1
|
Templeton CW, Laimins LA. HPV induced R-loop formation represses innate immune gene expression while activating DNA damage repair pathways. PLoS Pathog 2024; 20:e1012454. [PMID: 39178326 PMCID: PMC11376575 DOI: 10.1371/journal.ppat.1012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 07/28/2024] [Indexed: 08/25/2024] Open
Abstract
R-loops are trimeric nucleic acid structures that form when an RNA molecule hybridizes with its complementary DNA strand, displacing the opposite strand. These structures regulate transcription as well as replication, but aberrant R-loops can form, leading to DNA breaks and genomic instability if unresolved. R-loop levels are elevated in many cancers as well as cells that maintain high-risk human papillomaviruses. We investigated how the distribution as well as function of R-loops changed between normal keratinocytes and HPV positive cells derived from a precancerous lesion of the cervix (CIN I). The levels of R-loops associated with cellular genes were found to be up to 10-fold higher in HPV positive cells than in normal keratinocytes while increases at ALU1 elements increased by up to 500-fold. The presence of enhanced R-loops resulted in altered levels of gene transcription, with equal numbers increased as decreased. While no uniform global effects on transcription due to the enhanced levels of R-loops were detected, genes in several pathways were coordinately increased or decreased in expression only in the HPV positive cells. This included the downregulation of genes in the innate immune pathway, such as DDX58, IL-6, STAT1, IFN-β, and NLRP3. All differentially expressed innate immune genes dependent on R-loops were also associated with H3K36me3 modified histones. Genes that were upregulated by the presence of R-loops in HPV positive cells included those in the DNA damage repair such as ATM, ATRX, and members of the Fanconi Anemia pathway. These genes exhibited a linkage between R-loops and H3K36me3 as well as γH2AX histone marks only in HPV positive cells. These studies identify a potential link in HPV positive cells between DNA damage repair as well as innate immune regulatory pathways with R-loops and γH2AX/H3K36me3 histone marks that may contribute to regulating important functions for HPV pathogenesis.
Collapse
Affiliation(s)
- Conor W Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
2
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
3
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
4
|
Li T, Ren Y, Zhang T, Zhai X, Wang X, Wang J, Xing B, Miao R, Li N, Wei L. Duck LGP2 Downregulates RIG-I Signaling Pathway-Mediated Innate Immunity Against Tembusu Virus. Front Immunol 2022; 13:916350. [PMID: 35784309 PMCID: PMC9241487 DOI: 10.3389/fimmu.2022.916350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In mammals, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) has been demonstrated to play a critical role in activating downstream signaling in response to viral RNA. However, its role in ducks' antiviral innate immunity is less well understood, and how gene-mediated signaling is regulated is unknown. The regulatory role of the duck laboratory of genetics and physiology 2 (duLGP2) in the duck RIG-I (duRIG-I)-mediated antiviral innate immune signaling system was investigated in this study. In duck embryo fibroblast (DEF) cells, overexpression of duLGP2 dramatically reduced duRIG-I-mediated IFN-promotor activity and cytokine expression. In contrast, the knockdown of duLGP2 led to an opposite effect on the duRIG-I-mediated signaling pathway. We demonstrated that duLGP2 suppressed the duRIG-I activation induced by duck Tembusu virus (DTMUV) infection. Intriguingly, when duRIG-I signaling was triggered, duLGP2 enhanced the production of inflammatory cytokines. We further showed that duLGP2 interacts with duRIG-I, and this interaction was intensified during DTMUV infection. In summary, our data suggest that duLGP2 downregulated duRIG-I mediated innate immunity against the Tembusu virus. The findings of this study will help researchers better understand the antiviral innate immune system's regulatory networks in ducks.
Collapse
Affiliation(s)
- Tianxu Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Yanyan Ren
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| | - Xinyu Zhai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Xiuyuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Jinchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Bin Xing
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Runchun Miao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Ning Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
| | - Liangmeng Wei
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai’an City, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai’an City, China
| |
Collapse
|
5
|
Tecalco Cruz AC. Free ISG15 and protein ISGylation emerging in SARS-CoV-2 infection. Curr Drug Targets 2022; 23:686-691. [PMID: 35297347 DOI: 10.2174/1389450123666220316094720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Interferon-simulated gene 15 (ISG15) belongs to the family of ubiquitin-like proteins. ISG15 acts as a cytokine and modifies proteins through ISGylation. This posttranslational modification has been associated with antiviral and immune response pathways. In addition, it is known that the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes proteases critical for viral replication. Consequently, these proteases are also central in the progression of coronavirus disease 2019 (COVID-19). Interestingly, the protease SARS-CoV-2-PLpro removes ISG15 from ISGylated proteins such as IRF3 and MDA5, affecting immune and antiviral defense from the host. Here, the implications of ISG15, ISGylation, and generation of SARS-CoV-2-PLpro inhibitors in SARS-CoV-2 infection are discussed.
Collapse
Affiliation(s)
- Angeles C Tecalco Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), CDMX, México
| |
Collapse
|
6
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
7
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Regulation and action of interferon-stimulated gene 15 in breast cancer cells. Hum Cell 2020; 33:954-962. [DOI: 10.1007/s13577-020-00414-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022]
|
8
|
Brisse M, Ly H. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front Immunol 2019; 10:1586. [PMID: 31379819 PMCID: PMC6652118 DOI: 10.3389/fimmu.2019.01586] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
RIG-I (Retinoic acid-inducible gene I) and MDA5 (Melanoma Differentiation-Associated protein 5), collectively known as the RIG-I-like receptors (RLRs), are key protein sensors of the pathogen-associated molecular patterns (PAMPs) in the form of viral double-stranded RNA (dsRNA) motifs to induce expression of type 1 interferons (IFN1) (IFNα and IFNβ) and other pro-inflammatory cytokines during the early stage of viral infection. While RIG-I and MDA5 share many genetic, structural and functional similarities, there is increasing evidence that they can have significantly different strategies to recognize different pathogens, PAMPs, and in different host species. This review article discusses the similarities and differences between RIG-I and MDA5 from multiple perspectives, including their structures, evolution and functional relationships with other cellular proteins, their differential mechanisms of distinguishing between host and viral dsRNAs and interactions with host and viral protein factors, and their immunogenic signaling. A comprehensive comparative analysis can help inform future studies of RIG-I and MDA5 in order to fully understand their functions in order to optimize potential therapeutic approaches targeting them.
Collapse
Affiliation(s)
- Morgan Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Twin Cities, St. Paul, MN, United States
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
9
|
Innate Immune Responses to Avian Influenza Viruses in Ducks and Chickens. Vet Sci 2019; 6:vetsci6010005. [PMID: 30634569 PMCID: PMC6466002 DOI: 10.3390/vetsci6010005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Mallard ducks are important natural hosts of low pathogenic avian influenza (LPAI) viruses and many strains circulate in this reservoir and cause little harm. Some strains can be transmitted to other hosts, including chickens, and cause respiratory and systemic disease. Rarely, these highly pathogenic avian influenza (HPAI) viruses cause disease in mallards, while chickens are highly susceptible. The long co-evolution of mallard ducks with influenza viruses has undoubtedly fine-tuned many immunological host–pathogen interactions to confer resistance to disease, which are poorly understood. Here, we compare innate responses to different avian influenza viruses in ducks and chickens to reveal differences that point to potential mechanisms of disease resistance. Mallard ducks are permissive to LPAI replication in their intestinal tissues without overtly compromising their fitness. In contrast, the mallard response to HPAI infection reflects an immediate and robust induction of type I interferon and antiviral interferon stimulated genes, highlighting the importance of the RIG-I pathway. Ducks also appear to limit the duration of the response, particularly of pro-inflammatory cytokine expression. Chickens lack RIG-I, and some modulators of the signaling pathway and may be compromised in initiating an early interferon response, allowing more viral replication and consequent damage. We review current knowledge about innate response mediators to influenza infection in mallard ducks compared to chickens to gain insight into protective immune responses, and open questions for future research.
