278927 DOI: 10.1016/j.mex.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a neurotrauma with a complex pathophysiology caused by an external mechanical force. This global public health problem is a leading cause of death and disability in young adults. In this scenario, many models were developed to try to simulate human TBI. The weight drop model allows the investigation of the pathophysiological cascades of TBI without surgical interference. In this protocol, a new closed-head weight-drop rat model consisting of a 48.5g weight projectile that free falls from 1.10m high onto the skull of the animals was built. We classify the present TBI model performed as moderately severe due to its mortality rate. Animals from TBI and Control (Sham) groups underwent weight for 7 days and temperature assessments within 1 hour after TBI and for 7 days. Results demonstrated that the TBI group showed less body weight gain in the days after the injury. Temperature oscillations within the first-hour post-injury and on the 3rd day after injury were observed. As the results of this study demonstrated similarity to human TBI vital parameters, this new adaptation of the Weight-drop model injury can be a suitable candidate for translational studies.•We developed a novel closed head focal traumatic brain injury using a projectile.•This TBI model does not require surgical intervention.•The validation of this method demonstrates that the vital parameters of the injured rats exhibit similarities with those of TBI patients.
Collapse
Affiliation(s)
| | - Jessica Vaz Gonçalves
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Thamiris Alves Amancio
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | - Carmem Luíza Sartório
- Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha, ES, Brazil
| | | | | |
Collapse
|
12
|
Haymov A, Soti V. Effectiveness of Craniectomy Versus Craniotomy in the Management of Acute Subdural Hematoma Patients: A Systematic Review. Cureus 2024; 16:e75842. [PMID: 39691407 PMCID: PMC11650002 DOI: 10.7759/cureus.75842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 12/19/2024] Open
Abstract
Traumatic brain injuries (TBIs) represent a spectrum of neurological conditions resulting from external forces impacting the head, leading to temporary or permanent impairments in cognitive, emotional, or physical functioning. Acute subdural hematomas (ASDH) are a significant subset of TBIs characterized by the rupture of blood vessels within the subdural space between the brain and the dura mater. Management of ASDH typically involves two primary surgical procedures: craniectomy and craniotomy. This review assessed the efficacy of these surgical approaches in treating patients with ASDH to determine whether one procedure provides superior patient outcomes compared to the other. Furthermore, it aimed to identify factors influencing surgical decisions about the type of procedure. A comprehensive literature search was conducted on ASDH patients undergoing craniotomy and craniectomy, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The analysis indicated that craniectomy was associated with higher mortality rates compared to craniotomy. Patients undergoing craniotomy had a statistically heightened likelihood of experiencing residual and rebleeding subdural hematoma. However, the incidence of increased intracranial pressure was significantly more pronounced in craniectomy compared to craniotomy. Follow-up Glasgow Coma Scale (GCS) scores, assessed six months post-surgery, suggested more favorable outcomes for patients who underwent craniotomy, albeit without statistical significance. Furthermore, this systematic review highlighted numerous factors influencing the choice of surgical approach, including the severity of the disease upon admission, patient age, and geographical location. Notably, patients exhibiting a GCS score of less than nine were more likely to be administered craniectomy. Additionally, younger patients, specifically those under 20 years of age with severe injuries, were more frequently subjected to craniectomy. In contrast, neurosurgeons in the United States and several European countries exhibited a preference for craniotomy, whereas craniectomy emerged as the predominant option for ASDH management in the United Kingdom. Ongoing research is essential to ascertain which surgical procedures yield superior patient outcomes within diverse cohorts of ASDH patients. Nonetheless, these findings underscore the critical need for continued investigation to refine surgical strategies and enhance patient outcomes in neurosurgery.
Collapse
Affiliation(s)
- Anna Haymov
- Neurosurgery, Lake Erie College of Osteopathic Medicine, Elmira, USA
| | - Varun Soti
- Pharmacology and Therapeutics, Lake Erie College of Osteopathic Medicine, Elmira, USA
| |
Collapse
|
13
|
Cui C, Zhu L, Han G, Sun J, Zhang L, Guo Y, Jiang P. Bioinformatics analysis of the mechanisms of traumatic brain injury-associated dementia based on the competing endogenous RNA. Psychopharmacology (Berl) 2024; 241:2441-2452. [PMID: 39317770 DOI: 10.1007/s00213-024-06691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024]
Abstract
RATIONALE Traumatic brain injury (TBI) is a critical condition associated with cognitive impairments, including dementia. This study is aimed to construct a long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network based on bioinformatics analysis and explore molecular mechanisms underlying post-TBI dementia. METHODS GSE104687 and GSE205661 datasets were downloaded from Gene Expression Omnibus database. Molecular Signatures Database (MSigDB) was used to search oxidative stress-, metabolism- and immune-related genes as the target gene datasets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were carried out for functional annotation and enrichment analysis. A TBI mouse model was built to validate the expression of NF2, PLXNA2, NCBP2 and U2SURP in brain tissues. RESULTS A total of 7 differentially expressed lncRNAs (DElncRNAs) and 191 DEmRNAs were obtained. Subsequent to differential expression (DE) analysis, a lncRNA-miRNA-mRNA network was established. Notably, 13 key DEmRNAs were identified, potentially playing pivotal roles in the pathogenesis of TBI-induced dementia. By comparing the target gene datasets with 13 DEmRNAs, we identified 4 target genes that overlap with the 13 DEGmRNAs, namely NF2, PLXNA2, NCBP2 and U2SURP. Functional enrichment analysis highlighted the involvement of neuronal projections in the dementia-enriched cluster, while the protective cluster showed associations with protein synthesis and ubiquitination pathways. Importantly, we explored potential drug interventions based on interactions with the above 4 target genes. Additionally, drug interaction prediction showed that NF2 could interact with SELUMETINIB, EVEROLIMUS and TEMSIROLIMUS. CONCLUSION Our study provides insights into the complex regulatory networks underlying post-TBI dementia and suggests a potential role for three classes of drugs in managing dementia symptoms in TBI-induced dementia.
Collapse
MESH Headings
- Brain Injuries, Traumatic/genetics
- Brain Injuries, Traumatic/metabolism
- Brain Injuries, Traumatic/complications
- Animals
- Computational Biology/methods
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Dementia/genetics
- Dementia/metabolism
- Gene Regulatory Networks
- Male
- Disease Models, Animal
- Databases, Genetic
- Mice, Inbred C57BL
- Humans
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Li Zhu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong, 272000, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Jianping Sun
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Liang Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining, Shandong, 272000, China.
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People's Hospital, Jining, Shandong, 272000, China.
| |
Collapse
|
14
|
Calderone A, Latella D, Cardile D, Gangemi A, Corallo F, Rifici C, Quartarone A, Calabrò RS. The Role of Neuroinflammation in Shaping Neuroplasticity and Recovery Outcomes Following Traumatic Brain Injury: A Systematic Review. Int J Mol Sci 2024; 25:11708. [PMID: 39519259 PMCID: PMC11546226 DOI: 10.3390/ijms252111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroplasticity and neuroinflammation are variables seen during recovery from traumatic brain injury (TBI), while biomarkers are useful in monitoring injury and guiding rehabilitation efforts. This systematic review examines how neuroinflammation affects neuroplasticity and recovery following TBI in animal models and humans. Studies were identified from an online search of the PubMed, Web of Science, and Embase databases without any search time range. This review has been registered on Open OSF (n) UDWQM. Recent studies highlight the critical role of biomarkers like serum amyloid A1 (SAA1) and Toll-like receptor 4 (TLR4) in predicting TBI patients' injury severity and recovery outcomes, offering the potential for personalized treatment and improved neurorehabilitation strategies. Additionally, insights from animal studies reveal how neuroinflammation affects recovery, emphasizing targets such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) and microglia for enhancing therapeutic interventions. This review emphasizes the central role of neuroinflammation in TBI, and its adverse impact on neuroplasticity and recovery, and suggests that targeted anti-inflammatory treatments and biomarker-based personalized approaches hold the key to improvement. Such approaches will need further development in future research by integrating neuromodulation and pharmacological interventions, along with biomarker validation, to optimize management in TBI.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Desirèe Latella
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Antonio Gangemi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Francesco Corallo
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| |
Collapse
|
15
|
Flores-Sandoval C, MacKenzie HM, McIntyre A, Sait M, Teasell R, Bateman EA. Mortality and discharge disposition among older adults with moderate to severe traumatic brain injury. Arch Gerontol Geriatr 2024; 125:105488. [PMID: 38776698 DOI: 10.1016/j.archger.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE This study examined the research on older adults with a moderate to severe traumatic brain injury (TBI), with a focus on mortality and discharge disposition. METHOD Systematic searches were conducted in MEDLINE, CINAHL, EMBASE and PsycINFO for studies up to April 2022 in accordance with PRISMA guidelines. RESULTS 64 studies, published from 1992 to 2022, met the inclusion criteria. Mortality was higher for older adults ≥60 years old than for their younger counterparts; with a dramatic increase for those ≥80 yr, with rates as high as 93 %. Similar findings were reported regarding mortality in intensive care, surgical mortality, and mortality post-hospital discharge; with an 80 % rate at 1-year post-discharge. Up to 68.4 % of older adults were discharged home; when compared to younger adults, those ≥65 years were less likely to be discharged home (50-51 %), compared to those <64 years (77 %). Older adults were also more likely to be discharged to long-term care (up to 31.6 %), skilled nursing facilities (up to 46.1 %), inpatient rehabilitation (up to 26.9 %), and palliative or hospice care (up to 58 %). CONCLUSION Given their vulnerability, optimizing outcomes for older adults with moderate-severe TBI across the healthcare continuum is critical.
