1
|
Lin PY, Chang YT, Huang YC, Chen PY. Estimating genome-wide DNA methylation heterogeneity with methylation patterns. Epigenetics Chromatin 2023; 16:44. [PMID: 37941029 PMCID: PMC10634068 DOI: 10.1186/s13072-023-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND In a heterogeneous population of cells, individual cells can behave differently and respond variably to the environment. This cellular diversity can be assessed by measuring DNA methylation patterns. The loci with variable methylation patterns are informative of cellular heterogeneity and may serve as biomarkers of diseases and developmental progression. Cell-to-cell methylation heterogeneity can be evaluated through single-cell methylomes or computational techniques for pooled cells. However, the feasibility and performance of these approaches to precisely estimate methylation heterogeneity require further assessment. RESULTS Here, we proposed model-based methods adopted from a mathematical framework originally from biodiversity, to estimate genome-wide DNA methylation heterogeneity. We evaluated the performance of our models and the existing methods with feature comparison, and tested on both synthetic datasets and real data. Overall, our methods have demonstrated advantages over others because of their better correlation with the actual heterogeneity. We also demonstrated that methylation heterogeneity offers an additional layer of biological information distinct from the conventional methylation level. In the case studies, we showed that distinct profiles of methylation heterogeneity in CG and non-CG methylation can predict the regulatory roles between genomic elements in Arabidopsis. This opens up a new direction for plant epigenomics. Finally, we demonstrated that our score might be able to identify loci in human cancer samples as putative biomarkers for early cancer detection. CONCLUSIONS We adopted the mathematical framework from biodiversity into three model-based methods for analyzing genome-wide DNA methylation heterogeneity to monitor cellular heterogeneity. Our methods, namely MeH, have been implemented, evaluated with existing methods, and are open to the research community.
Collapse
Affiliation(s)
- Pei-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Ya-Ting Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chun Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan
- Bioinformatics Program, Institute of Statistical Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan.
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 115, Taiwan.
| |
Collapse
|
2
|
Laine VN, Sepers B, Lindner M, Gawehns F, Ruuskanen S, van Oers K. An ecologist's guide for studying DNA methylation variation in wild vertebrates. Mol Ecol Resour 2023; 23:1488-1508. [PMID: 35466564 DOI: 10.1111/1755-0998.13624] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 11/30/2022]
Abstract
The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.
Collapse
Affiliation(s)
- Veronika N Laine
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| | - Melanie Lindner
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Fleur Gawehns
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Suvi Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
- Department of Biology, University of Turku, Finland
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research (WUR), Wageningen, The Netherlands
| |
Collapse
|
3
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
4
|
Zhao C, Zhang N, Zhang Y, Tuersunjiang N, Gao S, Liu W, Zhang Y. A DNA methylation state transition model reveals the programmed epigenetic heterogeneity in human pre-implantation embryos. Genome Biol 2020; 21:277. [PMID: 33198783 PMCID: PMC7667739 DOI: 10.1186/s13059-020-02189-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND During mammalian early embryogenesis, expression and epigenetic heterogeneity emerge before the first cell fate determination, but the programs causing such determinate heterogeneity are largely unexplored. RESULTS Here, we present MethylTransition, a novel DNA methylation state transition model, for characterizing methylation changes during one or a few cell cycles at single-cell resolution. MethylTransition involves the creation of a transition matrix comprising three parameters that represent the probabilities of DNA methylation-modifying activities in order to link the methylation states before and after a cell cycle. We apply MethylTransition to single-cell DNA methylome data from human pre-implantation embryogenesis and elucidate that the DNA methylation heterogeneity that emerges at promoters during this process is largely an intrinsic output of a program with unique probabilities of DNA methylation-modifying activities. Moreover, we experimentally validate the effect of the initial DNA methylation on expression heterogeneity in pre-implantation mouse embryos. CONCLUSIONS Our study reveals the programmed DNA methylation heterogeneity during human pre-implantation embryogenesis through a novel mathematical model and provides valuable clues for identifying the driving factors of the first cell fate determination during this process.