Collapse
|
10
|
Tecalco-Cruz AC, Cortés-González CC, Cruz-Ramos E, Ramírez Jarquín JO, Romero-Mandujano AK, Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell Signal 2018; 54:91-101. [PMID: 30500379 DOI: 10.1016/j.cellsig.2018.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/25/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that conjugates to its target proteins to modify them through ISGylation, but the relevance of ISG15 expression and its effects have been not completely defined. Herein, we examined the interplay between ISG15/ISGylation and the interferon-gamma (IFN-γ) signaling pathway in mammary tumors and compared it with that in normal mammary tissues. Our results indicated that mammary tumors had higher levels of ISG15 mRNA and ISG15 protein than the adjacent normal mammary tissue. Furthermore, the expression of IFN-γ signaling components was altered in breast cancer. Interestingly, IFN-γ treatment induced morphological changes in MCF-7 and MDA-MB-231 breast cancer cell lines due to cytoskeletal reorganization. This cellular process seems to be related to the increase in ISGylation of cytoplasmic IQ Motif Containing GTPase Activating Protein 1 (IQGAP1). Interactome analysis also indicated that IFN-γ signaling and the ISGylation system are associated with several proteins implicated in cytoskeletal remodeling, including IQGAP1. Thus, ISG15 may present a potential biomarker for breast cancer, and IFN-γ signaling and protein ISGylation may participate in the regulation of the cytoskeleton in breast cancer cells.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| | - Carlo César Cortés-González
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Josué O Ramírez Jarquín
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aline Kay Romero-Mandujano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Tlalpan, C.P. 14080 Mexico City, Mexico
| | - Marcela Sosa-Garrocho
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Li Y, Bai W, Zhang L. The Overexpression of CD80 and ISG15 Are Associated with the Progression and Metastasis of Breast Cancer by a Meta-Analysis Integrating Three Microarray Datasets. Pathol Oncol Res 2018; 26:443-452. [PMID: 30411299 DOI: 10.1007/s12253-018-0478-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer is a common cancer and could result in a substantial mortality. The study aimed to screen gene signatures associated with the development and metastasis of breast cancer and explore their regulation mechanisms. Three datasets of GSE10797, GSE8977 and GSE3744 were downloaded from GEO (Gene Expression Omnibus) database, containing 55 breast cancer samples and 27 normal samples. After data preprocessing using limma software and RMA (robust multi-array average) algorithm, DEGs (differentially expressed genes) between breast tumor and normal tissues in three individual experiments were identified using MADAM package. Function and pathway enrichment analyses were performed for the DEGs. Transcription factors and TAGs (tumor associated genes) among the DEGs were recognized and the PPI (protein-protein-interaction) network for the DEGs was constructed using Cytoscape software. The mRNA expression was analyzed via real-time quantitative PCR and protein expression was measured by western blotting. Totally, 100 DEGs were identified, including 33 up-regulated genes and 67 down-regulated genes. Among them, up-regulated DEGs such as CD80 was enriched in toll-like receptor (TLR) interaction pathway and the TAG, ISG15 was related to RIG-I-like receptor signaling pathway, while CXCL10 was involved in both of the two pathways. Whereas, the down-regulated DEG, CXCL12 was significantly associated with axon guidance pathway. Additionally, these DEGs were also pivotal nodes in the PPI network with high degrees. Besides, CXCL10 and CD80 were both interacted with IFNG. The mRNA expression of ISG15 was obviously enhanced in human breast cancer cells MCF-7, while no significant difference of CXCL10 mRNA level was found between MCF10A and MCF-7 cells. Moreover, the proteins expression levels of CD80 and ISG15 were significantly increased in MCF-7, MDA-MB-468 and MDA-MB-231 breast cancer cells than in normal MCF10A cells. CD80 might be responsible for the breast cancer's progression and metastasis via regulating innate immune system. In addition, ISG15 is identified as a crucial gene signature associated with breast cancer development and metastasis via RIG-I-like receptor signaling pathway.
Collapse
Affiliation(s)
- Yuanhang Li
- Medical Department, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| | - Weijun Bai
- Medical Department, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Linlin Zhang
- Medical Department, Cancer Hospital of China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| |
Collapse
|
12
|
Xiao Y, Reeves MB, Caulfield AF, Evseev D, Magor KE. The core promoter controls basal and inducible expression of duck retinoic acid inducible gene-I (RIG-I). Mol Immunol 2018; 103:156-165. [PMID: 30286408 DOI: 10.1016/j.molimm.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I) is a cytoplasmic RNA sensor for detecting a variety of RNA viruses including influenza A viruses. Detection ultimately produces Type I interferon (IFN), which stimulates expression of interferon stimulated genes (ISGs), including RIG-I itself in a positive feedback loop. The structure and function of RIG-I is conserved across phylogeny, despite significant protein sequence divergence, however, the promoter sequences do not show the expected phylogenetic relationships and it is not known whether they are similarly regulated. We previously cloned duck RIG-I and showed it is highly induced during influenza A infection consistent with induction by the interferon produced. Here, we identified the Pekin duck RIG-I promoter and constructed promoter reporter vectors, which we transfected into duck embryonic fibroblasts or chicken DF-1 cells and tested in dual luciferase assays. We showed that activation of the Mitochondrial Antiviral Signalling (MAVS) pathway using the constitutively active N-terminal region of RIG-I or polyinosinic-polycytidylic acid (poly I:C) led to stimulation of duck RIG-I promoter activity. Using deletion constructs we showed the core promoter lies in the proximal 250 basepairs, and we identified essential cis-regulatory elements, a GC-box and an interferon-sensitive response element (ISRE), responsible for basal and inducible expression, respectively. Using mCherry-tagged interferon regulatory factors (IRFs) cloned from chickens and ducks, we show overexpression of chIRF7 induced the duck RIG-I promoter, and this required the ISRE site. Finally, we also demonstrated that overexpressed chIRF7 translocated to the nucleus, which was augmented by MAVS activation using RIG-I 2CARD. Our findings demonstrate that RIG-I expression is induced by chIRF7, in a positive regulatory loop. These studies show that the duck RIG-I promoter is appropriately regulated in chicken cells, necessary for the potential generation of transgenic chickens expressing RIG-I.
Collapse
Affiliation(s)
- Yanna Xiao
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew B Reeves
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Adam F Caulfield
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Danyel Evseev
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Katharine E Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
13
|
Hergovits S, Mais C, Haan C, Costa‐Pereira AP, Hermanns HM. Oncostatin M induces RIG-I and MDA5 expression and enhances the double-stranded RNA response in fibroblasts. J Cell Mol Med 2017; 21:3087-3099. [PMID: 28560754 PMCID: PMC5661242 DOI: 10.1111/jcmm.13221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/03/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin (IL)-6-type cytokines have no direct antiviral activity; nevertheless, they display immune-modulatory functions. Oncostatin M (OSM), a member of the IL-6 family, has recently been shown to induce a distinct number of classical interferon stimulated genes (ISG). Most of them are involved in antigen processing and presentation. However, induction of retinoic acid-inducible gene (RIG)-I-like receptors (RLR) has not been investigated. Here we report that OSM has the capability to induce the expression of the DExD/H-Box RNA helicases RIG-I and melanoma differentiation antigen 5 (MDA5) as well as of the transcription factors interferon regulatory factor (IRF)1, IRF7 and IRF9 in primary fibroblasts. Induction of the helicases depends on tyrosine as well as serine phosphorylation of STAT1. Moreover, we could show that the OSM-induced STAT1 phosphorylation is predominantly counter-regulated by a strong STAT3-dependent SOCS3 induction, as Stat3 as well as Socs3 knock-down results in an enhanced and prolonged helicase and IRF expression. Other factors involved in regulation of STAT1 or IRF1 activity, like protein tyrosine phosphatase, non-receptor type 2 (PTPN2), promyelocytic leukaemia protein (PML) or small ubiquitin-related modifier 1 (SUMO1), play a minor role in OSM-mediated induction of RLR. Remarkably, OSM and interferon-γ (IFN-γ) synergize to mediate transcription of RLR and pre-treatment of fibroblasts with OSM fosters the type I interferon production in response to a subsequent encounter with double-stranded RNA. Together, these findings suggest that the OSM-induced JAK/STAT1 signalling is implicated in virus protection of non-professional immune cells and may cooperate with interferons to enhance RLR expression in these cells.
Collapse
MESH Headings
- Cell Line, Tumor
- DEAD Box Protein 58/antagonists & inhibitors
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Interferon Regulatory Factor-1/genetics
- Interferon Regulatory Factor-1/immunology
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/immunology
- Interferon-Induced Helicase, IFIH1/antagonists & inhibitors
- Interferon-Induced Helicase, IFIH1/genetics
- Interferon-Induced Helicase, IFIH1/immunology
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Interferon-Stimulated Gene Factor 3, gamma Subunit/immunology
- Interferon-gamma/pharmacology
- Interleukin-6/pharmacology
- Leukemia Inhibitory Factor/pharmacology
- Leukemia Inhibitory Factor Receptor alpha Subunit/genetics
- Leukemia Inhibitory Factor Receptor alpha Subunit/immunology
- Lipopolysaccharides/pharmacology
- Lung/cytology
- Lung/drug effects
- Lung/metabolism
- Oncostatin M/pharmacology
- Osteoblasts/cytology
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Primary Cell Culture
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptors, Immunologic
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/immunology
- Signal Transduction
- Skin/cytology
- Skin/drug effects
- Skin/metabolism
- Suppressor of Cytokine Signaling 3 Protein/genetics
- Suppressor of Cytokine Signaling 3 Protein/immunology
Collapse
Affiliation(s)
- Sabine Hergovits
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Christine Mais
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| | - Claude Haan
- University of LuxembourgLife Sciences Research Unit‐Signal Transduction LaboratoryBelvauxLuxembourg
| | | | - Heike M. Hermanns
- Medical Clinic and Policlinic IIDivision of HepatologyUniversity Hospital WürzburgWürzburgGermany
| |
Collapse
|
14
|
Tecalco Cruz AC, Mejía-Barreto K. Cell type-dependent regulation of free ISG15 levels and ISGylation. J Cell Commun Signal 2017; 11:127-135. [PMID: 28285335 DOI: 10.1007/s12079-017-0385-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 12/12/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is an ubiquitin-like protein, which can either be found as a free protein or covalently-bound to target proteins via ISGylation. The functions of free and conjugated ISG15 are ambiguous in tumorigenesis owing to its roles as an oncogene and a tumour suppressor gene. This dual role for ISG15 could be a result of the cancer cell type and the cellular context. Here, we report that ISG15 expression is upregulated in different cancer cells compared to normal cells. Furthermore, we found higher endogenous, free ISG15 protein levels in MCF7 breast cancer cells than in other cells, suggesting that non-conjugated ISG15 levels are cell type-specific. Additionally, we demonstrated that interferon gamma (IFN-Ɣ) increased both free and conjugated levels of ISG15 in MCF7 cells. Interestingly, endogenous conjugated and free ISG15 levels were differentially regulated by IFN-Ɣ in several cell lines. On characterisation of the subcellular distribution of ISG15 in several cell types, our results indicated that free ISG15 was mainly localised to the cytoplasm of MCF7 cells, whereas ISGylation marks were also found in the cytoplasm, but mainly in the nucleus, with a specific distribution pattern in each cell type. Thus, free and conjugated ISG15 protein levels and their subcellular distribution are cell type-dependent, whereas IFN-Ɣ signalling may differentially control the abundance of both ISG15 forms in transformed and normal cells.
