1
|
Gu LY, Jia CG, Sheng ZZ, Jiang WL, Xu ZW, Li WZ, Cui JY, Zhang H. Fibroblast Growth Factor 21 Suppressed Neutrophil Extracellular Traps Induced by Myocardial Ischemia/Reperfusion Injury via Adenosine Monophosphate-Activated Protein Kinase. Cardiol Res 2024; 15:404-414. [PMID: 39420979 PMCID: PMC11483118 DOI: 10.14740/cr1705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
Background Previous investigations have established the anti-inflammatory properties of fibroblast growth factor 21 (FGF21). However, the specific mechanism through which FGF21 mitigates myocardial ischemia/reperfusion (I/R) injury by inhibiting neutrophil extracellular traps (NETs) remains unclear. Methods A mice model of myocardial I/R injury was induced, and myocardial tissue was stained with immunofluorescence to assess NETs. Serum NETs levels were quantified using a PicoGreen kit. In addition, the expression levels of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and FGF21 were evaluated by Wes fully automated protein blotting quantitative analysis system. Moreover, a hypoxia/reoxygenation (H/R) model was established using AMPK inhibitor and agonist pretreated H9c2 cells to further explore the relationship between FGF21 and AMPK. Results Compared with the control group, serum NETs levels were significantly higher in I/R mice, and a large number of NETs were formed in myocardial tissues (97.63 ± 11.45 vs. 69.65 ± 3.33, P < 0.05). However, NETs levels were reversed in FGF21 pretreated mice (P < 0.05). Further studies showed that FGF21 enhanced AMPK expression, which was significantly increased after inhibition of AMPK and decreased after promotion of AMPK (P < 0.05). Conclusions FGF21 may exert cardioprotective effects by inhibiting I/R injury-induced NETs via AMPK.
Collapse
Affiliation(s)
- Ling Yun Gu
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Cheng Gao Jia
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Zuo Zhen Sheng
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Wen Long Jiang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Zhuo Wen Xu
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Wei Zhang Li
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| | - Jun You Cui
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
| | - Hua Zhang
- Department of Cardiology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, China
- The Jiangyin Clinical College of Xuzhou Medical University, Jiangyin, China
| |
Collapse
|
2
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
3
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Zhao Z, Cui X, Liao Z. Mechanism of fibroblast growth factor 21 in cardiac remodeling. Front Cardiovasc Med 2023; 10:1202730. [PMID: 37416922 PMCID: PMC10322220 DOI: 10.3389/fcvm.2023.1202730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Cardiac remodeling is a basic pathological process that enables the progression of multiple cardiac diseases to heart failure. Fibroblast growth factor 21 is considered a regulator in maintaining energy homeostasis and shows a positive role in preventing damage caused by cardiac diseases. This review mainly summarizes the effects and related mechanisms of fibroblast growth factor 21 on pathological processes associated with cardiac remodeling, based on a variety of cells of myocardial tissue. The possibility of Fibroblast growth factor 21 as a promising treatment for the cardiac remodeling process will also be discussed.
Collapse
Affiliation(s)
- Zeyu Zhao
- Queen Mary College, Nanchang University, Nanchang, China
| | - Xuemei Cui
- Fourth Clinical Medical College, Nanchang University, Nanchang, China
| | - Zhangping Liao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology School of Pharmaceutical Science, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Eastin TM, Dye JA, Pillai P, Lopez-Gonzalez MA, Huang L, Zhang JH, Boling WW. Delayed revascularization in acute ischemic stroke patients. Front Pharmacol 2023; 14:1124263. [PMID: 36843940 PMCID: PMC9945110 DOI: 10.3389/fphar.2023.1124263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Stroke shares a significant burden of global mortality and disability. A significant decline in the quality of life is attributed to the so-called post-stroke cognitive impairment including mild to severe cognitive alterations, dementia, and functional disability. Currently, only two clinical interventions including pharmacological and mechanical thrombolysis are advised for successful revascularization of the occluded vessel. However, their therapeutic effect is limited to the acute phase of stroke onset only. This often results in the exclusion of a significant number of patients who are unable to reach within the therapeutic window. Advances in neuroimaging technologies have allowed better assessment of salvageable penumbra and occluded vessel status. Improvement in diagnostic tools and the advent of intravascular interventional devices such as stent retrievers have expanded the potential revascularization window. Clinical studies have demonstrated positive outcomes of delayed revascularization beyond the recommended therapeutic window. This review will discuss the current understanding of ischemic stroke, the latest revascularization doctrine, and evidence from clinical studies regarding effective delayed revascularization in ischemic stroke.
Collapse
Affiliation(s)
- T. Marc Eastin
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Justin A. Dye
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Promod Pillai
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Miguel A. Lopez-Gonzalez
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Lei Huang
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Pharmacology and Physiology, Loma Linda University, Loma Linda, CA, United States
| | - John H. Zhang
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Pharmacology and Physiology, Loma Linda University, Loma Linda, CA, United States,Department of Neurology, Loma Linda University Medical Center, Loma Linda, CA, United States,Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Warren W. Boling
- Department of Neurological Surgery, Loma Linda University Medical Center, Loma Linda, CA, United States,*Correspondence: Warren W. Boling,
| |
Collapse
|
6
|
Chang A, Tam J, Agrawal DK, Liu HH, Varadarajan P, Pai R, Thankam FG. Synthetic Fibroblasts: Terra Incognita in Cardiac Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1235-1241. [PMID: 35535856 DOI: 10.1089/ten.teb.2022.0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ischemic heart disease, a major risk factor for myocardial infarction (MI), occurs when the blood vessels supplying oxygen-rich blood to the heart become partially or fully occluded by lipid-rich plaques, resulting in myocardial cell death, remodeling, and scarring. In addition, MI occurs as result of lipid-rich plaque rupture, resulting in thrombosis and vessel occlusion. Cardiac fibroblasts (CFs) and CF-derived growth factors are crucial post-MI in myocardial remodeling. Information regarding the regenerative phenotypes of CFs is scarce; however, regenerative CFs are translationally relevant in myocardial regeneration following MI. The emerging technologies in regenerative cardiology offer cutting-edge translational opportunities, including synthetic cells. In this review, we critically reviewed the current knowledge and the ongoing research efforts on application of synthetic cells for improving cardiac regeneration post-MI. Impact statement Synthetic cells offer tremendous regenerative potential in otherwise deleterious cardiac remodeling postmyocardial infarction. Understanding the role of fibroblasts in cardiac healing and the therapeutic applications of synthetic cells would open a multitude of novel cardiac regenerative approaches. The novel concept of synthetic fibroblasts that emulate native cardiac fibroblasts can provide an effective solution in cardiac healing.
Collapse
Affiliation(s)
- Albert Chang
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Jonathan Tam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| | - Huinan Hannah Liu
- Department of Bioengineering, University of California, Riverside, California, USA
| | - Padmini Varadarajan
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Ramdas Pai
- Department of Cardiology, School of Medicine, University of California Riverside, Riverside, California, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
7
|
Vo TTT, Huynh TD, Wang CS, Lai KH, Lin ZC, Lin WN, Chen YL, Peng TY, Wu HC, Lee IT. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants (Basel) 2022; 11:1619. [PMID: 36009338 PMCID: PMC9404924 DOI: 10.3390/antiox11081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thao Duy Huynh
- Lab of Biomaterial, Department of Histology, Embryology, and Genetics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72500, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
8
|
Moon H, Choi JW, Song BW, Kim IK, Lim S, Lee S, Han G, Hwang KC, Kim SW. Brite Adipocyte FGF21 Attenuates Cardiac Ischemia/Reperfusion Injury in Rat Hearts by Modulating NRF2. Cells 2022; 11:cells11030567. [PMID: 35159376 PMCID: PMC8833946 DOI: 10.3390/cells11030567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Although the optimal therapy for myocardial infarction includes reperfusion to restore blood flow to the ischemic area, myocardial injury after ischemia/reperfusion usually leads to an inflammatory response, oxidative stress, and cardiomyocyte apoptosis. In this study, rat adipose-derived stem cells were differentiated into low-thermogenic beige adipocytes (LBACs) and high-thermogenic beige adipocytes (HBACs) to study the different cardioprotective effects of heterogeneous expression of brown adipocytes. We found that antioxidant and antiapoptotic factors in H9c2 cardiomyocytes were upregulated by high levels of secreted FGF21 in HBAC conditioned medium (HBAC-CM), whereas FGF21 in HBAC-CM did not affect antioxidative or antiapoptotic cell death in H9c2 cardiomyocytes with Nrf2 knockdown. These results show that NRF2 mediates antioxidative and antiapoptotic effects through the HBAC-secreted factor FGF21. Consistent with this finding, the expression of antioxidant and antiapoptotic genes was upregulated by highly secreted FGF21 after HBAC-CM treatment compared to LBAC-CM treatment in H9c2 cardiomyocytes via NRF2 activation. Furthermore, HBAC-CM significantly attenuated ischemic rat heart tissue injury via NRF2 activation. Based on these findings, we propose that HBAC-CM exerts beneficial effects in rat cardiac ischemia/reperfusion injury by modulating NRF2 and has potential as a promising therapeutic agent for myocardial infarction.
Collapse
Affiliation(s)
- Hanbyeol Moon
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Korea; (H.M.); (G.H.)
| | - Jung-Won Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
| | - Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
| | - Gyoonhee Han
- Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, Seoul 03722, Korea; (H.M.); (G.H.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Korea; (J.-W.C.); (B.-W.S.); (I.-K.K.); (S.L.); (S.L.); (K.-C.H.)