Collapse
Affiliation(s)
| | - Heather M MacKenzie
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada
| | - Amanda McIntyre
- Arthur Labatt Family School of Nursing, Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Muskan Sait
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; University College Cork, Ireland
| | - Robert Teasell
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada.
| | - Emma A Bateman
- Parkwood Institute Research, Lawson Research Institute, London, Ontario, Canada; Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Parkwood Institute, St. Joseph's Health Care London, London, Ontario, Canada
| |
Collapse
|
16
|
Yang J, Zhao H, Qu S. Therapeutic potential of fucoidan in central nervous system disorders: A systematic review. Int J Biol Macromol 2024; 277:134397. [PMID: 39097066 DOI: 10.1016/j.ijbiomac.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Central nervous system (CNS) disorders have a complicated pathogenesis, and to date, no single mechanism can fully explain them. Most drugs used for CNS disorders primarily aim to manage symptoms and delay disease progression, and none have demonstrated any pathological reversal. Fucoidan is a safe, sulfated polysaccharide from seaweed that exhibits multiple pharmacological effects, and it is anticipated to be a novel treatment for CNS disorders. To assess the possible clinical uses of fucoidan, this review aims to provide an overview of its neuroprotective mechanism in both in vivo and in vitro CNS disease models, as well as its pharmacokinetics and safety. We included 39 articles on the pharmacology of fucoidan in CNS disorders. In vitro and in vivo experiments demonstrate that fucoidan has important roles in regulating lipid metabolism, enhancing the cholinergic system, maintaining the functional integrity of the blood-brain barrier and mitochondria, inhibiting inflammation, and attenuating oxidative stress and apoptosis, highlighting its potential for CNS disease treatment. Fucoidan has a protective effect against CNS disorders. With ongoing research on fucoidan, it is expected that a natural, highly effective, less toxic, and highly potent fucoidan-based drug or nutritional supplement targeting CNS diseases will be developed.
Collapse
Affiliation(s)
- Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004 Shenyang, Liaoning, PR China.
| |
Collapse
|
17
|
Aguilar-Garcia IG, Alpirez J, Castañeda-Arellano R, Dueñas-Jiménez JM, Toro Castillo C, León-Moreno LC, Osuna-Carrasco LP, Dueñas-Jiménez SH. Resveratrol and Exercise Produce Recovered Ankle and Metatarsus Joint Movements after Penetrating Lesion in Hippocampus in Male Rats. Brain Sci 2024; 14:980. [PMID: 39451994 PMCID: PMC11506448 DOI: 10.3390/brainsci14100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.
Collapse
Affiliation(s)
- Irene Guadalupe Aguilar-Garcia
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Rolando Castañeda-Arellano
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carmen Toro Castillo
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Lilia Carolina León-Moreno
- Unidad de Evaluación Preclinica, Biotecnología Médica y Farmacéutica, CIATEJ, Guadalajara 44270, Mexico;
| | - Laura Paulina Osuna-Carrasco
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| |
Collapse
|
18
|
Wang B, Liu Y, Xing J, Zhang H, Ye S. Development and validation of a clinical nomogram for predicting in-hospital mortality in patients with traumatic brain injury prehospital: A retrospective study. Heliyon 2024; 10:e37295. [PMID: 39296141 PMCID: PMC11408059 DOI: 10.1016/j.heliyon.2024.e37295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Objective Traumatic brain injury (TBI) is among the leading causes of death and disability globally. Identifying and assessing the risk of in-hospital mortality in traumatic brain injury patients at an early stage is challenging. This study aimed to develop a model for predicting in-hospital mortality in TBI patients using prehospital data from China. Methods We retrospectively included traumatic brain injury patients who sustained injuries due to external forces and were treated by pre-hospital emergency medical services (EMS) at a tertiary hospital. Data from the pre-hospital emergency database were analyzed, including demographics, trauma mechanisms, comorbidities, vital signs, clinical symptoms, and trauma scores. Eligible patients were randomly divided into a training set (241 cases) and a validation set (104 cases) at a 7:3 ratio. Least absolute shrinkage and selection operator (LASSO) and multivariate logistic regression were employed to identify independent risk factors. Analyzed the discrimination, calibration, and net benefit of the nomogram across both groups. Results 17.40 % (42/241) of TBI patients died in the hospital in the training set, while 18.30 % (19/104) in the validation set. After analysis, chest trauma (odds ratio [OR] = 4.556, 95 % confidence interval [CI] = 1.861-11.152, P = 0.001), vomiting (OR = 2.944, 95%CI = 1.194-7.258, P = 0.019), systolic blood pressure (OR = 0.939, 95%CI = 0.913-0.966, P < 0.001), SpO2 (OR = 0.778, 95%CI = 0.688-0.881, P < 0.001), and heart rate (OR = 1.046, 95%CI = 1.015-1.078, P = 0.003) were identified as independent risk factors for in-hospital mortality in TBI patients. The nomogram based on the five factors demonstrated well-predictive power, with an area under the curve (AUC) of 0.881 in the training set and 0.866 in the validation set. The calibration curve and decision curve analysis showed that the predictive model exhibited good consistency and covered a wide range of threshold probabilities in both sets. Conclusion The nomogram based on prehospital data demonstrated well-predictive performance for in-hospital mortality in TBI patients, helping prehospital emergency physicians identify and assess severe TBI patients earlier, thereby improving the efficiency of prehospital emergency care.
Collapse
Affiliation(s)
- Bing Wang
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yanping Liu
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Department of Emergency and Critical Care Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Jingjing Xing
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailong Zhang
- Pre-hospital Emergency Section, Wuhu Emergency Center, Wuhu, Anhui, China
| | - Sheng Ye
- Emergency Department, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
19
|
Kim D, Hwang J, Yoo J, Choi J, Ramalingam M, Kim S, Cho HH, Kim BC, Jeong HS, Jang S. The time-dependent changes in a mouse model of traumatic brain injury with motor dysfunction. PLoS One 2024; 19:e0307768. [PMID: 39240883 PMCID: PMC11379277 DOI: 10.1371/journal.pone.0307768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 09/08/2024] Open
Abstract
Traumatic brain injury (TBI) results from sudden accidents, leading to brain damage, subsequent organ dysfunction, and potentially death. Despite extensive studies on rodent TBI models, there is still high variability in terms of target points, and this results in significantly different symptoms between models. In this study, we established a more concise and effective TBI mouse model, which included locomotor dysfunctions with increased apoptosis, based on the controlled cortical impact method. Behavioral tests, such as elevated body swing, rotarod, and cylinder tests were performed to assess the validity of our model. To investigate the underlying mechanisms of injury, we analyzed the expression of proteins associated with immune response and the apoptosis signaling pathway via western blotting analysis and immunohistochemistry. Upon TBI induction, the mouse subjects showed motor dysfunctions and asymmetric behavioral assessment. The expression of Bax gradually increased over time and reached its maximum 3 days post-surgery, and then declined. The expression of Mcl-1 showed a similar trend to Bax. Furthermore, the expression of caspase-3, ROCK1, and p53 were highly elevated by 3 days post-surgery and then declined by 7 days post-surgery. Importantly, immunohistochemistry revealed an immediate increase in the level of Bcl-2 at the lesion site upon TBI induction. Also, we found that the expression of neuronal markers, such as NeuN and MAP2, decreased after the surgery. Interestingly, the increase in NFH level was in line with the symptoms of TBI in humans. Collectively, our study demonstrated that the established TBI model induces motor dysfunction, hemorrhaging, infarctions, and apoptosis, closely resembling TBI in humans. Therefore, we predict that our model may be useful for developing effective treatment option for TBI.
