1
|
Barclay R, Coad J, Schraders K, Barnes MJ. Comparing the Effects of Collagen Hydrolysate and Dairy Protein on Recovery from Eccentric Exercise: A Double Blind, Placebo-Controlled Study. Nutrients 2024; 16:4389. [PMID: 39771010 PMCID: PMC11678417 DOI: 10.3390/nu16244389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Consuming collagen hydrolysate (CH) may improve symptoms of exercise-induced muscle damage (EIMD); however, its acute effects have not been compared to dairy protein (DP), the most commonly consumed form of protein supplement. Therefore, this study compared the effects of CH and DP on recovery from EIMD. METHODS Thirty-three males consumed either CH (n = 11) or DP (n = 11), containing 25 g of protein, or an isoenergetic placebo (n = 11) immediately post-exercise and once daily for three days. Indices of EIMD were measured before and 30 min and 24, 48, and 72 h after 30 min of downhill running on a -15% slope at 80% of VO2max speed. RESULTS Downhill running induced significant EIMD, with time effects (all p < 0.001) for the delayed onset of muscle soreness (visual analogue scale), countermovement jump height, isometric midthigh pull force, maximal voluntary isometric contraction force, running economy, and biomarkers of muscle damage (creatine kinase) and inflammation (interleukin-6, high-sensitivity C-reactive protein). However, no group or interaction effects (all p > 0.05) were observed for any of the outcome measures. CONCLUSIONS These findings suggest that the post-exercise consumption of CH or DP does not improve indices of EIMD during the acute recovery period in recreationally active males.
Collapse
Affiliation(s)
- Rachel Barclay
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| | - Jane Coad
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Katie Schraders
- School of Food Technology & Natural Sciences, College of Science, Massey University, Palmerston North 4410, New Zealand
| | - Matthew J. Barnes
- School of Sport, Exercise & Nutrition, College of Health, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
2
|
Dunn RA, Tinsley GM, Palmer TB, Benjamin CL, Sekiguchi Y. The Efficacy of Nutritional Strategies and Ergogenic Aids on Acute Responses and Chronic Adaptations to Exertional-Heat Exposure: A Narrative Review. Nutrients 2024; 16:3792. [PMID: 39599581 PMCID: PMC11597519 DOI: 10.3390/nu16223792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Global warming is attributed to an increased frequency of high ambient temperatures and humidity, elevating the prevalence of high-temperature-related illness and death. Evidence over recent decades highlights that tailored nutritional strategies are essential to improve performance and optimise health during acute and chronic exertional-heat exposure. Therefore, the purpose of this review is to discuss the efficacy of various nutritional strategies and ergogenic aids on responses during and following acute and chronic exertional-heat exposure. An outline is provided surrounding the application of various nutritional practices (e.g., carbohydrate loading, fluid replacement strategies) and ergogenic aids (e.g., caffeine, creatine, nitrate, tyrosine) to improve physiological, cognitive, and recovery responses to acute exertional-heat exposure. Additionally, this review will evaluate if the magnitude and time course of chronic heat adaptations can be modified with tailored supplementation practices. This review highlights that there is robust evidence for the use of certain ergogenic aids and nutritional strategies to improve performance and health outcomes during exertional-heat exposure. However, equivocal findings across studies appear dependent on factors such as exercise testing modality, duration, and intensity; outcome measures in relation to the ergogenic aid's proposed mechanism of action; and sex-specific responses. Collectively, this review provides evidence-based recommendations and highlights areas for future research that have the potential to assist with prescribing specific nutritional strategies and ergogenic aids in populations frequently exercising in the heat. Future research is required to establish dose-, sex-, and exercise-modality-specific responses to various nutritional practices and ergogenic aid use for acute and chronic exertional-heat exposure.
Collapse
Affiliation(s)
- Ryan A. Dunn
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Grant M. Tinsley
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | - Ty B. Palmer
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| | | | - Yasuki Sekiguchi
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX 79409, USA; (R.A.D.); (G.M.T.); (T.B.P.)
| |
Collapse
|
3
|
Presti N, Rideout TC, Temple JL, Bratta B, Hostler D. Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet. Nutrients 2024; 16:2711. [PMID: 39203847 PMCID: PMC11356960 DOI: 10.3390/nu16162711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
It is unclear if following a vegetarian diet affects muscle recovery after exercise-induced muscle damage (EIMD). Sixteen vegetarians (VEG) and sixteen mixed dieters (MIX) performed a vertical jump, quadriceps femoris maximal isometric, and isokinetic concentric strength tests prior to and five days following the EIMD protocol. The quadriceps muscle was injured by performing eccentric contractions. Diet: MIX consumed more g/kg of animal protein (p < 0.001) and EAA (p < 0.05) except for isoleucine. VEG consumed more plant protein (p = 0.001). Isometric strength: MIX recovered post-day 2, VEG recovered post-day 4 (group (p = 0.07), time (p < 0.001)). Concentric contractions at 60 degrees per second: Both recovered post-day 1 (group (p = 0.27), time (p = 0.05)); 180 degrees per second: MIX recovered post-day 2, VEG recovered post-day 5 (group (p = 0.10), time (p < 0.001)); and 240 degrees per second: MIX recovered post-day 1, VEG did not recover by post-day 5 (group (p = 0.01), time (p < 0.001)). Vertical jump: Both recovered post-day 3 (group (p = 0.45), time (p < 0.001)). MIX recovered isometric strength 2 days faster, concentric strength was up to 5 days faster, and soreness was 1-4 days faster when compared to VEG. Both groups had similar recovery time for power.
Collapse
Affiliation(s)
- Nicole Presti
- Center for Research and Education in Special Environments, Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA;
| | - Todd C. Rideout
- Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA; (T.C.R.); (J.L.T.)
| | - Jennifer L. Temple
- Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA; (T.C.R.); (J.L.T.)
| | - Brian Bratta
- Athletics Department, University at Buffalo, Buffalo, NY 14214, USA;
| | - David Hostler
- Center for Research and Education in Special Environments, Exercise and Nutrition Department, University at Buffalo, Buffalo, NY 14214, USA;
| |
Collapse
|
4
|
Rodden J, Ortega DG, Costa PB. Sitting Less, Recovering Faster: Investigating the Relationship between Daily Sitting Time and Muscle Recovery following Intense Exercise: A Pilot Study. J Funct Morphol Kinesiol 2024; 9:24. [PMID: 38390924 PMCID: PMC10885058 DOI: 10.3390/jfmk9010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
(1) There is growing concern surrounding the adverse effects of prolonged sitting on health, yet its impact on post-exercise recovery remains relatively unexplored. This study aimed to better understand the potential influence of habitual prolonged sitting on recovery time and the unfavorable impact prolonged sitting may have on time to recovery, as assessed by muscle damage and inflammatory markers and an isokinetic dynamometer. (2) Nine college-age men (mean age ± SD = 22.1 ± 3.1 years, body mass = 80.9 ± 15.7 kg, height = 171 ± 9.0 cm, Body Mass Index (BMI) = 27.6 ± 4.9 kg·m2) participated in an exhaustive exercise protocol. Creatine Kinase (CK), Myoglobin (Mb), C-Reactive Protein (CRP), White Blood Cell Count (WBC), Peak Torque (PT), and muscle soreness were measured at baseline and 0, 24, 48, and 72 h post-exercise. Dietary and exercise logs were maintained during the 5-day testing procedure. (3) No significant differences were observed in muscle damage markers (CK [p = 0.068] and Mb [p = 0.128]), inflammatory markers (CRP [p = 0.814] and WBC [p = 0.140]), or PT [p = 0.255]) at any time point. However, a significant positive correlation was found between daily sitting time and the percent increase in CK concentration from 0 h to 72 h (r = 0.738, p = 0.023). Strong correlations were also noted between prolonged sitting and percent change in Mb concentration at 48 h (r = 0.71, p = 0.033) and 72 h (r = 0.889, p = 0.001). There was a significant two-way interaction for time × velocity (p = 0.043) for PT with a simple main effect for time at 60°·s-1 (p = 0.038). No significant associations were detected between daily carbohydrate or protein intake and recovery markers (p > 0.05). (4) The findings suggest minimizing daily sitting time may expedite and potentially aid muscle recovery after an intense exercise bout, although further research is warranted to validate these findings.
Collapse
Affiliation(s)
- Jaime Rodden
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Dolores G Ortega
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| | - Pablo B Costa
- Exercise Physiology Laboratory, Department of Kinesiology, California State University, Fullerton, CA 92831, USA
| |
Collapse
|
5
|
Ravenwood B, Coad J, Barnes MJ. A comparison of the effects of sheep's milk and cow's milk on recovery from eccentric exercise. Front Sports Act Living 2024; 5:1335434. [PMID: 38274033 PMCID: PMC10808620 DOI: 10.3389/fspor.2023.1335434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/30/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction When consumed after eccentric exercise, cow's milk has been shown to improve recovery and alleviate symptoms of exercise induced muscle damage. Although currently less commercially available than cow's milk, sheep's milk may offer similar or greater benefits for recovery as it is higher in protein and energy; however, the effect of sheep's milk in any exercise context has not been explored. This study compared the effects of a sheep's milk beverage and a cow's milk beverage on recovery from strenuous eccentric exercise. Additionally, the effects of each beverage on satiety and gastrointestinal comfort were assessed. Methods Ten healthy males completed baseline measures of perceived muscle soreness and maximal voluntary concentric, eccentric, and isometric quadriceps force of one leg before completing 200 maximal eccentric knee extensions on an isokinetic dynamometer. Measures were repeated 0.5, 24, 48 and 72 h post-eccentric exercise. After 0.5 h measures, participants consumed either 450 ml of chocolate flavored sheep's milk or chocolate flavored cow's milk. Following a washout period, participants completed a second trial on the contralateral leg and consumed the other beverage. Additionally, a satiety and gastrointestinal comfort questionnaire was completed before and after each beverage was consumed. Results Eccentric exercise brought about a significant decrease in muscle function over time (all P < 0.012). No difference between treatments (all P > 0.097) was found. Measures of muscle soreness increased over time (all P < 0.002), however no difference was observed between treatments (all P > 0.072). Only sheep's milk altered perceived satiety, however, only the response to "How full do you feel" differed between treatments (P = 0.04). Discussion The results of this study suggest that consuming sheep's milk may provide similar benefits as cow's milk when recovering from exercise-induced muscle damage. While these findings provide initial support for the use of sheep's milk in a muscle recovery context, further research is warranted to confirm these findings. Given its superior nutritional profile, greater impact on satiety and lower environment impact, sheep's milk may be a more efficient post-exercise recovery beverage, compared to cow's milk.
Collapse
Affiliation(s)
- Ben Ravenwood
- School of Sport, Exercise & Nutrition, Massey University, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Matthew J. Barnes
- School of Sport, Exercise & Nutrition, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Siegel L, Rooney J, Marjoram L, Mason L, Bowles E, van Keulen TV, Helander C, Rayo V, Hong MY, Liu C, Hooshmand S, Kern M, Witard OC. Chronic almond nut snacking alleviates perceived muscle soreness following downhill running but does not improve indices of cardiometabolic health in mildly overweight, middle-aged, adults. Front Nutr 2024; 10:1298868. [PMID: 38260074 PMCID: PMC10800814 DOI: 10.3389/fnut.2023.1298868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction As a popular food snack rich in protein, fiber, unsaturated fatty acids, antioxidants and phytonutrients, almond nut consumption is widely associated with improvements in cardiometabolic health. However, limited data exists regarding the role of almond consumption in improving exercise recovery. Accordingly, we aimed to investigate the impact of chronic almond snacking on muscle damage and cardiometabolic health outcomes during acute eccentric exercise recovery in mildly overweight, middle-aged, adults. Methods Using a randomized cross-over design, 25 mildly overweight (BMI: 25.8 ± 3.6 kg/m2), middle-aged (35.1 ± 4.7 y) males (n = 11) and females (n = 14) performed a 30-min downhill treadmill run after 8-weeks of consuming either 57 g/day of whole almonds (ALMOND) or an isocaloric amount (86 g/day) of unsalted pretzels (CONTROL). Muscle soreness (visual analogue scale), muscle function (vertical jump and maximal isokinetic torque) and blood markers of muscle damage (creatine kinase (CK) concentration) and inflammation (c-reactive protein concentration) were measured pre and post (24, 48, and 72 h) exercise. Blood biomarkers of cardiometabolic health (total cholesterol, triglycerides, HDL cholesterol, and LDL cholesterol), body composition and psycho-social assessments of mood (POMS-2 inventory), appetite and well-being were measured pre and post intervention. Results Downhill running successfully elicited muscle damage, as evidenced by a significant increase in plasma CK concentration, increased perception of muscle soreness, and impaired vertical jump performance (all p < 0.05) during acute recovery. No effect of trial order was observed for any outcome measurement. However, expressed as AUC over the cumulative 72 h recovery period, muscle soreness measured during a physical task (vertical jump) was reduced by ~24% in ALMOND vs. CONTROL (p < 0.05) and translated to an improved maintenance of vertical jump performance (p < 0.05). However, ALMOND did not ameliorate the CK response to exercise or isokinetic torque during leg extension and leg flexion (p > 0.05). No pre-post intervention changes in assessments of cardiometabolic health, body composition, mood state or appetite were observed in ALMOND or CONTROL (all p > 0.05). Conclusion Chronic almond supplementation alleviates task-specific perceived feelings of muscle soreness during acute recovery from muscle damaging exercise, resulting in the better maintenance of muscle functional capacity. These data suggest that almonds represent a functional food snack to improve exercise tolerance in mildly overweight, middle-aged adults.