Collapse
Affiliation(s)
- Angeles C Tecalco Cruz
- Programa de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Karen Mejía-Barreto
- Programa de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| |
Collapse
|
15
|
Chang YC, Chi LH, Chang WM, Su CY, Lin YF, Chen CL, Chen MH, Chang PMH, Wu ATH, Hsiao M. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis. J Hematol Oncol 2017; 10:11. [PMID: 28061796 PMCID: PMC5219690 DOI: 10.1186/s13045-016-0372-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/08/2016] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) represents a unique and major health concern worldwide. Significant increases in glucose uptake and aerobic glycolysis have been observed in HNSCC cells. Glucose transporters (GLUTs) represent a major hub in the glycolysis pathway, with GLUT4 having the highest glucose affinity. However, GLUT4's role in HNSCC has not been fully appreciated. METHODS An in silico analysis was performed in HNSCC cohorts to identify the most significant glucose transporter associated with HNSCC patient prognosis. An immunohistochemical analysis of a tissue microarray with samples from 90 HNSCC patients was used to determine the association of GLUT4 with prognosis. Complementary functional expression and knockdown studies of GLUT4 were performed to investigate whether GLUT4 plays a role in HNSCC cell migration and invasion in vitro and in vivo. The detailed molecular mechanism of the function of GLUT4 in inducing HNSCC cell metastasis was determined. RESULTS Our clinicopathologic analysis showed that increased GLUT4 expression in oral squamous cell carcinoma patients was significantly associated with a poor overall survival (OS, P = 0.035) and recurrence-free survival (RFS, P = 0.001). Furthermore, the ectopic overexpression of GLUT4 in cell lines with low endogenous GLUT4 expression resulted in a significant increase in migratory ability both in vitro and in vivo, whereas the reverse phenotype was observed in GLUT4-silenced cells. Utilizing a GLUT4 overexpression model, we performed gene expression microarray and Ingenuity Pathway Analysis (IPA) to determine that the transcription factor tripartite motif-containing 24 (TRIM24) was the main downstream regulator of GLUT4. In addition, DDX58 was confirmed to be the downstream target of TRIM24, whose downregulation is essential for the migratory phenotype induced by GLUT4-TRIM24 activation in HNSCC cells. CONCLUSIONS Here, we identified altered glucose metabolism in the progression of HNSCC and showed that it could be partially attributed to the novel link between GLUT4 and TRIM24. This novel signaling axis may be used for the prognosis and therapeutic treatment of HNSCC in the future.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Hsing Chi
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuang-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Alex T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Chen Y, Xu Q, Li Y, Liu R, Huang Z, Wang B, Chen G. Gene expression profile after activation of RIG-I in 5'ppp-dsRNA challenged DF1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:191-200. [PMID: 27450445 DOI: 10.1016/j.dci.2016.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 06/06/2023]
Abstract
Retinoic acid inducible gene I (RIG-I) can recognize influenza viruses and evoke the innate immune response. RIG-I is absent in the chicken genome, but is conserved in the genome of ducks. Lack of RIG-I renders chickens more susceptible to avian influenza infection, and the clinical symptoms are more prominent than in other poultry. It is unknown whether introduction of duck RIG-I into chicken cells can establish the immunity as is seen in ducks and the role of RIG-I in established immunity is unknown. In this study, a chicken cell strain with stable expression of duRIG-I was established by lentiviral infection, giving DF1/LV5-RIG-I, and a control strain DF1/LV5 was established in parallel. To verify stable, high level expression of duRIG-I in DF1 cells, the levels of duRIG-I mRNA and protein were determined by real-time RT-PCR and Western blot, respectively. Further, 5'triphosphate double stranded RNA (5'ppp-dsRNA) was used to mimic an RNA virus infection and the infected DF1/LV5-RIG-I and DF1/LV5 cells were subjected to high-throughput RNA-sequencing, which yielded 193.46 M reads and 39.07 G bases. A total of 278 differentially expressed genes (DEGs), i.e., duRIG-I-mediated responsive genes, were identified by RNA-seq. Among the 278 genes, 120 DEGs are annotated in the KEGG database, and the most reliable KEGG pathways are likely to be the signaling pathways of RIG-I like receptors. Functional analysis by Gene ontology (GO) indicates that the functions of these DEGs are primarily related to Type I interferon (IFN) signaling, IFN-β-mediated cellular responses and up-regulation of the RIG-I signaling pathway. Based on the shared genes among different pathways, a network representing crosstalk between RIG-I and other signaling pathways was constructed using Cytoscape software. The network suggests that RIG-mediated pathway may crosstalk with the Jak-STAT signaling pathway, Toll-like receptor signaling pathway, Wnt signaling pathway, ubiquitin-mediated proteolysis and MAPK signaling pathway during the transduction of antiviral signals. After screening, a group of key responsive genes in RIG-I-mediated signaling pathways, such as ISG12-2, Mx1, IFIT5, TRIM25, USP18, STAT1, STAT2, IRF1, IRF7 and IRF8, were tested for differential expression by real-time RT-PCR. In summary, by combining our results and the current literature, we propose a RIG-I-mediated signaling network in chickens.
Collapse
Affiliation(s)
- Yang Chen
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Qi Xu
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Li
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Ran Liu
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Zhengyang Huang
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Bin Wang
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China
| | - Guohong Chen
- The Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
17
|
Two distinct interferon-γ genes in Tetraodon nigroviridis : Functional analysis during Vibrio parahaemolyticus infection. Mol Immunol 2016; 70:34-46. [DOI: 10.1016/j.molimm.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023]
|
18
|
Li XY, Guo HZ, Zhu J. Tumor suppressor activity of RIG-I. Mol Cell Oncol 2014; 1:e968016. [PMID: 27308362 PMCID: PMC4905202 DOI: 10.4161/23723548.2014.968016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/07/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022]
Abstract
Retinoic acid inducible gene-I (RIG-I), named for the observation that its mRNA expression is highly upregulated in the progression of all-trans retinoic acid (ATRA)-induced maturation of acute promyelocytic leukemia (APL) cells, has been well documented as a pivotal virus-associated molecular pattern recognition receptor (PRR) responsible for triggering innate immunity. Upon recognizing viral RNA ligands, RIG-I experiences a series of programmed conformational changes and modifications that unleash its activity through the formation of complexes with various binding partners. Such partners include the mitochondria membrane-anchored protein IPS-1 (also named MAVS/VISA/Cardif) that activates both the IRF3/7 and NF-κB pathways. These partnerships and resulting pathway activations underlie the synthesis of type I interferon and other inflammatory factors. Recent studies have demonstrated that RIG-I is also involved in the regulation of basic cellular processes outside of innate immunity against viral infections, such as hematopoietic proliferation and differentiation, maintenance of leukemic stemness, and tumorigenesis of hepatocellular carcinoma. In this review, we will highlight recent studies leading up to the recognition that RIG-I performs an essential function as a tumor suppressor and try to reconcile this activity of RIG-I with its well-known role in protecting cells against viral infection.
Collapse
Affiliation(s)
- Xian-Yang Li
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China; Department of Laboratory Medicine; Shanghai First People's Hospital; Shanghai Jiao-Tong University; Shanghai, People's Republic of China
| | - He-Zhou Guo
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| | - Jiang Zhu
- State Key Laboratory for Medical Genomics and Shanghai Institute of Hematology and Collaborative Innovation Center of Hematology; Rui-Jin Hospital; Shanghai Jiao-Tong University School of Medicine Shanghai, People's Republic of China
| |
Collapse
|
19
|
Interferon induction by RNA viruses and antagonism by viral pathogens. Viruses 2014; 6:4999-5027. [PMID: 25514371 PMCID: PMC4276940 DOI: 10.3390/v6124999] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/04/2014] [Accepted: 12/04/2014] [Indexed: 12/22/2022] Open
Abstract
Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR). Host PRR for RNA viruses include Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I) like receptors (RLR). Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.
Collapse
|
20
|
Patel JR, García-Sastre A. Activation and regulation of pathogen sensor RIG-I. Cytokine Growth Factor Rev 2014; 25:513-23. [PMID: 25212896 DOI: 10.1016/j.cytogfr.2014.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 12/24/2022]
Abstract
Cells are equipped with a large set of pattern recognition receptors or sensors that detect foreign molecules such as pathogenic nucleic acids and initiate proinflammatory and antimicrobial innate immune responses. RIG-I is a cytosolic sensor that detects 5'-triphosphate double-stranded RNAs produced during infection. RIG-I is responsible for mounting an antimicrobial response against a variety of viruses and intracellular bacteria. RIG-I contains an intricate structural architecture that allows for efficient signaling downstream in the pathway and autoregulation. The RIG-I-mediated antimicrobial pathway is highly regulated in cells requiring various cofactors, negative regulators, and posttranslational modifications. Modulation of RIG-I and RIG-I-mediated signaling in cells by pathogens to evade recognition and activation of the antimicrobial pathway highlights the essential nature of RIG-I in the innate immune response.