Collapse
Affiliation(s)
- Chengchen Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Naiqian Zhang
- School of Mathematics and Statistics, Shandong University at Weihai, Weihai, 264209 China
| | - Yalin Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200092 China
| | - Nuermaimaiti Tuersunjiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200092 China
| | - Wenqiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai, 200092 China
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| |
Collapse
|
5
|
Guo X, Puttabyatappa M, Domino SE, Padmanabhan V. Developmental programming: Prenatal testosterone-induced changes in epigenetic modulators and gene expression in metabolic tissues of female sheep. Mol Cell Endocrinol 2020; 514:110913. [PMID: 32562712 PMCID: PMC7397566 DOI: 10.1016/j.mce.2020.110913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Prenatal testosterone (T)-treated female sheep manifest peripheral insulin resistance and tissue-specific changes in insulin sensitivity with liver and muscle manifesting insulin resistance accompanied by inflammatory, oxidative and lipotoxic state. In contrast, visceral (VAT) and subcutaneous (SAT) adipose tissues are insulin sensitive in spite of VAT manifesting changes in inflammatory and oxidative state. We hypothesized that prenatal T-induced changes in tissue-specific insulin resistance arise from disrupted lipid storage and metabolism gene expression driven by changes in DNA and histone modifying enzymes. Changes in gene expression were assessed in liver, muscle and 4 adipose (VAT, SAT, epicardiac [ECAT] and perirenal [PRAT]) depots collected from control and prenatal T-treated female sheep. Prenatal T-treatment increased lipid droplet and metabolism genes PPARA and PLIN1 in liver, SREBF and PLIN1 in muscle and showed a trend for decrease in PLIN2 in PRAT. Among epigenetic modifying enzymes, prenatal T-treatment increased expression of 1) DNMT1 in liver and DNMT3A in VAT, PRAT, muscle and liver; 2) HDAC1 in ECAT, HDAC2 in muscle with decrease in HDAC3 in VAT; 3) EP300 in VAT and ECAT; and 4) KDM1A in VAT with increases in liver histone acetylation. Increased lipid storage and metabolism genes in liver and muscle are consistent with lipotoxicity in these tissues with increased histone acetylation likely contributing to increased liver PPARA. These findings are suggestive that metabolic defects in prenatal T-treated sheep may arise from changes in key genes mediated, in part, by tissue-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, 3rd Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | | | - Steven E Domino
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor MI, USA.
| |
Collapse
|
6
|
Campbell DEK, Langlois VS. Thyroid hormones and androgens differentially regulate gene expression in testes and ovaries of sexually mature Silurana tropicalis. Gen Comp Endocrinol 2018; 267:172-182. [PMID: 29990494 DOI: 10.1016/j.ygcen.2018.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 02/04/2023]
Abstract
A series of ex vivo exposures using testicular and ovarian tissues of sexually mature Western clawed frogs (Silurana tropicalis) were designed to examine molecular mechanisms of thyroid hormone (TH) and androgen crosstalk sans hypophyseal feedback as well as investigate potential sex-specific differences. Tissues were exposed ex vivo to either triiodothyronine (T3), iopanoic acid (IOP), one co-treatment of IOP + 5α-dihydrotestosterone (5α-DHT), 5α-DHT, 5β-dihydrotestosterone (5β-DHT), or testosterone (T). Direct exposure to different androgens led to androgen specific increases in thyroid receptor and deiodinase transcripts in testes (trβ and dio1) but a decrease in expression in ovaries (trβ and dio3), suggesting that male and female frogs can be differently affected by androgenic compounds. Moreover, exposure to select androgens differentially increased estrogen-related transcription (estrogen receptor alpha (erα) and aromatase (cyp19)) and production (estradiol) in ovaries and testes indicating the activation of alternate metabolic pathways yielding estrogenic metabolites. Sex-steroid-related transcription (i.e., steroid 5α-reductase type 2 (srd5α2) and erα) and production (i.e., 5α-DHT) were also differentially regulated by THs. The presence and frequency of transcription factor binding sites in the putative promoter regions of TH- and sex steroid-related genes were also examined in S. tropicalis, rodent, and fish models using in silico analysis. In summary, this study provides an improved mechanistic understanding of TH- and androgen-mediated actions and reveals differential transcriptional effects as a function of sex in frogs.