Collapse
Affiliation(s)
- Leah Siegel
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Jessica Rooney
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lindsey Marjoram
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Lauren Mason
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Bowles
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Thomas Valente van Keulen
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carina Helander
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Vernon Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Oliver C. Witard
- Centre for Human & Applied Physiological Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Philpott J, Kern M, Hooshmand S, Carson I, Rayo V, North E, Okamoto L, O'Neil T, Hong MY, Liu C, Dreczkowski G, Rodriguez-Sanchez N, Witard OC, Galloway SD. Pistachios as a recovery food following downhill running exercise in recreational team-sport individuals. Eur J Sport Sci 2023; 23:2400-2410. [PMID: 37596062 DOI: 10.1080/17461391.2023.2239192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
We aimed to investigate the impact of pistachio nut consumption on muscle soreness and function following exercise-induced muscle damage. Using a randomised cross-over design, male team-sport players (n = 18) performed a 40-minute downhill treadmill run to induce muscle damage, which was conducted after 2-wks of consuming either control (CON, water), a standard dose of daily pistachios (STD, 42.5 g/d) or a higher dose of daily pistachios (HIGH, 85 g/d). Lower limb muscle soreness (visual analogue scale), muscle function (maximal voluntary isokinetic torque and vertical jump), and blood markers of muscle damage/inflammation (creatine kinase, C-reactive protein, myoglobin, superoxide dismutase) were measured pre (baseline) and post (24, 48, and 72 h) exercise. No trial order effects were observed for any outcome measurement across trials. Mean quadriceps soreness (non-dominant leg) during exercise recovery was reduced (p < 0.05) in HIGH vs. CON (mean difference (95%CI): 13(1-25) mm). Change in soreness in the dominant quadriceps was not different between HIGH vs. CON (p = 0.06; mean difference (95%CI): 13(-1 to 26 mm)). No main effects of time or trial were observed for mean soreness of hamstrings, or on isokinetic torque of knee extensors or knee flexors, during recovery. Serum creatine kinase concentration peaked at 24 h post-damage (mean(SEM): 763(158)µg/L) from baseline (300(87)µg/L), but had returned to baseline by 72 h post (398(80)µg/L) exercise in all trials, with no trial or trial × time interaction evident. These data suggest that high dose pistachio nut ingestion may provide some alleviation of muscle soreness, but no effect on muscle function, following modest muscle damage.
Collapse
Affiliation(s)
- Jordan Philpott
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Imogene Carson
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Vernon Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Elise North
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Lauren Okamoto
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Timothy O'Neil
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Gillian Dreczkowski
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Nidia Rodriguez-Sanchez
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stuart D Galloway
- Physiology, Exercise and Nutrition Research Group, Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
8
|
Liang Y, Chen Y, Yang F, Jensen J, Gao R, Yi L, Qiu J. Effects of carbohydrate and protein supplement strategies on endurance capacity and muscle damage of endurance runners: A double blind, controlled crossover trial. J Int Soc Sports Nutr 2022; 19:623-637. [PMID: 36250147 PMCID: PMC9559053 DOI: 10.1080/15502783.2022.2131460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The purpose of this study is to explore the effect of carbohydrate only or carbohydrate plus protein supplementation on endurance capacity and muscle damage. Methods Ten recreationally active male runners (VO2max: 53.61 ± 3.86 ml/kg·min) completed run-to-exhaustion test three times with different intakes of intervention drinks. There was a 7-day wash-out period between tests. Each test started with 60 minutes of running at 70% VO2max (phase 1), followed by an endurance capacity test: time-to-exhaustion running at 80% VO2max (phase 2). Participants randomly ingested either 1) 0.4 g/kg BM carbohydrate before phase 1 and before phase 2 (CHO+CHO), 2) 0.4 g/kg BM protein before phase 1 and 0.4 g/kg BM carbohydrate before phase 2 (PRO+CHO), or 3) 0.4 g/kg BM carbohydrate before phase 1 and 0.4 g/kg BM protein before phase 2 (CHO+PRO). All subjects ingested carbohydrate (CHO) 1.2 g/kg BM during phase 1, and blood samples were obtained before, immediately, and 24 h after exercise for measurements of alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), and myoglobin (MB). Results There was no significant difference in time to exhaustion between the three supplement strategies (CHO+CHO: 432 ± 225 s; PRO+CHO: 463 ± 227 s; CHO+PRO: 461 ± 248 s). However, ALT and AST were significantly lower in PRO+CHO than in CHO+CHO 24 h after exercise (ALT: 16.80 ± 6.31 vs. 24.39 ± 2.54 U/L; AST: 24.06 ± 4.77 vs. 31.51 ± 7.53 U/L, p < 0.05). MB was significantly lower in PRO+CHO and CHO+PRO than in CHO+CHO 24 h after exercise (40.7 ± 15.2; 38.1 ± 14.3; 64.3 ± 28.9 ng/mL, respectively, p < 0.05). CK increased less in PRO+CHO compared to CHO+CHO 24 h after exercise (404.22 ± 75.31 VS. 642.33 ± 68.57 U/L, p < 0.05). Conclusion Carbohydrate and protein supplement strategies can reduce muscle damage caused by endurance exercise, but they do not improve endurance exercise capacity.
Collapse
Affiliation(s)
- Yiheng Liang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
| | - Yan Chen
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
| | - Fan Yang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
| | - Jørgen Jensen
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
- Norwegian School of Sport Sciences, Department of Physical Performance, Oslo, Norway
| | - Ruirui Gao
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
| | - Longyan Yi
- Institute of Sport and Health Science, Beijing Sport University, Beijing, Peking, China
| | - Junqiang Qiu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, Peking, China
- Beijing Sports Nutrition Engineering Research Center, Beijing Sport University, Beijing, Peking, China
| |
Collapse
|
9
|
The impact of dietary protein supplementation on recovery from resistance exercise-induced muscle damage: A systematic review with meta-analysis. Eur J Clin Nutr 2022:10.1038/s41430-022-01250-y. [PMID: 36513777 PMCID: PMC10393778 DOI: 10.1038/s41430-022-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is unknown whether dietary protein consumption can attenuate resistance exercise-induced muscle damage (EIMD). Managing EIMD may accelerate muscle recovery and allow frequent, high-quality exercise to promote muscle adaptations. This systematic review and meta-analysis examined the impact of peri-exercise protein supplementation on resistance EIMD. METHODS A literature search was conducted on PubMed, SPORTDiscus, and Web of Science up to March 2021 for relevant articles. PEDro criteria were used to assess bias within included studies. A Hedges' g effect size (ES) was calculated for indirect markers of EIMD at h post-exercise. Weighted ESs were included in a random effects model to determine overall ESs over time. RESULTS Twenty-nine studies were included in the systematic review and 40 trials were included in ≥1 meta-analyses (16 total). There were significant overall effects of protein for preserving isometric maximal voluntary contraction (MVC) at 96 h (0.563 [0.232, 0.894]) and isokinetic MVC at 24 h (0.639 [0.116, 1.162]), 48 h (0.447 [0.104, 0.790]), and 72 h (0.569 [0.136, 1.002]). Overall ESs were large in favour of protein for attenuating creatine kinase concentration at 48 h (0.836 [-0.001, 1.673]) and 72 h (1.335 [0.294, 2.376]). Protein supplementation had no effect on muscle soreness compared with the control. CONCLUSION Peri-exercise protein consumption could help maintain maximal strength and lower creatine kinase concentration following resistance exercise but not reduce muscle soreness. Conflicting data may be due to methodological divergencies between studies. Standardised methods and data reporting for EIMD research are needed.
Collapse
|
10
|
Jameson TSO, Islam H, Wall BT, Little JP, Stephens FB. Oral ketone monoester supplementation does not accelerate recovery of muscle force or modulate circulating cytokine concentrations after muscle-damaging eccentric exercise in healthy males and females. Exp Physiol 2022; 107:1339-1348. [PMID: 36114653 PMCID: PMC9828245 DOI: 10.1113/ep090546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does acute ketone monoester supplementation enhance the recovery of muscle force and modulate circulating cytokine concentrations after muscle-damaging eccentric exercise? What is the main finding and its importance? Ketone monoester supplementation increased plasma β-hydroxybutyrate concentrations but did not attenuate the reduction in muscle force or the increase in plasma inflammatory cytokine concentrations that occurred after eccentric exercise. Notably we report novel data demonstrating a reduction in plasma TRAIL concentrations after eccentric exercise, highlighting TRAIL signalling as a possibly novel regulator of muscle recovery. ABSTRACT Muscle-damaging eccentric exercise is associated with inflammation and impaired muscle force. β-Hydroxybutyrate (β-OHB) reduces muscle protein breakdown during inflammation but whether oral ketone monoester supplementation accelerates recovery of muscle force after eccentric exercise is unknown. Sixteen healthy males and females consumed thrice daily ketone monoester (27 g per dose; n = 8; six females; KES) or isocaloric maltodextrin placebo (n = 8; four females; PLA) drinks (randomized, double-blind, parallel group design) for 3 days beginning immediately after 300 unilateral eccentric quadriceps contractions during complete eucaloric dietary control (1.2 ± 0.1 g/kg BM/day standardized protein). Bilateral muscle force measurements and venous blood sampling were performed before and 3, 6, 24, 48 and 72 h after eccentric exercise. Plasma β-OHB concentrations were greater in KES compared with PLA at 3 h (0.56 ± 0.13 vs. 0.22 ± 0.04 mM, respectively; P = 0.080) and 6 h (0.65 ± 0.41 vs. 0.23 ± 0.02 mM, respectively; P = 0.031) post-eccentric exercise. Relative to the control leg, isokinetic work (by 20 ± 21% in PLA and 21 ± 19% in KES; P = 0.008) and isometric torque (by 23 ± 13% in PLA and 20 ± 18% in KES; P < 0.001) decreased from baseline at 3 h in the eccentrically exercised leg, and remained below baseline at 48 and 72 h, with no significant group differences. Of eight measured plasma cytokines, interleukin-6 (P = 0.008) and monocyte chemoattractant protein-1 (P = 0.024) concentrations increased after 6 h, whereas tumour necrosis factor-related apoptosis-inducing ligand concentrations decreased after 3 h (P = 0.022) and 6 h (P = 0.011) post-exercise with no significant group differences. Oral ketone monoester supplementation elevates plasma β-OHB concentrations but does not prevent the decline in muscle force or alter plasma inflammatory cytokine profiles induced by eccentric exercise.