- Catholic Kwandong University, International St. Mary’s Hospital, Incheon Metropolitan City 22711, Korea
- Correspondence: ; Tel.: +82-32-290-2612; Fax: +82-32-290-2774
| |
Collapse
|
9
|
Zhang Y, Liu D, Long XX, Fang QC, Jia WP, Li HT. The role of FGF21 in the pathogenesis of cardiovascular disease. Chin Med J (Engl) 2021; 134:2931-2943. [PMID: 34939977 PMCID: PMC8710326 DOI: 10.1097/cm9.0000000000001890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
ABSTRACT The morbidity and mortality of cardiovascular diseases (CVDs) are increasing worldwide and seriously threaten human life and health. Fibroblast growth factor 21 (FGF21), a metabolic regulator, regulates glucose and lipid metabolism and may exert beneficial effects on the cardiovascular system. In recent years, FGF21 has been found to act directly on the cardiovascular system and may be used as an early biomarker of CVDs. The present review highlights the recent progress in understanding the relationship between FGF21 and CVDs including coronary heart disease, myocardial ischemia, cardiomyopathy, and heart failure and also explores the related mechanism of the cardioprotective effect of FGF21. FGF21 plays an important role in the prediction, treatment, and improvement of prognosis in CVDs. This cardioprotective effect of FGF21 may be achieved by preventing endothelial dysfunction and lipid accumulating, inhibiting cardiomyocyte apoptosis and regulating the associated oxidative stress, inflammation and autophagy. In conclusion, FGF21 is a promising target for the treatment of CVDs, however, its clinical application requires further clarification of the precise role of FGF21 in CVDs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Dan Liu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xiao-Xue Long
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Department of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qi-Chen Fang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wei-Ping Jia
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Hua-Ting Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
10
|
The Roles of FGF21 and ALCAT1 in Aerobic Exercise-Induced Cardioprotection of Postmyocardial Infarction Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8996482. [PMID: 34777697 PMCID: PMC8589520 DOI: 10.1155/2021/8996482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/16/2021] [Indexed: 12/31/2022]
Abstract
Aerobic exercise mitigates oxidative stress and apoptosis caused by myocardial infarction (MI) even though the precise mechanisms remain completely elusive. In this study, we investigated the potential mechanisms of aerobic exercise in ameliorating the cardiac function of mice with MI. In vivo, MI was induced by left anterior descending (LAD) coronary artery ligation in wild-type mice, alcat1 knockout, and fgf21 knockout mice. The mice were exercised under a moderate-intensity protocol for 6 weeks at one week later post-MI. In vitro, H9C2 cells were treated with lentiviral vector carrying alcat1 gene, recombinant human FGF21 (rhFGF21), PI3K inhibitor, and H2O2 to explore the potential mechanisms. Our results showed that aerobic exercise significantly increased the FGF21 expression and decreased the ALCAT1 expression in the hearts of mice with MI. fgf21 knockout weakened the inhibitory effects of aerobic exercise on oxidative stress, endoplasmic reticulum (ER) stress, and apoptosis in mice with MI. Both/either alcat1 knockout and/or aerobic exercise improved cardiac function by inhibiting oxidative stress and apoptosis in the MI heart. rhFGF21 inhibited both H2O2 and overexpression of ALCAT1-induced oxidative stress and apoptosis by activating the PI3K/AKT pathway in H9C2 cells. In conclusion, our results showed that aerobic exercise alleviated oxidative stress and apoptosis by activating the FGF21/FGFR1/PI3K/AKT pathway or inhibiting the hyperexpression of ALCAT1, which ultimately improved the cardiac function in MI mice.
Collapse
|
11
|
Lin W, Zhang T, Zhou Y, Zheng J, Lin Z. Advances in Biological Functions and Clinical Studies of FGF21. Diabetes Metab Syndr Obes 2021; 14:3281-3290. [PMID: 34295169 PMCID: PMC8291585 DOI: 10.2147/dmso.s317096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/28/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) regulates many crucial biological processes in human and mammals, particularly metabolic modulation and protective effect after injury. Therefore, determining complex regulatory mechanisms and elucidating the signaling pathway may greatly promote the prevention, diagnosis, and treatment of related injury and metabolic diseases. This review focused on the metabolic modulation and protective effect of FGF21 and summarized the molecular mechanisms and clinical research developments.
Collapse
Affiliation(s)
- Wei Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Tianlei Zhang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Yiyang Zhou
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Jinyu Zheng
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China
- Correspondence: Zhenlang Lin Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People’s Republic of China Email
| |
Collapse
|
12
|
Szabó MR, Pipicz M, Csont T, Csonka C. Modulatory Effect of Myokines on Reactive Oxygen Species in Ischemia/Reperfusion. Int J Mol Sci 2020; 21:ijms21249382. [PMID: 33317180 PMCID: PMC7763329 DOI: 10.3390/ijms21249382] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
There is a growing body of evidence showing the importance of physical activity against acute ischemic events in various organs. Ischemia/reperfusion injury (I/R) is characterized by tissue damage as a result of restriction and subsequent restoration of blood supply to an organ. Oxidative stress due to increased reactive oxygen species formation and/or insufficient antioxidant defense is considered to play an important role in I/R. Physical activity not only decreases the general risk factors for ischemia but also confers direct anti-ischemic protection via myokine production. Myokines are skeletal muscle-derived cytokines, representing multifunctional communication channels between the contracting skeletal muscle and other organs through an endocrine manner. In this review, we discuss the most prominent members of the myokines (i.e., brain-derived neurotrophic factor (BDNF), cathepsin B, decorin, fibroblast growth factors-2 and -21, follistatin, follistatin-like, insulin-like growth factor-1; interleukin-6, interleukin-7, interleukin-15, irisin, leukemia inhibitory factor, meteorin-like, myonectin, musclin, myostatin, and osteoglycin) with a particular interest in their potential influence on reactive oxygen and nitrogen species formation or antioxidant capacity. A better understanding of the mechanism of action of myokines and particularly their participation in the regulation of oxidative stress may widen their possible therapeutic use and, thereby, may support the fight against I/R.
Collapse
Affiliation(s)
- Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, University of Szeged, Dóm tér 9, 6720 Szeged, Hungary; (M.R.S.); (M.P.); (T.C.)
- Interdisciplinary Centre of Excellence, University of Szeged, Dugonics tér 13, 6720 Szeged, Hungary
- Department of Sports Medicine, University of Szeged, Tisza Lajos krt 107, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-5432-693
| |
Collapse
|
13
|
Korkmaz-Icöz S, Li K, Loganathan S, Ding Q, Ruppert M, Radovits T, Brlecic P, Sayour AA, Karck M, Szabó G. Brain-dead donor heart conservation with a preservation solution supplemented by a conditioned medium from mesenchymal stem cells improves graft contractility after transplantation. Am J Transplant 2020; 20:2847-2856. [PMID: 32162462 DOI: 10.1111/ajt.15843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023]
Abstract
Hearts are usually procured from brain-dead (BD) donors. However, brain death may induce hemodynamic instability, which may contribute to posttransplant graft dysfunction. We hypothesized that BD-donor heart preservation with a conditioned medium (CM) from mesenchymal stem cells (MSCs) would improve graft function after transplantation. Additionally, we explored the PI3K pathway's potential role. Rat MSCs-derived CM was used for conservation purposes. Donor rats were either exposed to sham operation or brain death by inflation of a subdural balloon-catheter for 5.5 hours. Then, the hearts were explanted, stored in cardioplegic solution-supplemented with either a medium vehicle (BD and sham), CM (BD + CM), or LY294002, an inhibitor of PI3K (BD + CM + LY), and finally transplanted. Systolic performance and relaxation parameters were significantly reduced in BD-donors compared to sham. After transplantation, systolic and diastolic functions were significantly decreased, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells and endonuclease G positive cells were increased in the BD-group compared to sham. Preservation of BD-donor hearts with CM resulted in a recovery of systolic graft function (dP/dtmax : BD + CM: 3148 ± 178 vs BD: 2192 ± 94 mm Hg/s at 110 µL, P < .05) and reduced apoptosis. LY294002 partially lowered graft protection afforded by CM in the BD group. Our data suggest that PI3K/Akt pathway is not the primary mechanism of action of CM in improving posttransplant cardiac contractility and preventing caspase-independent apoptosis.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Kunsheng Li
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Sivakkanan Loganathan
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Anesthesiology, Ruhr-University Bochum, St. Josef- and St. Elisabeth Hospital, Bochum, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Qingwei Ding
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Paige Brlecic
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alex A Sayour
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Matthias Karck
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| |
Collapse
|
14
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
15
|
Wu Y, Chen Z, Duan J, Huang K, Zhu B, Yang L, Zheng L. Serum Levels of FGF21, β-Klotho, and BDNF in Stable Coronary Artery Disease Patients With Depressive Symptoms: A Cross-Sectional Single-Center Study. Front Psychiatry 2020; 11:587492. [PMID: 33584362 PMCID: PMC7873935 DOI: 10.3389/fpsyt.2020.587492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The incidence of depressive symptoms (DS) in patients with stable coronary artery disease (SCAD) is significantly higher than those in healthy population, and that DS are independent risk factors for cardiovascular events. Previous studies have reported that fibroblast growth factor 21 (FGF21), β-klotho, mature brain-derived neurotrophic factor (mBDNF), and BDNF precursor (proBDNF) play important roles in the pathogenesis and treatment of coronary heart disease and depression. With this in mind, the present study aimed to clarify the relationship between FGF21, β-klotho, mBDNF, and proBDNF and SCAD with comorbid depression, in addition to also exploring the underlying mechanisms of these disease processes. Methods: A total of 116 patients with SCAD and 45 healthy controls were recruited. Patients with SCAD were further divided into two subgroups based on the Zung Self-Rating Depression Scale (SDS), which were characterized as those with no DS (NDS) and those with DS. Baseline data were collected, and serum levels of FGF21, β-klotho, mBDNF, and proBDNF were determined. Results: In SCAD patients, Gensini scores-denoting the degree of coronary arteriostenosis-were significantly greater in the DS group than in the NDS group. There was also a positive correlation between the Gensini scores and the SDS scores. Patients in the SCAD group demonstrated a lower serum FGF21. Serum β-klotho, mBDNF, and mBDNF/proBDNF were also significantly lower in the DS group than in the NDS group. Furthermore, β-klotho and mBDNF were negatively correlated with the SDS scores. Additionally, SCAD patients were divided into lower- and higher-level groups using hierarchical cluster analysis, with the results highlighting that patients in the lower mBDNF group had a higher incidence of DS. Conclusions: The depression score was positively correlated with the severity of coronary artery stenosis, and serum FGF21, β-klotho, mBDNF, and proBDNF were closely related to the development of DS in patients with SCAD. These observations suggest FGF21, β-klotho, mBDNF, and proBDNF as potential diagnostic and/or therapeutic targets for SCAD with co-morbid depression.