Collapse
Affiliation(s)
- D E K Campbell
- Biology Department, Queen's University, Kingston, ON, Canada
| | - V S Langlois
- Biology Department, Queen's University, Kingston, ON, Canada; Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, Quebec City, QC, Canada; Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
7
|
Laubach ZM, Perng W, Dolinoy DC, Faulk CD, Holekamp KE, Getty T. Epigenetics and the maintenance of developmental plasticity: extending the signalling theory framework. Biol Rev Camb Philos Soc 2018; 93:1323-1338. [PMID: 29356358 DOI: 10.1111/brv.12396] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
Developmental plasticity, a phenomenon of importance in both evolutionary biology and human studies of the developmental origins of health and disease (DOHaD), enables organisms to respond to their environment based on previous experience without changes to the underlying nucleotide sequence. Although such phenotypic responses should theoretically improve an organism's fitness and performance in its future environment, this is not always the case. Herein, we first discuss epigenetics as an adaptive mechanism of developmental plasticity and use signaling theory to provide an evolutionary context for DOHaD phenomena within a generation. Next, we utilize signalling theory to identify determinants of adaptive developmental plasticity, detect sources of random variability - also known as process errors that affect maintenance of an epigenetic signal (DNA methylation) over time, and discuss implications of these errors for an organism's health and fitness. Finally, we apply life-course epidemiology conceptual models to inform study design and analytical strategies that are capable of parsing out the potential effects of process errors in the relationships among an organism's early environment, DNA methylation, and phenotype in a future environment. Ultimately, we hope to foster cross-talk and interdisciplinary collaboration between evolutionary biology and DOHaD epidemiology, which have historically remained separate despite a shared interest in developmental plasticity.
Collapse
Affiliation(s)
- Zachary M Laubach
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| | - Wei Perng
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A.,Department of Epidemiology, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A
| | - Dana C Dolinoy
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A.,Department of Environmental Health Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, U.S.A
| | - Christopher D Faulk
- Department of Animal Sciences, University of Minnesota, 495B AnSc/VetMed, 1988 Fitch Avenue, St. Paul, MN, 55108, U.S.A
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| | - Thomas Getty
- Department of Integrative Biology, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, 288 Farm Lane, East Lansing, MI, 48824, U.S.A.,BEACON, NSF Center for the Study of Evolution in Action, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, U.S.A
| |
Collapse
|
8
|
Tang Q, Chen Y, Wu W, Ding H, Xia Y, Chen D, Wang X. Idiopathic male infertility and polymorphisms in the DNA methyltransferase genes involved in epigenetic marking. Sci Rep 2017; 7:11219. [PMID: 28894282 PMCID: PMC5593912 DOI: 10.1038/s41598-017-11636-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the association between male infertility and single-nucleotide polymorphisms (SNPs) of DNA methyltransferases (DNMT) genes (DNMT3B: rs2424909, DNMT1: rs4804490, DNMT3A: rs1550117 and DNMT3L: rs7354779). Eight hundred and thirty three idiopathic infertile males and four hundred and ten fertile controls from the hospitals affiliated to Nanjing Medical University between 2010 and 2012 were recruited in the study. We demonstrated a significantly increased risk of idiopathic infertility with abnormal semen parameters in association with the heterozygous genotype of variant rs4804490. Moreover, the AA genotype of variant rs4804490 was associated with significantly decreased risk for male infertility with abnormal semen parameters. A decreased risk of idiopathic infertility with abnormal semen parameters was associated with the homozygous genotype of variant rs2424909. These results suggested that variants in different DNMT genes have different relationships with idiopathic male infertility, and Chinese men carrying these variants have an increased or decreased risk of abnormal semen parameters.
Collapse
Affiliation(s)
- Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yiqiu Chen
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China.
| | - Hongjuan Ding
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China.
| | - Daozhen Chen
- Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Applied Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
9
|
Tan H, Liu T, Zhang J, Zhou T. Random positioning of nucleosomes enhances heritable bistability. MOLECULAR BIOSYSTEMS 2017; 13:132-141. [PMID: 27833942 DOI: 10.1039/c6mb00729e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chromosomal regions are often dynamically modified by histones, leading to the uncertainty of nucleosome positions. Experiments have provided evidence for this randomness, but it is unclear how it impacts epigenetic heritability. Here, by analyzing a mechanic model at the molecular level, which considers three representative types of nucleosomes (unmodified, methylated, and acetylated) and dynamic nucleosome modifications, we find that in contrast to the equidistance partition of nucleosomes, random partition can significantly enhance heritable bistability. Moreover, the more "chaotic" the nucleosome positions are, the better the heritable bistability is, in contrast to the previous view. In both cases of nucleosome positioning, heritable bistability occurs only when the total nucleosome number is beyond a threshold, and it depends strongly on the allocation rate that enzymes regulate transitions between different nucleosome types. Thus, we conclude that random positioning of nucleosomes is an unneglectable factor impacting heritable bistability. A point worth mentioning is that our model established on a master equation can easily be extended to include other more complex processes underlying dynamic nucleosome modifications.