Collapse
Affiliation(s)
- Tom S. O. Jameson
- Nutritional Physiology GroupDepartment of Sport and Health SciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Hashim Islam
- School of Health and Exercise SciencesUniversity of British ColumbiaOkanagan CampusKelownaBCCanada
| | - Benjamin T. Wall
- Nutritional Physiology GroupDepartment of Sport and Health SciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Jonathan P. Little
- School of Health and Exercise SciencesUniversity of British ColumbiaOkanagan CampusKelownaBCCanada
| | - Francis B. Stephens
- Nutritional Physiology GroupDepartment of Sport and Health SciencesCollege of Life and Environmental SciencesUniversity of ExeterExeterUK
| |
Collapse
|
11
|
Xu F, Zeng J, Liu X, Lai J, Xu J. Exercise-Induced Muscle Damage and Protein Intake: A Bibliometric and Visual Analysis. Nutrients 2022; 14:nu14204288. [PMID: 36296973 PMCID: PMC9610071 DOI: 10.3390/nu14204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
Numerous studies have covered exercise-induced muscle damage (EIMD) topics, ranging from nutritional strategies to recovery methods, but few attempts have adequately explored and analyzed large volumes of scientific output. The purpose of this study was to assess the scientific output and research activity regarding EIMD and protein intake by conducting a bibliometric and visual analysis. Relevant publications from 1975-2022 were retrieved from the Web of Science Core Collection database. Quantitative and qualitative variables were collected, including the number of publications and citations, H-indexes, journals of citation reports, co-authorship, co-citation, and the co-occurrence of keywords. There were 351 total publications, with the number of annual publications steadily increasing. The United States has the highest total number of publications (26.21% of total publications, centrality 0.44). Institutional cooperation is mostly geographically limited, with few transnational cooperation links. EIMD and protein intake research is concentrated in high-quality journals in the disciplines of Sport Science, Physiology, Nutrition, and Biochemistry & Molecular Biology. The top ten journals in the number of publications are mostly high-quality printed journals, and the top ten journals in centrality have an average impact factor of 13.845. The findings of the co-citation clusters and major keyword co-occurrence reveal that the most discussed research topics are "exercise mode", "nutritional strategies", "beneficial outcomes", and "proposed mechanisms". Finally, we identified the following research frontiers and research directions: developing a comprehensive understanding of new exercise or training models, nutritional strategies, and recovery techniques to alleviate EIMD symptoms and accelerate recovery; applying the concept of hormesis in EIMD to induce muscle hypertrophy; and investigating the underlying mechanisms of muscle fiber and membrane damage.
Collapse
Affiliation(s)
- Fei Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| | - Jinshu Zeng
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuan Liu
- Division of Library and Information Services, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaming Lai
- San Diego Jewish Academy, San Diego, CA 92130, USA
| | - Jing Xu
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (F.X.); (J.X.)
| |
Collapse
|
12
|
McKinlay BJ, Wallace PJ, Olansky S, Woods S, Kurgan N, Roy BD, Josse AR, Falk B, Klentrou P. Intensified training in adolescent female athletes: a crossover study of Greek yogurt effects on indices of recovery. J Int Soc Sports Nutr 2022; 19:17-33. [PMID: 35599913 PMCID: PMC9116412 DOI: 10.1080/15502783.2022.2044732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background During a period of intensified exercise (e.g. training/identification camps), often undertaken by competitive youth athletes, the maintenance of muscle function and peak performance can become challenging due to an accumulation of fatigue. The provision of post-exercise dairy protein in adults has been previously shown to accelerate recovery; however, its efficacy in youth athletes is currently unknown. Therefore, the purpose of this study was to examine the effects of increased dairy protein consumption with plain Greek yogurt (GY) on performance and recovery indices during an intensified soccer training camp in adolescent female soccer players. Methods Thirteen players (14.3 ± 1.3 years) participated in a randomized, double blinded, crossover design study where they received 3 servings/day of either GY (~115 kcal, 17 g protein, ~11.5 g carbohydrates) or an isoenergetic carbohydrate control (CHO, ~115 kcal, 0.04 g protein, ~28.6 g carbohydrates) during two 5-day soccer-specific training camps. Performance was assessed before and after each training camp. Fasted, morning, creatine kinase (CK), insulin-like growth factor-1 (IGF-1), C-reactive protein (CRP), interleukin 6 (IL6), interleukin 10 (IL10) and tumor necrosis factor-α (TNFα) were measured in plasma pre- and post-training. Results Training led to decrements in counter-movement jump (p = 0.01), broad jump (p = 0.04) and aerobic capacity (p = 0.006), with no effect of GY. A significant increase in anti-inflammatory cytokine IL10 was observed from pre- to post-training in GY (+26% [p = 0.008]) but not in CHO (p = 0.89). CRP and CK increased (+65% [p = 0.005] and +119% [p ≤ 0.001], respectively), while IGF-1 decreased (−34% [p ≤ 0.001]) from pre- to post-training with no difference between conditions. Conclusions These results demonstrate that consumption of GY did not offer any added recovery benefit with respect to measures of performance and in the attenuation of exercise-induced muscle damage above that achieved with energy-matched carbohydrate in this group of young female soccer players. However, regular consumption of GY may assist with the acute anti-inflammatory response during periods of intensified training in adolescent athletes.
Collapse
Affiliation(s)
- Brandon J. McKinlay
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Faculty of Applied Health & Community Studies, Sheridan College, Brampton, Ontario, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Phillip J. Wallace
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
| | - Shai Olansky
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Stacey Woods
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Brian D. Roy
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Andrea R. Josse
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Bareket Falk
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, Ontario, St. Catharines, Canada
- Centre for Bone & Muscle Health, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
13
|
Molaeikhaletabadi M, Bagheri R, Hemmatinafar M, Nemati J, Wong A, Nordvall M, Namazifard M, Suzuki K. Short-Term Effects of Low-Fat Chocolate Milk on Delayed Onset Muscle Soreness and Performance in Players on a Women's University Badminton Team. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3677. [PMID: 35329361 PMCID: PMC8954613 DOI: 10.3390/ijerph19063677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023]
Abstract
This study investigated the short-term effects of low-fat chocolate milk (LFCM) consumption on delayed onset muscle soreness (DOMS) and performance in female badminton players. Seven female badminton players (23 ± 1 years; height: 163.8 ± 4.1 cm; body mass: 58.7 ± 0.9 kg) were randomly assigned to 1 week of LFCM (500 mL) or placebo (water, 500 mL) consumption in a crossover design. Participants consumed LFCM or water immediately after each training session during the 1-week intervention. Performance variables (aerobic power, anaerobic power, agility, explosive power, and maximum handgrip strength) were assessed at two separate time points: pre and post-intervention (after 1 week). In addition, the Visual Analogue Scale (VAS) was used to assess DOMS before, immediately after, and at 24 and 48 h after each training session. There were significant time effects for aerobic power, upper body explosive power, minimum anaerobic power, and time to exhaustion (TTE), which significantly increased after LFCM consumption (p < 0.05). Moreover, relative and maximum lower body power significantly (p < 0.05) increased, while rating of perceived exertion (RPE) as well as DOMS in lower extremity muscles immediately after exercise significantly decreased after LFCM consumption compared to placebo (p < 0.05). There were no significant changes in maximum anaerobic power, agility, and maximum handgrip strength (p > 0.05). LFCM, as a post-exercise beverage, may help speed recovery in female badminton players leading to increased aerobic, anaerobic, and strength performance indices, increased TTE, and decreased muscle soreness and RPE.
Collapse
Affiliation(s)
- Maryam Molaeikhaletabadi
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 1585-71345, Iran; (M.M.); (J.N.)
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 81746-73441, Iran;
| | - Mohammad Hemmatinafar
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 1585-71345, Iran; (M.M.); (J.N.)
| | - Javad Nemati
- Department of Sport Science, Faculty of Education and Psychology, Shiraz University, Shiraz 1585-71345, Iran; (M.M.); (J.N.)
| | - Alexei Wong
- Department Health & Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Michael Nordvall
- Department Health & Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Maryam Namazifard
- Department of Health and Sports Medicine, University of Tehran, Tehran 11155-4563, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
14
|
Evaluating the Effects of Increased Protein Intake on Muscle Strength, Hypertrophy and Power Adaptations with Concurrent Training: A Narrative Review. Sports Med 2022; 52:441-461. [PMID: 34822138 DOI: 10.1007/s40279-021-01585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/17/2022]
Abstract
Concurrent training incorporates dual exercise modalities, typically resistance and aerobic-based exercise, either in a single session or as part of a periodized training program, that can promote muscle strength, mass, power/force and aerobic capacity adaptations for the purposes of sports performance or general health/wellbeing. Despite multiple health and exercise performance-related benefits, diminished muscle hypertrophy, strength and power have been reported with concurrent training compared to resistance training in isolation. Dietary protein is well-established to facilitate skeletal muscle growth, repair and regeneration during recovery from exercise. The degree to which increased protein intake can amplify adaptation responses with resistance exercise, and to a lesser extent aerobic exercise, has been highly studied. In contrast, much less focus has been directed toward the capacity for protein to enhance anabolic and metabolic responses with divergent contractile stimuli inherent to concurrent training and potentially negate interference in muscle strength, power and hypertrophy. This review consolidates available literature investigating increased protein intake on rates of muscle protein synthesis, hypertrophy, strength and force/power adaptations following acute and chronic concurrent training. Acute concurrent exercise studies provide evidence for the significant stimulation of myofibrillar protein synthesis with protein compared to placebo ingestion. High protein intake can also augment increases in lean mass with chronic concurrent training, although these increases do not appear to translate into further improvements in strength adaptations. Similarly, the available evidence indicates protein intake twice the recommended intake and beyond does not rescue decrements in selective aspects of muscle force and power production with concurrent training.
Collapse
|
15
|
de Sousa MV, Lundsgaard AM, Christensen PM, Christensen L, Randers MB, Mohr M, Nybo L, Kiens B, Fritzen AM. Nutritional optimization for female elite football players-topical review. Scand J Med Sci Sports 2021; 32 Suppl 1:81-104. [PMID: 34865242 DOI: 10.1111/sms.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.
Collapse
Affiliation(s)
- Maysa V de Sousa
- Laboratory of Medical Investigation, LIM-18, Endocrinology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Marie Lundsgaard
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Section of Obesity Research, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Minari ALA, Thomatieli-Santos RV. From skeletal muscle damage and regeneration to the hypertrophy induced by exercise: What is the role of different macrophages subsets? Am J Physiol Regul Integr Comp Physiol 2021; 322:R41-R54. [PMID: 34786967 DOI: 10.1152/ajpregu.00038.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Macrophages are one of the top players when considering immune cells involved with tissue homeostasis. Recently, increasing evidence has demonstrated that these macrophages could also present two major subsets during tissue healing; proliferative macrophages (M1-like), which are responsible for increasing myogenic cell proliferation, and restorative macrophages (M2-like), which are accountable for the end of the mature muscle myogenesis. The participation and characterization of these macrophage subsets is critical during myogenesis, not only to understand the inflammatory role of macrophages during muscle recovery but also to create supportive strategies that can improve mass muscle maintenance. Indeed, most of our knowledge about macrophage subsets comes from skeletal muscle damage protocols, and we still do not know how these subsets can contribute to skeletal muscle adaptation. This narrative review aims to collect and discuss studies demonstrating the involvement of different macrophage subsets during the skeletal muscle damage/regeneration process, showcasing an essential role of these macrophage subsets during muscle adaptation induced by acute and chronic exercise programs.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Universidade estadual Paulista, Campus Presidente Prudente, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| | - Ronaldo V Thomatieli-Santos
- Universidade Federal de São Paulo, Campus Baixada Santista, Brazil.,Universidade Federal de São Paulo, Psicobiologia, Brazil
| |
Collapse
|
17
|
Hayes EJ, Granic A, Hurst C, Dismore L, Sayer AA, Stevenson E. Older Adults' Knowledge and Perceptions of Whole Foods as an Exercise Recovery Strategy. Front Nutr 2021; 8:748882. [PMID: 34671632 PMCID: PMC8520979 DOI: 10.3389/fnut.2021.748882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Resistance exercise is a widely advocated treatment for improving muscle strength and performance in older adults. Maximizing the benefit of resistance exercise by ensuring optimal recovery is an important aim and studies are now seeking interventions to expedite exercise recovery in older people. A recovery strategy that has acquired considerable interest is the consumption of protein, and more recently, the consumption of protein-rich whole foods. This study aimed to understand the perspectives of community-dwelling older adults, and determine their knowledge of exercise recovery strategies, their preferences for recovery strategies, and their attitudes toward using whole foods, such as milk as a post-exercise recovery aid. Two hundred ninety-one older adults (74 ± 4 years) were recruited to complete a self-administered online survey. A mixed methods approach was used to gather in-depth data from the cohort. Participants were asked to complete a combination of free-text (open-ended) and multiple-choice questions. Content analysis was conducted on responses to open-ended questions through a systematic classification process of coding. The most common recovery strategies reported were heat treatment, rest, and massage. Nutrition was rarely cited as a recovery strategy. Less than 2% of respondents mentioned nutrition, of these, only half mentioned a protein source. Forty-nine percent expressed negative opinions toward recovery supplements (e.g., “waste of money”) compared to 7% expressing positive opinions. Whole foods such as milk, meat, fish, and fruit, were deemed to be a more acceptable recovery strategy than supplements by 80% of respondents. Those that found whole foods to be equally as acceptable (18%), cited efficacy as their main concern, and those that declared whole foods less acceptable (2%) had no common reason. Despite the high acceptability of whole foods, only 35% were aware that these foods could aid recovery. When asked about milk specifically, the majority of older adults (73%) said this would, or might, be an acceptable exercise recovery strategy. Those that found milk an unacceptable recovery strategy (27%) often cited disliking milk or an allergy/intolerance. In conclusion, whilst whole foods represented an acceptable recovery intervention for older adults, the majority were unaware of the potential benefits of nutrition for post-exercise recovery.