Collapse
Affiliation(s)
- Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
21
|
Imaizumi T, Sashinami H, Mori F, Matsumiya T, Yoshida H, Nakane A, Wakabayashi K, Oyama C, Satoh K. Listeria monocytogenesInduces the Expression of Retinoic Acid-Inducible Gene-I. Microbiol Immunol 2013; 50:811-5. [PMID: 17053317 DOI: 10.1111/j.1348-0421.2006.tb03857.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is considered to play a role in innate immunity against virus infections. We showed by immunohistochemical study that RIG-I expression is upregulated in vivo in hepatic Kupffer cells and in splenic reticular cells of mice infected with Listeria monocytogenes. Both heat-killed L. monocytogenes and live L. monocytogenes induced the expression of RIG-I in cultured RAW264.7 murine macrophage-like cells in vitro. RIG-I may also be involved in innate immunity against Listeria infection.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Vascular Biology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen S, Cheng A, Wang M. Innate sensing of viruses by pattern recognition receptors in birds. Vet Res 2013; 44:82. [PMID: 24016341 PMCID: PMC3848724 DOI: 10.1186/1297-9716-44-82] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022] Open
Abstract
Similar to mammals, several viral-sensing pattern recognition receptors (PRR) have been identified in birds including Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR). Avian TLR are slightly different from their mammalian counterparts, including the pseudogene TLR8, the absence of TLR9, and the presence of TLR1La, TLR1Lb, TLR15, and TLR21. Avian TLR3 and TLR7 are involved in RNA virus recognition, especially highly pathogenic avian influenza virus (HPAIV), while TLR15 and TLR21 are potential sensors that recognize both RNA viruses and bacteria. However, the agonist of TLR15 is still unknown. Interestingly, chickens, unlike ducks, geese and finches, lack RIG-I, however they do express melanoma differentiation-associated gene 5 (MDA5) which functionally compensates for the absence of RIG-I. Duck RIG-I is the cytosolic recognition element for HPAIV recognition, while chicken cells sense HPAIV through MDA5. However, the contributions of MDA5 and RIG-I to IFN-β induction upon HPAIV infection is different, and this may contribute to the chicken’s susceptibility to highly pathogenic influenza. It is noteworthy that the interactions between avian DNA viruses and PRR have not yet been reported. Furthermore, the role for avian Nod-like receptors (NLR) in viral immunity is largely unknown. In this review, recent advances in the field of viral recognition by different types of PRR in birds are summarized. In particular, the tissue and cellular distribution of avian PRR, the recognition and activation of PRR by viruses, and the subsequent expression of innate antiviral genes such as type I IFN and proinflammatory cytokines are discussed.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | | | | |
Collapse
|
23
|
da Silva LF, Jones C. Small non-coding RNAs encoded within the herpes simplex virus type 1 latency associated transcript (LAT) cooperate with the retinoic acid inducible gene I (RIG-I) to induce beta-interferon promoter activity and promote cell survival. Virus Res 2013; 175:101-9. [PMID: 23648811 PMCID: PMC4074922 DOI: 10.1016/j.virusres.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected trigeminal ganglionic sensory neurons. Expression of the first 1.5 kb of LAT coding sequences restores wild type reactivation to a LAT null HSV-1 mutant. The anti-apoptosis functions of the first 1.5 kb of LAT coding sequences are important for wild type levels of reactivation from latency. Two small non-coding RNAs (sncRNAs) contained within the first 1.5 kb of LAT coding sequences are expressed in trigeminal ganglia of latently infected mice, they cooperate to inhibit apoptosis, and reduce the efficiency of productive infection. In this study, we demonstrated that LAT sncRNA1 cooperates with the RNA sensor, retinoic acid inducible gene I (RIG-I), to stimulate IFN-β promoter activity and NF-κB dependent transcription in human or mouse cells. LAT sncRNA2 stimulated RIG-I induction of NF-κB dependent transcription in mouse neuroblastoma cells (Neuro-2A) but not human 293 cells. Since it is well established that NF-κB interferes with apoptosis, we tested whether the sncRNAs cooperated with RIG-I to inhibit apoptosis. In Neuro-2A cells, both sncRNAs cooperated with RIG-I to inhibit cold-shock induced apoptosis. Double stranded RNA (PolyI:C) stimulates RIG-I dependent signaling; but enhanced cold-shock induced apoptosis. PolyI:C, but not LAT sncRNAs, interfered with protein synthesis when cotransfected with RIG-I, which correlated with increased levels of cold-shock induced apoptosis. LAT sncRNA1 appeared to interact with RIG-I in transiently transfected cells suggesting this interaction stimulates RIG-I.
Collapse
Affiliation(s)
- Leticia Frizzo da Silva
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Morisson Life Science Center, RM234 Lincoln, NE 68583-0900, United States
| | - Clinton Jones
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Morisson Life Science Center, RM234 Lincoln, NE 68583-0900, United States
| |
Collapse
|
24
|
Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, Ding J, Li Y, Tejasvi T, Gudjonsson JE, Kang HM, Allen MH, McManus R, Novelli G, Samuelsson L, Schalkwijk J, Ståhle M, Burden AD, Smith CH, Cork MJ, Estivill X, Bowcock AM, Krueger GG, Weger W, Worthington J, Tazi-Ahnini R, Nestle FO, Hayday A, Hoffmann P, Winkelmann J, Wijmenga C, Langford C, Edkins S, Andrews R, Blackburn H, Strange A, Band G, Pearson RD, Vukcevic D, Spencer CCA, Deloukas P, Mrowietz U, Schreiber S, Weidinger S, Koks S, Kingo K, Esko T, Metspalu A, Lim HW, Voorhees JJ, Weichenthal M, Wichmann HE, Chandran V, Rosen CF, Rahman P, Gladman DD, Griffiths CEM, Reis A, Kere J, Nair RP, Franke A, Barker JNWN, Abecasis GR, Elder JT, Trembath RC. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet 2012; 44:1341-8. [PMID: 23143594 PMCID: PMC3510312 DOI: 10.1038/ng.2467] [Citation(s) in RCA: 756] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/17/2012] [Indexed: 02/08/2023]
Abstract
To gain further insight into the genetic architecture of psoriasis, we conducted a meta-analysis of 3 genome-wide association studies (GWAS) and 2 independent data sets genotyped on the Immunochip, including 10,588 cases and 22,806 controls. We identified 15 new susceptibility loci, increasing to 36 the number associated with psoriasis in European individuals. We also identified, using conditional analyses, five independent signals within previously known loci. The newly identified loci shared with other autoimmune diseases include candidate genes with roles in regulating T-cell function (such as RUNX3, TAGAP and STAT3). Notably, they included candidate genes whose products are involved in innate host defense, including interferon-mediated antiviral responses (DDX58), macrophage activation (ZC3H12C) and nuclear factor (NF)-κB signaling (CARD14 and CARM1). These results portend a better understanding of shared and distinctive genetic determinants of immune-mediated inflammatory disorders and emphasize the importance of the skin in innate and acquired host defense.
Collapse
Affiliation(s)
- Lam C Tsoi
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Sarah L Spain
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Jo Knight
- Neuroscience Research, Centre for Addiction and Mental Health, Toronto, ON, Canada M5T 1R8
- National Institute for Health Research (NIHR), Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust
| | - Eva Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Philip E Stuart
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Capon
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Jun Ding
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Yanming Li
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Trilokraj Tejasvi
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Hyun M Kang
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - Michael H Allen
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Ross McManus
- Department of Clinical Medicine Trinity College Dublin, Ireland
- Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | - Giuseppe Novelli
- National Agency for Evaluation of Universities and Research Institutes (ANVUR)
- Research Center San Pietro Hospital, Rome, Italy
| | - Lena Samuelsson
- Department of Medical and Clinical Genetics, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mona Ståhle
- Dermatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Catherine H Smith
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Michael J Cork
- Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK
| | - Xavier Estivill
- Genes and Disease Programme, Centre for Genomic Regulation (CRG) and UPF, Hospital del Mar Research Institute (CRG) and Public Health and Epidemiology Network Biomedical Research Centre (CIBERESP), Barcelona, Spain
| | - Anne M Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | | | - Wolfgang Weger
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Jane Worthington
- Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachid Tazi-Ahnini
- Academic Unit of Dermatology Research, Department of Infection and Immunity, The University of Sheffield, Sheffield, UK
| | - Frank O Nestle
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
| | - Adrian Hayday
- Division of Immunology, Infection and Inflammatory Disease; King’s College London, London, UK
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 54127 Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, 54127 Bonn, Germany
| | - Juliane Winkelmann
- Department of Neurology, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Munich, Germany
| | - Cisca Wijmenga
- Genetics Department, University Medical Center and University of Groningen, Groningen, The Netherlands
| | | | - Sarah Edkins
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | | | - Amy Strange
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Gavin Band
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Richard D Pearson
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Damjan Vukcevic
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | - Chris CA Spencer
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7LJ, UK
| | | | - Ulrich Mrowietz
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
- PopGen biobank, University Hospital S.-H., Kiel, Germany
| | - Stephan Weidinger
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Sulev Koks
- Department of Physiology, Centre of Translational Medicine and Centre for Translational Genomics, University of Tartu, 50409 Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, University of Tartu, 50409 Tartu, Estonia
| | - Tonu Esko
- Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Weichenthal
- Department of Dermatology, University Hospital, Schleswig-Holstein, Christian-Albrechts-University, 24105 Kiel, Germany
| | - H. Erich Wichmann
- Institute of Epidemiology I, Helmholtz Centre Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-University, 81377 Munich, Germany
- Klinikum Grosshadern, 81377 Munich, Germany
| | - Vinod Chandran
- Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Cheryl F Rosen
- Department of Medicine, Division of Dermatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8
| | - Proton Rahman
- Department of Medicine, Memorial University, St. John’s, Newfoundland A1C 5B8, Canada
| | - Dafna D Gladman
- Department of Medicine, Division of Rheumatology, University of Toronto, Toronto Western Hospital, Toronto, Ontario M5T 2S8, Canada
| | - Christopher EM Griffiths
- Dermatological Sciences, Salford Royal NHS Foundation Trust, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Andre Reis
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Finland
| | | | | | | | | | - Rajan P Nair
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Jonathan NWN Barker
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
- St John’s Institute of Dermatology, King’s College London, London, UK
| | - Goncalo R Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan Ann Arbor, MI 48109, USA
| | - James T Elder
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
- Ann Arbor Veterans Affairs Hospital, Ann Arbor, MI, 48105, USA
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King’s College London, London, UK
- Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| |
Collapse
|
25
|
Jehl SP, Nogueira CV, Zhang X, Starnbach MN. IFNγ inhibits the cytosolic replication of Shigella flexneri via the cytoplasmic RNA sensor RIG-I. PLoS Pathog 2012; 8:e1002809. [PMID: 22912573 PMCID: PMC3415441 DOI: 10.1371/journal.ppat.1002809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 06/05/2012] [Indexed: 12/02/2022] Open
Abstract
The activation of host cells by interferon gamma (IFNγ) is essential for inhibiting the intracellular replication of most microbial pathogens. Although significant advances have been made in identifying IFNγ-dependent host factors that suppress intracellular bacteria, little is known about how IFNγ enables cells to recognize, or restrict, the growth of pathogens that replicate in the host cytoplasm. The replication of the cytosolic bacterial pathogen Shigella flexneri is significantly inhibited in IFNγ-stimulated cells, however the specific mechanisms that mediate this inhibition have remained elusive. We found that S. flexneri efficiently invades IFNγ-activated mouse embryonic fibroblasts (MEFs) and escapes from the vacuole, suggesting that IFNγ acts by blocking S. flexneri replication in the cytosol. This restriction on cytosolic growth was dependent on interferon regulatory factor 1 (IRF1), an IFNγ-inducible transcription factor capable of inducing IFNγ-mediated cell-autonomous immunity. To identify host factors that restrict S. flexneri growth, we used whole genome microarrays to identify mammalian genes whose expression in S. flexneri-infected cells is controlled by IFNγ and IRF1. Among the genes we identified was the pattern recognition receptor (PRR) retanoic acid-inducible gene I (RIG-I), a cytoplasmic sensor of foreign RNA that had not been previously known to play a role in S. flexneri infection. We found that RIG-I and its downstream signaling adaptor mitochondrial antiviral signaling protein (MAVS)—but not cytosolic Nod-like receptors (NLRs)—are critically important for IFNγ-mediated S. flexneri growth restriction. The recently described RNA polymerase III pathway, which transcribes foreign cytosolic DNA into the RIG-I ligand 5′-triphosphate RNA, appeared to be involved in this restriction. The finding that RIG-I responds to S. flexneri infection during the IFNγ response extends the range of PRRs that are capable of recognizing this bacterium. Additionally, these findings expand our understanding of how IFNγ recognizes, and ultimately restricts, bacterial pathogens within host cells. Shigella flexneri, the major cause of bacillary dysentery worldwide, invades and replicates within the cytoplasm of intestinal epithelial cells, where it disseminates to neighboring cells and ultimately increases the likelihood of transmission to uninfected hosts. A hallmark of the mammalian immune system is its ability to inhibit the growth of such intracellular pathogens by upregulating intracellular resistance mechanisms in response to the cytokine IFNγ. We found that in non-myeloid host cells stimulated with IFNγ S. flexneri remains able to invade the cells efficiently and gain access to the host cytoplasm. Once in the cytoplasm of IFγ-activated cells, the RIG-I/ MAVS immunosurveillance pathway is activated, enabling the stimulated host cells to inhibit S. flexneri replication. Interestingly, RIG-I only played a minor role in the cellular response to this pathogen in the absence of IFNγ, suggesting that the IFNγ response ensures the recognition of the infection through an immunosurveillance pathway that is otherwise dispensable for controlling S. flexneri growth. Together, these findings implicate the RIG-I pathway as a crucial component in the cellular response to this devastating bacterial pathogen.