Collapse
Affiliation(s)
- Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Cardiology, People's Hospital of Quzhou, Quzhou, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
16
|
Duan J, Chen Z, Wu Y, Zhu B, Yang L, Yang C. Metabolic remodeling induced by mitokines in heart failure. Aging (Albany NY) 2019; 11:7307-7327. [PMID: 31498116 PMCID: PMC6756899 DOI: 10.18632/aging.102247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/22/2019] [Indexed: 04/11/2023]
Abstract
The prevalence rates of heart failure (HF) are greater than 10% in individuals aged >75 years, indicating an intrinsic link between aging and HF. It has been recognized that mitochondrial dysfunction contributes to the pathology of HF. Mitokines are a type of cytokines, peptides, or signaling pathways produced or activated by the nucleus or the mitochondria through cell non-autonomous responses during cellular stress. In addition to promoting the communication between the mitochondria and the nucleus, mitokines also exert a systemic regulatory effect by circulating to distant tissues. It is noteworthy that increasing evidence has demonstrated that mitokines are capable of reducing the metabolic-related HF risk factors and are associated with HF severity. Consequently, mitokines might represent a potential therapy target for HF.
Collapse
Affiliation(s)
- Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zijun Chen
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yeshun Wu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Chun Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Zheng W, Matei N, Pang J, Luo X, Song Z, Tang J, Zhang JH. Delayed recanalization at 3 days after permanent MCAO attenuates neuronal apoptosis through FGF21/FGFR1/PI3K/Caspase-3 pathway in rats. Exp Neurol 2019; 320:113007. [PMID: 31295445 DOI: 10.1016/j.expneurol.2019.113007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/06/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022]
Abstract
Reperfusion exceeded time window may induce ischemia/reperfusion injury, increase hemorrhagic transformation, and deteriorate neurological outcomes in ischemic stroke models. However, the increasing clinical evidences supported that reperfusion even within 6-24 h may salvage ischemic tissue and improve neurological outcomes in selected large vessel occlusion patients, without inducing serious ischemia/reperfusion injury and hemorrhagic transformation. The underlying molecular mechanisms are less clear. In present study, we demonstrated that delayed recanalization at 3 days after permanent middle cerebral artery occlusion (MCAO) decreased infarct volumes and improved neurobehavioral deficits in rats, with no increasing animal mortality and intracerebral hemorrhage. Meanwhile, we observed that endogenous neuroprotective agent fibroblast growth factor 21 (FGF21) significantly increased in serum after MCAO, but which did not synchronously increase in penumbra due to permanent MCAO. Recanalization dramatically increased the endogenous FGF21 expression on neurons in penumbra after MCAO. We confirmed that FGF21 activated the FGFR1/PI3K/Caspase-3 signaling pathway, which attenuated neuronal apoptosis in penumbra. Conversely, knockdown of FGFR1 via FGFR1 siRNA abolished the anti-apoptotic effects of FGF21, and in part abrogated beneficial effects of recanalization on neurological outcomes. These findings suggested that delayed recanalization at 3 days after MCAO improved neurological outcomes in rats via increasing endogenous FGF21 expression and activating FGFR1/PI3K/Caspase-3 pathway to attenuate neuronal apoptosis in penumbra. Delayed recanalization at 3 days after ischemic stroke onset may be a promising treatment strategy in selected patients.
Collapse
Affiliation(s)
- Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathanael Matei
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jinwei Pang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Xu Luo
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Neurology, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
18
|
Wu Y, Zhu B, Chen Z, Duan J, Luo A, Yang L, Yang C. New Insights Into the Comorbidity of Coronary Heart Disease and Depression. Curr Probl Cardiol 2019; 46:100413. [PMID: 31005351 DOI: 10.1016/j.cpcardiol.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/03/2019] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) and depression are common disorders that markedly impair quality of life and impose a great financial burden on society. They are also frequently comorbid, exacerbating patient condition, and worsening prognosis. This comorbidity strongly suggests shared pathologic mechanisms. This review focuses on the incidence of depression in patients with CHD, deleterious effects of depression on CHD symptoms, and the potential mechanisms underlying comorbidity. In addition to the existing frequent mechanisms that are well known for decades, this review summarized interesting and original potential mechanisms to underlie the comorbidity, such as endocrine substances, gut microbiome, and microRNA. Finally, there are several treatment strategies for the comorbidity, involving drugs and psychotherapy, which may provide a theoretical basis for further basic research and clinical investigations on improved therapeutic interventions.
Collapse
|
19
|
FGF21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the PI3K/Akt signaling pathway via FGFR1/β-klotho. Exp Neurol 2019; 317:34-50. [PMID: 30802446 DOI: 10.1016/j.expneurol.2019.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/10/2019] [Accepted: 02/21/2019] [Indexed: 01/24/2023]
Abstract
Perinatal asphyxia often results in neonatal cerebral hypoxia-ischemia (HI), which is associated with high mortality and severe long-term neurological deficits in newborns. Currently, there are no effective drugs to mitigate the functional impairments post-HI. Previous studies have shown that fibroblast growth factor 21 (FGF21) has a potential neuroprotective effect against brain injury. However, the effect of FGF21 on neonatal HI brain injury is unclear. In the present study, both in vivo and in vitro models were used to assess whether recombinant human FGF21 (rhFGF21) could exert a neuroprotective effect after HI and explore the associated mechanism. The results showed that the rhFGF21 treatment remarkably reduced the infarct volume, ameliorated the body weight and improved the tissue structure after HI in neonatal rats. In addition, the rhFGF21 treatment lengthened the running endurance times in the rotarod test and decreased the mean escape latencies and increased the number of platform crossings in the Morris water maze test at 21 d post-HI insult. In contrast, the FGFR1 inhibitor PD173074 and PI3K inhibitor LY294002 partially reversed these therapeutic effects. In isolated primary cortical neurons, the rhFGF21 treatment protected primary neurons from oxygen-glucose deprivation (OGD) insult by inhibiting neuronal apoptosis and promoting neuronal survival. Both our in vivo and in vitro results reveal that rhFGF21 could inhibit neuronal apoptosis by activating the PI3K/Akt signaling pathway via FGF21/FGFR1/β-klotho complex formation. Therefore, rhFGF21 may be a promising therapeutic agent for promoting functional recovery after HI-induced neonatal brain injury.
Collapse
|
20
|
Therapeutic Role of Fibroblast Growth Factor 21 (FGF21) in the Amelioration of Chronic Diseases. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09820-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Ren Z, Xiao W, Zeng Y, Liu MH, Li GH, Tang ZH, Qu SL, Hao YM, Yuan HQ, Jiang ZS. Fibroblast growth factor-21 alleviates hypoxia/reoxygenation injury in H9c2 cardiomyocytes by promoting autophagic flux. Int J Mol Med 2019; 43:1321-1330. [PMID: 30664197 PMCID: PMC6365083 DOI: 10.3892/ijmm.2019.4071] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Fibroblast growth factor (FGF)-21, a member of the family of FGFs, exhibits protective effects against myocardial ischemia and ischemia/reperfusion injury; it is also an enhancer of autophagy. However, the mechanisms underlying the protective role of FGF-21 against cardiomyocyte hypoxia/reoxygenation (H/R) injury remain unclear. The present study aimed to investigate the effect of FGF-21 on H9c2 cardiomyocyte injury induced by H/R and the mechanism associated with changes in autophagy. Cultured H9c2 cardiomyocytes subjected to hypoxia were treated with a vehicle or FGF-21 during reoxygenation. The viability of H9c2 rat cardiomyocytes was measured using Cell Counting Kit-8 and trypan blue exclusion assays. The contents of creatine kinase (CK) and creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnT), cardiac troponin T (cTnI) and lactate dehydrogenase (LDH) in culture medium were detected with a CK, CK-MB, cTnT, cTnI and LDH assay kits. The protein levels were examined by western blot analysis. Autophagic flux was detected by Ad-mCherry-GFP-LC3B autophagy fluorescent adenovirus reagent. The results indicated that FGF-21 alleviated H/R-induced H9c2 myocardial cell injury and enhanced autophagic flux during H/R, and that this effect was antagonized by co-treatment with 3-methyladenine, an autophagy inhibitor. Furthermore, FGF-21 increased the expression levels of Beclin-1 and Vps34 proteins, but not of mechanistic target of rapamycin. These data indicate that FGF-21 treatment limited H/R injury in H9c2 cardiomyocytes by promoting autophagic flux through upregulation of the expression levels of Beclin-1 and Vps34 proteins.