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher Hurst
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lorelle Dismore
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Avan A Sayer
- AGE Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
18
|
Loss LC, Benini D, de Lima-E-Silva FX, Möller GB, Friedrich LR, Meyer E, Baroni BM, Schneider CD. Effects of omega-3 supplementation on muscle damage after resistance exercise in young women: a randomized placebo-controlled trial. Nutr Health 2021; 28:425-432. [PMID: 34130550 DOI: 10.1177/02601060211022266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Omega-3 is a nutritional strategie that have been used to recover muscles from exercise-induced muscle damage in a preventive perspective. AIM To verify whether omega-3 (ω-3) supplementation after a session of resistance exercise facilitates muscle recovery in women undergoing a balanced diet. METHODS This clinical trial was registered under the number NCT02839525. Thirty healthy women (22.2 ± 3.3 years) participated in this double-blinded, placebo-controlled trial. They were randomly distributed into ω-3 (n=15) and placebo (n=15) groups. They ingested ω-3 fish oil (3200 mg/day) or placebo (olive oil) at the dinner after the exercise bout (10 sets of 10 unilateral eccentric contractions in a knee extension chair), as well as at lunch for the three subsequent days. In addition, both groups followed a balanced diet along the four days. Muscle soreness and maximal isometric and isokinetic voluntary contractions were assessed immediately before, and 24, 48, and 72 hours after the resistance exercise. MAIN FINDINGS There was no significant group-time interaction for any outcome. Participants presented increased levels of muscle soreness and reduced muscle strength capacity along the three days after exercise. There was no difference between placebo and ω-3 groups. CONCLUSION Supplementation of ω-3 fish oil for three days after resistance exercise provided no additional benefits compared to placebo supplementation on recovery of healthy young women following a balanced diet.
Collapse
Affiliation(s)
- Letícia Chisini Loss
- Graduate Program on Rehabilitation Sciences, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| | - Diane Benini
- Graduate Program on Rehabilitation Sciences, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| | | | - Gabriella Berwig Möller
- Graduate Program on Rehabilitation Sciences, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| | - Luiza Rissi Friedrich
- Undergraduate Course of Nutrition, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| | - Elisabeth Meyer
- Programa de Pós-Graduação em Ciências da Saúde (Cardiologia), Institute of Cardiology of Rio Grande do Sul / University Foundation of Cardiology, Brazil
| | - Bruno Manfredini Baroni
- Graduate Program on Rehabilitation Sciences, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| | - Cláudia Dornelles Schneider
- Graduate Program on Rehabilitation Sciences, 117303Federal University of Health Sciences of Porto Alegre, Brazil
| |
Collapse
|
19
|
Pavis GF, Jameson TSO, Dirks ML, Lee BP, Abdelrahman DR, Murton AJ, Porter C, Alamdari N, Mikus CR, Wall BT, Stephens FB. Improved recovery from skeletal muscle damage is largely unexplained by myofibrillar protein synthesis or inflammatory and regenerative gene expression pathways. Am J Physiol Endocrinol Metab 2021; 320:E291-E305. [PMID: 33284089 PMCID: PMC8260377 DOI: 10.1152/ajpendo.00454.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The contribution of myofibrillar protein synthesis (MyoPS) to recovery from skeletal muscle damage in humans is unknown. Recreationally active men and women consumed a daily protein-polyphenol beverage targeted at increasing amino acid availability and reducing inflammation (PPB; n = 9), both known to affect MyoPS, or an isocaloric placebo (PLA; n = 9) during 168 h of recovery from 300 maximal unilateral eccentric contractions (EE). Muscle function was assessed daily. Muscle biopsies were collected for 24, 27, 36, 72, and 168 h for MyoPS measurements using 2H2O and expression of 224 genes using RT-qPCR and pathway analysis. PPB improved recovery of muscle function, which was impaired for 5 days after EE in PLA (interaction P < 0.05). Acute postprandial MyoPS rates were unaffected by nutritional intervention (24-27 h). EE increased overnight (27-36 h) MyoPS versus the control leg (PLA: 33 ± 19%; PPB: 79 ± 25%; leg P < 0.01), and PPB tended to increase this further (interaction P = 0.06). Daily MyoPS rates were greater with PPB between 72 and 168 h after EE, albeit after function had recovered. Inflammatory and regenerative signaling pathways were dramatically upregulated and clustered after EE but were unaffected by nutritional intervention. These results suggest that accelerated recovery from EE is not explained by elevated MyoPS or suppression of inflammation.NEW & NOTEWORTHY The present study investigated the contribution of myofibrillar protein synthesis (MyoPS) and associated gene signaling to recovery from 300 muscle-damaging, eccentric contractions. Measured with 2H2O, MyoPS rates were elevated during recovery and observed alongside expression of inflammatory and regenerative signaling pathways. A nutritional intervention accelerated recovery; however, MyoPS and gene signaling were unchanged compared with placebo. These data indicate that MyoPS and associated signaling do not explain accelerated recovery from muscle damage.
Collapse
Affiliation(s)
- George F Pavis
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tom S O Jameson
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin P Lee
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | | | | | - Benjamin T Wall
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Can Exercise-Induced Muscle Damage Be a Good Model for the Investigation of the Anti-Inflammatory Properties of Diet in Humans? Biomedicines 2021; 9:biomedicines9010036. [PMID: 33466327 PMCID: PMC7824757 DOI: 10.3390/biomedicines9010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
Subclinical, low-grade, inflammation is one of the main pathophysiological mechanisms underlying the majority of chronic and non-communicable diseases. Several methodological approaches have been applied for the assessment of the anti-inflammatory properties of nutrition, however, their impact in human body remains uncertain, because of the fact that the majority of the studies reporting anti-inflammatory effect of dietary patterns, have been performed under laboratory settings and/or in animal models. Thus, the extrapolation of these results to humans is risky. It is therefore obvious that the development of an inflammatory model in humans, by which we could induce inflammatory responses to humans in a regulated, specific, and non-harmful way, could greatly facilitate the estimation of the anti-inflammatory properties of diet in a more physiological way and mechanistically relevant way. We believe that exercise-induced muscle damage (EIMD) could serve as such a model, either in studies investigating the homeostatic responses of individuals under inflammatory stimuli or for the estimation of the anti-inflammatory or pro-inflammatory potential of dietary patterns, foods, supplements, nutrients, or phytochemicals. Thus, in this review we discuss the possibility of exercise-induced muscle damage being an inflammation model suitable for the assessment of the anti-inflammatory properties of diet in humans.
Collapse
|
21
|
Žarak M, Perović A, Njire Bratičević M, Šupraha Goreta S, Dumić J. Adaptive response triggered by the repeated SCUBA diving is reflected in cardiovascular, muscular, and immune biomarkers. Physiol Rep 2021; 9:e14691. [PMID: 33463896 PMCID: PMC7814492 DOI: 10.14814/phy2.14691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023] Open
Abstract
It has been shown that one recreational SCUBA (rSCUBA) diving session is sufficient to cause changes in plasma level of cardiovascular (CV) and muscular biomarkers. To explore whether repetitive rSCUBA diving triggers an adaptive response of the CV, muscular, and immune system, we measured the cardiac damage (NT-proBNP, hs-TnI, and CK-MB), muscle damage (myoglobin (Mb), galectin-3, CK, and LDH), vascular endothelial activation (ET-1 and VEGF), and inflammatory (leukocyte count (Lkc), CRP, and IL-6) biomarkers. A longitudinal intervention study included divers (N = 14) who conducted one dive per week over 5 weeks at the depth of 20-30 m for 30 min after a non-dive period of 5 months. The blood samples were collected before and after the first, third, and fifth dives and specific biomarkers were measured in plasma or serum by the standard laboratory methods. The concentrations of the majority of measured biomarkers increased after every single dive; the exception was ET-1 concentration that decreased. The cumulative effect of five dives has been reflected in diminishing changes in hs-TnI, Mb, galectin-3, ET-1, VEGF, and IL-6 levels, and more pronounced increases in NT-proBNP and hs-CRP levels. The median values of all measured biomarkers in all time points, except Mb, remained within the corresponding reference range. Repeatedly performed rSCUBA diving activates an adaptive response of the CV, muscular, and immune system that is reflected in changes in the specific biomarker concentration.
Collapse
Affiliation(s)
- Marko Žarak
- Clinical Department of Laboratory DiagnosticsDubrava University HospitalZagrebCroatia
| | - Antonija Perović
- Department of Laboratory DiagnosticsDubrovnik General HospitalDubrovnikCroatia
| | | | - Sandra Šupraha Goreta
- Faculty of Pharmacy and BiochemistryDepartment of Biochemistry and Molecular BiologyUniversity of ZagrebZagrebCroatia
| | - Jerka Dumić
- Faculty of Pharmacy and BiochemistryDepartment of Biochemistry and Molecular BiologyUniversity of ZagrebZagrebCroatia
| |
Collapse
|
22
|
Hilkens L, De Bock J, Kretzers J, Kardinaal AFM, Floris-Vollenbroek EG, Scholtens PAMJ, Horstman AMH, van Loon LJC, van Dijk JW. Whey protein supplementation does not accelerate recovery from a single bout of eccentric exercise. J Sports Sci 2020; 39:322-331. [PMID: 33012216 DOI: 10.1080/02640414.2020.1820184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The current double blind, randomized, placebo-controlled trial with two parallel groups aimed to assess the impact of whey protein supplementation on recovery of muscle function and muscle soreness following eccentric exercise. During a 9-day period, forty recreationally active males received twice daily supplementation with either whey protein (PRO; 60 g/day) or an iso-energetic amount of carbohydrate (CON). Muscle function and soreness were assessed before, and 0, 3, 24, 48, and 72 h after performing 100 drop jumps. Recovery of isometric maximal voluntary contraction (MVC) did not significantly differ between groups (timextreatment, P = 0.56). In contrast, the recovery of isokinetic MVC at 90°·s-1 was faster in CON as opposed to PRO (timextreatment interaction, P = 0.044). Recovery of isokinetic MVC at 180°·s-1 was also faster in CON as opposed to PRO (timextreatment interaction, P = 0.011). Recovery of countermovement jump performance did not differ between groups (timextreatment interaction, P = 0.52). Muscle soreness, CK and CRP showed a transient increase over time (P < 0.001), with no differences between groups. In conclusion, whey protein supplementation does not accelerate recovery of muscle function or attenuate muscle soreness and inflammation during 3 days of recovery from a single bout of eccentric exercise.