Collapse
Affiliation(s)
- Stephanie P. Jehl
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina V. Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuqing Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Dotzauer A, Kraemer L. Innate and adaptive immune responses against picornaviruses and their counteractions: An overview. World J Virol 2012; 1:91-107. [PMID: 24175214 PMCID: PMC3782268 DOI: 10.5501/wjv.v1.i3.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 02/22/2012] [Accepted: 05/20/2012] [Indexed: 02/05/2023] Open
Abstract
Picornaviruses, small positive-stranded RNA viruses, cause a wide range of diseases which is based on their differential tissue and cell type tropisms. This diversity is reflected by the immune responses, both innate and adaptive, induced after infection, and the subsequent interactions of the viruses with the immune system. The defense mechanisms of the host and the countermeasures of the virus significantly contribute to the pathogenesis of the infections. Important human pathogens are poliovirus, coxsackievirus, human rhinovirus and hepatitis A virus. These viruses are the best-studied members of the family, and in this review we want to present the major aspects of the reciprocal effects between the immune system and these viruses.
Collapse
Affiliation(s)
- Andreas Dotzauer
- Andreas Dotzauer, Leena Kraemer, Department of Virology, University of Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
27
|
Strobl B, Leitner NR, Müller M. Multifaceted Antiviral Actions of Interferon-stimulated Gene Products. JAK-STAT SIGNALING : FROM BASICS TO DISEASE 2012. [PMCID: PMC7121797 DOI: 10.1007/978-3-7091-0891-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Interferons (IFNs) are extremely powerful cytokines for the host defence against viral infections. Binding of IFNs to their receptors activates the JAK/STAT signalling pathway with the Janus kinases JAK1, 2 and TYK2 and the signal transducer and activators of transcription (STAT) 1 and STAT2. Depending on the cellular setting, additional STATs (STAT3-6) and additional signalling pathways are activated. The actions of IFNs on infected cells and the surrounding tissue are mediated by the induction of several hundred IFN-stimulated genes (ISGs). Since the cloning of the first ISGs, considerable progress has been made in describing antiviral effector proteins and their many modes of action. Effector proteins individually target distinct steps in the viral life cycle, including blocking virus entry, inhibition of viral transcription and translation, modification of viral nucleic acids and proteins and, interference with virus assembly and budding. Novel pathways of viral inhibition are constantly being elucidated and, additionally, unanticipated functions of known antiviral effector proteins are discovered. Herein, we outline IFN-induced antiviral pathways and review recent developments in this fascinating area of research.
Collapse
|
28
|
Two microRNAs encoded within the bovine herpesvirus 1 latency-related gene promote cell survival by interacting with RIG-I and stimulating NF-κB-dependent transcription and beta interferon signaling pathways. J Virol 2011; 86:1670-82. [PMID: 22130548 DOI: 10.1128/jvi.06550-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Sensory neurons latently infected with bovine herpesvirus 1 (BHV-1) abundantly express latency-related (LR) RNA (LR-RNA). Genetic evidence indicates that LR protein expression plays a role in the latency-reactivation cycle, because an LR mutant virus that contains three stop codons downstream of the first open reading frame (ORF2) does not reactivate from latency. The LR mutant virus induces higher levels of apoptotic neurons in trigeminal ganglia, and ORF2 interferes with apoptosis. Although ORF2 is important for the latency-reactivation cycle, other factors encoded by the LR gene are believed to play a supportive role. For example, two microRNAs (miRNAs) encoded within the LR gene are expressed in trigeminal ganglia of latently infected calves. These miRNAs interfere with bICP0 protein expression and productive infection in transient-transfection assays. In this report, we provide evidence that the two LR miRNAs cooperate with poly(I·C), interferon (IFN) regulatory factor 3 (IRF3), or IRF7 to stimulate beta interferon (IFN-β) promoter activity. Both miRNAs also stimulated IFN-β promoter activity and nuclear factor-kappa B (NF-κB)-dependent transcription when cotransfected with a plasmid expressing retinoic acid-inducible gene I (RIG-I). In the presence of RIG-I, the LR miRNAs enhanced survival of mouse neuroblastoma cells, which correlated with activation of the antiapoptosis cellular transcription factor, NF-κB. Immunoprecipitation assays demonstrated that both miRNAs stably interact with RIG-I, suggesting that this interaction directly stimulates the RIG-I signaling pathway. In summary, the results of these studies suggest that interactions between LR miRNAs and RIG-I promote the establishment and maintenance of latency by enhancing survival of infected neurons.
Collapse
|
29
|
Liu F, Gu J. Retinoic acid inducible gene-I, more than a virus sensor. Protein Cell 2011; 2:351-7. [PMID: 21626268 PMCID: PMC4875335 DOI: 10.1007/s13238-011-1045-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/11/2011] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid inducible gene-I (RIG-I) is a caspase recruitment domain (CARD) containing protein that acts as an intracellular RNA receptor and senses virus infection. After binding to double stranded RNA (dsRNA) or 5'-triphosphate single stranded RNA (ssRNA), RIG-I transforms into an open conformation, translocates onto mitochondria, and interacts with the downstream adaptor mitochondrial antiviral signaling (MAVS) to induce the production of type I interferon and inflammatory factors via IRF3/7 and NF-κB pathways, respectively. Recently, accumulating evidence suggests that RIG-I could function in non-viral systems and participate in a series of biological events, such as inflammation and inflammation related diseases, cell proliferation, apoptosis and even senescence. Here we review recent advances in antiviral study of RIG-I as well as the functions of RIG-I in other fields.
Collapse
Affiliation(s)
- Feng Liu
- National Key Laboratory of Protein Engineering and Plant Gene Engineering, LSC, Peking University, Beijing, 100871 China
| | - Jun Gu
- National Key Laboratory of Protein Engineering and Plant Gene Engineering, LSC, Peking University, Beijing, 100871 China
| |
Collapse
|
30
|
Abstract
Antiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation. RIG-I belongs to the IFN-stimulated gene (ISG) family, but certain cells regulate its expression through IFN-independent mechanisms. Several lines of evidence indicate that deregulated RIG-I signaling is associated with autoimmune disorders. Further studies suggest that RIG-I has functions in addition to those directly related to its role in RNA sensing and host defense. We have much to learn and discover regarding this interesting cytoplasmic sensor so that we can capitalize on its properties for the treatment of viral infections, immune disorders, cancer, and perhaps other conditions.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | |
Collapse
|
31
|
Matsumiya T, Imaizumi T, Yoshida H, Satoh K. Antiviral signaling through retinoic acid-inducible gene-I-like receptors. Arch Immunol Ther Exp (Warsz) 2011; 59:41-8. [PMID: 21234810 DOI: 10.1007/s00005-010-0107-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 08/20/2010] [Indexed: 12/25/2022]
Abstract
The innate immune system is essential for the first line of host defense against micropathogens. In virus-infected cells, exposed viral nucleotides are sensed by pattern recognition receptors (PRRs), resulting in the induction of type I interferon. Retinoic acid-inducible gene-I-like receptors (RLRs) are a member of PRRs and are known to be crucial molecules in innate immune responses. Upon viral recognition, RLRs recruit their specific adaptor molecules, leading to the activation of antiviral signaling molecules including interferon regulatory factor-3 and nuclear factor-κB. Mitochondrial antiviral signaling (MAVS) protein is also known as one of the adaptor molecules responsible for antiviral signaling triggered by RLRs. Recent reports have identified numerous intracellular molecules involved in the antiviral responses mediated by RLRs/MAVS. Several viral proteins interfere with the RLR/MAVS signaling, allowing the virus to evade the host defense. In this review, we comprehensively update RLR-dependent antiviral signaling with special reference to the RLRs/MAVS-mediated responses.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki City, Aomori, 036-8562, Japan.