Collapse
Affiliation(s)
- Heli Tan
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China. and School of Mathematics and Computational Science, Xiangtan University, XiangTan 411105, P. R. China
| | - Tuoqi Liu
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
10
|
Sormani G, Haerter JO, Lövkvist C, Sneppen K. Stabilization of epigenetic states of CpG islands by local cooperation. MOLECULAR BIOSYSTEMS 2017; 12:2142-6. [PMID: 26923344 DOI: 10.1039/c6mb00044d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA methylation of CpG sites is an important epigenetic mark in mammals. Active promoters are often associated with unmethylated CpG sites, whereas methylated CpG sites correlate with silenced promoters. Methylation of CpG sites must be generally described as a dynamical process that is mediated by methylation enzymes, such as DNMT1 and DNMT3a/b. However, there are several models of how CpG sites can be protected from methylation and thereby remain unmethylated. In this paper we examine the combination of both: the positive feedbacks of DNA methylation and a short range counterpart which in turn protects-and thereby maintains-the unmethylated state. The emergent dynamics is provided by collaborative, re-enforcing feedbacks in favor of methylated CpG islands and cooperative protection of one CpG site by another in favor of unmethylated CpG sites. Our results suggest that this synthesis of mechanisms provides equally robust maintenance of both the unmethylated and methylated states of CpG islands.
Collapse
Affiliation(s)
- Giulia Sormani
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jan O Haerter
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Cecilia Lövkvist
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Steroid 5-reductases are functional during early frog development and are regulated via DNA methylation. Mech Dev 2016; 141:14-24. [DOI: 10.1016/j.mod.2016.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
|
12
|
Bissegger S, Langlois VS. Androgens modulate gene expression and specific DNA methylation pattern of steroid 5α-reductases in the frog Silurana tropicalis. Gen Comp Endocrinol 2016; 234:123-32. [PMID: 26987288 DOI: 10.1016/j.ygcen.2016.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/12/2016] [Indexed: 12/15/2022]
Abstract
In vertebrates, androgens are essential in many biological functions, including reproduction, immune system, metabolism, cardiovascular function, and the central nervous system. The most potent androgen 5α-dihydrotestosterone (5α-DHT), which is actively involved in sexual differentiation and development, is converted from testosterone (T) by the steroid 5α-reductases type 1, 2, and 3 (Srd5α1, Srd5α2, and Srd5α3). Alternatively, steroid 5β-reductase (Srd5β) converts T to 5β-dihydrotestosterone (5β-DHT), a metabolite believed to be involved in steroid clearance. Recent studies suggested that Srd5 isoforms are targets for endocrine disruption. Thus, understanding the regulation of Srd5 is important to expand our knowledge on how exogenous compounds can interfere with these enzymes. In this study, we exposed frog brain, liver, and gonads ex vivo to T, 5α-DHT, and 5β-DHT in order to investigate the regulation of srd5 in response to androgens as a simulation of endocrine disrupting chemicals with androgenic properties. Androgens did not modulate srd5α2, suggesting that this isoform is not regulated by T and 5α-DHT in frogs. However, the DNA methylation of srd5α2 increased following 5α-DHT treatment suggesting that androgens can modulate epigenetic mechanisms in amphibians. In contrast, the DNA methylation of srd5α1 and srd5α3 remained stable after androgen exposure, but the mRNA levels of srd5α1 and srd5α3 were modulated by T, 5α-DHT, and 5β-DHT in a sex- and tissue-specific manner. While T positively regulates srd5α1 and srd5α3 in testes, T negatively regulates srd5α3 in ovaries. Moreover, exposure to T also increased the mRNA level of srd5β in the male brain suggesting a mechanism to protect the brain from androgen action by elimination of T into 5β-DHT. Thus, exogenous compounds with androgenic properties potentially interact with srd5 transcription and DNA methylation pattern, which could adversely affect biological functions of vertebrates during development and reproduction.