Collapse
Affiliation(s)
- Zhong Ren
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weijin Xiao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yun Zeng
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mi-Hua Liu
- Department of Clinical Laboratory, Nanhua Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Guo-Hua Li
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Han Tang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shun-Lin Qu
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ya-Meng Hao
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hou-Qin Yuan
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
22
|
Olejnik A, Franczak A, Krzywonos-Zawadzka A, Kałużna-Oleksy M, Bil-Lula I. The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5171945. [PMID: 30671457 PMCID: PMC6323445 DOI: 10.1155/2018/5171945] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Klotho is a membrane-bound or soluble antiaging protein, whose protective activity is essential for a proper function of many organs. In 1997, an accidental insertion of a transgene led to creation of transgenic mice with several age-related disorders. In Klotho-deficient mice, the inherited phenotypes closely resemble human aging, while in an animal model of Klotho overexpression, the lifespan is extended. Klotho protein is detected mainly in the kidneys and brain. It is a coreceptor for fibroblast growth factor and hence is involved in maintaining endocrine system homeostasis. Furthermore, an inhibition of insulin/insulin-like growth factor-1 signaling pathway by Klotho regulates oxidative stress and reduces cell death. The association between serum Klotho and the classic risk factors, as well as the clinical history of cardiovascular disease, was also shown. There are a lot of evidences that Klotho deficiency correlates with the occurrence and development of coronary artery disease, atherosclerosis, myocardial infarction, and left ventricular hypertrophy. Therefore, an involvement of Klotho in the signaling pathways and in regulation of a proper cell metabolism could be a crucial factor in the cardiac and vascular protection. It is also well established that Klotho protein enhances the antioxidative response via augmented production of superoxide dismutase and reduced generation of reactive oxygen species. Recent studies have proven an expression of Klotho in cardiomyocytes and its increased expression in stress-related heart injury. Thus, the antioxidative and antiapoptotic activity of Klotho could be considered as the novel protective factor in cardiovascular disease and heart injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Aleksandra Franczak
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marta Kałużna-Oleksy
- Department of Cardiology, University Hospital of Lord's Transfiguration, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
23
|
Circulating level of fibroblast growth factor 21 is independently associated with the risks of unstable angina pectoris. Biosci Rep 2018; 38:BSR20181099. [PMID: 30185439 PMCID: PMC6153373 DOI: 10.1042/bsr20181099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
There is increasing evidence that serum adipokine levels are associated with higher risks of cardiovascular diseases. As an important adipokine, fibroblast growth factor 21 (FGF21) has been demonstrated to be associated with atherosclerosis and coronary artery disease (CAD). However, circulating level of FGF21 in patients with angina pectoris has not yet been investigated. Circulating FGF21 level was examined in 197 patients with stable angina pectoris (SAP, n=66), unstable angina pectoris (UAP, n=76), and control subjects (n=55) along with clinical variables of cardiovascular risk factors. Serum FGF21 concentrations on admission were significantly increased more in patients with UAP than those with SAP (Ln-FGF21: 5.26 ± 0.87 compared with 4.85 ± 0.77, P<0.05) and control subjects (natural logarithm (Ln)-FGF21: 5.26 ± 0.87 compared with 4.54 ± 0.72, P<0.01). The correlation analysis revealed that serum FGF21 concentration was positively correlated with the levels of cardiac troponin I (cTnI) (r2 = 0.026, P=0.027) and creatine kinase-MB (CK-MB) (r2 = 0.023, P= 0.04). Furthermore, FGF21 level was identified as an independent factor associated with the risks of UAP (odds ratio (OR): 2.781; 95% CI: 1.476–5.239; P=0.002), after adjusting for gender, age, and body mass index (BMI). However, there were no correlations between serum FGF21 levels and the presence of SAP (OR: 1.248; 95% CI: 0.703–2.215; P=0.448). The present study indicates that FGF21 has a strong correlation and precise predictability for increased risks of UAP, that is independent of traditional risk factors of angina pectoris.
Collapse
|
24
|
Guo D, Xiao L, Hu H, Liu M, Yang L, Lin X. FGF21 protects human umbilical vein endothelial cells against high glucose-induced apoptosis via PI3K/Akt/Fox3a signaling pathway. J Diabetes Complications 2018; 32:729-736. [PMID: 29907326 DOI: 10.1016/j.jdiacomp.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Abstract
AIMS Diabetic macroangiopathy is the main cause of morbidity and mortality in patients with diabetes. Endothelial cell injury is a pathological precondition for diabetic macroangiopathy. Fibroblast growth factor 21 (FGF21) is a key metabolic regulator which has recently been suggested to protect cardiac myocytes and vascular cells against oxidative stress-induced injury in vitro and vivo. In this study, we aimed to investigate the protective capacity of FGF21 in human umbilical vein endothelial cells (HUVECs) against high glucose (HG)-induced apoptosis via phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)/FoxO3a pathway. METHODS The cell viability was examined by CCK-8 assay, Intracellular ROS levels were measured by the detection of the fluorescent product formed by the oxidation of DCFH-DA, Apoptosis was analyzed using Hoechst 33258 nuclear staining and Flow Cytometry Analysis (FCA), the expression of protein were detected by Western blot. RESULTS Results show that pretreating HUVECs with FGF21 before exposure to HG increases cell viability, while decreasing apoptosis and the generation of reactive oxygen species. Western blot analysis shows that HG reduces the phosphorylation of Akt and FoxO3a, and induces nuclear localization of FoxO3a. The effects were significantly reversed by FGF21 pre-treatment. Furthermore, the protective effects of FGF21 were prevented by PI3K/Akt inhibitor LY294002. CONCLUSIONS Our data demonstrates that FGF21 protects HUVECs from HG-induced oxidative stress and apoptosis via the activation of PI3K/Akt/FoxO3a signaling pathway.
Collapse
Affiliation(s)
- Dongmin Guo
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lele Xiao
- Huzhou University, Huzhou City, Zhejiang Province 313000, China
| | - Huijun Hu
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province 516001, China
| | - Mihua Liu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of infectious Disease, The Second Affiliated Hospital, Chongqing Medical University, Chongqing City 400016, China
| | - Lu Yang
- Key Laboratory for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, Hunan Province 421001, China.
| | - Xiaolong Lin
- Department of Pathology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province 516001, China.
| |
Collapse
|
25
|
Conte M, Ostan R, Fabbri C, Santoro A, Guidarelli G, Vitale G, Mari D, Sevini F, Capri M, Sandri M, Monti D, Franceschi C, Salvioli S. Human Aging and Longevity Are Characterized by High Levels of Mitokines. J Gerontol A Biol Sci Med Sci 2018; 74:600-607. [DOI: 10.1093/gerona/gly153] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Cusano Milanino
| | - Rita Ostan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Cusano Milanino
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Cusano Milanino
| | - Giulia Guidarelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health, University of Milan, Cusano Milanino
- Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Istituto Auxologico Italiano IRCCS, Cusano Milanino
| | - Daniela Mari
- Geriatric Unit, Fondazione Ca’ Granda, IRCCS Ospedale Maggiore Policlinico, Milan
| | - Federica Sevini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Cusano Milanino
| | - Marco Sandri
- Venetian Institute of Molecular Medicine, Padova
- Department of Biomedical Science, University of Padova, Padova
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Bologna, Italy
| | | | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Cusano Milanino
- Interdepartmental Centre “L. Galvani” (CIG), University of Bologna, Cusano Milanino
| |
Collapse
|
26
|
Amiri M, Braidy N, Aminzadeh M. Protective Effects of Fibroblast Growth Factor 21 Against Amyloid-Beta 1-42-Induced Toxicity in SH-SY5Y Cells. Neurotox Res 2018; 34:574-583. [PMID: 29869772 DOI: 10.1007/s12640-018-9914-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the progressive loss of cholinergic neurons. Amyloid beta is a misfolded protein that represents one of the key pathological hallmarks of AD. Numerous studies have shown that Aβ1-42 induces oxidative damage, neuroinflammation, and apoptosis, leading to cognitive decline in AD. Recently, fibroblast growth factor 21 (FGF21) has been suggested to be a potential regulator of oxidative stress in mammalian cells. FGF21 has been shown to improve insulin sensitivity, reduce hyperglycemia, increase adipose tissue glucose uptake and lipolysis, and decrease body fat and weight loss by enhancing energy expenditure. In this study, we investigated the effect of FGF21 Aβ1-42 toxicity in SH-SY5Y neuroblastoma cells. Our data shows that FGF21 significantly decreased Aβ1-42-induced toxic effects and repressed oxidative stress and apoptosis in cells exposed to Aβ1-42 peptide. Our investigation also confirmed that FGF21 pretreatment favorably affects HSP90/TLR4/NF-κB signaling pathway. Therefore, FGF21 represents a viable therapeutic strategy to abrogate Aβ1-42-induced cellular inflammation and apoptotic death in the SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Mona Amiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Barker Street, Randwick, Sydney, NSW, 2031, Australia.