| | | | | | | |
Collapse
|
32
|
Song G, Fleming JAGW, Kim J, Spencer TE, Bazer FW. Pregnancy and interferon tau regulate DDX58 and PLSCR1 in the ovine uterus during the peri-implantation period. Reproduction 2011; 141:127-38. [PMID: 20926691 DOI: 10.1530/rep-10-0348] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferon τ (IFNT), the pregnancy recognition signal in ruminants, abrogates the luteolytic mechanism for maintenance of the corpus luteum for production of progesterone (P(4)). This study examined the expression of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) and phospholipid scramblase 1 (PLSCR1) mRNAs in the ovine uterus as these genes were increased most in 2fTGH (STAT1 positive) cells by IFNT. The results of this study indicated that IFNT regulates expression of DDX58 and PLSCR1 mRNAs in the ovine uterus, which confirmed the results of the in vitro transcriptional profiling experiment with the 2fTGH (parental STAT1 positive) and U3A (STAT1 null) cell lines. Steady-state levels of DDX58 and PLSCR1 mRNAs increased in cells of the ovine uterus between days 12 and 20 of pregnancy, but not between days 10 and 16 of the estrous cycle. The expression of DDX58 and PLSCR1 mRNAs was greatest in endometrial stromal cells, but there was transient expression in uterine luminal and superficial glandular epithelial cells. P(4) alone did not induce expression of DDX58 and PLSCR1 mRNAs; however, intrauterine injections of IFNT did induce expression of DDX58 and PLSCR1 mRNAs in the endometria of nonpregnant ewes independent of effects of P(4). These results indicate that IFNT induces expression of DDX58 and PLSCR1 in ovine endometrial cells via the classical STAT1-mediated cell signaling pathway. Based on their known biological effects, DDX58 and PLSCR1 are IFN-stimulated genes, which may increase the antiviral status of cells of the pregnant uterus to protect against viral infection and/or enhance secretion of type I IFNs that inhibit viral replication.
Collapse
Affiliation(s)
- Gwonhwa Song
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
33
|
Mi Z, Fu J, Xiong Y, Tang H. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 2010; 1:275-83. [PMID: 21203974 PMCID: PMC4875083 DOI: 10.1007/s13238-010-0030-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/21/2010] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5'-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.
Collapse
Affiliation(s)
- Zhiqiang Mi
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Institute of Biophysics, Beijing, 100101 China
| | - Jihuan Fu
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Institute of Biophysics, Beijing, 100101 China
| | - Yanbao Xiong
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Institute of Biophysics, Beijing, 100101 China
| | - Hong Tang
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Institute of Biophysics, Beijing, 100101 China
| |
Collapse
|
34
|
TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS One 2010; 5:e9172. [PMID: 20161788 PMCID: PMC2820086 DOI: 10.1371/journal.pone.0009172] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/18/2010] [Indexed: 12/25/2022] Open
Abstract
The recognition of nucleic acids by the innate immune system during viral infection results in the production of type I interferons and the activation of antiviral immune responses. The RNA helicases RIG-I and MDA-5 recognize distinct types of cytosolic RNA species and signal through the mitochondrial protein MAVS to stimulate the phosphorylation and activation of the transcription factors IRF3 and IRF7, thereby inducing type I interferon expression. Alternatively, the activation of NF-κB leads to proinflammatory cytokine production. The function of MAVS is dependent on both its C-terminal transmembrane (TM) domain and N-terminal caspase recruitment domain (CARD). The TM domain mediates MAVS dimerization in response to viral RNA, allowing the CARD to bind to and activate the downstream effector TRAF3. Notably, dimerization of the MAVS CARD alone is sufficient to activate IRF3, IRF7, and NF-κB. However, TRAF3-deficient cells display only a partial reduction in interferon production in response to RNA virus infection and are not defective in NF-κB activation. Here we find that the related ubiquitin ligase TRAF5 is a downstream target of MAVS that mediates both IRF3 and NF-κB activation. The TM domain of MAVS allows it to dimerize and thereby associate with TRAF5 and induce its ubiquitination in a CARD-dependent manner. Also, NEMO is recruited to the dimerized MAVS CARD domain in a TRAF3 and TRAF5-dependent manner. Thus, our findings reveal a possible function for TRAF5 in mediating the activation of IRF3 and NF-κB downstream of MAVS through the recruitment of NEMO. TRAF5 may be a key molecule in the innate response against viral infection.
Collapse
|
35
|
An essential role for RIG-I in toll-like receptor-stimulated phagocytosis. Cell Host Microbe 2009; 6:150-61. [PMID: 19683681 DOI: 10.1016/j.chom.2009.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 02/03/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) plays an important role in antiviral response by recognizing double-stranded RNA. Here we demonstrate an unanticipated role of RIG-I in Toll-like receptor (TLR)-stimulated phagocytosis. Stimulation with lipopolysaccharide (LPS), a ligand of TLR4, induced the expression of RIG-I in macrophages. Depletion of RIG-I by RNAi or gene targeting inhibited the LPS-induced phagocytosis of bacteria. Cellular processes involved in phagocytosis, such as small GTPase Cdc42/Rac1 activation, actin polymerization, and actin-regulator Arp2/3 recruitment, were also impaired in RIG-I-deficient macrophages activated by LPS. Moreover, RIG-I(-/-) mice were found to be more susceptible to infection with Escherichia coli as compared to wild-type mice. Thus, the regulatory functions of RIG-I are strikingly broad, including a role not only in antiviral responses but in antibacterial responses as well.
Collapse
|
36
|
Similarities and differences in antagonism of neuron alpha/beta interferon responses by Venezuelan equine encephalitis and Sindbis alphaviruses. J Virol 2009; 83:10036-47. [PMID: 19641001 DOI: 10.1128/jvi.01209-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is highly virulent in adult laboratory mice, while Sindbis virus (SINV) is avirulent regardless of dose or inoculation route, dependent upon functioning alpha/beta interferon (IFN-alpha/beta) responses. We have examined each virus' resistance to and/or antagonism of IFN-alpha/beta responses in neurons, a cell type targeted by both viruses in mice, by infecting IFN-alpha/beta-treated or untreated primary cultures with viruses or virus-derived replicons that lacked the structural proteins. Priming with IFN-alpha/beta prior to infection revealed that VEEV replication and progeny virion production were resistant to an established antiviral state while those of SINV were more sensitive. Postinfection IFN-alpha/beta treatment revealed that phosphorylation of STAT1 and STAT2 was partially blocked by infection with either virus, dependent upon expression of nonstructural proteins (nsP), but not structural proteins (sP). However, inhibition of STAT phosphorylation by VEEV replicons was not correlated with inhibition of IFN-stimulated gene (ISG) mRNA induction, yet ISG induction was inhibited when sP were present. Host translation was inhibited by VEEV nsP even when cells were pretreated with IFN-alpha/beta. SINV blocked ISG induction and translation, associated with nsP-mediated shutoff of macromolecular synthesis, but both activities were sensitive to IFN-alpha/beta pretreatment. We conclude that both VEEV and SINV limit ISG induction in infected neurons through shutoff of host transcription and translation but that inhibition by VEEV is more resistant to IFN-alpha/beta priming. Likewise, both viruses inhibit IFN receptor-initiated signaling, although the effect upon host responses is not clear. Finally, VEEV appears to be more resistant to effectors of the preestablished antiviral state.
Collapse
|
37
|
Peng S, Geng J, Sun R, Tian Z, Wei H. Polyinosinic-polycytidylic acid liposome induces human hepatoma cells apoptosis which correlates to the up-regulation of RIG-I like receptors. Cancer Sci 2009; 100:529-36. [PMID: 19154402 PMCID: PMC11158103 DOI: 10.1111/j.1349-7006.2008.01062.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Toll-like receptor 3 and RIG-I like receptors (RLRs; MDA5, RIG-I) are involved in cell growth inhibition and apoptosis. However, the toll-like receptor 3-related apoptotic pathway is insensitive to direct polyinosinic-polycytidylic acid (dsRNA analog) stimulation in hepatoma cells. To determine whether the strategy of transferring polyinosinic-polycytidylic acid into cells (polyinosinic-polycytidylic acid-liposome) could induce apoptosis in hepatoma cells through cytoplasm receptors, we examined the responses of innate immune receptors RLRs and toll-like receptor 3 in response to different stimulation. We found that the apoptosis could exclusively be detected under polyinosinic-polycytidylic acid-liposome stimulation, which involved the activation of the caspase pathway. Besides, the expression of RIG-I, MDA5, IFNbeta and interferon-stimulated gene 15 was increased significantly at an early stage. Moreover, the growth inhibition of polyinosinic-polycytidylic acid-liposome was confirmed in a mouse model. Taken together, these results suggest polyinosinic-polycytidylic acid-liposome could be used as a potential apoptotic agent in hepatocellular carcinoma cells and imply a potential therapeutic strategy.