Collapse
Affiliation(s)
- Dohee Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Jin Yoo
- Department of Physical Education, Chonnam National University, Gwangju, Republic of Korea
| | - Jiyun Choi
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Seongryul Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Jeollanamdo, Republic of Korea
| |
Collapse
|
20
|
Flores-Sandoval C, Teasell R, MacKenzie HM, McIntyre A, Barua U, Mehta S, Bayley M, Bateman EA. Evidence-Based Review of Randomized Controlled Trials of Interventions for Mental Health Management Post-Moderate to Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:342-358. [PMID: 39256156 DOI: 10.1097/htr.0000000000000984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To present an evidence-based review of randomized controlled trials (RCTs) evaluating interventions for mental health post-moderate to severe traumatic brain injury (post-MSTBI), as part of an extensive database that has been conceptualized as a living systematic review. METHODS Systematic searches were conducted for RCTs published in the English language in MEDLINE, PubMed, Scopus, CINAHL, EMBASE, and PsycINFO, up to and including December 2022, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The methodological quality of RCTs was assessed using the Physiotherapy Evidence Database scale, and the level of evidence was assigned using a modified Sackett scale. RESULTS Eighty-seven RCTs examining mental health interventions and outcome measures post-MSTBI were included. These studies collectively enrolled 6471 participants. A total of 41 RCTs (47.1%) were conducted in the United States and 56 studies (64.4%) were published after 2010. A total of 62 RCTs (71.3%) examined nonpharmacological interventions and 25 RCTs (28.7%) examined pharmacological interventions. Effective pharmacological treatments included desipramine and cerebrolysin; methylphenidate and rivastigmine showed conflicting evidence. Cognitive behavioral therapy (CBT) was found to be effective for hopelessness, stress, and anxiety, compared to usual care; however, it may be as effective as supportive psychotherapy for depression. CBT combined with motivational interviewing may be as effective as CBT combined with nondirective counseling for depression, stress, and anxiety. Acceptance and commitment therapy was effective for anxiety, stress, and depression. Tai Chi, dance, and walking appeared to be effective for depression and stress, while other nonpharmacological treatments such as peer mentoring showed limited effectiveness. CONCLUSION This evidence-based review provides a comprehensive overview of the research landscape of RCTs addressing mental health post-MSTBI. The findings from these RCTs may be valuable for health care professionals, researchers, and policymakers involved in the field of mental health and neurorehabilitation.
Collapse
Affiliation(s)
- Cecilia Flores-Sandoval
- Author Affiliations: Parkwood Institute Research, Lawson Health Research Institute (Drs Flores-Sandoval, Teasell, and MacKenzie, Ms Barua, and Drs Mehta and Bateman); Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Drs Teasell, MacKenzie, Mehta, and Bateman); Parkwood Institute, St. Joseph's Health Care London, London, Ontario (Drs Bateman, Teasell, and MacKenzie); Arthur Family Labatt School of Nursing, Faculty of Health Sciences, Western University, London, Ontario (Dr McIntyre); Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, KITE Research Institute, University Health Network, Toronto, Ontario, and University Health Network, Toronto Rehabilitation Institute, Toronto, Ontario (Dr Bayley)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
MacKenzie HM, Flores-Sandoval C, Bateman EA, McIntyre A, Barua U, Mehta S, Bayley M, Teasell R. Evidence-Based Review of Randomized Controlled Trials of Interventions for the Management of Behavioral Issues in Individuals With Moderate to Severe Traumatic Brain Injury. J Head Trauma Rehabil 2024; 39:369-381. [PMID: 39256158 DOI: 10.1097/htr.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
OBJECTIVE To present an evidence-based review of randomized controlled trials (RCTs) evaluating interventions for the management of behavioral issues post moderate to severe traumatic brain injury (MSTBI), as part of an extensive database that has been conceptualized as a living systematic review. METHODS Systematic searches were conducted in MEDLINE, PubMed, Scopus, CINAHL, EMBASE and PsycINFO, up to and including December 2022, for articles published in the English language, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of RCT was assessed using the Physiotherapy Evidence Database (PEDro) scale, and level of evidence was assigned using a modified Sackett scale. RESULTS Forty-six RCTs examining interventions and outcome measures related to behavioral issues post-MSTBI were included. These studies collectively enrolled 3,267 participants. The majority of RCTs were conducted in the United States (n = 27; 58.7%) and 28 (60.9%) were conducted after 2010. Of these, 27 RCTs examined non-pharmacological interventions and 19 examined pharmacological interventions. Effective pharmacological treatments included amantadine and dexmedetomidine. Effective non-pharmacological interventions included sensory stimulation in the acute phase, anger self-management programs, peer mentoring, problem-solving, and emotional regulation. Psychotherapy showed conflicting evidence. CONCLUSION This evidence-based review provides a comprehensive overview of the research landscape of RCTs addressing behavior post-MSTBI. The findings from these RCTs may be valuable for health care professionals, researchers, and policymakers involved in the field of TBI and behavior.
Collapse
Affiliation(s)
- Heather M MacKenzie
- Author Affiliations : Parkwood Institute Research, Lawson Health Research Institute (Dr MacKenzie, Dr Flores-Sandoval, Dr Bateman, Barua, Dr Mehta); Department of Physical Medicine and Rehabilitation, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Dr MacKenzie, Dr Bateman, Dr Mehta); Parkwood Institute, St. Joseph's Health Care London, London (Dr MacKenzie, Dr Flores-Sandoval, Dr Bateman); Arthur Labatt School of Nursing, Western University, London, Ontario (Dr McIntyre); Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto (Dr Bayley); KITE Research Institute, University Health Network, Toronto (Dr Bayley); and University Health Network, Toronto Rehabilitation Institute, Toronto, Ontario (Dr Bayley)
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang J, Gu Y, Sun W, Yu L, Li T. Tetrahydrocurcumin Protects Against GSK3β/PTEN/PI3K/Akt-Mediated Neuroinflammatory Responses and Microglial Polarization Following Traumatic Brain Injury. Mol Neurobiol 2024; 61:7026-7036. [PMID: 38368289 DOI: 10.1007/s12035-024-04034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Tetrahydrocurcumin (THC) and microglial polarization play crucial roles in neuroprotection during traumatic brain injury (TBI). However, whether THC regulates microglial polarization in TBI is unknown. Thus, we intended to analyze the functions and mechanism of THC in nerve injury after TBI via the regulation of microglial polarization. A TBI rat model was established, and modified neurological function score (mNSS), brain water content, Nissl staining, and Fluoro-Jade B (FJB) staining were used to evaluate neurological function. The expression of the M1-linked markers CD16 and CD86, as well as the M2-associated markers CD206 and YM-1, was analyzed via qRT-PCR, western blotting, and immunofluorescence. The levels of inflammatory cytokines were assessed via ELISA. Primary microglia were isolated from the brain and treated with lipopolysaccharide (LPS) to induce injury. TUNEL staining was used to measure primary microglial apoptosis. The expression of GSK3β, PTEN, and PI3K/Akt pathway proteins was detected via western blotting. TBI induced nerve injury, while THC improved neurological function recovery after TBI. Further analysis indicated that THC enhanced M2 microglial polarization and attenuated the inflammatory reaction mediated by microglia both in vitro and in vivo. Moreover, we found that THC promoted the M2 microglial phenotype through upregulating GSK3β expression. Additionally, we proved that GSK3β activated the PI3K/Akt pathway by phosphorylating PTEN. In conclusion, we demonstrated that THC protected against nerve injury after TBI via microglial polarization via the GSK3B/PTEN/PI3K/Akt signaling axis, suggesting the potential of THC for TBI treatment by promoting microglial M2 polarization.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wenxue Sun
- Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Lisha Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214013, People's Republic of China.
| |
Collapse
|
23
|
Ribeiro FCP, de Oliveira NV, Coral GR, de Assis César AR, Gonçalves MWA, Egal ESA, Pereira KF. Efficacy of N-Methyl-D-Aspartate (NMDA) Receptor Antagonists in Treating Traumatic Brain Injury-Induced Brain Edema: A Systematic Review and Meta-analysis of Animal Studies. Neurocrit Care 2024:10.1007/s12028-024-02079-y. [PMID: 39138715 DOI: 10.1007/s12028-024-02079-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Traumatic brain injury leads to glutamate release, which overstimulates N-methyl-D-aspartate (NMDA) receptors, leading to neurotoxicity and cytotoxic edema. NMDA receptor antagonists may offer neuroprotection by blocking this pathway. The objective of this systematic review is to assess the efficacy of NMDA receptor antagonists for traumatic brain injury-induced brain edema in rodent models. This systematic review followed Cochrane Handbook guidelines and registered its protocol in PROSPERO (ID: CRD42023440934). Here, we included controlled rodent animal models comparing NMDA antagonist use with a placebo treatment. Outcome measures included the reduction of cerebral edema, Neurobehavioral Severity Scale, and adverse effects. The search strategy used Medical Subject Headings terms related to traumatic brain injury and NMDA receptor antagonists. The Collaborative Approach to Meta Analysis and Review of Animal Experimental Studies (CAMARADES) checklist and Systematic Review Centre for Laboratory Animal Experimentation's (SYRCLE's) tools were used to measure the quality and bias of included studies. The synthesis of results was presented in a meta-analysis of standard mean difference. Sixteen studies were included, with the predominant drugs being ifenprodil, MK-801, magnesium, and HU-211. The subjects consisted of Sprague-Dawley or Sabra rats. The analysis showed a significant reduction in brain edema with NMDA antagonist treatment (Standardized mean difference [SMD] - 1.17, 95% confidence interval [CI] - 1.59 to - 0.74, p < 0.01), despite high heterogeneity (I2 = 72%). Neurobehavioral Severity Scale also significantly improved (mean difference - 3.32, 95% CI - 4.36 to - 2.28, p < 0.01) in animals receiving NMDA antagonists. Administration within 1 h after injury showed a modest enhancement in reducing brain edema compared with the baseline (SMD - 1.23, 95% CI - 1.69 to - 0.77, p < 0.01). Studies met standards for animal welfare and model appropriateness. Although baseline comparability and selective reporting bias were generally addressed, key biases such as randomization, allocation concealment, and blinding were often unreported. Overall, NMDA antagonists exhibit promising efficacy in the treatment of traumatic brain injury. Notably, our systematic review consistently demonstrated a significant reduction in brain edema with compounds including HU-211 and NPS 150.