Collapse
Affiliation(s)
- Luuk Hilkens
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Jolien De Bock
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | - Joris Kretzers
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| | | | | | | | | | - Luc J C van Loon
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands.,Department of Human Biology, NUTRIM, Maastricht University Medical Centre+ , Maastricht, The Netherlands
| | - Jan-Willem van Dijk
- Institute of Sports and Exercise Studies, HAN University of Applied Sciences , Nijmegen, The Netherlands
| |
Collapse
|
23
|
Dahl MA, Areta JL, Jeppesen PB, Birk JB, Johansen EI, Ingemann-Hansen T, Hansen M, Skålhegg BS, Ivy JL, Wojtaszewski JFP, Overgaard K, Jensen J. Coingestion of protein and carbohydrate in the early recovery phase, compared with carbohydrate only, improves endurance performance despite similar glycogen degradation and AMPK phosphorylation. J Appl Physiol (1985) 2020; 129:297-310. [DOI: 10.1152/japplphysiol.00817.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endurance athletes competing consecutive days need optimal dietary intake during the recovery period. We report that coingestion of protein and carbohydrate soon after exhaustive exercise, compared with carbohydrate only, resulted in better performance the following day. The better performance after coingestion of protein and carbohydrate was not associated with a higher rate of glycogen synthesis or activation of anabolic signaling compared with carbohydrate only. Importantly, nitrogen balance was positive after coingestion of protein and carbohydrate, which was not the case after intake of carbohydrate only, suggesting that protein synthesis contributes to the better performance the following day.
Collapse
Affiliation(s)
- Marius A. Dahl
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - José Lisandro Areta
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | | | - Jesper Bratz Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Egil I. Johansen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | | | - Mette Hansen
- Department of Public Health, Aarhus University, Aarhus C, Denmark
| | - Bjørn Steen Skålhegg
- Department of Nutrition, Division for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen F. P. Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Bongiovanni T, Genovesi F, Nemmer M, Carling C, Alberti G, Howatson G. Nutritional interventions for reducing the signs and symptoms of exercise-induced muscle damage and accelerate recovery in athletes: current knowledge, practical application and future perspectives. Eur J Appl Physiol 2020; 120:1965-1996. [PMID: 32661771 DOI: 10.1007/s00421-020-04432-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/04/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This review provides an overview of the current knowledge of the nutritional strategies to treat the signs and symptoms related to EIMD. These strategies have been organized into the following sections based upon the quality and quantity of the scientific support available: (1) interventions with a good level of evidence; (2) interventions with some evidence and require more research; and (3) potential nutritional interventions with little to-no-evidence to support efficacy. METHOD Pubmed, EMBASE, Scopus and Web of Science were used. The search terms 'EIMD' and 'exercise-induced muscle damage' were individually concatenated with 'supplementation', 'athletes', 'recovery', 'adaptation', 'nutritional strategies', hormesis'. RESULT Supplementation with tart cherries, beetroot, pomegranate, creatine monohydrate and vitamin D appear to provide a prophylactic effect in reducing EIMD. β-hydroxy β-methylbutyrate, and the ingestion of protein, BCAA and milk could represent promising strategies to manage EIMD. Other nutritional interventions were identified but offered limited effect in the treatment of EIMD; however, inconsistencies in the dose and frequency of interventions might account for the lack of consensus regarding their efficacy. CONCLUSION There are clearly varying levels of evidence and practitioners should be mindful to refer to this evidence-base when prescribing to clients and athletes. One concern is the potential for these interventions to interfere with the exercise-recovery-adaptation continuum. Whilst there is no evidence that these interventions will blunt adaptation, it seems pragmatic to use a periodised approach to administering these strategies until data are in place to provide and evidence base on any interference effect on adaptation.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Department of Health, Performance and Recovery, Parma Calcio 1913, Parma, Italy.
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy.
| | | | - Monika Nemmer
- Nutrition Department Liverpool Football Club, Liverpool, UK
| | - Christopher Carling
- Centre for Elite Performance, French Football Federation, 75015, Paris, France
| | - Giampietro Alberti
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milano, Italy
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| |
Collapse
|
25
|
Ó Catháin C, Fleming J, Renard M, Kelly DT. Dietary Intake of Gaelic Football Players during Game Preparation and Recovery. Sports (Basel) 2020; 8:sports8050062. [PMID: 32429175 PMCID: PMC7281517 DOI: 10.3390/sports8050062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
It is well established that dietary intake can influence performance and modulate recovery in field-based invasion team sports such as soccer and rugby. However, very limited research currently exists examining dietary intake of Gaelic football players. This research aimed to examine the dietary intake of Gaelic football players 2 days prior to competition, on game day, and for 2 days post-competition. A five-day paper-based food diary was completed by 45 players (25 elite and 20 sub-elite). Preliminary inspection of diaries eliminated 11 participants, and analysis of Goldberg cut-offs identified 1 player as an under-reporter, leaving 33 players in the final analysis. Playing level had no effect on energy, carbohydrate, or fat intake. Average intake of energy was 2938 ± 618 kcal.day−1, carbohydrate was 3.7 ± 1.42 g.kgbm−1.day−1, and fat was 1.34 ± 0.61 g.kgbm−1.day−1. However, elite players consumed 24.1% more protein than sub-elite players (2.2 ± 0.67 vs. 1.8 ± 0.62 g.kgbm−1.day−1). Regardless of playing level, players consumed inadequate amounts of carbohydrate to support optimal performance and recovery and consumed protein and fat in line with general sport nutrition guidelines. Given the unique demands placed on Gaelic football players, it may be necessary to develop nutrition guidelines specific to Gaelic football. Additionally, the design and implementation of Gaelic football-specific education-based interventions may be necessary to address the highlighted nutritional inadequacies.
Collapse
Affiliation(s)
- Ciarán Ó Catháin
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
- Correspondence:
| | - James Fleming
- School of Sport Health and Applied Sciences, St Mary’s University, Twickenham TW1 4SX, UK;
| | - Michèle Renard
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
| | - David T. Kelly
- Department of Sport and Health Sciences, Athlone Institute of Technology, N37 HD68 Athlone, Ireland; (M.R.); (D.T.K.)
| |
Collapse
|
26
|
Waskiw-Ford M, Hannaian S, Duncan J, Kato H, Abou Sawan S, Locke M, Kumbhare D, Moore D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients 2020; 12:nu12041061. [PMID: 32290521 PMCID: PMC7231404 DOI: 10.3390/nu12041061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Leucine-enriched essential amino acids (LEAAs) acutely enhance post-exercise myofibrillar protein synthesis (MyoPS), which has been suggested to be important for muscle repair and recovery. However, the ability of LEAAs to concurrently enhance MyoPS and muscle damage recovery in free-living humans has not been studied. METHODS In a randomized, double-blind, placebo-controlled, parallel-group design, twenty recreationally active males consuming a controlled diet (1.2 g/kg/d of protein) were supplemented thrice daily with 4 g of LEAAs (containing 1.6 g leucine) or isocaloric placebo for four days following an acute bout of lower-body resistance exercise (RE). MyoPS at rest and integrated over 96 h of recovery was measured by D2O. Isometric and isokinetic torque, muscle soreness, Z-band streaming, muscle heat shock protein (HSP) 25 and 72, plasma creatine kinase (CK), and plasma interleukin-6 (IL-6) were measured over 96 h post-RE to assess various direct and indirect markers of muscle damage. RESULTS Integrated MyoPS increased ~72% over 96 h after RE (p < 0.05), with no differences between groups (p = 0.98). Isometric, isokinetic, and total peak torque decreased ~21% by 48 h after RE (p < 0.05), whereas total peak torque was ~10% greater overall during recovery in LEAAs compared to placebo (p < 0.05). There were moderate to large effects for peak torque in favour of LEAAs. Muscle soreness increased during recovery with no statistical differences between groups but small to moderate effects in favour of LEAAs that correlated with changes in peak torque. Plasma CK, plasma IL-6, and muscle HSP25 increased after RE (p < 0.05) but were not significantly different between groups (p ≥ 0.13). Consistent with a trend toward attenuated Z-band streaming in LEAAs (p = 0.07), muscle HSP72 expression was lower (p < 0.05) during recovery in LEAAs compared with placebo. There were no correlations between MyoPS and any measures of muscle damage (p ≥ 0.37). CONCLUSION Collectively, our data suggest that LEAAs moderately attenuated muscle damage without concomitant increases in integrated MyoPS in the days following an acute bout of resistance exercise in free-living recreationally active men.
Collapse
Affiliation(s)
- Marcus Waskiw-Ford
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Sarkis Hannaian
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Justin Duncan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Hiroyuki Kato
- Technology Development Center, Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan;
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
| | - Dinesh Kumbhare
- Toronto Rehabilitation Institute, Toronto, ON M5G 2A2, Canada;
| | - Daniel Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada; (M.W.-F.); (S.H.); (J.D.); (S.A.S.); (M.L.)
- Correspondence: ; Tel.: +1-416-946-4088
| |
Collapse
|
27
|
Kotsis Y, Methenitis S, Mikellidi A, Aresti C, Persia E, Antonopoulou S, Nomikos T. Changes of rate of torque development in soccer players after a Loughborough Intermittent Shuttle Test: Effect of bovine colostrum supplementation. ISOKINET EXERC SCI 2020. [DOI: 10.3233/ies-193173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yiannis Kotsis
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
- Theseus, Physical Medicine and Rehabilitation Center, Athens, Greece
| | - Spyridon Methenitis
- Sports Performance Laboratory, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Greece
- Sports Excellence Laboratory, Department of Orthopedics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Anastasia Mikellidi
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Cleopatra Aresti
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Eleni Persia
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Smaragdi Antonopoulou
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Tzortzis Nomikos
- Faculty of Health Sciences and Education, Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| |
Collapse
|
28
|
Exercise-Induced Muscle Damage and Cardiac Stress During a Marathon Could be Associated with Dietary Intake During the Week Before the Race. Nutrients 2020; 12:nu12020316. [PMID: 31991778 PMCID: PMC7071217 DOI: 10.3390/nu12020316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Adequate food intake is important prior to endurance running competitions to facilitate adequate exercise intensity. However, no investigations have examined whether dietary intake could prevent exercise-induced muscle damage (EIMD) and cardiac stress (EICS). Thus, this study’s objective was to determine the associations between EIMD, EICS and endurance athlete diets one week before a marathon race. Sixty-nine male runners participated in this study. Food intake during the week prior to the race was collected through a seven-day weighed food record. Dietary intake on race day was also recorded. At the end of the marathon, blood samples were drawn to determine serum creatine kinase (CK) and myoglobin, and muscle–brain isoform creatine kinase (CK-MB), prohormone of brain natriuretic peptide (NT-proBNP), cardiac troponin I (TNI), and cardiac troponin T (TNT) concentration as markers of EIMD and EICS, respectively. To determine the association between these variables, a stepwise regression analysis was carried out. The dependent variable was defined as EIMD or EICS and the independent variables were defined as the number of servings within each different food group. Results showed that the intake of meat during the previous week was positively associated with post-race CK (Standardized Coefficients (β) = 0.643; p < 0.01) and myoglobin (β = 0.698; p < 0.001). Vegetables were negatively associated the concentration of post-race CK (β = −0.482; p = 0.002). Butter and fatty meat were positively associated with NT-proBNP (β = 0.796; p < 0.001) and TNI (β = 0.396; p < 0.001) post-marathon values. However, fish intake was negatively associated with CK (β = −0.272; p = 0.042), TNI (β = −0.593; p < 0.001) and TNT (β = −0.640; p = 0.002) post-marathon concentration. Olive oil was negatively associated with TNI (β = −0.536; p < 0.001) and TNT (β = −0.415; p = 0.021) values. In conclusion, the consumption of meat, butter, and fatty meat might be associated with higher levels of EIMD and EICS. On the other hand, fish, vegetables, and olive oil might have a protective role against EIMD and EICS. The selection of an adequate diet before a marathon might help to reduce some of the acute burdens associated with marathon races.