Collapse
Affiliation(s)
- Shuo Peng
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
38
|
Wang J, Wu S, Jin X, Li M, Chen S, Teeling JL, Perry VH, Gu J. Retinoic acid-inducible gene-I mediates late phase induction of TNF-alpha by lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2008; 180:8011-9. [PMID: 18523264 DOI: 10.4049/jimmunol.180.12.8011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LPS is the known component of bacterial pathogens that stimulates a number of proinflammatory factors. However, the mechanism of the induction of these factors by LPS has not been fully elucidated. We show here that LPS induces retinoic acid-inducible gene-I (RIG-I) in vitro and in vivo as a result from autocrine secretion of IFN-beta in macrophages. TIR-domain-containing adapter-inducing IFN-beta-deficient mouse embryo fibroblast (trif(-/)(-)) fail to show expression of RIG-I following LPS stimulation. Interference of RIG-I expression short interfering RNA represses the expression of LPS-induced TNF-alpha, whereas over-expression of RIG-I leads to the activation of TNF-alpha promoter and the induction of TNF-alpha expression. LPS- and IFN-beta-induced TNF-alpha are suppressed in RIG-I-deficient mouse embryo fibroblasts (rig(-/)(-)). Thus, RIG-I plays a key role in the expression of TNF-alpha in macrophages in response to LPS stimulation, mainly for the late phase LPS-induced expression of TNF-alpha.
Collapse
Affiliation(s)
- Jing Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuzawa E, Imaizumi T, Matsumiya T, Yoshida H, Fukuhara R, Kimura H, Fukui A, Tanji K, Mori F, Wakabayashi K, Fujii S, Mizunuma H, Satoh K. Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates CXCL11 expression in HeLa cells. Life Sci 2008; 82:670-5. [PMID: 18258269 DOI: 10.1016/j.lfs.2007.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 12/06/2007] [Accepted: 12/20/2007] [Indexed: 01/21/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH box family proteins, which have diverse roles in the regulation of gene expression and cellular functions. RIG-I is one of the factors regulated by interferon (IFN)-gamma and regarded as an intracellular signaling molecule for IFN-gamma. IFN-gamma is a major cytokine and also suggested to be involved in embryonal implantation and pregnancy. It is demonstrated that IFN-gamma stimulates endometrial epithelial cells to produce CXCL11, which is implicated in implantation. The aim of the present study was to investigate the effect of IFN-gamma on RIG-I expression in HeLa cells, a cell line derived from human uterine carcinoma. We found that RIG-I mRNA and protein were expressed in HeLa cells stimulated with IFN-gamma. The effect of IFN-gamma was observed in concentration- and time-dependent manners. The RNA interference against RIG-I resulted in the suppression of the IFN-gamma-induced CXCL11 expression. Immunohistochemical studies revealed the RIG-I expression in the normal human endometrium, suggesting a possible role of RIG-I in human reproductive organs.
Collapse
Affiliation(s)
- Ei Yuzawa
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Zhang HX, Sun YP, Liu ZX, Liu XS, Wang L, Lu SY, Kong H, Liu QL, Li XH, Lu ZY, Chen SJ, Chen Z, Bao SS, Dai W, Wang ZG. Rig-I-/- mice develop colitis associated with downregulation of G alpha i2. Cell Res 2007; 17:858-68. [PMID: 17893708 DOI: 10.1038/cr.2007.81] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recruitment domain (CARD), was identified as a pattern-recognition receptor (PRR) that mediates antiviral immunity by inducing type I interferon production. To further study the biological function of RIG-I, we generated Rig-I(-/-) mice through homologous recombination, taking a different strategy to the previously reported strategy. Our Rig-I(-/-) mice are viable and fertile. Histological analysis shows that Rig-I(-/-) mice develop a colitis-like phenotype and increased susceptibility to dextran sulfate sodium-induced colitis. Accordingly, the size and number of Peyer's patches dramatically decreased in mutant mice. The peripheral T-cell subsets in mutant mice are characterized by an increase in effector T cells and a decrease in naive T cells, indicating an important role for Rig-I in the regulation of T-cell activation. It was further found that Rig-I deficiency leads to the downregulation of G protein alpha i2 subunit (G alpha i2) in various tissues, including T and B lymphocytes. By contrast, upregulation of Rig-I in NB4 cells that are treated with ATRA is accompanied by elevated G alpha i2 expression. Moreover, G alpha i2 promoter activity is increased in co-transfected NIH3T3 cells in a Rig-I dose-dependent manner. All these findings suggest that Rig-I has crucial roles in the regulation of G alpha i2 expression and T-cell activation. The development of colitis may be, at least in part, associated with downregulation of G alpha i2 and disturbed T-cell homeostasis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Inflammation underpins the development of atherosclerosis. Initiation and progression of vascular inflammation involves a complex cellular network, with macrophages as major contributors. Activated macrophages produce proinflammatory mediators, bridge innate and adaptive immunity, regulate lipid retention, and participate directly in vascular repair and remodeling. Recent efforts to elucidate molecular mechanisms involved in the regulation of vascular inflammation in atherosclerosis have implicated several families of innate immune recognition receptors in inflammatory activation during the course of this disease. This article reviews our current understanding of innate immune recognition receptors, signaling pathways, and putative ligands implicated in activation of macrophages in the disease. In its final section, we propose a model for the role of macrophages in bridging inflammation and atherosclerosis from the perspective of innate immune recognition and activation.
Collapse
Affiliation(s)
- Zhong-qun Yan
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
42
|
Abstract
The innate immune response is triggered by a variety of pathogens, including viruses, and requires rapid induction of type I interferons (IFN), such as IFNβ and IFNα. IFN induction occurs when specific pathogen motifs bind to specific cellular receptors. In non-professional immune, virally-infected cells, IFN induction is essentially initiated after the binding of dsRNA structures to TLR3 receptors or to intracytosolic RNA helicases, such as RIG-I /MDA5. This leads to the recruitment of specific adaptors, such as TRIF for TLR3 and the mitochondrial-associated IPS-1/VISA/MAVS/CARDIF adapter protein for the RNA helicases, and the ultimate recruitment of kinases, such as MAPKs, the canonical IKK complex and the TBK1/IKKε kinases, which activate the transcription factors ATF-2/c-jun, NF-κB and IRF3, respectively. The coordinated action of these transcription factors leads to induction of IFN and of pro-inflammatory cytokines and to the establishment of the innate immune response. HCV can cleave both the adapters TRIF and IPS-1/VISA/MAVS/CARDIF through the action of its NS3/4A protease. This provokes abrogation of the induction of the IFN and cytokine pathways and favours viral propagation and presumably HCV chronic infection.
Collapse
Affiliation(s)
- Eliane F Meurs
- Hepacivirus Unit, Department of Virology, Pasteur Institute, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
43
|
Imaizumi T, Yagihashi N, Kubota K, Yoshida H, Sakaki H, Yagihashi S, Kimura H, Satoh K. Expression of retinoic acid-inducible gene-I (RIG-I) in macrophages: possible involvement of RIG-I in atherosclerosis. J Atheroscler Thromb 2007; 14:51-5. [PMID: 17485888 DOI: 10.5551/jat.14.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Retinoic acid-inducible gene-I (RIG-I) is one of the genes induced by interferon (IFN)-gamma which plays an important role in atherosclerosis. The aim of this study is to examine if RIG-I is involved in atherosclerosis. METHODS The expression of RIG-I in atherosclerotic lesions in human aorta was examined by immunohistochemical analysis. The expression of RIG-I in THP-1 monocytic cell line or human monocyte-derived macrophages was studied by western blot and RT-PCR analyses. RESULTS Intense immunoreactivity for RIG-I was detected in intimal macrophages in atherosclerotic lesions. IFN-gamma slightly enhanced the RIG-I expression in THP-1 cells. Treatment of the cells with phorbol 12-myristate 13-acetate, which induces the differentiation of the cells into macrophage-like cells, significantly enhanced the IFN-gamma -induced RIG-I expression. IFN-gamma also stimulated the expression of RIG-I in monocyte-derived macrophages. CONCLUSION These results suggest that RIG-I may be involved in differentiation and activation of macrophages, playing a role in atherosclerosis.
Collapse
Affiliation(s)
- Tadaatsu Imaizumi
- Department of Vascular Biology, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yoshida H, Imaizumi T, Lee SJ, Tanji K, Sakaki H, Matsumiya T, Ishikawa A, Taima K, Yuzawa E, Mori F, Wakabayashi K, Kimura H, Satoh K. Retinoic acid-inducible gene-I mediates RANTES/CCL5 expression in U373MG human astrocytoma cells stimulated with double-stranded RNA. Neurosci Res 2007; 58:199-206. [PMID: 17395328 DOI: 10.1016/j.neures.2007.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/16/2007] [Accepted: 02/26/2007] [Indexed: 12/13/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) mediates part of the cell signaling in response to viral infection. Polyinosinic-polycytidilic acid (poly IC) is a synthetic double-stranded RNA (dsRNA) and mimics viral infection when applied to cell cultures. The CC chemokine, RANTES (regulated on activation, normal T-cell expressed and secreted), is a potent attractant for inflammatory cells such as memory T-lymphocytes, monocytes and eosinophils. In the present study, we demonstrated that poly IC enhances the expression of RIG-I in U373MG human astrocytoma cells. The RNA interference of RIG-I resulted in the suppression of the poly IC-induced RANTES expression. Pretreatment of the cells with SB203580, an inhibitor of p38 mitogen-activated protein kinase, and dexamethasone inhibited the poly IC-induced expression of RIG-I. Furthermore, poly IC upregulated RIG-I in normal human astrocytes in culture and the in vivo injection of poly IC into the striatum of the mouse brain induced the expression of RIG-I in astrocytes. We conclude that RIG-I may be involved in immune reactions against viral infection, at least in part, through the regulation of RANTES expression in astrocytes.