Collapse
Affiliation(s)
| | | | - Gabriela Regonha Coral
- Department of Neurology, University Anhembi Morumbi, Medical School, Piracicaba, SP, Brazil
| | | | - Moisés Willian Aparecido Gonçalves
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
24
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
25
|
Chen S, Luo X, Yang L, Luo L, Hu Z, Wang J. Crocetin protects mouse brain from apoptosis in traumatic brain injury model through activation of autophagy. Brain Inj 2024; 38:524-530. [PMID: 38433503 DOI: 10.1080/02699052.2024.2324022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Autophagy is recognized as a promising therapeutic target for traumatic brain injury (TBI). Crocetin is an aglycone of crocin naturally occurring in saffron and has been found to alleviate brain injury diseases. However, whether crocetin affects autophagy after TBI remains unknown. Therefore, we explore crocetin roles in autophagy after TBI. METHODS We used a weight-dropped model to induce TBI in C57BL/6J mice. Neurological severity scoring (NSS) and grip tests were used to evaluate the neurological level of injury. Brain edema, neuronal apoptosis, neuroinflammation and autophagy were detected by measurements of brain water content, TUNEL staining, ELISA kits and western blotting. RESULTS Crocetin ameliorated neurological dysfunctions and brain edema after TBI. Crocetin reduced neuronal apoptosis and neuroinflammation and enhanced autophagy after TBI. CONCLUSION Crocetin alleviates TBI by inhibiting neuronal apoptosis and neuroinflammation and activating autophagy.
Collapse
Affiliation(s)
- Shan Chen
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| | - Xinghong Luo
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| | - Liu Yang
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| | - Liang Luo
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| | - Zhen Hu
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| | - Jianglan Wang
- Department of Laboratory, Wuhan Caidian District People's Hospital, Wuhan, China
| |
Collapse
|
26
|
Wang S, Eckstein KN, Guertler CA, Johnson CL, Okamoto RJ, McGarry MD, Bayly PV. Post-mortem changes of anisotropic mechanical properties in the porcine brain assessed by MR elastography. BRAIN MULTIPHYSICS 2024; 6:100091. [PMID: 38933498 PMCID: PMC11207183 DOI: 10.1016/j.brain.2024.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Knowledge of the mechanical properties of brain tissue in vivo is essential to understanding the mechanisms underlying traumatic brain injury (TBI) and to creating accurate computational models of TBI and neurosurgical simulation. Brain white matter, which is composed of aligned, myelinated, axonal fibers, is structurally anisotropic. White matter in vivo also exhibits mechanical anisotropy, as measured by magnetic resonance elastography (MRE), but measurements of anisotropy obtained by mechanical testing of white matter ex vivo have been inconsistent. The minipig has a gyrencephalic brain with similar white matter and gray matter proportions to humans and therefore provides a relevant model for human brain mechanics. In this study, we compare estimates of anisotropic mechanical properties of the minipig brain obtained by identical, non-invasive methods in the live (in vivo) and dead animals (in situ). To do so, we combine wave displacement fields from MRE and fiber directions derived from diffusion tensor imaging (DTI) with a finite element-based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal alive and at specific times post-mortem. These maps show that white matter is stiffer, more dissipative, and more anisotropic than gray matter when the minipig is alive, but that these differences largely disappear post-mortem, with the exception of tensile anisotropy. Overall, brain tissue becomes stiffer, less dissipative, and less mechanically anisotropic post-mortem. These findings emphasize the importance of testing brain tissue properties in vivo. Statement of Significance In this study, MRE and DTI in the minipig were combined to estimate, for the first time, anisotropic mechanical properties in the living brain and in the same brain after death. Significant differences were observed in the anisotropic behavior of brain tissue post-mortem. These results demonstrate the importance of measuring brain tissue properties in vivo as well as ex vivo, and provide new quantitative data for the development of computational models of brain biomechanics.
Collapse
Affiliation(s)
- Shuaihu Wang
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Kevin N. Eckstein
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | - Charlotte A. Guertler
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | - Ruth J. Okamoto
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
| | | | - Philip V. Bayly
- Washington University in St. Louis, Mechanical Engineering and Material Science, United States
- Washington University in St. Louis, Biomedical Engineering, United States
| |
Collapse
|
27
|
Tiantian W, Yonghui W, Junbo L. Antibody-labeled gold nanoparticle based resonance Rayleigh scattering detection of S100B. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3074-3080. [PMID: 38683678 DOI: 10.1039/d4ay00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Traumatic brain injury (TBI) is a sudden brain injury due to an external force that causes a large number of deaths and permanent disabilities every year. S100B has been recognized as a potential objective quantitative biomarker for screening the prognosis of TBI and severe head injury. In this article, an anti-S100B monoclonal antibody was immobilized on cysteamine (Cy) functionalized gold nanoparticles (AuNPs) by EDC-NHS chemistry, which enabled S100B resonance Rayleigh scattering (RRS) detection based on antibody-labeled gold nanoparticles. The prepared conjugates were characterized by ultraviolet-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Based on the specific binding of the antibody and antigen, the RRS intensities at 381 nm and 541 nm wavelengths were significantly enhanced, and thus a dual wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was established. The scattering intensity of the two overlapping peaks was proportional to the concentration of S100B in the range of 0.05-4.5 ng mL-1 with a detection limit of 0.002 ng mL-1. The proposed DWO-RRS method is time-saving, simple, sensitive, and can be used to determine the concentration of S100B in human serum with satisfactory results, which has a promising application in the early diagnosis of TBI.
Collapse
Affiliation(s)
- Wang Tiantian
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Wang Yonghui
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Li Junbo
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
28
|
Ma X, Wang H, Ye G, Zheng X, Wang Y. Hsa_circ_0018401 and miR-127-5p Expressions Are Diagnostic and Prognostic Markers for Traumatic Brain Injury (TBI) in Trauma Patients. Neuroscience 2024; 545:59-68. [PMID: 38492795 DOI: 10.1016/j.neuroscience.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
This study investigated the potentials of hsa_circ_0018401 and miR-127-5p in traumatic brain injury (TBI) diagnosis, stratification and outcome prediction. A retrospective analysis of clinical data and blood samples of n = 109 TBI patients was performed. Expression levels of hsa_circ_0018401 and miR-127-5p were measured using Real-time PCR. The diagnostic values, as well as the values in TBI stratification, of hsa_circ_0018401 and miR-127-5p were assessed by receiver operating characteristic analyses. The prognostic impacts were investigated for one-year endpoint events using multivariable Cox regression analyses and receiver operating characteristic analysis. The target genes for miR-127-5p were predicted. An upregulation of hsa_circ_0018401 and a downregulation of miR-127-5p expression was detected in patients with TBI, and the highest or lowest levels were found in moderate/severe TBI. A negative correlation between miR-423-3p level and Dual luciferase reporter assay verified the binding relationship between hsa_circ_0018401 and miR-127-5p. Hsa_circ_0018401 and miR-127-5p, used alone or combinedly, showed clinical values for TBI diagnosis and stratification, as well as outcome prediction. The proteins for target genes covered TBI-related functions and pathways. Therefore, hsa_circ_0018401 and miR-127-5p could represent promising new biomarkers to identify TBI from healthy, moderate/severe TBI from mild TBI, as well as to predict the TBI outcome.