Collapse
|
29
|
Can Milk Affect Recovery from Simulated Team-Sport Match Play? Nutrients 2019; 12:nu12010112. [PMID: 31906239 PMCID: PMC7019310 DOI: 10.3390/nu12010112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of cow's milk on recovery from repeated simulated team games (STGs) in females. Twenty female team-sport athletes completed an STG circuit (2x ~ 30 min, with 10 min 'half-time'). Measures of muscle function, soreness and tiredness, symptoms of stress and serum markers of muscle damage and oxidative stress were determined pre- and 24 h, 48 h, 72 h and 96 h following the circuit. At 48 h, a second STG was completed. Sprint performance (5 m, 15 m), lap time, countermovement jump (CMJ), heart rate and RPE were recorded during each STG. Immediately following each STG, participants consumed either 500 mL of cow's milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) solution. Compared to CHO, MILK had a beneficial effect in attenuating losses in peak torque for knee extension (60°/s) (likely; effect size (ES) = 0.26 to 0.28) knee flexion (60°/s) (likely; ES = 0.45 to 0.61). A benefit for MILK was observed for 5 m sprint (possible-likely; ES = 0.40 to 0.58), 10 m sprint (likely; ES = 0.30 to 0.53) and symptoms of stress (likely-very likely, small). Mostly unclear outcomes for other variables were observed. For STG variables, trivial (HR, CMJ) and unclear (5 m sprint, 15 m sprint, lap-time, RPE) outcomes were recorded. In conclusion, the consumption of 500 mL of milk attenuated losses in muscle function and perceptions of stress following repeated simulated team-sports games. However, further investigation is warranted to determine whether MILK can influence subsequent team-sport performance.
Collapse
|
30
|
Nutritional and Pharmacological Interventions to Expedite Recovery Following Muscle-Damaging Exercise in Older Adults: A Narrative Review of the Literature. J Aging Phys Act 2019; 27:914-928. [PMID: 30859892 DOI: 10.1123/japa.2018-0351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exercise-induced muscle damage (EIMD) manifests as muscle soreness, inflammation, and reductions in force generating capacity that can last for several days after exercise. The ability to recover and repair damaged tissues following EIMD is impaired with age, with older adults (≥50 years old) experiencing a slower rate of recovery than their younger counterparts do for the equivalent exercise bout. This narrative review discusses the literature examining the effect of nutritional or pharmacological supplements taken to counter the potentially debilitating effects of EIMD in older adults. Studies have assessed the effects of nonsteroidal anti-inflammatory drugs, vitamin C and/or E, or higher protein diets on recovery in older adults. Each intervention showed some promise for attenuating EIMD, but, overall, there is a paucity of available data in this population, and more studies are required to determine the influence of nutrition or pharmacological interventions on EIMD in older adults.
Collapse
|
31
|
Role of Jumpstart Nutrition®, a Dietary Supplement, to Ameliorate Calcium-to-Phosphorus Ratio and Parathyroid Hormone of Patients with Osteoarthritis. Med Sci (Basel) 2019; 7:medsci7120105. [PMID: 31766751 PMCID: PMC6950452 DOI: 10.3390/medsci7120105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to use Jumpstart Nutrition® bone supplementing combination with vitamin-K2 and coenzyme-Q10 characterized by an innovative delivery system that improves bioavailability of calcium-to-phosphorus ratio (CPR) and parathyroid hormone (PTH) in the management of osteoarthritis (OA). This eight-week registry included 108 patients treated for symptomatic OA confirmed with radiological images. On top of that, 63 patients used Jumpstart Nutrition® supplement, mainly prepared with calcium, phosphorus, coenzyme-Q10, vitamin-K2, vitamin-D2, vitamin-C, folic acid, curcumin and boswellic acids. Rescue medication was also recommended. Patients’ pain and functional capacity through outcome measures—knee-injury osteoarthritis outcome scale (KOOS) and Karnofsky performance scale (KPS), biomarkers such as levels of CPR, PTH and 25-hydroxy-vitamin-D were evaluated for the groups with and without supplement using appropriate kits. After eight weeks, the levels of CPR and PTH were all significantly improved (p < 0.001), fewer subjects had to use rescue medication (p < 0.05) and variation of pain and functional capacity under KOOS and KPS (p < 0.05) of the patients in the supplement group compared to controls. This registry study indicates that Jumpstart Nutrition® can be used safely for effective management of OA patients for the amelioration of CPR, PTH and functional activities confirmed with biomarkers and radiological images correlated with the Kellgren-Lawrance scale.
Collapse
|
32
|
Effectiveness of Whey Protein Hydrolysate and Milk-Based Formulated Drinks on Recovery of Strength and Power Following Acute Resistance Exercise. J Hum Kinet 2019; 68:193-202. [PMID: 31531144 PMCID: PMC6724581 DOI: 10.2478/hukin-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intensive resistance exercise can result in exercise-induced-muscle-damage, which commonly leads to reductions in acute muscle function. Post-exercise ingestion of carbohydrate-protein mixtures intends to attenuate these effects. This study aimed to compare the effectiveness of whey protein hydrolysate and milk-based formulated drinks on recovery of muscle function following resistance exercise. Thirty resistance-trained males were randomly assigned to either whey hydrolysate and dextrose drink (WH), milk-based drink (MB) or flavored-dextrose (CHO), and performed baseline assessments of perceived-muscle-soreness, the countermovement jump, the seated-medicine-ball throw and isokinetic assessment of the knee extensors and flexors maximal strength. Subsequently, participants performed resistance exercise consisting of various multi-joint barbell exercises. Following resistance exercise participants then consumed either WH (533 Kcal, 32.6 g Protein, 98.3 g Carbohydrate, 1.1 g Fat), MB (532 Kcal, 32.8 g Protein, 98.4 g Carbohydrate, 0.6 g Fat) or CHO (531 Kcal, 0 g Protein, 132.7 g Carbohydrate, 0 g Fat). All assessments were repeated 24 and 48 h post-resistance exercise. Muscle soreness was markedly increased at 24 h and 48 h in all groups (p < 0.001). However, for dynamic power measures (countermovement jump, seated-medicine-ball throw), CHO experienced a decrease for the countermovement jump only at 48 h, whereas WH and MB experienced significant decreases across the countermovement jump and the seated-medicine-ball throw (p < 0.05). All groups experienced significant decreases in isokinetic-extension torque at both 24 h and 48 h; however, flexion torque was decreased for CHO only at these time points (p < 0.05). Consumption of WH or MB did not enhance recovery of dynamic power-producing ability or soreness compared to CHO. Based on within-group effects WH and MB ingestion had seemingly marginal to small positive effects on recovery of isokinetic strength, however, there were no between-group differences for these variables.
Collapse
|
33
|
Alcantara JMA, Sanchez-Delgado G, Martinez-Tellez B, Labayen I, Ruiz JR. Impact of cow's milk intake on exercise performance and recovery of muscle function: a systematic review. J Int Soc Sports Nutr 2019; 16:22. [PMID: 31060583 PMCID: PMC6503439 DOI: 10.1186/s12970-019-0288-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022] Open
Abstract
Dairy products are thought to improve recovery after both resistance and endurance exercises due to their nutritional proprieties. We systematically reviewed the effects of dairy product intake on exercise performance and recovery of muscle function in humans. A literature search was conducted in the MEDLINE (via PubMed) and Web of Science databases from their inception to 15th April 2018. The initial search retrieved 7708 articles, and a total of 11 studies were finally included after applying inclusion and exclusion criteria. All the selected studies were conducted with cow's milk. Whereas some studies found significant positive effect of cow's milk on exercise performance and recovery of muscle function, others did not find any effect. These controversies could be due to the heterogeneity of cow's milk ingestion (e.g., amount of cow's milk, timing of consuming the cow's milk), to the type of intervention, and to the large heterogeneity of outcomes measured. Limited studies exist examining the effects of cow's milk consumption and its influence on exercise performance and recovery of muscle function, therefore further studies are needed to draw more definitive conclusions.
Collapse
Affiliation(s)
- Juan M A Alcantara
- PROFITH "PROmoting FITness and Health through physical activity" research group Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Ctra. de Alfacar s/n C.P, 18071, Granada, Spain.
| | - Guillermo Sanchez-Delgado
- PROFITH "PROmoting FITness and Health through physical activity" research group Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Ctra. de Alfacar s/n C.P, 18071, Granada, Spain
| | - Borja Martinez-Tellez
- PROFITH "PROmoting FITness and Health through physical activity" research group Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Ctra. de Alfacar s/n C.P, 18071, Granada, Spain.,Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Albinusdreef 2, Leiden, 2333, The Netherlands
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain, Public University of Navarra, Campus Arrosadía, s/n, 31006, Pamplona, Spain
| | - Jonatan R Ruiz
- PROFITH "PROmoting FITness and Health through physical activity" research group Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Ctra. de Alfacar s/n C.P, 18071, Granada, Spain
| |
Collapse
|
34
|
Selected In-Season Nutritional Strategies to Enhance Recovery for Team Sport Athletes: A Practical Overview. Sports Med 2018; 47:2201-2218. [PMID: 28702900 PMCID: PMC5633631 DOI: 10.1007/s40279-017-0759-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Team sport athletes face a variety of nutritional challenges related to recovery during the competitive season. The purpose of this article is to review nutrition strategies related to muscle regeneration, glycogen restoration, fatigue, physical and immune health, and preparation for subsequent training bouts and competitions. Given the limited opportunities to recover between training bouts and games throughout the competitive season, athletes must be deliberate in their recovery strategy. Foundational components of recovery related to protein, carbohydrates, and fluid have been extensively reviewed and accepted. Micronutrients and supplements that may be efficacious for promoting recovery include vitamin D, omega-3 polyunsaturated fatty acids, creatine, collagen/vitamin C, and antioxidants. Curcumin and bromelain may also provide a recovery benefit during the competitive season but future research is warranted prior to incorporating supplemental dosages into the athlete's diet. Air travel poses nutritional challenges related to nutrient timing and quality. Incorporating strategies to consume efficacious micronutrients and ingredients is necessary to support athlete recovery in season.
Collapse
|
35
|
Endocrine responses following exhaustive strength exercise with and without the use of protein and protein-carbohydrate supplements. Biol Sport 2018; 35:399-405. [PMID: 30765926 PMCID: PMC6358528 DOI: 10.5114/biolsport.2018.75754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/27/2017] [Accepted: 04/23/2018] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the effect of carbohydrate-protein supplementation with whey protein (CHO-PROw) after resistance training, and casein protein (PROc) before bedtime on the concentration of growth hormone (GH), insulin (I) and insulin-like growth factor (IGF-1), as well as serum creatine kinase (CK) activity. Twelve strength trained male subjects (age: 25.8 ± 4.7 years; training experience 6.1 ± 0.79 years; body mass 75.9 ± 2.7 kg; body height 171.8 ± 13.3 cm) were recruited for the study. They were randomly divided into an experimental group (group E, n = 6) and a control group (group C, n = 6). All study participants completed full barbell squats with a constant external load of 90% one-repetition maximum (1RM) and a volume of 12 sets. In each set three repetitions were performed with 3 min rest periods after each set. Immediately after the exercise protocol, the subjects from the experimental group received a carbohydrate-protein complex (CHO-PROw) with a dose of 0.5 g/kg of body mass, while before bedtime they ingested a protein supplement (PROc) consisting of 90% casein protein with a dose of 0.3 g/kg of body weight The results indicate that a ignificant increase in GH concentration occurred in the experimental group between the pre-exercise level and after 24 h of recovery (p<0.01), as well as between 1 h and 24 hours of recovery (p<0.01). Significantly higher levels of GH were also found between the control group and the experimental group 24 hours after exercise (p<0.01). The results showed significantly higher levels of IGF-1 in the experimental than in the control group after 24 hours of recovery (p<0.05). In the case of insulin, no significant differences were observed when comparing levels before exercise, after exercise, after 1 hour of recovery and after 24 hours of recovery. The CHO-PROw and the PROc supplements did not reduce post-exercise muscle membrane damage as evidenced by serum CK activity. The intake of these supplements after high-intensity resistance exercise caused an increase in GH and IGF-1 concentration, which could stimulate muscle hypertrophy and inhibit proteolysis.