Collapse
Affiliation(s)
- Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kitamura H, Matsuzaki Y, Kimura K, Nakano H, Imaizumi T, Satoh K, Hanada K. Cytokine modulation of retinoic acid-inducible gene-I (RIG-I) expression in human epidermal keratinocytes. J Dermatol Sci 2007; 45:127-34. [PMID: 17182220 DOI: 10.1016/j.jdermsci.2006.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 01/19/2023]
Abstract
BACKGROUND Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH/D box family proteins and designated as a putative RNA helicase, which plays various roles in gene expression and cellular functions in response to a variety of RNA viruses. OBJECTIVE The present study was designed to investigate the effects of interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha on RIG-I expression in human keratinocytes, and the expression of RIG-I in skin lesions of psoriasis vulgaris, in which IFN-gamma and TNF-alpha are considered to be involved in its pathogenesis. METHODS The mRNA and protein expression of RIG-I was analyzed by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Immunohistochemical staining of RIG-I was examined on psoriatic skin section. RESULTS The levels of RIG-I mRNA and protein were upregulated in HaCaT keratinocytes in the presence of IFN-gamma or TNF-alpha. Immunohistochemically, RIG-I was detected in the cytoplasm of the spinous and basal layers of psoriatic skin. CONCLUSION Our results suggest that RIG-I might operate not only as a RNA helicase but also as a mediator of the cytokine network in the inflammatory skin diseases, such as psoriasis vulgaris.
Collapse
Affiliation(s)
- Hideo Kitamura
- Department of Dermatology, Hirosaki University School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Kubota K, Sakaki H, Imaizumi T, Nakagawa H, Kusumi A, Kobayashi W, Satoh K, Kimura H. Retinoic acid-inducible gene-I is induced in gingival fibroblasts by lipopolysaccharide or poly IC: possible roles in interleukin-1beta, -6 and -8 expression. ACTA ACUST UNITED AC 2007; 21:399-406. [PMID: 17064399 DOI: 10.1111/j.1399-302x.2006.00326.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH family of proteins, and little is known of its biological function in the oral region. We previously reported that interleukin 1beta (IL-1beta) induced RIG-I expression in gingival fibroblasts. In this study, we studied the mechanism of RIG-I expression induced by lipopolysaccharide (LPS) or double-stranded RNA (dsRNA) in gingival fibroblasts. We also addressed the role of RIG-I in the expression of IL-1beta, IL-6 and IL-8 in gingival fibroblasts stimulated with LPS or dsRNA. We stimulated cultured human gingival fibroblasts with LPS or dsRNA, and examined the expression of RIG-I mRNA and protein. The effect of cycloheximide, a protein synthesis inhibitor, on RIG-I induction by these stimuli was examined. The expression of IL-1beta, IL-6 and IL-8 in gingival fibroblasts transfected with RIG-I cDNA stimulated with LPS or dsRNA was examined. LPS or dsRNA induced the expression of mRNA and protein for RIG-I in concentration- and time-dependent manners. We also examined the localization of RIG-I, and found that it was expressed in cytoplasm. Cycloheximide did not suppress the LPS or dsRNA-induced RIG-I expression. Introduction of RIG-I cDNA into gingival fibroblasts resulted in enhanced expression of IL-1beta, IL-6 and IL-8; moreover, overexpression of RIG-I stimulated with LPS or dsRNA synergistically increased expression of IL-1beta, IL-6 and IL-8. RIG-I may have important roles in the innate immune response in the regulation of IL-1beta, IL-6 and IL-8 expression in gingival fibroblasts in response to LPS and dsRNA.
Collapse
Affiliation(s)
- K Kubota
- Department of Dentistry and Oral Surgery, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kobori M, Yoshida M, Ohnishi-Kameyama M, Shinmoto H. Ergosterol peroxide from an edible mushroom suppresses inflammatory responses in RAW264.7 macrophages and growth of HT29 colon adenocarcinoma cells. Br J Pharmacol 2006; 150:209-19. [PMID: 17160010 PMCID: PMC2042906 DOI: 10.1038/sj.bjp.0706972] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE 5alpha,8alpha-Epidioxy-22E-ergosta-6, 22-dien-3beta-ol (ergosterol peroxide) is a major antitumour sterol produced by edible or medicinal mushrooms. However, its molecular mechanism of action has yet to be determined. Here, we examine the anticancer and anti-inflammatory effects of ergosterol peroxide. EXPERIMENTAL APPROACH After treating RAW264.7 macrophages with LPS and purified ergosterol peroxide or ergosterol, we determined LPS-induced inflammatory cytokines, nuclear DNA binding activity of transcription factors and phosphorylation of MAP kinases (MAPKs). HT29 colorectal adenocarcinoma cells were treated with ergosterol peroxide for 5 days. To investigate the antitumour properties of ergosterol peroxide, we performed DNA microarray and RT-PCR analyses and determined the reactive oxygen species (ROS) in HT29 cells. KEY RESULTS Ergosterol peroxide suppressed LPS-induced TNF-alpha secretion and IL-1alpha/beta expression in RAW264.7 cells. Ergosterol peroxide and ergosterol suppressed LPS-induced DNA binding activity of NF-kappaB and C/EBPbeta, and inhibited the phosphorylation of p38, JNK and ERK MAPKs. Ergosterol peroxide down-regulated the expression of low-density lipoprotein receptor (LDLR) regulated by C/EBP, and HMG-CoA reductase (HMGCR) in RAW264.7 cells. In addition, ergosterol peroxide showed cytostatic effects on HT29 cells and increased intracellular ROS. Furthermore, ergosterol peroxide induced the expression of oxidative stress-inducible genes, and the cyclin-dependent kinase inhibitor CDKN1A, and suppressed STAT1 and interferon-inducible genes. CONCLUSION AND IMPLICATION Our results suggest that ergosterol peroxide and ergosterol suppress LPS-induced inflammatory responses through inhibition of NF-kappaB and C/EBPbeta transcriptional activity, and phosphorylation of MAPKs. Moreover, ergosterol peroxide appears to suppress cell growth and STAT1 mediated inflammatory responses by altering the redox state in HT29 cells.
Collapse
Affiliation(s)
- M Kobori
- National Food Research Institute, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
48
|
Paladino P, Cummings DT, Noyce RS, Mossman KL. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:8008-16. [PMID: 17114474 DOI: 10.4049/jimmunol.177.11.8008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The innate immune system responds to pathogen infection by eliciting a nonspecific immune response following the recognition of various pathogen-associated molecular patterns. TLRs and the RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 recognize foreign nucleic acid within endosomal and cytoplasmic compartments, respectively, initiating a signaling cascade that involves the induction of type I IFN through the transcription factors IFN regulatory factor (IRF) 3 and NF-kappaB. However, a recent paradigm has emerged in which bacterial DNA and double-stranded B-form DNA trigger type I IFN production through an uncharacterized TLR- and RIG-I-independent pathway. We have previously described a response in primary fibroblasts wherein the entry of diverse RNA- and DNA-enveloped virus particles is sufficient to induce a subset of IFN-stimulated genes and a complete antiviral response in an IRF3-dependent, IFN-independent manner. In this study, we show that the innate immune response to virus particle entry is independent of both TLR and RIG-I pathways, confirming the existence of novel innate immune mechanisms that result in the activation of IRF3. Furthermore, we propose a model of innate antiviral immunity in which exposure to increasing numbers of virus particles elevates the complexity of the cellular response from an intracellular, IFN-independent response to one involving secretion of cytokines and activation of infiltrating immune cells.
Collapse
Affiliation(s)
- Patrick Paladino
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
49
|
Abstract
In recent decades many advances have occurred in the understanding of the role of cytokines in breast cancer. New signalling pathways of interleukin (IL)-1 family, IL-6, IL-11, IL-18, interferons (IFNs) and interferon regulatory factors 1 (IRF-1) and 2 (IRF-2) have been found within tumour microenvironments and in metastatic sites. Some cytokines (IL-1, IL-6, IL-11, TGFbeta) stimulate while others (IL-12, IL-18, IFNs) inhibit breast cancer proliferation and/or invasion. Similarly, high circulating levels of some cytokines seem to be favourable (soluble IL-2R) while others are unfavourable (IL-1beta, IL-6, IL-8, IL-10, IL-18, gp130) prognostic indicators. So far IL-2, IFNalpha, IFNbeta and occasionally IFNgamma, IL-6, IL-12 have been the cytokines used for anti tumour treatment of advanced breast cancer either to induce or increase hormone sensitivity and/or to stimulate cellular immunity. Disappointing results occurred in most trials; however, two long-term pilot studies suggest that IL-2 and IFNbeta, when used appropriately can have a positive effect on clinical benefit and overall survival of patients with minimal residual disease after chemotherapy or with disseminated disease controlled by conventional endocrine therapy.
Collapse
Affiliation(s)
- A Nicolini
- Department of Internal Medicine, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | | | | |
Collapse
|
50
|
Imaizumi T, Hatakeyama M, Yamashita K, Ishikawa A, Yoshida H, Satoh K, Taima K, Mori F, Wakabayashi K. Double-stranded RNA induces the synthesis of retinoic acid-inducible gene-I in vascular endothelial cells. ACTA ACUST UNITED AC 2005; 12:133-7. [PMID: 16291516 DOI: 10.1080/10623320500191885] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Viral infection induces various responses in vascular endothelial cells. Polyinosinic-polycytidylic acid (poly IC) is a synthetic double-stranded RNA (dsRNA), and treatment of cells with poly IC mimics the viral infection to the cells. Retinoic acid-inducible gene-I (RIG-I) is a protein belonging to the DExH-box family and designated as a putative RNA helicase. RIG-I is considered to play a role in antiviral responses through the regulation of gene expressions. In the present study, the authors treated human umbilical vein endothelial cells (HUVECs) with poly IC and found that poly IC induced the expression of RIG-I. The poly IC-induced RIG-I expression was inhibited by the preincubation of the cells with 2-aminopurine, an inhibitor of dsRNA-dependent protein kinase (PKR). Immunohistochemical examination revealed high levels of RIG-I immunoreactivity in vascular endothelial cells in the thalamus from rats inoculated with hantavirus. Induction of RIG-I by poly IC may be involved in the antiviral responses in endothelial cells.
Collapse
Affiliation(s)
- T Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|