Collapse
Affiliation(s)
- Xiancun Ma
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Huimin Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Gaige Ye
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yu Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
29
|
Deng Z, Gu Y, Luo L, Deng L, Li Y, Huang W. The effect of dexmedetomidine on the postoperative recovery of patients with severe traumatic brain injury undergoing craniotomy treatment: a retrospective study. Eur J Med Res 2024; 29:256. [PMID: 38689332 PMCID: PMC11059576 DOI: 10.1186/s40001-024-01861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/24/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) has been a worldwide problem for neurosurgeons. Patients with severe TBI may undergo craniotomy. These patients often require sedation after craniotomy. Dexmedetomidine (DEX) has been used in patients receiving anesthesia and in intensive care units. Not much is known about the postoperative effect of DEX in patients with severe TBIs undergoing craniotomy. The purpose of this study was to explore the effects of postoperative DEX administration on severe TBI patients who underwent craniotomy. METHODS Patients who underwent craniectomy for severe TBI at our hospital between January 2019 and February 2022 were included in this study. The patients were admitted to the intensive care unit (ICU) after surgery to receive sedative medication. The patients were then divided into DEX and control groups. We analyzed the sedation, hemodynamics, and other conditions of the patients (hypoxemia, duration of ventilation during endotracheal intubation, whether tracheotomy was performed, and the duration in the ICU) during their ICU stay. Other conditions, such as delirium after the patients were transferred to the general ward, were also analyzed. RESULTS A total of 122 patients were included in this study. Among them, 53 patients received DEX, and the remaining 69 did not. The incidence of delirium in the general ward in the DEX group was significantly lower than that in the control group (P < 0.05). The incidence of bradycardia in the control group was significantly lower than that in the DEX group (P < 0.05). Other data from the DEX group and the control group (hypotension, hypoxemia, etc.) were not significantly different (P > 0.05). CONCLUSION The use of DEX in the ICU can effectively reduce the incidence of delirium in patients who return to the general ward after craniotomy. DEX had no adverse effect on the prognosis of patients other than causing bradycardia.
Collapse
Affiliation(s)
- Zhu Deng
- Department of Neurosurgery, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China
| | - Yong Gu
- Department of Neurosurgery, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China
| | - Le Luo
- Department of Neurosurgery, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China
| | - Lin Deng
- Department of Intensive Care Unit, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China
| | - Yingwei Li
- Department of Neurosurgery, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China
| | - Wanyong Huang
- Department of Neurosurgery, People's Hospital of Guanghan City, No.9, Section3, Xi'an Road, Guanghan, Sichuan, People's Republic of China.
| |
Collapse
|
30
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
31
|
Eghzawi A, Alsabbah A, Gharaibeh S, Alwan I, Gharaibeh A, Goyal AV. Mortality Predictors for Adult Patients with Mild-to-Moderate Traumatic Brain Injury: A Literature Review. Neurol Int 2024; 16:406-418. [PMID: 38668127 PMCID: PMC11053597 DOI: 10.3390/neurolint16020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
Traumatic brain injuries (TBIs) represent a significant public health concern, with mild-to-moderate cases comprising a substantial portion of incidents. Understanding the predictors of mortality among adult patients with mild-to-moderate TBIs is crucial for optimizing clinical management and improving outcomes. This literature review examines the existing research to identify and analyze the mortality predictors in this patient population. Through a comprehensive review of peer-reviewed articles and clinical studies, key prognostic factors, such as age, Glasgow Coma Scale (GCS) score, the presence of intracranial hemorrhage, pupillary reactivity, and coexisting medical conditions, are explored. Additionally, this review investigates the role of advanced imaging modalities, biomarkers, and scoring systems in predicting mortality following a mild-to-moderate TBI. By synthesizing the findings from diverse studies, this review aims to provide clinicians and researchers with valuable insights into the factors influencing mortality outcomes in adult patients with a mild-to-moderate TBI, thus facilitating more informed decision making and targeted interventions in clinical practice.
Collapse
Affiliation(s)
- Ansam Eghzawi
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Alameen Alsabbah
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
| | - Shatha Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Center for Cognition and Neuroethics, University of Michigan-Flint, Flint, MI 48502, USA
| | - Iktimal Alwan
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Abeer Gharaibeh
- Insight Research Institute, Flint, MI 48507, USA; (A.E.); (A.A.); (S.G.); (I.A.)
- Department of Research, Insight Hospital and Medical Center, Chicago, IL 60616 USA
| | - Anita V. Goyal
- Department of Emergency Medicine, Insight Hospital and Medical Center, Chicago, IL 60616, USA
| |
Collapse
|
32
|
Chu SF, Liao KH, Wei L. Increasing Risk of Dementia Among Patients with Subsequent Epilepsy Within 2 Years Post-Traumatic Brain Injury: A Population-Based Case-Control Study. J Multidiscip Healthc 2024; 17:1447-1457. [PMID: 38577293 PMCID: PMC10992670 DOI: 10.2147/jmdh.s452086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Background Although the association between neurodegenerative diseases, such as dementia, and traumatic brain injury (TBI) has long been known, the association between dementia and TBI with epilepsy has been controversial. Aim This data-driven population-based study is designed to investigate the association between dementia and epilepsy after TBI within a 2-year period. Methods This case-control cohort study was conducted using the Longitudinal Health Insurance Database 2000 (LHID2000). We included 784 individuals ambulatory or hospitalized for TBI with epilepsy from 2001 to 2011, compared with 2992 patients with TBI without epilepsy who were matched for characteristics including sex, age, and healthcare resource use index date. Every participant was followed up for 5 years to ascertain any dementia development. Data were stratified and analyzed using the Cox proportional hazards regression. Results Through the 5-year follow-up period, 39 patients (5.21%) with TBI with epilepsy and 55 (1.53%) with TBI without epilepsy developed dementia. TBI with epilepsy was independently associated with a >3.03 times risk of dementia after correcting for age, sex, and comorbidities. Conclusion These findings suggest an increased risk of dementia in patients with TBI with epilepsy. Our research recommends that individuals with TBI and epilepsy be monitored more intensively.
Collapse
Affiliation(s)
- Shu-Fen Chu
- College of Nursing and Health Management, Shanghai University of Medicine and Health Sciences, Shanghai, People’s Republic of China
| | - Kuo-Hsing Liao
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Critical Medicine, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Neurotraumatology and Intensive Care, Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li Wei
- Division of Neurosurgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
33
|
Petersen SI, Okolicsanyi RK, Haupt LM. Exploring Heparan Sulfate Proteoglycans as Mediators of Human Mesenchymal Stem Cell Neurogenesis. Cell Mol Neurobiol 2024; 44:30. [PMID: 38546765 PMCID: PMC10978659 DOI: 10.1007/s10571-024-01463-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/19/2024] [Indexed: 04/01/2024]
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aβ) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.
Collapse
Affiliation(s)
- Sofia I Petersen
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, School of Biomedical Sciences, Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia.
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.
- Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Kelvin Grove, Australia.
| |
Collapse
|
34
|
Feng S, Wu Z, Zheng X, Shao Z, Lin Q, Sun S. Abnormal levels of expression of microRNAs in peripheral blood of patients with traumatic brain injury are induced by microglial activation and correlated with severity of injury. Eur J Med Res 2024; 29:188. [PMID: 38504296 PMCID: PMC10953077 DOI: 10.1186/s40001-024-01790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Microglia play a crucial role in regulating the progression of traumatic brain injury (TBI). In specific, microglia can self-activate and secrete various substances that exacerbate or alleviate the neuroimmune response to TBI. In addition, microRNAs (miRNAs) are involved in the functional regulation of microglia. However, molecular markers that reflect the dynamics of TBI have not yet been found in peripheral tissues. METHODS Paired samples of peripheral blood were collected from patients with TBI before and after treatment. Next-generation sequencing and bioinformatics analysis were used to identify the main pathways and biological functions of TBI-related miRNAs in the samples. Moreover, lipopolysaccharide-treated human microglia were used to construct a cellular immune-activation model. This was combined with analysis of peripheral blood samples to screen for highly expressed miRNAs derived from activated microglia after TBI treatment. Quantitative reverse-transcriptase polymerase chain reaction was used to determine the expression levels of these miRNAs, allowing their relationship with the severity of TBI to be examined. Receiver operating characteristic (ROC) curves were constructed to analyse the clinical utility of these miRNAs for determining the extent of TBI. RESULTS Sequencing results showed that 37 miRNAs were differentially expressed in peripheral blood samples from patients with TBI before and after treatment, with 17 miRNAs being upregulated and 20 miRNAs being downregulated after treatment. The expression profiles of these miRNAs were verified in microglial inflammation models and in the abovementioned peripheral blood samples. The results showed that hsa-miR-122-5p and hsa-miR-193b-3p were highly expressed in the peripheral blood of patients with TBI after treatment and that the expression levels of these miRNAs were correlated with the patients' scores on the Glasgow Coma Scale. ROC curve analysis revealed that abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in peripheral blood have some clinical utility for distinguishing different extents of TBI and thus could serve as biomarkers of TBI. CONCLUSION Abnormally high levels of expression of hsa-miR-122-5p and hsa-miR-193b-3p in the peripheral blood of patients with TBI were due to the activation of microglia and correlated with the severity of TBI. This discovery may help to increase understanding of the molecular pathology of TBI and guide the development of new strategies for TBI therapy based on microglial function.