Collapse
Affiliation(s)
- Sonja Bissegger
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada
| | - Valerie S Langlois
- Chemistry and Chemical Engineering Department, Royal Military College of Canada, Kingston, ON, Canada.
| |
Collapse
|
13
|
Sneppen K, Dodd IB. Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in Saccharomyces cerevisiae. Epigenetics 2015; 10:293-302. [PMID: 25830651 PMCID: PMC4622568 DOI: 10.1080/15592294.2015.1017200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
How alternative chromatin-based regulatory states can be made stable and heritable in order to provide robust epigenetic memory is poorly understood. Here, we develop a stochastic model of the silencing system in Saccharomyces cerevisiae that incorporates cooperative binding of the repressive SIR complex and antisilencing histone modifications, in addition to positive feedback in Sir2 recruitment. The model was able to reproduce key features of SIR regulation of an HM locus, including heritable bistability, dependence on the silencer elements, and sensitivity to SIR dosage. We found that antisilencing methylation of H3K79 by Dot1 was not needed to generate these features, but acted to reduce spreading of SIR binding, consistent with its proposed role in containment of silencing. In contrast, cooperative inter-nucleosome interactions mediated by the SIR complex were critical for concentrating SIR binding around the silencers in the absence of barriers, and for providing bistability in SIR binding. SIR-SIR interactions magnify the cooperativity in the Sir2-histone deacetylation positive feedback reaction and complete a double-negative feedback circuit involving antisilencing modifications. Thus, our modeling underscores the potential importance of cooperative interactions between nucleosome-bound complexes both in the SIR system and in other chromatin-based complexes in epigenetic regulation.
Collapse
Affiliation(s)
- Kim Sneppen
- a Centre for Models of Life; Niels Bohr Institute; University of Copenhagen; Copenhagen , Denmark
| | | |
Collapse
|
14
|
Label free detection of 5'hydroxymethylcytosine within CpG islands using optical sensors. Biosens Bioelectron 2014; 65:198-203. [PMID: 25461158 DOI: 10.1016/j.bios.2014.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 01/01/2023]
Abstract
Significant research has been invested in correlating genetic variations with different disease probabilities. Recently, it has become apparent that other DNA modifications, such as the addition of a methyl or hydroxymethyl group to cytosine, can also play a role. While these modifications do not change the sequence, they can negatively impact the function. Therefore, it is critical to be able to both read the genetic code and identify these modifications. Currently, the detection of hydroxymethylated cytosine (5'hmC) and the two closely related variants, cytosine (C) and 5'methylcytosine (5'mC), relies on a combination of nucleotide modification steps, followed by PCR and gene sequencing. However, this approach is not ideal because transcription errors which are inherent to the PCR process can be misinterpreted as fluctuations in the relative C:5'mC:5'hmC concentrations. As such, an alternative method which does not rely on PCR or nucleotide modification is desirable. One approach is based on label-free optical resonant cavity sensors. In the present work, toroidal resonant cavity sensors are functionalized with antibodies to enable label-free detection and discrimination between C, 5'mC, and 5'hmC in real-time without PCR. Specifically, epoxide chemistry is used to covalently attach the 5'hmC antibody to the surface of the cavity. Subsequently, to thoroughly characterize the sensor platform, detection of C, 5'mC, and 5'hmC is performed over a concentration range from pM to nM. At low (pM) concentrations, the hydroxymethylated cytosine produces a significantly larger signal than the structurally similar epigenetic markers; thus demonstrating the applicability of this platform.