Collapse
|
36
|
James LJ, Stevenson EJ, Rumbold PLS, Hulston CJ. Cow's milk as a post-exercise recovery drink: implications for performance and health. Eur J Sport Sci 2018; 19:40-48. [DOI: 10.1080/17461391.2018.1534989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lewis J. James
- School of Sport, Exercise and Health Sciences, National Centre of Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Emma J. Stevenson
- Faculty of Medical Sciences, Institute of Cellular Medicine, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Penny L. S. Rumbold
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Carl J. Hulston
- School of Sport, Exercise and Health Sciences, National Centre of Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| |
Collapse
|
37
|
Cintineo HP, Arent MA, Antonio J, Arent SM. Effects of Protein Supplementation on Performance and Recovery in Resistance and Endurance Training. Front Nutr 2018; 5:83. [PMID: 30255023 PMCID: PMC6142015 DOI: 10.3389/fnut.2018.00083] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023] Open
Abstract
There is robust evidence which shows that consuming protein pre- and/or post-workout induces a significant rise in muscle protein synthesis. It should be noted, however, that total daily caloric and protein intake over the long term play the most crucial dietary roles in facilitating adaptations to exercise. However, once these factors are accounted for, it appears that peri-exercise protein intake, particularly in the post-training period, plays a potentially useful role in terms of optimizing physical performance and positively influencing the subsequent recovery processes for both resistance training and endurance exercise. Factors that affect the utility of pre- or post-workout feeding include but are not necessarily limited to: training status (e.g., novice vs. advanced, or recreational vs. competitive athlete), duration of exercise, the number of training sessions per day, the number of competitive events per day, etc. From a purely pragmatic standpoint, consuming protein post-workout represents an opportunity to feed; this in turn contributes to one's total daily energy and protein intake. Furthermore, despite recent suggestions that one does not “need” to consume protein during the immediate (1 h or less) post-training time frame, it should be emphasized that consuming nothing offers no advantage and perhaps even a disadvantage. Thus, based on performance and recovery effects, it appears that the prudent approach would be to have athletes consume protein post-training and post-competition.
Collapse
Affiliation(s)
- Harry P Cintineo
- Center for Health and Human Performance, Rutgers University, New Brunswick, NJ, United States
| | - Michelle A Arent
- Center for Health and Human Performance, Rutgers University, New Brunswick, NJ, United States
| | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, United States
| | - Shawn M Arent
- Center for Health and Human Performance, Rutgers University, New Brunswick, NJ, United States.,Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
38
|
Myoprotective Potential of Creatine Is Greater than Whey Protein after Chemically-Induced Damage in Rat Skeletal Muscle. Nutrients 2018; 10:nu10050553. [PMID: 29710855 PMCID: PMC5986433 DOI: 10.3390/nu10050553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/28/2022] Open
Abstract
The myoprotective effects of creatine monohydrate (CR) and whey protein (WP) are equivocal, with the use of proxy measures of muscle damage making interpretation of their effectiveness limited. The purpose of the study was to determine the effects of CR and WP supplementation on muscle damage and recovery following controlled, chemically-induced muscle damage. Degeneration of the extensor digitorum longus (EDL) muscle was induced by bupivacaine in rats supplemented with either CR, WP, or standard rat chow (CON). At day 7 and 14 post-myotoxic injury, injured EDL muscles were surgically removed and tested for isometric contractile properties, followed by the contralateral, non-injured EDL muscle. At the completion of testing, muscles were snap-frozen in liquid nitrogen and stored for later analysis. Data were analyzed using analysis of variance. Creatine-supplemented muscles displayed a greater proportion of non-damaged (intact) fibers (p = 0.002) and larger cross-sectional areas of regenerating and non-damaged fibers (p = 0.024) compared to CON muscles at day 7 post-injury. At day 14 post-injury, CR-supplemented muscles generated higher absolute forces concomitant with greater contractile protein levels compared to CON (p = 0.001, p = 0.008) and WP-supplemented muscles (p = 0.003, p = 0.006). Creatine supplementation appears to offer an element of myoprotection which was not observed following whey protein supplementation.
Collapse
|
39
|
Milk: An Effective Recovery Drink for Female Athletes. Nutrients 2018; 10:nu10020228. [PMID: 29462969 PMCID: PMC5852804 DOI: 10.3390/nu10020228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/17/2022] Open
Abstract
Milk has become a popular post-exercise recovery drink. Yet the evidence for its use in this regard comes from a limited number of investigations utilising very specific exercise protocols, and mostly with male participants. Therefore, the aim of this study was to investigate the effects of post-exercise milk consumption on recovery from a sprinting and jumping protocol in female team-sport athletes. Eighteen females participated in an independent-groups design. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development (RFD), countermovement jump (CMJ), reactive strength index (RSI), sprint performance), muscle soreness and tiredness, symptoms of stress, serum creatine kinase (CK) and high-sensitivity C-reactive protein (hsCRP) were determined pre- and 24 h, 48 h and 72 h post-exercise. MILK had a very likely beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 72 h (0.0 ± 10.0% vs. −8.7 ± 3.7%, MILK v CHO), and countermovement jump (−1.1 ± 5.2% vs. −10.4 ± 6.7%) and symptoms of stress (−13.5 ± 7.4% vs. −18.7 ± 11.0%) from baseline to 24 h. MILK had a likely beneficial effect and a possibly beneficial effect on other peak torque measures and 5 m sprint performance at other timepoints but had an unclear effect on 10 and 20 m sprint performance, RSI, muscle soreness and tiredness, CK and hsCRP. In conclusion, consumption of 500 mL milk attenuated losses in muscle function following repeated sprinting and jumping and thus may be a valuable recovery intervention for female team-sport athletes following this type of exercise.
Collapse
|
40
|
Davies RW, Carson BP, Jakeman PM. The Effect of Whey Protein Supplementation on the Temporal Recovery of Muscle Function Following Resistance Training: A Systematic Review and Meta-Analysis. Nutrients 2018; 10:nu10020221. [PMID: 29462923 PMCID: PMC5852797 DOI: 10.3390/nu10020221] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/13/2023] Open
Abstract
Whey protein (WP) is a widely consumed nutritional supplement, known to enhance strength and muscle mass during resistance training (RT) regimens. Muscle protein anabolism is acutely elevated following RT, which is further enhanced by WP. As a result, there is reason to suggest that WP supplementation may be an effective nutritional strategy for restoring the acute loss of contractile function that occurs following strenuous RT. This systematic review and meta-analysis provides a synthesis of the literature to date, investigating the effect of WP supplementation on the recovery of contractile function in young, healthy adults. Eight studies, containing 13 randomised control trials (RCTs) were included in this review and meta-analysis, from which individual standardised effect sizes (ESs) were calculated, and a temporal overall ES was determined using a random-effects model. Whilst only half of the individual studies reported beneficial effects for WP, the high-quality evidence taken from the 13 RCTs was meta-analysed, yielding overall positive small to medium effects for WP from < 24 to 96 h (ES range = 0.4 to 0.7), for the temporal restoration of contractile function compared to the control treatment. Whilst the effects for WP were shown to be consistent over time, these results are limited to 13 RCTs, principally supporting the requirement for further comprehensive research in this area.
Collapse
Affiliation(s)
- Robert W Davies
- Human Science Research Unit, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick V94 T9PX, Ireland.
- Food, Health Ireland, Physical Education and Sport Sciences Department, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Brian P Carson
- Human Science Research Unit, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick V94 T9PX, Ireland.
- Food, Health Ireland, Physical Education and Sport Sciences Department, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Philip M Jakeman
- Human Science Research Unit, Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick V94 T9PX, Ireland.
- Food, Health Ireland, Physical Education and Sport Sciences Department, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
41
|
Rankin P, Lawlor MJ, Hills FA, Bell PG, Stevenson EJ, Cockburn E. The effect of milk on recovery from repeat-sprint cycling in female team-sport athletes. Appl Physiol Nutr Metab 2017; 43:113-122. [PMID: 28972854 DOI: 10.1139/apnm-2017-0275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The consumption of milk following eccentric exercise attenuates the effects of muscle damage in team-sport athletes. However, participation in team sport involves both concentric-eccentric loading and metabolic stress. Therefore, the aim of this study was to investigate the effects of postexercise milk consumption on recovery from a cycling protocol designed to simulate the metabolic demands of team sport. Ten female team-sport athletes participated in a randomised crossover investigation. Upon completion of the protocol participants consumed 500 mL of milk (MILK) or 500 mL of an energy-matched carbohydrate (CHO) drink. Muscle function (peak torque, rate of force development, countermovement jump, 20-m sprint), muscle soreness and tiredness, serum creatine kinase, high-sensitivity C-reactive protein, and measures of oxidative stress (protein carbonyls and reduced glutathione/oxidized glutathione (GSH/GSSG) ratio) were determined at pre-exercise and 24 h, 48 h, and 72 h postexercise. MILK had a possible beneficial effect in attenuating losses in peak torque (180°/s) from baseline to 24 h (3.2% ± 7.8% vs. -6.2% ± 7.5%, MILK vs. CHO) and a possible beneficial effect in minimising soreness (baseline-48 h; baseline-72 h) and tiredness (baseline-24 h; baseline-72 h). There was no change in oxidative stress following the exercise protocol, though a likely benefit of milk was observed for GSH/GSSG ratio at baseline-24 h (0.369 ×/÷ 1.89, 1.103 ×/÷ 3.96, MILK vs. CHO). MILK had an unclear effect on all other variables. Consumption of 500 mL of milk after repeat sprint cycling had little to no benefit in minimising losses in peak torque or minimising increases in soreness and tiredness and had no effect on serum markers of muscle damage and inflammation.
Collapse
Affiliation(s)
- Paula Rankin
- a Department of Science and Health, Institute of Technology Carlow, Carlow R93 V960, Ireland.,b School of Biomedical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.,c London Institute of Sport, Middlesex University, London NW4 4BT, UK
| | - Michael J Lawlor
- a Department of Science and Health, Institute of Technology Carlow, Carlow R93 V960, Ireland
| | - Frank A Hills
- d Department of Natural Sciences, Middlesex University, London NW4 4BT, UK
| | - Phillip G Bell
- e GlaxoSimthKline Human Performance Laboratory, Brentford, London TW8 9DA, UK
| | - Emma J Stevenson
- f Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Emma Cockburn
- b School of Biomedical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.,c London Institute of Sport, Middlesex University, London NW4 4BT, UK
| |
Collapse
|
42
|
West DWD, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey Protein Supplementation Enhances Whole Body Protein Metabolism and Performance Recovery after Resistance Exercise: A Double-Blind Crossover Study. Nutrients 2017; 9:E735. [PMID: 28696380 PMCID: PMC5537849 DOI: 10.3390/nu9070735] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 11/29/2022] Open
Abstract
No study has concurrently measured changes in free-living whole body protein metabolism and exercise performance during recovery from an acute bout of resistance exercise. We aimed to determine if whey protein ingestion enhances whole body net protein balance and recovery of exercise performance during overnight (10 h) and 24 h recovery after whole body resistance exercise in trained men. In a double-blind crossover design, 12 trained men (76 ± 8 kg, 24 ± 4 years old, 14% ± 5% body fat; means ± standard deviation (SD)) performed resistance exercise in the evening prior to consuming either 25 g of whey protein (PRO; MuscleTech 100% Whey) or an energy-matched placebo (CHO) immediately post-exercise (0 h), and again the following morning (~10 h of recovery). A third randomized trial, completed by the same participants, involving no exercise and no supplement served as a rested control trial (Rest). Participants ingested [15N]glycine to determine whole body protein kinetics and net protein balance over 10 and 24 h of recovery. Performance was assessed pre-exercise and at 0, 10, and 24 h of recovery using a battery of tests. Net protein balance tended to improve in PRO (P = 0.064; effect size (ES) = 0.61, PRO vs. CHO) during overnight recovery. Over 24 h, net balance was enhanced in PRO (P = 0.036) but not in CHO (P = 0.84; ES = 0.69, PRO vs. CHO), which was mediated primarily by a reduction in protein breakdown (PRO < CHO; P < 0.01. Exercise decreased repetitions to failure (REP), maximal strength (MVC), peak and mean power, and countermovement jump performance (CMJ) at 0 h (all P < 0.05 vs. Pre). At 10 h, there were small-to-moderate effects for enhanced recovery of the MVC (ES = 0.56), mean power (ES = 0.49), and CMJ variables (ES: 0.27-0.49) in PRO. At 24 h, protein supplementation improved MVC (ES = 0.76), REP (ES = 0.44), and peak power (ES = 0.55). In conclusion, whey protein supplementation enhances whole body anabolism, and may improve acute recovery of exercise performance after a strenuous bout of resistance exercise.