Collapse
Affiliation(s)
- Shuo Feng
- Department of Neurosurgery, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Zhangying Wu
- Department of Cardiology, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Xianping Zheng
- Intensive Care Unit, Zibo Central Hospital, Zibo, 255024, China
| | - Zhiwei Shao
- Intensive Care Unit, Qingdao Huangdao District People's Hospital, Qingdao, 266400, China
| | - Qiang Lin
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shoutian Sun
- Department of Emergency, Zibo Central Hospital, No. 54 Gongqingtuan Road, Zhangdian District, Zibo, 255024, China.
| |
Collapse
|
35
|
Surzenko N, Bastidas J, Reid RW, Curaba J, Zhang W, Bostan H, Wilson M, Dominique A, Roberson J, Ignacio G, Komarnytsky S, Sanders A, Lambirth K, Brouwer CR, El-Khodor BF. Functional recovery following traumatic brain injury in rats is enhanced by oral supplementation with bovine thymus extract. FASEB J 2024; 38:e23460. [PMID: 38315443 DOI: 10.1096/fj.202301859r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.
Collapse
Affiliation(s)
- Natalia Surzenko
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | | | - Robert W Reid
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Julien Curaba
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Wei Zhang
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Hamed Bostan
- Eremid Genomic Services, LLC, Kannapolis, North Carolina, USA
| | - Mickey Wilson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Ashley Dominique
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Julia Roberson
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| | - Glicerio Ignacio
- David H. Murdock Research Institute, Kannapolis, North Carolina, USA
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Alexa Sanders
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Kevin Lambirth
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Cory R Brouwer
- College of Computing and Informatics, University of North Carolina at Charlotte, Kannapolis, North Carolina, USA
| | - Bassem F El-Khodor
- Nutrition Innovation Center, Standard Process, Inc., Kannapolis, North Carolina, USA
| |
Collapse
|
36
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
37
|
Al Yacoub ON, Zhang Y, Patankar PS, Standifer KM. Traumatic Brain Injury Induces Nociceptin/Orphanin FQ and Nociceptin Opioid Peptide Receptor Expression within 24 Hours. Int J Mol Sci 2024; 25:1658. [PMID: 38338936 PMCID: PMC10855772 DOI: 10.3390/ijms25031658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability around the world, for which no treatment has been found. Nociceptin/Orphanin FQ (N/OFQ) and the nociceptin opioid peptide (NOP) receptor are rapidly increased in response to fluid percussion, stab injury, and controlled cortical impact (CCI) TBI. TBI-induced upregulation of N/OFQ contributes to cerebrovascular impairment, increased excitotoxicity, and neurobehavioral deficits. Our objective was to identify changes in N/OFQ and NOP receptor peptide, protein, and mRNA relative to the expression of injury markers and extracellular regulated kinase (ERK) 24 h following mild (mTBI) and moderate TBI (ModTBI) in wildtype (WT) and NOP receptor-knockout (KO) rats. N/OFQ was quantified by radioimmunoassay, mRNA expression was assessed using real-time PCR and protein levels were determined by immunoblot analysis. This study revealed increased N/OFQ mRNA and peptide levels in the CSF and ipsilateral tissue of WT, but not KO, rats 24 h post-TBI; NOP receptor mRNA increased after ModTBI. Cofilin-1 activation increased in the brain tissue of WT but not KO rats, ERK activation increased in all rats following ModTBI; no changes in injury marker levels were noted in brain tissue at this time. In conclusion, this study elucidates transcriptional and translational changes in the N/OFQ-NOP receptor system relative to TBI-induced neurological deficits and initiation of signaling cascades that support the investigation of the NOP receptor as a therapeutic target for TBI.
Collapse
Affiliation(s)
| | | | | | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (O.N.A.Y.); (Y.Z.); (P.S.P.)
| |
Collapse
|
38
|
de Cássia Almeida Vieira R, de Barros GL, Paiva WS, de Oliveira DV, de Souza CPE, Santana-Santos E, de Sousa RMC. Severe traumatic brain injury and acute kidney injury patients: factors associated with in-hospital mortality and unfavorable outcomes. Brain Inj 2024; 38:108-118. [PMID: 38247393 DOI: 10.1080/02699052.2024.2304885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The purpose of this study was to identify the occurrence of AKI, and factors associated with in-hospital mortality and unfavorable outcomes in patients with severe traumatic brain injury (TBI) and acute kidney injury (AKI) severity. METHOD A retrospective cohort study which analyzed data with severe TBI between 2013 and 2017. We examined demographic and clinical information, and outcome by in-hospital mortality, and the Glasgow Outcome Scale six months after TBI. We associated factors to in-hospital mortality and unfavorable outcome in severe TBI and AKI with an association test. RESULTS A total of 219 patients were selected, 39.3% had an AKI, and several factors associated with AKI occurrence after severe TBI. Stage 2 or 3 of AKI (OR 12.489; 95% CI = 4.45-37.94) were independent risk for both outcomes in multivariable models, severity injury by the New Trauma Injury Severity Score (OR 0.97; 95% CI = 0.96-0.99) for mortality, and the New Injury Severity Score (OR1.07; 95% CI = 1.04-1.10) and Trauma and Injury Severity Score (OR = 0.98; 95% CI = 0.965-0.997) for unfavorable outcome. CONCLUSION The findings of our study confirmed that AKI severity and severity of injury was also related to increased mortality and unfavorable outcome after severe TBI.
Collapse
|
39
|
Calderone A, Carta D, Cardile D, Quartarone A, Rifici C, Calabrò RS, Corallo F. Use of Virtual Reality in Patients with Acquired Brain Injury: A Systematic Review. J Clin Med 2023; 12:7680. [PMID: 38137752 PMCID: PMC10743630 DOI: 10.3390/jcm12247680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES ABI is found in all societies as the most severe, disabling neurological disorder. A cognitive rehabilitation program is essential for the clinical recovery of these patients, improving functional outcomes and quality of life. Modern technologies such as virtual reality (VR) offer several advantages over traditional therapies, including the ability to engage people in simulated performance of functional tasks. This review will examine the studies in which virtual reality has been used as an aid, technique, or intervention in patients with acquired brain injury. MATERIALS AND METHODS Studies were identified from an online search of PubMed, Cochrane Library, and Web of Science databases. RESULTS We found that TBI patients responded positively to VR treatment depending on the damaged or impaired cognitive and motor functions they acquired. It is now a tool that is available in the rehabilitation of these patients and supports the recovery of various motor and cognitive functions. CONCLUSIONS This review has shown that VR is an intervention technique that increasingly exists in clinical rehabilitation practice for ABI patients. The device uses advanced technologies that can cause general changes in cognitive, motor, and psychological aspects and create a simulated environment that can partially restore these functions and behaviors, as well as the behaviors of everyday life.
Collapse
Affiliation(s)
| | | | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | | | | | | | | |
Collapse
|
40
|
Freeman-Jones E, Miller WH, Work LM, Fullerton JL. Polypathologies and Animal Models of Traumatic Brain Injury. Brain Sci 2023; 13:1709. [PMID: 38137157 PMCID: PMC10741988 DOI: 10.3390/brainsci13121709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Traumatic brain injury (TBI) is an important health issue for the worldwide population, as it causes long-term pathological consequences for a diverse group of individuals. We are yet to fully elucidate the significance of TBI polypathologies, such as neuroinflammation and tau hyperphosphorylation, and their contribution to the development of chronic traumatic encephalopathy (CTE) and other neurological conditions. To advance our understanding of TBI, it is necessary to replicate TBI in preclinical models. Commonly used animal models include the weight drop model; these methods model human TBI in various ways and in different animal species. However, animal models have not demonstrated their clinical utility for identifying therapeutic interventions. Many interventions that were successful in improving outcomes for animal models did not translate into clinical benefit for patients. It is important to review current animal models and discuss their strengths and limitations within a TBI context. Modelling human TBI in animals encounters numerous challenges, yet despite these barriers, the TBI research community is working to overcome these difficulties. Developments include advances in biomarkers, standardising, and refining existing models. This progress will improve our ability to model TBI in animals and, therefore, enhance our understanding of TBI and, potentially, how to treat it.
Collapse
Affiliation(s)
- Erin Freeman-Jones
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - William H. Miller
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK; (E.F.-J.); (W.H.M.)
| | - Lorraine M. Work
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| | - Josie L. Fullerton
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK;
| |
Collapse
|
41
|
Volik PI, Kopeina GS, Zhivotovsky B, Zamaraev AV. Total recall: the role of PIDDosome components in neurodegeneration. Trends Mol Med 2023; 29:996-1013. [PMID: 37716905 DOI: 10.1016/j.molmed.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/18/2023]
Abstract
The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.