Collapse
|
15
|
Chang LL, Wun WSA, Wang PS. Recovery from developmental nonylphenol exposure is possible for female rats. Chem Biol Interact 2014; 221:52-60. [DOI: 10.1016/j.cbi.2014.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 11/25/2022]
|
16
|
Chandra S, Baribault C, Lacey M, Ehrlich M. Myogenic differential methylation: diverse associations with chromatin structure. BIOLOGY 2014; 3:426-51. [PMID: 24949935 PMCID: PMC4085616 DOI: 10.3390/biology3020426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 11/16/2022]
Abstract
Employing a new algorithm for identifying differentially methylated regions (DMRs) from reduced representation bisulfite sequencing profiles, we identified 1972 hypermethylated and 3250 hypomethylated myogenic DMRs in a comparison of myoblasts (Mb) and myotubes (Mt) with 16 types of nonmuscle cell cultures. DMRs co-localized with a variety of chromatin structures, as deduced from ENCODE whole-genome profiles. Myogenic hypomethylation was highly associated with both weak and strong enhancer-type chromatin, while hypermethylation was infrequently associated with enhancer-type chromatin. Both myogenic hypermethylation and hypomethylation often overlapped weak transcription-type chromatin and Polycomb-repressed-type chromatin. For representative genes, we illustrate relationships between DNA methylation, the local chromatin state, DNaseI hypersensitivity, and gene expression. For example, MARVELD2 exhibited myogenic hypermethylation in transcription-type chromatin that overlapped a silenced promoter in Mb and Mt while TEAD4 had myogenic hypomethylation in intronic subregions displaying enhancer-type or transcription-type chromatin in these cells. For LSP1, alternative promoter usage and active promoter-type chromatin were linked to highly specific myogenic or lymphogenic hypomethylated DMRs. Lastly, despite its myogenesis-associated expression, TBX15 had multiple hypermethylated myogenic DMRs framing its promoter region. This could help explain why TBX15 was previously reported to be underexpressed and, unexpectedly, its promoter undermethylated in placentas exhibiting vascular intrauterine growth restriction.
Collapse
Affiliation(s)
- Sruti Chandra
- Center for Bioinformatics and Genomics, New Orleans, LA 70112, USA.
| | - Carl Baribault
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, New Orleans, LA 70112, USA.
| |
Collapse
|
17
|
Mann JR. Epigenetics and memigenetics. Cell Mol Life Sci 2014; 71:1117-22. [PMID: 24445814 PMCID: PMC11113772 DOI: 10.1007/s00018-014-1560-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The field of epigenetics is expanding rapidly, yet there is persistent uncertainty in the definition of the term. The word was coined in the mid-twentieth century as a descriptor of how intrinsic, yet largely unknown, forces act with genes to channel progenitor cells along pathways of differentiation. Near the end of the twentieth century, epigenetics was defined more specifically as the study of changes in gene activity states. In some definitions, only those activity states that are inherited across cell division were considered. Other definitions were broader, also including activity states that are transient, or occurring in non-dividing cells. The greatest point of disagreement in these current definitions, is if the term should concern only inherited activity states. To alleviate this disparity, an alternative term, 'memigenetics', could be used in place of epigenetics to describe inherited chromatin activity states. The advantage of this term is that it is self-defining, and would serve to emphasize the important concept of cell memory. It would also free the term epigenetics to be used in a broader sense in accord with the meaning of the prefix 'epi', that is, as a descriptor of what is 'over' DNA at any point in time.
Collapse
Affiliation(s)
- Jeffrey R Mann
- Theme of Genetics, Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, 3052, VIC, Australia,
| |
Collapse
|
18
|
Ming X, Matter B, Song M, Veliath E, Shanley R, Jones R, Tretyakova N. Mapping structurally defined guanine oxidation products along DNA duplexes: influence of local sequence context and endogenous cytosine methylation. J Am Chem Soc 2014; 136:4223-35. [PMID: 24571128 PMCID: PMC3985951 DOI: 10.1021/ja411636j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Indexed: 02/07/2023]
Abstract
DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal that local nucleobase sequence context differentially alters the yields of 2,2,4-triamino-2H-oxal-5-one (Z) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) in double stranded DNA. While both lesions are overproduced within endogenously methylated (Me)CG dinucleotides and at 5' Gs in runs of several guanines, the formation of Z (but not OG) is strongly preferred at solvent-exposed guanine nucleobases at duplex ends. Targeted oxidation of (Me)CG sequences may be caused by a lowered ionization potential of guanine bases paired with (Me)C and the preferential intercalation of riboflavin photosensitizer adjacent to (Me)C:G base pairs. Importantly, some of the most frequently oxidized positions coincide with the known p53 lung cancer mutational "hotspots" at codons 245 (GGC), 248 (CGG), and 158 (CGC) respectively, supporting a possible role of oxidative degradation of DNA in the initiation of lung cancer.