| | - Malihe Aminzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Tanajak P, Sa-Nguanmoo P, Apaijai N, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N. Comparisons of cardioprotective efficacy between fibroblast growth factor 21 and dipeptidyl peptidase-4 inhibitor in prediabetic rats. Cardiovasc Ther 2018; 35. [PMID: 28391633 DOI: 10.1111/1755-5922.12263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 01/12/2023] Open
Abstract
AIMS Comparative efficacy between fibroblast growth factor 21 (FGF21) and vildagliptin on metabolic regulation, cardiac mitochondrial function, heart rate variability (HRV), and left ventricular (LV) function is not known. We hypothesized that FGF21 and vildagliptin share a similar efficacy in improving these parameters in high fat diet (HFD)-induced obese-insulin resistant rats. METHODS Twenty-four male Wistar rats were fed with either a normal diet (ND) or a HFD for 12 weeks. Then, ND rats were received vehicle (NDV). Rats in the HFD group were divided into three subgroups to receive either vehicle (HFV), recombinant human FGF21 (rhFGF21, 0.1 mg/kg/d, ip; HFF), or vildagliptin (3 mg/kg/d, PO; HFVil) for 28 days. RESULTS HFV rats developed obese-insulin resistance, increased serum tumor necrosis factors alpha (TNF-α) level, impaired heart rate variability (HRV) together with cardiac mitochondrial dysfunction, and LV dysfunction. Cardiac apoptosis was markedly increased in HFV rats indicated by decreased B-cell lymphoma 2 (Bcl-2) with increased Bcl2-associated X-protein (Bax) and cleaved caspase 3 expression. Cardiac FGF21 signaling pathways were markedly decreased in HFV rats indicated by decreased phosphor-fibroblast growth factor receptors 1 (p-FGFR1), phosphor-extracellular signal-regulated protein kinases 1 (p-ERK1/2), proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and carnitine palmitoyltransferase-1 (CPT-1) expression. Although both FGF21 and vildagliptin similarly attenuated these impairments, only HFF rats had decreased body weight, visceral fat, and serum TNF-α levels. CONCLUSIONS FGF21 exerts better metabolic regulation and inflammation reduction than vildagliptin. However, FGF21 and vildagliptin shared a similar efficacy for cardioprotection by improving HRV and LV function.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Piangkwan Sa-Nguanmoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, Lu X, Zhang C. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 2018; 9:227. [PMID: 29445083 PMCID: PMC5833682 DOI: 10.1038/s41419-018-0307-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Our previous studies showed that both exogenous and endogenous FGF21 inhibited cardiac apoptosis at the early stage of type 1 diabetes. Whether FGF21 induces preventive effect on type 2 diabetes-induced cardiomyopathy was investigated in the present study. High-fat-diet/streptozotocin-induced type 2 diabetes was established in both wild-type (WT) and FGF21-knockout (FGF21-KO) mice followed by treating with FGF21 for 4 months. Diabetic cardiomyopathy (DCM) was diagnosed by significant cardiac dysfunction, remodeling, and cardiac lipid accumulation associated with increased apoptosis, inflammation, and oxidative stress, which was aggravated in FGF21-KO mice. However, the cardiac damage above was prevented by administration of FGF21. Further studies demonstrated that the metabolic regulating effect of FGF21 is not enough, contributing to FGF21-induced significant cardiac protection under diabetic conditions. Therefore, other protective mechanisms must exist. The in vivo cardiac damage was mimicked in primary neonatal or adult mouse cardiomyocytes treated with HG/Pal, which was inhibited by FGF21 treatment. Knockdown of AMPKα1/2, AKT2, or NRF2 with their siRNAs revealed that FGF21 protected cardiomyocytes from HG/Pal partially via upregulating AMPK–AKT2–NRF2-mediated antioxidative pathway. Additionally, knockdown of AMPK suppressed fatty acid β-oxidation via inhibition of ACC–CPT-1 pathway. And, inhibition of fatty acid β-oxidation partially blocked FGF21-induced protection in cardiomyocytes. Further, in vitro and in vivo studies indicated that FGF21-induced cardiac protection against type 2 diabetes was mainly attributed to lipotoxicity rather than glucose toxicity. These results demonstrate that FGF21 functions physiologically and pharmacologically to prevent type 2 diabetic lipotoxicity-induced cardiomyopathy through activation of both AMPK–AKT2–NRF2-mediated antioxidative pathway and AMPK–ACC–CPT-1-mediated lipid-lowering effect in the heart.
Collapse
Affiliation(s)
- Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anyun Feng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sundong Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xiaoqing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China. .,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China. .,Wenzhou Biomedical Innovation Center, Wenzhou, China.
| |
Collapse
|
29
|
Hui TH, McClelland RL, Allison MA, Rodriguez CJ, Kronmal RA, Heckbert SR, Michos ED, Barter PJ, Rye KA, Ong KL. The relationship of circulating fibroblast growth factor 21 levels with incident atrial fibrillation: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2017; 269:86-91. [PMID: 29351855 DOI: 10.1016/j.atherosclerosis.2017.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/06/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Elevated circulating levels of fibroblast growth factor 21 (FGF21) are associated with multiple cardiovascular disease (CVD) risk factors and incident events. Previous small cross-sectional studies, mainly in Chinese populations, have suggested FGF21 may play a role in the development of atrial fibrillation (AF). We therefore investigated the relationship of FGF21 levels with incident AF in participants free of clinically apparent CVD at baseline in a large, multi-ethnic cohort. METHODS A total of 5729 participants of four major ethnic groups (Caucasian, African American, Hispanic American, and Chinese American) from the Multi-Ethnic Study of Atherosclerosis (MESA), who were free of AF and had plasma FGF21 levels measured by ELISA at the baseline exam, were included in the analysis. Participants were followed up for incident AF over a median period of 12.9 years. Cox proportional hazards regression analysis was used. RESULTS Among the 5729 participants, 778 participants developed incident AF. Participants with incident AF had significantly higher baseline FGF21 levels than those without incident AF (median = 166.0 and 142.8 pg/mL, p < 0.001). After adjusting for possible confounders, including demographic, socioeconomic and lifestyle factors, traditional CVD risk factors and circulating inflammatory markers, higher baseline FGF21 levels did not predict incident AF over the follow up period. There was no effect modification by sex or ethnicity. CONCLUSIONS Baseline FGF21 levels were not associated with the development of AF in an ethnically diverse population followed long-term. Our findings do not support an important role of FGF21 in AF development.
Collapse
Affiliation(s)
- Tsz Him Hui
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Carlos J Rodriguez
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Richard A Kronmal
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Susan R Heckbert
- Department of Epidemiology, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Erin D Michos
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
30
|
Liang P, Zhong L, Gong L, Wang J, Zhu Y, Liu W, Yang J. Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal‑regulated kinase 1/2 signaling pathway. Int J Mol Med 2017; 40:1477-1485. [PMID: 28949374 PMCID: PMC5627875 DOI: 10.3892/ijmm.2017.3140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), as an endocrine factor, is secreted into circulation by injured cardiomyocytes. Endoplasmic reticulum (ER) stress-induced apoptosis has been proposed as an important pathophysiological mechanism for cardiomyocyte injury. However, whether the enhanced expression of FGF21 in cardiomyocytes is linked to ER stress, and the effect and underlying mechanism of FGF21 on ER stress-induced cardiomyocyte apoptosis remain unclear. In the present study, it was demonstrated that mild ER stress resulted in upregulated expression levels of FGF21 and its main receptors, as a response to cell compensation, at the induction of ≤5 µM tunicamycin (TM). However, excessive ER stress (TM ≥10 µM) activated the ER stress-mediated apoptosis signaling pathways, including PKR-like ER kinase (PERK)-eukaryotic translational initiation factor 2α (eIF2α)-activating transcription factor 4 (ATF4)-CCAAT/-enhancer-binding protein homologous protein (CHOP) and inositol-requiring kinase 1α (IRE1α)-c-Jun N-terminal kinases (JNK), as well as inhibited the expression of FGF21 and its primary receptors. In addition, FGF21 overexpression provided protection against ER stress-induced cardiomyocyte injury, as evidenced by increased cell viability and reduced apoptosis. These changes were associated with the inhibition of ER stress-mediated apoptosis signaling pathways, as well as increased phosphorylation of FGFR1 and ERK1/2. However, the protective effects of overexpressed FGF21 were abolished following treatment with FGFR1 and ERK1/2 inhibitors. Thus, mild ER stress may induce the expression of FGF21 and its primary receptors in cardiomyocytes. FGF21 inhibits ER stress-induced cardiomyocyte injury as least in part via the FGFR1-ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Pingping Liang
- Department of Cardiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Lei Gong
- Biochip Laboratory, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jiahui Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yujie Zhu
- Department of Cardiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Weifeng Liu
- Department of Cardiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Medical College Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
31
|
Fibroblast growth factor 21 ameliorates high glucose-induced fibrogenesis in mesangial cells through inhibiting STAT5 signaling pathway. Biomed Pharmacother 2017; 93:695-704. [DOI: 10.1016/j.biopha.2017.06.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/12/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
|
32
|
Cardioprotective effects of fibroblast growth factor 21 against doxorubicin-induced toxicity via the SIRT1/LKB1/AMPK pathway. Cell Death Dis 2017; 8:e3018. [PMID: 28837153 PMCID: PMC5596591 DOI: 10.1038/cddis.2017.410] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Doxorubicin (DOX) is a highly effective antineoplastic anthracycline drug; however, the adverse effect of the cardiotoxicity has limited its widespread application. Fibroblast growth factor 21 (FGF21), as a well-known regulator of glucose and lipid metabolism, was recently shown to exert cardioprotective effects. The aim of this study was to investigate the possible protective effects of FGF21 against DOX-induced cardiomyopathy. We preliminarily established DOX-induced cardiotoxicity models in H9c2 cells, adult mouse cardiomyocytes, and 129S1/SyImJ mice, which clearly showed cardiac dysfunction and myocardial collagen accumulation accompanying by inflammatory, oxidative stress, and apoptotic damage. Treatment with FGF21 obviously attenuated the DOX-induced cardiac dysfunction and pathological changes. Its effective anti-inflammatory activity was revealed by downregulation of inflammatory factors (tumor necrosis factor-α and interleukin-6) via the IKK/IκBα/nuclear factor-κB pathway. The anti-oxidative stress activity of FGF21 was achieved via reduced generation of reactive oxygen species through regulation of nuclear transcription factor erythroid 2-related factor 2 transcription. Its anti-apoptotic activity was shown by reductions in the number of TUNEL-positive cells and DNA fragments along with a decreased ratio of Bax/Bcl-2 expression. In a further mechanistic study, FGF21 enhanced sirtuin 1 (SIRT1) binding to liver kinase B1 (LKB1) and then decreased LKB1 acetylation, subsequently inducing AMP-activated protein kinase (AMPK) activation, which improved the cardiac inflammation, oxidative stress, and apoptosis. These alterations were significantly prohibited by SIRT1 RNAi. The present work demonstrates for the first time that FGF21 obviously prevented DOX-induced cardiotoxicity via the suppression of oxidative stress, inflammation, and apoptosis through the SIRT1/LKB1/AMPK signaling pathway.
Collapse
|
33
|
FGF21 ameliorates diabetic cardiomyopathy by activating the AMPK-paraoxonase 1 signaling axis in mice. Clin Sci (Lond) 2017; 131:1877-1893. [DOI: 10.1042/cs20170271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/20/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
The aim of the present study is to explore the molecular mechanism of fibroblast growth factor 21 (FGF21) in protecting against diabetic cardiomyopathy (DCM). Streptozotocin/high-fat diet (STZ/HFD) was used to induced diabetes in FGF21-deficient mice and their wild-type littermates, followed by evaluation of the difference in DCM between the two genotypes. Primary cultured cardiomyocytes were also used to explore the potential molecular mechanism of FGF21 in the protection of high glucose (HG)-induced cardiomyocyte injury. STZ/HFD-induced cardiomyopathy was exacerbated in FGF21 knockout mice, which was accompanied by a significant reduction in cardiac AMP-activated protein kinase (AMPK) activity and paraoxonase 1 (PON1) expression. By contrast, adeno-associated virus (AAV)-mediated overexpression of FGF21 in STZ/HFD-induced diabetic mice significantly enhanced cardiac AMPK activity, PON1 expression and its biological activity, resulting in alleviated DCM. In cultured cardiomyocytes, treatment with recombinant mouse FGF21 (rmFGF21) counteracted HG-induced oxidative stress, mitochondrial dysfunction, and inflammatory responses, leading to increased AMPK activity and PON1 expression. However, these beneficial effects of FGF21 were markedly weakened by genetic blockage of AMPK or PON1. Furthermore, inactivation of AMPK also markedly blunted FGF21-induced PON1 expression but significantly increased HG-induced cytotoxicity in cardiomyocytes, the latter of which was largely reversed by adenovirus-mediated PON1 overexpression. These findings suggest that FGF21 ameliorates DCM in part by activation of the AMPK-PON1 axis.