Collapse
Affiliation(s)
- Pavel I Volik
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Alexey V Zamaraev
- Facuty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Engelhardt Institute of Molecular Biology, RAS, 119991 Moscow, Russia.
| |
Collapse
|
42
|
Ding X, Zhang L, Zhang X, Qin Y, Yu K, Yang X. Intranasal Insulin Alleviates Traumatic Brain Injury by Inhibiting Autophagy and Endoplasmic Reticulum Stress-mediated Apoptosis Through the PI3K/Akt/mTOR Signaling Pathway. Neuroscience 2023; 529:23-36. [PMID: 37572876 DOI: 10.1016/j.neuroscience.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Intranasal insulin reduces lesion size and enhances memory capacity in traumatic brain injury (TBI) models, but the molecular mechanisms behind this neuroprotective action not yet understood. Here we used Feeney's free-falling method to construct TBI mouse models and administrated intranasal insulin, rapamycin, insulin and rapamycin, or normal saline to assess their effects on neurological functions, cerebral edema, and the expression of Iba1 in microglia through immunofluorescence assay. We also measured concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the brain using enzyme immunosorbent assay, investigated apoptosis with TUNEL staining and Western blotting, and evaluated autophagy, endoplasmic reticulum (ER) stress, and PI3K/Akt/mTOR signaling pathway with Western blotting. The autophagosome was assessed through transmission electron microscopy. Our findings demonstrated that intranasal insulin promoted neurological recovery, decreased brain swelling, and reduced injury lesions on days 1, 3, and 7 post TBI. Moreover, intranasal insulin reduced microglia activation and the concentration of IL-1β or TNF-α on the same days. Through Western blotting and transmission electron microscopy, we observed that intranasal insulin suppressed autophagy while activating the PI3K/AKT/mTOR signaling pathway on days 1 and 3 post TBI. TUNEL assay and Western blotting also indicated that intranasal insulin inhibited ER stress-mediated apoptosis. Interestingly, the mTOR inhibitor rapamycin partially blocked the pro-autophagy and anti-apoptosis effects of intranasal insulin both on days 1 and 3 post TBI. Our results suggest that intranasal insulin can ameliorate TBI by regulating autophagy and ER stress-mediated apoptosis through the PI3K/AKT/mTOR signaling pathway, providing a promising therapeutic strategy for TBI.
Collapse
Affiliation(s)
- Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, No. 2, Huatai Road, Chenghua District, Chengdu, Sichuan 610017, People's Republic of China
| | - Lili Zhang
- Department of Neurology, The First Affiliated Hospital of Chengdu Medical College, No, 278, Middle Baoguang Avenue, Xindu District, Chengdu, Sichuan 610050, People's Republic of China
| | - Xinping Zhang
- Department of General Medicine, Chengdu Second People's Hospital, No. 2, Huatai Road, Chenghua District, Chengdu, Sichuan 610017, People's Republic of China
| | - Yang Qin
- Department of General Medicine, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China.
| | - Ke Yu
- Department of General Medicine, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China
| | - Xiaokun Yang
- Department of Emergency, The General Hospital of Western Theatre Command, No. 270, Tianhui Road, Rongdu Avenue, Jinniu District, Chengdu, Sichuan 610083, People's Republic of China
| |
Collapse
|
43
|
Dey A, Ghosh S, Bhuniya T, Koley M, Bera A, Guha S, Chakraborty K, Muthu S, Gorai S, Vorn R, Vadivalagan C, Anand K. Clinical Theragnostic Signature of Extracellular Vesicles in Traumatic Brain Injury (TBI). ACS Chem Neurosci 2023; 14:2981-2994. [PMID: 37624044 PMCID: PMC10485905 DOI: 10.1021/acschemneuro.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and fatality worldwide. Depending on the clinical presentation, it is a type of acquired brain damage that can be mild, moderate, or severe. The degree of patient's discomfort, prognosis, therapeutic approach, survival rates, and recurrence can all be strongly impacted by an accurate diagnosis made early on. The Glasgow Coma Scale (GCS), along with neuroimaging (MRI (Magnetic Resonance Imaging) and CT scan), is a neurological assessment tools used to evaluate and categorize the severity of TBI based on the patient's level of consciousness, eye opening, and motor response. Extracellular vesicles (EVs) are a growing domain, explaining neurological complications in a more detailed manner. EVs, in general, play a role in cellular communication. Its molecular signature such as DNA, RNA, protein, etc. contributes to the status (health or pathological stage) of the parental cell. Brain-derived EVs support more specific screening (diagnostic and prognostic) in TBI research. Therapeutic impact of EVs are more promising for aiding in TBI healing. It is nontoxic, biocompatible, and capable of crossing the blood-brain barrier (BBB) to transport therapeutic molecules. This review has highlighted the relationships between EVs and TBI theranostics, EVs and TBI-related clinical trials, and related research domain-associated challenges and solutions. This review motivates further exploration of associations between EVs and TBI and develops a better approach to TBI management.
Collapse
Affiliation(s)
- Anuvab Dey
- Department
of Biological Sciences and Biological Engineering, IIT Guwahati, North
Guwahati, Assam 781039, India
| | | | - Tiyasa Bhuniya
- Department
of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Madhurima Koley
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | - Aishi Bera
- Heritage
Institute of Technology, Chowbaga, Anandapur, Kolkata 700107, India
| | - Sudeepta Guha
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | | | - Sathish Muthu
- Department
of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department
of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sukhamoy Gorai
- Rush University
Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United States
| | - Rany Vorn
- School
of Nursing and Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chithravel Vadivalagan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
44
|
Buh FC, Taiwe GS, Kobeissy FH, Wang KW, Maas AIR, Motah M, Meh BK, Youm E, Hutchinson PJA, Sumbele IUN. Serum Biomarker Concentrations upon Admission in Acute Traumatic Brain Injury: Associations with TBI Severity, Toxoplasma gondii Infection, and Outcome in a Referral Hospital Setting in Cameroon. NEUROSCI 2023; 4:164-177. [PMID: 39483201 PMCID: PMC11523680 DOI: 10.3390/neurosci4030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 11/03/2024] Open
Abstract
Despite the available literature on traumatic brain injury (TBI) biomarkers elsewhere, data are limited or non-existent in sub-Saharan Africa (SSA). The aim of the study was to analyse associations in acute TBI between the admission serum biomarker concentrations and TBI severity, CT-scan findings, and outcome, as well as to explore the influence of concurrent Toxoplasma gondii infection. The concentrations of serum biomarkers (GFAP, NFL Tau, UCH-L1, and S100B) were measured and Toxoplasma gondii were detected in the samples obtained <24 h post injury. GOSE was used to evaluate the 6-month outcome. All of the biomarker levels increased with the severity of TBI, but this increase was significant only for NFL (p = 0.01). The GFAP values significantly increased (p = 0.026) in those with an unfavourable outcome. The Tau levels were higher in those who died (p = 0.017). GFAP and NFL were sensitive to CT-scan pathology (p values of 0.004 and 0.002, respectively). The S100B levels were higher (p < 0.001) in TBI patients seropositive to Toxoplasma gondii. In conclusion, NFL was found to be sensitive to TBI severity, while NFL and GFAP were predictive of CT intracranial abnormalities. Increased levels of GFAP and Tau were associated with poorer outcomes 6 months after TBI, and the S100B levels were significantly affected by concurrent T. gondii infection in TBI patients compared with the seronegative patients.
Collapse
Affiliation(s)
- Franklin Chu Buh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
- Panafrican Hospital Center, Douala P.O. Box 13152, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| | - Firas H Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310-1458, USA; (F.H.K.); (K.W.W.)
| | - Kevin W Wang
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310-1458, USA; (F.H.K.); (K.W.W.)