Collapse
Affiliation(s)
- Daniel W D West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Michael Mazzulla
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 1A1, Canada.
| | - Daniel R Moore
- Kinesiology and Physical Education University of Toronto 100 Devonshire Place, Toronto, ON M5S 2C9, Canada.
| |
Collapse
|
43
|
Eddens L, Browne S, Stevenson EJ, Sanderson B, van Someren K, Howatson G. The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise. Appl Physiol Nutr Metab 2017; 42:716-724. [DOI: 10.1139/apnm-2016-0626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study investigated the effect of protein supplementation on recovery following muscle-damaging exercise, which was induced with a concurrent exercise design. Twenty-four well-trained male cyclists were randomised to 3 independent groups receiving 20 g protein hydrolysate, iso-caloric carbohydrate, or low-calorific placebo supplementation, per serve. Supplement serves were provided twice daily, from the onset of the muscle-damaging exercise, for a total of 4 days and in addition to a controlled diet (6 g·kg−1·day−1 carbohydrate, 1.2 g·kg−1·day−1 protein, remainder from fat). Following the concurrent exercise session at time-point 0 h, comprising a simulated high-intensity road cycling trial and 100 drop-jumps, recovery of outcome measures was assessed at 24, 48, and 72 h. The concurrent exercise protocol was deemed to have caused exercise-induced muscle damage (EIMD), owing to time effects (p < 0.001), confirming decrements in maximal voluntary contraction (peaking at 15% ± 10%) and countermovement jump performance (peaking at 8% ± 7%), along with increased muscle soreness, creatine kinase, and C-reactive protein concentrations. No group or interaction effects (p > 0.05) were observed for any of the outcome measures. The present results indicate that protein supplementation does not attenuate any of the indirect indices of EIMD imposed by concurrent exercise, when employing great rigour around the provision of a quality habitual diet and the provision of appropriate supplemental controls.
Collapse
Affiliation(s)
- Lee Eddens
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Sarah Browne
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Emma J. Stevenson
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Brad Sanderson
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
| | - Ken van Someren
- GlaxoSmithKline Human Performance Laboratory, Brentford TW8 9DA, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
- Water Research Group, North West University, Potchefstroom 2520, South Africa
| |
Collapse
|
44
|
Waldron M, Whelan K, Jeffries O, Burt D, Howe L, Patterson SD. The effects of acute branched-chain amino acid supplementation on recovery from a single bout of hypertrophy exercise in resistance-trained athletes. Appl Physiol Nutr Metab 2017; 42:630-636. [DOI: 10.1139/apnm-2016-0569] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of acute branched-chain amino acid (BCAA) supplementation on recovery from exercise-induced muscle damage among experienced resistance-trained athletes. In a double-blind matched-pairs design, 16 resistance-trained participants, routinely performing hypertrophy training, were randomly assigned to a BCAA (n = 8) or placebo (n = 8) group. The BCAAs were administered at a dosage of 0.087 g/kg body mass, with a 2:1:1 ratio of leucine, isoleucine, and valine. The participants performed 6 sets of 10 full-squats at 70% 1-repetition maximum to induce muscle damage. All participants were diet-controlled across the study. Creatine kinase, peak isometric knee-extensor force, perceived muscle soreness, and countermovement jump (CMJ) height were measured immediately before (baseline) and at 1 h, 24 h, and 48 h postexercise. There were large to very large time effects for all measurements between baseline and 24–48 h. Between-group comparisons, expressed as a percentage of baseline, revealed differences in isometric strength at 24-h (placebo ∼87% vs. BCAA ∼92%; moderate, likely), CMJ at 24 h (placebo ∼93% vs. BCAA ∼96%; small, likely), and muscle soreness at both 24 h (placebo ∼685% vs. BCAA ∼531%; small, likely) and 48 h (placebo ∼468% vs. BCAA ∼350%; small, likely). Acute supplementation of BCAAs (0.087 g/kg) increased the rate of recovery in isometric strength, CMJ height, and perceived muscle soreness compared with placebo after a hypertrophy-based training session among diet-controlled, resistance-trained athletes. These findings question the need for longer BCAA loading phases and highlight the importance of dietary control in studies of this type.
Collapse
Affiliation(s)
- Mark Waldron
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
- School of Science and Technology, University of New England, NSW 2350, Australia
| | - Kieran Whelan
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Owen Jeffries
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Dean Burt
- Sport and Exercise Science, Brindley Building, Staffordshire University, Leek Road, Stoke-on-Trent, UK
| | - Louis Howe
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| | - Stephen David Patterson
- School of Sport, Health and Applied Science, St Mary’s University, Waldegrave Road, Twickenham, London TW1 4SX, UK
| |
Collapse
|
45
|
Kirk B, Mitchell J, Jackson M, Amirabdollahian F, Alizadehkhaiyat O, Clifford T. A2 Milk Enhances Dynamic Muscle Function Following Repeated Sprint Exercise, a Possible Ergogenic Aid for A1-Protein Intolerant Athletes? Nutrients 2017; 9:nu9020094. [PMID: 28134840 PMCID: PMC5331525 DOI: 10.3390/nu9020094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk (n = 7), regular milk (n = 7), and placebo (PLA) (n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) (p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached (p = 0.069). Milk treatments had no apparent effect on muscle soreness (p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein.
Collapse
Affiliation(s)
- Ben Kirk
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Jade Mitchell
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Matthew Jackson
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | | | - Omid Alizadehkhaiyat
- School of Health Sciences, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK.
| | - Tom Clifford
- Department of Sport, Exercise & Rehabilitation, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
46
|
The Effect of a Dairy-Based Recovery Beverage on Post-Exercise Appetite and Energy Intake in Active Females. Nutrients 2016; 8:nu8060355. [PMID: 27338460 PMCID: PMC4924196 DOI: 10.3390/nu8060355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/16/2022] Open
Abstract
This study was designed to assess the effect of a dairy-based recovery beverage on post-exercise appetite and energy intake in active females. Thirteen active females completed three trials in a crossover design. Participants completed 60 min of cycling at 65% V̇O2peak, before a 120 min recovery period. On completion of cycling, participants consumed a commercially available dairy-based beverage (DBB), a commercially available carbohydrate beverage (CHO), or a water control (H₂O). Non-esterified fatty acids, glucose, and appetite-related peptides alongside measures of subjective appetite were sampled at baseline and at 30 min intervals during recovery. At 120 min, energy intake was assessed in the laboratory by ad libitum assessment, and in the free-living environment by weighed food record for the remainder of the study day. Energy intake at the ad libitum lunch was lower after DBB compared to H₂O (4.43 ± 0.20, 5.58 ± 0.41 MJ, respectively; p = 0.046; (95% CI: -2.28, -0.20 MJ)), but was not different to CHO (5.21 ± 0.46 MJ), with no difference between trials thereafter. Insulin and GLP-17-36 were higher following DBB compared to H₂O (p = 0.015 and p = 0.001, respectively) but not to CHO (p = 1.00 and p = 0.146, respectively). In addition, glucagon was higher following DBB compared to CHO (p = 0.008) but not to H₂O (p = 0.074). The results demonstrate that where DBB consumption may manifest in accelerated recovery, this may be possible without significantly affecting total energy intake and subsequent appetite-related responses relative to a CHO beverage.
Collapse
|
47
|
Hatchett A, Berry C, Oliva C, Wiley D, St Hilaire J, LaRochelle A. A Comparison between Chocolate Milk and a Raw Milk Honey Solution's Influence on Delayed Onset of Muscle Soreness. Sports (Basel) 2016; 4:sports4010018. [PMID: 29910267 PMCID: PMC5968944 DOI: 10.3390/sports4010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 11/16/2022] Open
Abstract
This investigation sought to examine the effect that a chocolate milk solution (CMS) and a raw milk solution (RMS) had on lower extremity induced delayed onset of muscle soreness (DOMS). Twenty trained male participants completed a set of questionnaires, prior to completing a lower extremity DOMS protocol, to determine the level of discomfort and functional limitations. Once the DOMS protocol was completed, participants were randomly assigned to either the CM or RM group. Once assigned, participants ingested 240 mL of the respective solution and completed the same set of questionnaires immediately post, 24-, 48- and 72-h post DOMS protocol. Additionally, for 10 days post-ingestion participants were contacted to learn if any negative effects were experienced as a result of ingesting either solution. Both groups reported an increase in lower extremity discomfort at each data collection interval post-DOMS protocol (post, 24-, 48- and 72-h). Participants assigned to the RM group reported high discomfort post and a relative decline in discomfort from immediately post-DOMS protocol to 72-h post. The RMS group reported substantially less discomfort at 72-h when compared to the CMS group. Ingestion of a raw milk solution immediately post strength exercise can substantially reduce the level of self-reported discomfort associated with DOMS.
Collapse
Affiliation(s)
- Andrew Hatchett
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Christopher Berry
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Claudia Oliva
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Douglas Wiley
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Jacob St Hilaire
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| | - Alex LaRochelle
- Health Sciences, Department of Biology, Franklin Pierce University, Rindge, NH 03461, USA.
| |
Collapse
|
48
|
Bellar D, LeBlanc NR, Murphy K, Moody KM, Buquet G. The Impact of Chocolate Goat's and Cow's Milk on Postresistance Exercise Endocrine Responses and Isometric Mid-Thigh Pull Performance. J Diet Suppl 2016; 13:560-9. [DOI: 10.3109/19390211.2015.1124164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Papacosta E, Nassis GP, Gleeson M. Effects of acute postexercise chocolate milk consumption during intensive judo training on the recovery of salivary hormones, salivary SIgA, mood state, muscle soreness, and judo-related performance. Appl Physiol Nutr Metab 2015; 40:1116-22. [DOI: 10.1139/apnm-2015-0243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effects of postexercise chocolate milk (CM) or water (W) consumption during 5 days of intensive judo training with concomitant weight loss on salivary cortisol and testosterone, salivary secretory immunoglobulin A (SIgA), delayed-onset muscle soreness (DOMS), and judo-related performance. Twelve trained male judo athletes engaged in 5 days of intensive judo training followed by a simulated judo competition, on 2 separate training weeks 14 days apart. The athletes consumed 1000 mL of W (week 1) or CM (week 2) immediately post-training. During both weeks, athletes were instructed to “make weight” for the upcoming competition. Performance in timed push-ups and the Special Judo Fitness Test improved by 14.6% and 6.8%, respectively, at the end of the training week with CM consumption (both p < 0.001). Decreased salivary cortisol (p < 0.01) and a trend for an increased salivary testosterone/cortisol ratio (p = 0.07) were also observed midweek in the CM condition. Saliva flow rate was higher during the week with CM intake compared with W intake (p < 0.001). DOMS (p < 0.001) and mood disturbance (p < 0.0001) increased after the first day of training in the W condition but not in the CM condition. Salivary testosterone and SIgA responses were similar between treatments (p > 0.05). Body mass decreased by 1.9% in the W condition and by 1.1% in the CM condition, with no significant difference between treatments. This study indicates that postexercise CM consumption during short-term intensive judo training enhances aspects of recovery without affecting intentional weight loss.
Collapse
Affiliation(s)
- Elena Papacosta
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - George P. Nassis
- National Sports Medicine Programme–Excellence in Football Project, Sports Medicine and Orthopaedic Hospital, Aspetar, Doha, Qatar
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
50
|
Gonzalez AM, Hoffman JR, Jajtner AR, Townsend JR, Boone CH, Beyer KS, Baker KM, Wells AJ, Church DD, Mangine GT, Oliveira LP, Moon JR, Fukuda DH, Stout JR. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men. Nutr Res 2015; 35:990-1000. [PMID: 26428621 DOI: 10.1016/j.nutres.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022]
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P < .0001); however, no differences were observed between trials. Resistance exercise also elicited a significant insulin, growth hormone, and cortisol response (P < .01); however, no differences were observed between trials for insulin-like growth factor-1, insulin, testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men.
Collapse
Affiliation(s)
- Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY, USA
| | - Jay R Hoffman
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA.
| | - Adam R Jajtner
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Jeremy R Townsend
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Carleigh H Boone
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Kyle S Beyer
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Kayla M Baker
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Adam J Wells
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - David D Church
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Gerald T Mangine
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Leonardo P Oliveira
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jordan R Moon
- Sports Science Institute, MusclePharm, Corp, Denver, CO, USA
| | - David H Fukuda
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| | - Jeffrey R Stout
- Institute of Exercise Physiology and Wellness, Sport and Exercise Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|