Collapse
|
34
|
Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech Ageing Dev 2017; 165:115-128. [DOI: 10.1016/j.mad.2016.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
|
35
|
Hu S, Cao S, Liu J. Role of angiopoietin-2 in the cardioprotective effect of fibroblast growth factor 21 on ischemia/reperfusion-induced injury in H9c2 cardiomyocytes. Exp Ther Med 2017; 14:771-779. [PMID: 28672998 PMCID: PMC5488700 DOI: 10.3892/etm.2017.4564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 02/10/2017] [Indexed: 11/25/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) exerts a protective effect in ischemia/reperfusion (I/R)-induced cardiac injury. However, the exact molecular mechanism underlying the FGF21 action remains unclear. The present study aimed to evaluate the role of angiopoietin-2 (Angpt2) in the cardioprotective effect of FGF21. For this purpose, the H9C2 cell line was subjected to simulated I/R or aerobic conditions with or without FGF21 administration. Certain groups were also transfected with Angpt2 small interfering RNA (siRNA). Cell viability, apoptosis rate and cell migration were examined, and the expression levels of Angpt2, glucose transporter 1 (GLUT1) and caspase-3 were measured by quantitative polymerase chain reaction (qPCR) and western blot analyses. The results demonstrated that FGF21 administration suppressed apoptosis and increased the cell migration ability following I/R-induced injury. qPCR and western blot data showed a decreased level of GLUT1 after I/R-induced injury, which was reversed by FGF21 administration. Furthermore, inhibition of Angpt2 expression using siRNA enhanced the cardioprotective effect of FGF21 by upregulation of GLUT1. In conclusion, FGF21 administration protected against I/R-induced injury in cardiomyocytes, and further inhibition of Angpt2 with FGF21 administration induced the expression of GLUT1, which may promote the energy metabolism in cardiomyocytes, consequently resulting in a more efficient cardioprotective effect. These results suggested that FGF21 administration and inhibition of Angpt2 could be a novel therapeutic approach for I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Shuoqiang Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| | - Shujun Cao
- Department of Cardiology, Beijing Daxing Hospital, Capital Medical University, Beijing 102600, P.R. China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, P.R. China
| |
Collapse
|
36
|
Tanajak P, Pintana H, Siri-Angkul N, Khamseekaew J, Apaijai N, Chattipakorn SC, Chattipakorn N. Vildagliptin and caloric restriction for cardioprotection in pre-diabetic rats. J Endocrinol 2017; 232:189-204. [PMID: 27875248 DOI: 10.1530/joe-16-0406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
Long-term high-fat diet (HFD) consumption causes cardiac dysfunction. Although calorie restriction (CR) has been shown to be useful in obesity, we hypothesized that combined CR with dipeptidyl peptidase-4 (DPP-4) inhibitor provides greater efficacy than monotherapy in attenuating cardiac dysfunction and metabolic impairment in HFD-induced obese-insulin resistant rats. Thirty male Wistar rats were divided into 2 groups to be fed on either a normal diet (ND, n = 6) or a HFD (n = 24) for 12 weeks. Then, HFD rats were divided into 4 subgroups (n = 6/subgroup) to receive just the vehicle, CR diet (60% of mean energy intake and changed to ND), vildagliptin (3 mg/kg/day) or combined CR and vildagliptin for 4 weeks. Metabolic parameters, heart rate variability (HRV), cardiac mitochondrial function, left ventricular (LV) and fibroblast growth factor (FGF) 21 signaling pathway were determined. Rats on a HFD developed insulin and FGF21 resistance, oxidative stress, cardiac mitochondrial dysfunction and impaired LV function. Rats on CR alone showed both decreased body weight and visceral fat accumulation, whereas vildagliptin did not alter these parameters. Rats in CR, vildagliptin and CR plus vildagliptin subgroups had improved insulin sensitivity and oxidative stress. However, vildagliptin improved heart rate variability (HRV), cardiac mitochondrial function and LV function better than the CR. Chronic HFD consumption leads to obese-insulin resistance and FGF21 resistance. Although CR is effective in improving metabolic regulation, vildagliptin provides greater efficacy in preventing cardiac dysfunction by improving anti-apoptosis and FGF21 signaling pathways and attenuating cardiac mitochondrial dysfunction in obese-insulin-resistant rats.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Hiranya Pintana
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology UnitDepartment of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology ResearchChiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
37
|
Xu Z, Sun J, Tong Q, Lin Q, Qian L, Park Y, Zheng Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int J Mol Sci 2016; 17:2001. [PMID: 27941647 PMCID: PMC5187801 DOI: 10.3390/ijms17122001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic condition that affects carbohydrate, lipid and protein metabolism and may impair numerous organs and functions of the organism. Cardiac dysfunction afflicts many patients who experience the oxidative stress of the heart. Diabetic cardiomyopathy (DCM) is one of the major complications that accounts for more than half of diabetes-related morbidity and mortality cases. Chronic hyperglycemia and hyperlipidemia from diabetes mellitus cause cardiac oxidative stress, endothelial dysfunction, impaired cellular calcium handling, mitochondrial dysfunction, metabolic disturbances, and remodeling of the extracellular matrix, which ultimately lead to DCM. Although many studies have explored the mechanisms leading to DCM, the pathophysiology of DCM has not yet been fully clarified. In fact, as a potential mechanism, the associations between DCM development and mitogen-activated protein kinase (MAPK) activation have been the subjects of tremendous interest. Nonetheless, much remains to be investigated, such as tissue- and cell-specific processes of selection of MAPK activation between pro-apoptotic vs. pro-survival fate, as well as their relation with the pathogenesis of diabetes and associated complications. In general, it turns out that MAPK signaling pathways, such as extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, are demonstrated to be actively involved in myocardial dysfunction, hypertrophy, fibrosis and heart failure. As one of MAPK family members, the activation of ERK1/2 has also been known to be involved in cardiac hypertrophy and dysfunction. However, many recent studies have demonstrated that ERK1/2 signaling activation also plays a crucial role in FGF21 signaling and exerts a protective environment of glucose and lipid metabolism, therefore preventing abnormal healing and cardiac dysfunction. The duration, extent, and subcellular compartment of ERK1/2 activation are vital to differential biological effects of ERK1/2. Moreover, many intracellular events, including mitochondrial signaling and protein kinases, manipulate signaling upstream and downstream of MAPK, to influence myocardial survival or death. In this review, we will summarize the roles of ERK1/2 pathways in DCM development by the evidence from current studies and will present novel opinions on "differential influence of ERK1/2 action in cardiac dysfunction, and protection against myocardial ischemia-reperfusion injury".
Collapse
Affiliation(s)
- Zheng Xu
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
| | - Jian Sun
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Tong
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA.
| | - Lingbo Qian
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- Department of Basic Medical Sciences, Hangzhou Medical College, Hangzhou 310053, China.
| | - Yongsoo Park
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA.
- College of Medicine & Engineering, Hanyang University, Seoul 04963, Korea.
| | - Yang Zheng
- Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
38
|
Yu Y, He J, Li S, Song L, Guo X, Yao W, Zou D, Gao X, Liu Y, Bai F, Ren G, Li D. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmacol 2016; 38:144-52. [DOI: 10.1016/j.intimp.2016.05.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 12/30/2022]
|
39
|
Tanajak P, Sa-nguanmoo P, Wang X, Liang G, Li X, Jiang C, Chattipakorn SC, Chattipakorn N. Fibroblast growth factor 21 (FGF21) therapy attenuates left ventricular dysfunction and metabolic disturbance by improving FGF21 sensitivity, cardiac mitochondrial redox homoeostasis and structural changes in pre-diabetic rats. Acta Physiol (Oxf) 2016; 217:287-99. [PMID: 27119620 DOI: 10.1111/apha.12698] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/04/2016] [Accepted: 04/22/2016] [Indexed: 01/10/2023]
Abstract
AIMS Fibroblast growth factor 21 (FGF21) acts as a metabolic regulator and exerts cardioprotective effects. However, the effects of long-term FGF21 administration on the heart under the FGF21-resistant condition in obese, insulin-resistant rats have not been investigated. We hypothesized that long-term FGF21 administration reduces FGF21 resistance and insulin resistance and attenuates cardiac dysfunction in obese, insulin-resistant rats. METHODS Eighteen rats were fed on either a normal diet (n = 6) or a high-fat diet (HFD; n = 12) for 12 weeks. Then, rats in the HFD group were divided into two subgroups (n = 6 per subgroup) and received either the vehicle (HFV) or recombinant human FGF21 (rhFGF21, 0.1 mg kg(-1) day(-1) ; HFF) injected intraperitoneally for 28 days. The metabolic parameters, inflammation, malondialdehyde (MDA), heart rate variability (HRV), left ventricular (LV) function, cardiac mitochondrial redox homoeostasis, cardiac mitochondrial fatty acid β-oxidation (FAO) and anti-apoptotic signalling pathways were determined. RESULTS HFV rats had increased dyslipidaemia, insulin resistance, plasma FGF21 levels, TNF-α, adiponectin and MDA, depressed HRV, and impaired LV and mitochondrial function. HFV rats also had decreased cardiac Bcl-2, cardiac PGC-1α and CPT-1 protein expression. However, FGF21 restored metabolic parameters, decreased TNF-α and MDA, increased serum adiponectin, and improved HRV, cardiac mitochondrial and LV function in HFF rats. Moreover, HFF rats had increased cardiac Bcl-2, cardiac PGC-1α and CPT-1 protein expression. CONCLUSION Long-term FGF21 therapy attenuates FGF21 resistance and insulin resistance and exerts cardioprotection by improving cardiometabolic regulation via activating anti-apoptotic and cardiac mitochondrial FAO signalling pathways in obese, insulin-resistant rats.