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital, University of Antwerp, 2000 Edegem, Belgium;
| | - Mathieu Motah
- Department of Surgery, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon;
| | - Basil Kum Meh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| | - Eric Youm
- Holo Healthcare, Nairobi 00400, Kenya;
| | - Peter J A Hutchinson
- Department of Clinical Neuroscience, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Irene Ule Ngole Sumbele
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon; (G.S.T.); (B.K.M.); (I.U.N.S.)
| |
Collapse
|
45
|
Buh FC, Sumbele IUN, Maas AIR, Motah M, Pattisapu JV, Youm E, Meh BK, Kobeissy FH, Wang KW, Hutchinson PJA, Taiwe GS. Traumatic Brain Injury in Cameroon: A Prospective Observational Study in a Level I Trauma Centre. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1558. [PMID: 37763678 PMCID: PMC10535664 DOI: 10.3390/medicina59091558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Background and Objective: About 14 million people will likely suffer a traumatic brain injury (TBI) per year by 2050 in sub-Saharan Africa. Studying TBI characteristics and their relation to outcomes can identify initiatives to improve TBI prevention and care. The objective of this study was to define the features and outcomes of TBI patients seen over a 1-year period in a level-I trauma centre in Cameroon. Materials and Methods: Data on demographics, causes, clinical aspects, and discharge status were collected over a period of 12 months. The Glasgow Outcome Scale-Extended (GOSE) and the Quality-of-Life Questionnaire after Brain Injury (QoLIBRI) were used to evaluate outcomes six months after TBI. Comparisons between two categorical variables were done using Pearson's chi-square test. Results: A total of 160 TBI patients participated in the study. The age group 15-45 years was most represented (78%). Males were more affected (90%). A low educational level was seen in 122 (76%) cases. Road traffic incidents (RTI) (85%), assaults (7.5%), and falls (2.5%) were the main causes of TBI, with professional bike riders being frequently involved (27%). Only 15 patients were transported to the hospital by ambulance, and 14 of these were from a referring hospital. CT-imaging was performed in 78% of cases, and intracranial traumatic abnormalities were identified in 64% of cases. Financial constraints (93%) was the main reason for not performing a CT scan. Forty-six (33%) patients were discharged against medical advice (DAMA) due to financial constraints. Mortality was 14% (22/160) and high in patients with severe TBI (46%). DAMA had poor outcomes with QoLIBRI. Only four patients received post-injury physical therapy services. Conclusions: TBI in Cameroon mainly results from RTIs and commonly affects young adult males. Lack of pre-hospital care, financial constraints limiting both CT scanning and medical care, and a lack of acute physiotherapy services likely influenced care and outcomes adversely.
Collapse
Affiliation(s)
- Franklin Chu Buh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon (B.K.M.)
| | - Irene Ule Ngole Sumbele
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon (B.K.M.)
| | - Andrew I. R. Maas
- Department of Neurosurgery, Antwerp University Hospital, University of Antwerp, 2000 Edegem, Belgium;
| | - Mathieu Motah
- Department of Surgery, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon;
| | - Jogi V. Pattisapu
- Department of Pediatric Neurosurgery, University of Central Florida College of Medicine, 6850 Lake Nona Blvd, Orlando, FL 32827, USA;
| | - Eric Youm
- Holo Healthcare, Nairobi 00400, Kenya;
| | - Basil Kum Meh
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon (B.K.M.)
| | - Firas H. Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut P.O. Box 11-0236, Lebanon
| | - Kevin W. Wang
- Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310-1458, USA;
| | | | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, Buea P.O. Box 63, Cameroon (B.K.M.)
| |
Collapse
|
46
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
47
|
Wang D, Wang S, Zhu Q, Shen Z, Yang G, Chen Y, Luo C, Du Y, Hu Y, Wang W, Yang J. Prospects for Nerve Regeneration and Gene Therapy in the Treatment of Traumatic Brain Injury. J Mol Neurosci 2023; 73:578-586. [PMID: 37458921 DOI: 10.1007/s12031-023-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 09/24/2023]
Abstract
Traumatic brain injury (TBI) is a prevalent neurological disorder and a leading cause of death and disability worldwide. The high mortality rates result in a tremendous burden on society and families in terms of public health and economic costs. Despite advances in biomedical research, treatment options for TBI still remain limited, and there is no effective therapy to restore the structure and function of the injured brain. Regrettably, due to the excessive heterogeneity of TBI and the lack of objective and reliable efficacy evaluation indicators, no proven therapeutic drugs or drugs with clear benefits on functional outcomes have been successfully developed to date. Therefore, it is urgent to explore new therapeutic approaches to protect or regenerate the injured brain from different perspectives. In this review, we first provide a brief overview of the causes and current status of TBI and then summarize the preclinical and clinical research status of cutting-edge treatment methods, including nerve regeneration therapy and gene therapy, with the aim of providing valuable references for effective therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Daliang Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Shengguo Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Qunchao Zhu
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Zhe Shen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Guohuan Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanfei Chen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Chen Luo
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanglin Du
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yelang Hu
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Wenmin Wang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Jie Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China.
| |
Collapse
|
48
|
Sibilia F, Custer RM, Irimia A, Sepehrband F, Toga AW, Cabeen RP. Life After Mild Traumatic Brain Injury: Widespread Structural Brain Changes Associated With Psychological Distress Revealed With Multimodal Magnetic Resonance Imaging. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:374-385. [PMID: 37519474 PMCID: PMC10382710 DOI: 10.1016/j.bpsgos.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 01/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) can alter brain structure and lead to onset of persistent neuropsychological symptoms. This study investigates the relationship between brain injury and psychological distress after mild TBI using multimodal magnetic resonance imaging. Methods A total of 89 patients with mild TBI from the TRACK-TBI (Transforming Research and Clinical Knowledge in Traumatic Brain Injury) pilot study were included. Subscales of the Brief Symptoms Inventory 18 for depression, anxiety, and somatization were used as outcome measures of psychological distress approximately 6 months after the traumatic event. Glasgow Coma Scale scores were used to evaluate recovery. Magnetic resonance imaging data were acquired within 2 weeks after injury. Perivascular spaces (PVSs) were segmented using an enhanced PVS segmentation method, and the volume fraction was calculated for the whole brain and white matter regions. Cortical thickness and gray matter structures volumes were calculated in FreeSurfer; diffusion imaging indices and multifiber tracts were extracted using the Quantitative Imaging Toolkit. The analysis was performed considering age, sex, intracranial volume, educational attainment, and improvement level upon discharge as covariates. Results PVS fractions in the posterior cingulate, fusiform, and postcentral areas were found to be associated with somatization symptoms. Depression, anxiety, and somatization symptoms were associated with the cortical thickness of the frontal-opercularis and occipital pole, putamen and amygdala volumes, and corticospinal tract and superior thalamic radiation. Analyses were also performed on the two hemispheres separately to explore lateralization. Conclusions This study shows how PVS, cortical, and microstructural changes can predict the onset of depression, anxiety, and somatization symptoms in patients with mild TBI.
Collapse
Affiliation(s)
- Francesca Sibilia
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rachel M. Custer
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryan P. Cabeen
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
50
|
Shakil H, Jaja BNR, Zhang PF, Jaffe RH, Malhotra AK, Harrington EM, Wijeysundera DN, Wilson JR, Witiw CD. Assessment of the incremental prognostic value from the modified frailty index-5 in complete traumatic cervical spinal cord injury. Sci Rep 2023; 13:7578. [PMID: 37165004 PMCID: PMC10172291 DOI: 10.1038/s41598-023-34708-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Frailty, as measured by the modified frailty index-5 (mFI-5), and older age are associated with increased mortality in the setting of spinal cord injury (SCI). However, there is limited evidence demonstrating an incremental prognostic value derived from patient mFI-5. We conducted a retrospective cohort study to evaluate in-hospital mortality among adult complete cervical SCI patients at participating centers of the Trauma Quality Improvement Program from 2010 to 2018. Logistic regression was used to model in-hospital mortality, and the area under the receiver operating characteristic curve (AUROC) of regression models with age, mFI-5, or age with mFI-5 was used to compare the prognostic value of each model. 4733 patients were eligible. We found that both age (80 y versus 60 y: OR 3.59 95% CI [2.82 4.56], P < 0.001) and mFI-5 (score ≥ 2 versus < 2: OR 1.53 95% CI [1.19 1.97], P < 0.001) had statistically significant associations with in-hospital mortality. There was no significant difference in the AUROC of a model including age and mFI-5 when compared to a model including age without mFI-5 (95% CI Δ AUROC [- 8.72 × 10-4 0.82], P = 0.199). Both models were superior to a model including mFI-5 without age (95% CI Δ AUROC [0.06 0.09], P < 0.001). Our findings suggest that mFI-5 provides minimal incremental prognostic value over age with respect to in-hospital mortality for patients complete cervical SCI.
Collapse
Affiliation(s)
- Husain Shakil
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T1P5, Canada
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, M5B1W8, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada
| | - Blessing N R Jaja
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
| | - Peng F Zhang
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
| | - Rachael H Jaffe
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada
| | - Armaan K Malhotra
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T1P5, Canada
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, M5B1W8, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada
| | - Erin M Harrington
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
| | - Duminda N Wijeysundera
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada
- Department of Anesthesia, St. Michael's Hospital, Toronto, M5B1W8, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, M5T1P8, Canada
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T1P5, Canada
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, M5B1W8, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada
| | - Christopher D Witiw
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, M5T1P5, Canada.
- St. Michael's Hospital, Li Ka Shing Knowledge Institute, Toronto, M5B1T8, Canada.
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, Toronto, M5B1W8, Canada.
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, M5T1P8, Canada.
| |
Collapse
|