Collapse
Affiliation(s)
- P. Tanajak
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - P. Sa-nguanmoo
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - X. Wang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - G. Liang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - X. Li
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - C. Jiang
- School of Pharmaceutical Sciences; Wenzhou Medical University; University-Town Wenzhou Zhejiang China
| | - S. C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - N. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
40
|
Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, Zhang C, Lu X, Tan Y, Feng W, Fu Y, Liu GC, Xu Z, Cai L. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med 2016; 93:94-109. [PMID: 26849944 PMCID: PMC7446394 DOI: 10.1016/j.freeradbiomed.2016.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/14/2022]
Abstract
The lipid lowering medication, fenofibrate (FF), is a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, possessing beneficial effects for type 2 diabetic nephropathy (DN). We investigated whether FF can prevent the development of type 1 DN, and the underlying mechanisms. Diabetes was induced by a single intraperitoneal injection of streptozotocin in C57BL/6J mice. Mice were treated with oral gavage of FF at 100mg/kg every other day for 3 and 6 months. Diabetes-induced renal oxidative stress, inflammation, apoptosis, lipid and collagen accumulation, and renal dysfunction were accompanied by significant decrease in PI3K, Akt, and GSK-3β phosphorylation as well as an increase in the nuclear accumulation of Fyn [a negative regulator of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)]. All these adverse effects were significantly attenuated by FF treatment. FF also significantly increased fibroblast growth factor 21 (FGF21) expression and enhanced Nrf2 function in diabetic and non-diabetic kidneys. Moreover, FF-induced amelioration of diabetic renal damage, including the stimulation of PI3K/Akt/GSK-3β/Fyn pathway and the enhancement of Nrf2 function were abolished in FGF21-null mice, confirming the critical role of FGF21 in FF-induced renal protection. These results suggest for the first time that FF prevents the development of DN via up-regulating FGF21 and stimulating PI3K/Akt/GSK-3β/Fyn-mediated activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Yanli Cheng
- The First Hospital of Jilin University, Changchun 130021, China; The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Jingjing Zhang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; Department of Cardiology at the First Hospital of China Medical University, Shenyang 110016, China; Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang 110016, China
| | - Weiying Guo
- The First Hospital of Jilin University, Changchun 130021, China
| | - Fengsheng Li
- The Second Artillery General Hospital, Beijing 100088, China
| | - Weixia Sun
- The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Chen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Xuemian Lu
- The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yaowen Fu
- The First Hospital of Jilin University, Changchun 130021, China
| | - Gilbert C Liu
- Child and Adolescent Health Research Design and Support, University of Louisville, Louisville, KY 40204, USA
| | - Zhonggao Xu
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Lu Cai
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA; The Third Affiliated Hospital of the Wenzhou Medical University, Ruian 325200, China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
41
|
Cao S, Liu Y, Wang H, Mao X, Chen J, Liu J, Xia Z, Zhang L, Liu X, Yu T. Ischemic postconditioning influences electron transport chain protein turnover in Langendorff-perfused rat hearts. PeerJ 2016; 4:e1706. [PMID: 26925330 PMCID: PMC4768691 DOI: 10.7717/peerj.1706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/28/2016] [Indexed: 01/03/2023] Open
Abstract
Ischemia postconditioning (IPo) is a promising strategy in reducing myocardial ischemia reperfusion (I/R) injury (MIRI), but its specific molecular mechanism is incompletely understood. Langendorff-perfused isolated rat hearts were subjected to global I/R and received IPo in the absence or presence of the mitochondrial ATP-sensitive potassium channel (mitoKATP) blocker 5-hydroxydecanoate (5-HD). Myocardial mitochondria were extracted and mitochondrial comparative proteomics was analyzed. IPo significantly reduces post-ischemic myocardial infarction and improved cardiac function in I/R rat hearts, while 5-HD basically cancelled IPo's myocardial protective effect. Joint application of two-dimensional polyacrylamide gel electrophoresis (2DE) and MALDI-TOF MS identified eight differentially expressed proteins between groups. Expression of cardiac succinate dehydrogenase (ubiquinone) flavoprotein subunit (SDHA) increased more than two-fold after I/R, while IPo led to overexpression of dihydrolipoyl dehydrogenase (DLD), NADH dehydrogenase (ubiquinone) flavoprotein 1 and isoform CRA_b (NDUFV1). When the mitoKATP was blocked, MICOS complex subunit Mic60 (IMMT) and Stress-70 protein (Grp75) were over expressed, while DLDH, ATPase subunit A (ATPA) and rCG44606 were decreased. Seven of the differential proteins belong to electron transport chain (ETC) or metabolism regulating proteins, and five of them were induced by closing mitoKATP in I/R hearts. We thus conclude that IPo's myocardial protective effect relies on energy homeostasis regulation. DLD, SDHA, NDUFV1, Grp75, ATPA and rCG44606 may contribute to IPo's cardial protective effect.
Collapse
Affiliation(s)
- Song Cao
- Department of Anesthesiology, Zunyi Medical College, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Yun Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China; Research Center for Medicine & Biology, Zunyi Medical College, Zunyi, China
| | - Haiying Wang
- Department of Anesthesiology, Zunyi Medical College , Zunyi , China
| | - Xiaowen Mao
- Department of Anesthesiology, The University of Hong Kong , Hong Kong , China
| | - Jincong Chen
- Department of Anesthesiology, Zunyi Medical College , Zunyi , China
| | - Jiming Liu
- Department of Anesthesiology, Zunyi Medical College , Zunyi , China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong , Hong Kong , China
| | - Lin Zhang
- Department of Anesthesiology, Zunyi Medical College, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Xingkui Liu
- Department of Anesthesiology, Zunyi Medical College , Zunyi , China
| | - Tian Yu
- Department of Anesthesiology, Zunyi Medical College, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| |
Collapse
|
42
|
Cheng P, Zhang F, Yu L, Lin X, He L, Li X, Lu X, Yan X, Tan Y, Zhang C. Physiological and Pharmacological Roles of FGF21 in Cardiovascular Diseases. J Diabetes Res 2016; 2016:1540267. [PMID: 27247947 PMCID: PMC4876232 DOI: 10.1155/2016/1540267] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of β-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.
Collapse
Affiliation(s)
- Peng Cheng
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Fangfang Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Lechu Yu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiufei Lin
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luqing He
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuemian Lu
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoqing Yan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yi Tan
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- Kosair Children Hospital Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- *Yi Tan: and
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou 325035, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital, Wenzhou Medical University, Wenzhou 325200, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- *Chi Zhang:
| |
Collapse
|
43
|
Tanajak P, Chattipakorn SC, Chattipakorn N. Effects of fibroblast growth factor 21 on the heart. J Endocrinol 2015; 227:R13-30. [PMID: 26341481 DOI: 10.1530/joe-15-0289] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2015] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a novel polypeptide ligand that has been shown to be involved in several physiological and pathological processes including regulation of glucose and lipids as well as reduction of arteriosclerotic plaque formation in the great vessels. It has also been shown to exert cardioprotective effects in myocardial infarction, cardiac ischemia-reperfusion injury, cardiac hypertrophy and diabetic cardiomyopathy. Moreover, FGF21 protects the myocardium and great arteries by attenuating remodeling, inflammation, oxidative stress and also promoting the energy supply to the heart through fatty acid β-oxidation. This growing evidence emphasizes the important roles of FGF21 in cardioprotection. This review comprehensively summarizes and discusses the consistent and inconsistent findings regarding the beneficial effects of FGF21 on the heart available from both basic research and clinical reports. The details of the signaling, biological and pharmacological effects of FGF21 with regard to its protection of the heart are also presented and discussed in this review.
Collapse
Affiliation(s)
- Pongpan Tanajak
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand Cardiac Electrophysiology Research and Training CenterFaculty of MedicineCardiac Electrophysiology UnitDepartment of Physiology, Faculty of MedicineCenter of Excellence in Cardiac Electrophysiology ResearchDepartment of Oral Biology and Diagnostic SciencesFaculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
44
|
Xu P, Zhang Y, Wang W, Yuan Q, Liu Z, Rasoul LM, Wu Q, Liu M, Ye X, Li D, Ren G. Long-Term Administration of Fibroblast Growth Factor 21 Prevents Chemically-Induced Hepatocarcinogenesis in Mice. Dig Dis Sci 2015; 60:3032-43. [PMID: 26003555 DOI: 10.1007/s10620-015-3711-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/07/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE In this study, we explored whether treatment with FGF-21 could prevent diethylnitrosamine (DEN) induced hepatocarcinogenesis in mice. METHODS & RESULTS Hepatoma was induced by injection of DEN every three days for 18 weeks. For the prophylactic experiment, mice were firstly injected with FGF-21 for 2 weeks, then FGF-21 was administered to the mice once daily in association with DEN injection till the end of the experiment. The hepatoma incidence of mice treated with FGF-21 was 13.3%, while the incidence of mice treated with saline was 61.5%. To understand the mechanisms, we compared the expression of βklotho (KLB) and oxidative stress level in the livers between the mice treated with FGF-21 and saline. We found that FGF-21 could suppress DEN-induced oxidative stress and up-regulate the expression of KLB in the livers. To confirm these results, we compared the expression of KLB in L02 cells stimulated with or without FGF-21. Besides, we established DEN-induced oxidative stress cell model to affirm the relationship between FGF-21 and DEN-induced oxidative stress in vitro. Results showed that FGF-21 increased the expression of KLB and diminished the DEN-induced oxidative stress in vitro in a dose dependent manner. CONCLUSION Systemic administration of FGF-21 can prevent DEN-induced hepatocarcinogenesis via suppressing oxidative stress and increasing the expression of KLB.
Collapse
Affiliation(s)
- Pengfei Xu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Yingjie Zhang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Wenfei Wang
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Qingyan Yuan
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Zhihang Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Lubna Muhi Rasoul
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China.,College of Science, University of Baghdad, Baghdad, Iraq
| | - Qiang Wu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Mingyao Liu
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Xianlong Ye
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China
| | - Deshan Li
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China. .,Key Laboratory of Agricultural Biological Functional Gene, Northeast Agricultural University, Harbin, People's Republic of China.
| | - Guiping Ren
- Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, People's Republic of China.
| |
Collapse
|
45
|
Domouzoglou EM, Naka KK, Vlahos AP, Papafaklis MI, Michalis LK, Tsatsoulis A, Maratos-Flier E. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21. Am J Physiol Heart Circ Physiol 2015; 309:H1029-38. [PMID: 26232236 PMCID: PMC4747916 DOI: 10.1152/ajpheart.00527.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
Abstract
Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease.
Collapse
Affiliation(s)
- Eleni M Domouzoglou
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Antonios P Vlahos
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Michail I Papafaklis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Agathoklis Tsatsoulis
- Department of Endocrinology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Zhang F, Yu L, Lin X, Cheng P, He L, Li X, Lu X, Tan Y, Yang H, Cai L, Zhang C. Minireview: Roles of Fibroblast Growth Factors 19 and 21 in Metabolic Regulation and Chronic Diseases. Mol Endocrinol 2015; 29:1400-13. [PMID: 26308386 DOI: 10.1210/me.2015-1155] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fibroblast growth factor (FGF)19 and FGF21 are hormones that regulate metabolic processes particularly during feeding or starvation, thus ultimately influencing energy production. FGF19 is secreted by the intestines during feeding and negatively regulates bile acid synthesis and secretion, whereas FGF21 is produced in the liver during fasting and plays a crucial role in regulating glucose and lipid metabolism, as well as maintaining energy homeostasis. FGF19 and FGF21 are regarded as late-acting hormones because their functions are only used after insulin and glucagon have completed their actions. Although FGF19 and FGF21 are activated under different conditions, they show extensively functional overlap in terms of improving glucose tolerance, insulin sensitivity, weight loss, and lipid, and energy metabolism, particularly in pathological conditions such as diabetes, obesity, metabolic syndrome, and cardiovascular and renal diseases. Most patients with these metabolic diseases exhibit reduced serum FGF19 levels, which might contribute to its etiology. In addition, the simultaneous increase in serum FGF21 levels is likely a compensatory response to reduced FGF19 levels, and the 2 proteins concertedly maintain metabolic homeostasis. Here, we review the physiological and pharmacological cross talk between FGF19 and FGF21 in relation to the regulation of endocrine metabolism and various chronic diseases.
Collapse
Affiliation(s)
- Fangfang Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lechu Yu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiufei Lin
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Peng Cheng
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Luqing He
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xiaokun Li
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Xuemian Lu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Yi Tan
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Hong Yang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Lu Cai
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| | - Chi Zhang
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications (F.Z., L.Y., X.Lin, P.C., L.H., X.Lu, Y.T., H.Y., L.C., C.Z.), Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China 325200; Chinese-American Research Institute for Diabetic Complications (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., L.C., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; School of Pharmaceutical Sciences (F.Z., X.Lin, P.C., L.H., X.Li, Y.T., C.Z.), Wenzhou Medical University, Wenzhou, Zhejiang, China 325035; and Department of Pediatrics (Y.T., L.C.), University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
47
|
Zhang C, Huang Z, Gu J, Yan X, Lu X, Zhou S, Wang S, Shao M, Zhang F, Cheng P, Feng W, Tan Y, Li X. Fibroblast growth factor 21 protects the heart from apoptosis in a diabetic mouse model via extracellular signal-regulated kinase 1/2-dependent signalling pathway. Diabetologia 2015; 58:1937-48. [PMID: 26040473 DOI: 10.1007/s00125-015-3630-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/01/2015] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS This study investigated fibroblast growth factor 21 (FGF21)-mediated cardiac protection against apoptosis caused by diabetic lipotoxicity and explored the protective mechanisms involved. METHODS Cardiac Fgf21 mRNA expression was examined in a diabetic mouse model using real-time PCR. After pre-incubation of palmitate-treated cardiac H9c2 cells and primary cardiomyocytes with FGF21 for 15 h, apoptosis and Fgf21-induced cell-survival signalling were investigated using small interfering (si)RNA and/or pharmacological inhibitors. We also examined the cardiac apoptotic signalling and structural and functional indices in wild-type and Fgf21-knockout (Fgf21-KO) diabetic mice. RESULTS In a mouse model of type 1 diabetes, cardiac Fgf21 expression was upregulated about 40-fold at 2 months and 3-1.5-fold at 4 and 6 months after diabetes. FGF21 significantly reduced palmitate-induced cardiac apoptosis. Mechanistically, palmitate downregulated, but FGF21 upregulated, phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2, mitogen-activated protein kinase 14 (p38 MAPK) and AMP-activated protein kinase (AMPK). Inhibition of each kinase with its inhibitor and/or siRNA revealed that FGF21 prevents palmitate-induced cardiac apoptosis via upregulating the ERK1/2-dependent p38 MAPK-AMPK signalling pathway. In vivo administration of FGF21, but not FGF21 plus ERK1/2 inhibitor, to diabetic or fatty-acid-infused mice significantly prevented cardiac apoptosis and reduced inactivation of ERK1/2, p38 MAPK and AMPK and prevented cardiac remodelling and dysfunction. The Fgf21-KO mice were more susceptible to diabetes-induced cardiac apoptosis, and this could be prevented by administration of FGF21. Deletion of Fgf21 did not further exacerbate cardiac dysfunction. CONCLUSIONS/INTERPRETATION These results demonstrate that FGF21 prevents lipid- or diabetes-induced cardiac apoptosis by activating the ERK1/2-p38 MAPK-AMPK pathway. FGF21 may be a therapeutic target for the treatment of diabetes-related cardiac damage.
Collapse
Affiliation(s)
- Chi Zhang
- Chinese-American Research Institute for Diabetic Complication, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-Town, Wenzhou, 325035, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yu Y, Bai F, Wang W, Liu Y, Yuan Q, Qu S, Zhang T, Tian G, Li S, Li D, Ren G. Fibroblast growth factor 21 protects mouse brain against d-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol Biochem Behav 2015; 133:122-31. [DOI: 10.1016/j.pbb.2015.03.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/21/2015] [Accepted: 03/29/2015] [Indexed: 12/19/2022]
|
49
|
Joki Y, Ohashi K, Yuasa D, Shibata R, Ito M, Matsuo K, Kambara T, Uemura Y, Hayakawa S, Hiramatsu-Ito M, Kanemura N, Ogawa H, Daida H, Murohara T, Ouchi N. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem Biophys Res Commun 2015; 459:124-30. [DOI: 10.1016/j.bbrc.2015.02.081] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/14/2015] [Indexed: 01/02/2023]
|
50
|
Jiang X, Chen J, Zhang C, Zhang Z, Tan Y, Feng W, Skibba M, Xin Y, Cai L. The protective effect of FGF21 on diabetes-induced male germ cell apoptosis is associated with up-regulated testicular AKT and AMPK/Sirt1/PGC-1α signaling. Endocrinology 2015; 156:1156-70. [PMID: 25560828 PMCID: PMC6285187 DOI: 10.1210/en.2014-1619] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a metabolic regulator that is required for normal spermatogenesis and protects against diabetes-induced germ cell apoptosis. Here, we tried to define whether diabetes-induced germ cell apoptosis that is predominantly due to increased oxidative stress was associated with impaired glucose and fatty acid metabolism, by examining the effects of Fgf21 gene knockout (FGF21-KO) or FGF21 treatment on the glucose and fatty acid metabolic pathways in streptozotocin-induced diabetic mice. Western blottings revealed that protein kinase B (AKT)-mediated glucose signaling was down-regulated in diabetic testes and further decreased in FGF21-KO diabetic group both 10 days and 2 months after diabetes onset, reflected by reduced glycogen synthase (GS) kinase (GSK)-3β phosphorylation and increased GS phosphorylation. Deletion of the Fgf21 gene also inactivated fatty acid metabolism-related factors, AMP-activated protein kinase (AMPK), sirtuin 1 (Sirt1), and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), along with exacerbating diabetes-induced testicular oxidative stress and damage. Treatment with recombinant FGF21 partially prevented these diabetic effects. In FGF21-KO nondiabetic mice, testicular AMPK/Sirt1/PGC-1α signaling was down-regulated and AKT1 and murine double minute 2 were inactivated along with the increased p53 expression but not AKT2, GSK-3β, and GS. These results suggest that the role of FGF21 in maintaining spermatogenesis is associated with its activation of AKT1 and inhibition of p53. Deletion of the Fgf21gene significantly exacerbates diabetes-induced down-regulation of testicular AKT/GSK-3β/GS and AMPK/Sirt1/PGC-1α pathways and testicular oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Jiang
- The First Hospital of Jilin University (X.J., Z.Z.) and Key Laboratory of Pathobiology (Y.X.), Ministry of Education, Jilin University, Changchun 130021, China; Kosair Children's Hospital Research Institute at the Department of Pediatrics (X.J., J.C., Z.Z., Y.T., Y.X., L.C.), and Departments of Medicine (W.F.) and Pharmacology and Toxicology (Y.T., W.F., M.S., L.C.), University of Louisville, Louisville 40202; and Nursing School of Wenzhou Medical University (J.C.) and The Chinese-American Research Institute for Diabetic Complications (C.Z., Y.T., M.S., L.C.), Wenzhou Medical University, Wenzhou 325035, China
| | | | | | | | | | | | | | | | | |
Collapse
|