Collapse
Affiliation(s)
- Xun Ming
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brock Matter
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Matthew Song
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Elizabeth Veliath
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Ryan Shanley
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Roger Jones
- Department
of Chemistry and Chemical Biology, Rutgers
University, Piscataway, New Jersey 08854, United States
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center and Biostatistics and
Bioinformatics Core at the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Cagnetta A, Adamia S, Acharya C, Patrone F, Miglino M, Nencioni A, Gobbi M, Cea M. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk Res 2014; 38:649-59. [PMID: 24726781 DOI: 10.1016/j.leukres.2014.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 02/02/2023]
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia affecting adults. Although it is a complex disease driven by numerous genetic and epigenetic abnormalities, nearly 50% of patients exhibit a normal karyotype (CN-AML) with an intermediate cytogenetic risk. However, a widespread genomic analysis has recently shown the recurrence of genomic aberrations in this category (mutations of FLT3, CEBPA, NPM1, RUNX1, TET2, IDH1/2, DNMT3A, ASXL1, MLL and WT1) thus revealing its marked genomic heterogeneity. In this perspective, a global gene expression analysis of AML patients provides an independent prognostic marker to categorize each patient into clinic-pathologic subgroups based on its molecular genetic defects. Consistently such classification, taking into account the uniqueness of each AML patient, furnishes an individualized treatment approach leading a step closer to personalized medicine. Overall the genome-wide analysis of AML patients, by providing novel insights into biology of this tumor, furnishes accurate prognostic markers as well as useful tools for selecting the most appropriate treatment option. Moreover it provides novel therapeutic targets useful to enhance efficacy of the current anti-AML therapeutics. Here we describe the prognostic relevance of such new genetic data and discuss how this approach can be used to improve survival and treatment of AML patients.
Collapse
Affiliation(s)
- Antonia Cagnetta
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy.
| | - Sophia Adamia
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chirag Acharya
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Franco Patrone
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Maurizio Miglino
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Alessio Nencioni
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Marco Gobbi
- Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy
| | - Michele Cea
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Hematology and Oncology, I.R.C.C.S. A.O.U. San Martino-IST, Genoa, Italy.
| |
Collapse
|
20
|
Gene–environment interactions in heavy metal and pesticide carcinogenesis. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:1-9. [DOI: 10.1016/j.mrgentox.2013.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 01/05/2023]
|
21
|
Gordon CA, Hartono SR, Chédin F. Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS One 2013; 8:e69486. [PMID: 23894490 PMCID: PMC3716610 DOI: 10.1371/journal.pone.0069486] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/10/2013] [Indexed: 01/07/2023] Open
Abstract
Inactive DNA methyltransferase (DNMT) 3B splice isoforms are associated with changes in DNA methylation, yet the mechanisms by which they act remain largely unknown. Using biochemical and cell culture assays, we show here that the inactive DNMT3B3 and DNMT3B4 isoforms bind to and regulate the activity of catalytically competent DNMT3A or DNMT3B molecules. DNMT3B3 modestly stimulated the de novo methylation activity of DNMT3A and also counteracted the stimulatory effects of DNMT3L, therefore leading to subtle and contrasting effects on activity. DNMT3B4, by contrast, significantly inhibited de novo DNA methylation by active DNMT3 molecules, most likely due to its ability to reduce the DNA binding affinity of co-complexes, thereby sequestering them away from their substrate. Immunocytochemistry experiments revealed that in addition to their effects on the intrinsic catalytic function of active DNMT3 enzymes, DNMT3B3 and DNMT34 drive distinct types of chromatin compaction and patterns of histone 3 lysine 9 tri-methylation (H3K9me3) deposition. Our findings suggest that regulation of active DNMT3 members through the formation of co-complexes with inactive DNMT3 variants is a general mechanism by which DNMT3 variants function. This may account for some of the changes in DNA methylation patterns observed during development and disease.
Collapse
Affiliation(s)
- Catherine A. Gordon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Stella R. Hartono
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
22
|
Fiorentino FP, Marchesi I, Giordano A. On the role of retinoblastoma family proteins in the establishment and maintenance of the epigenetic landscape. J Cell Physiol 2013; 228:276-84. [PMID: 22718354 DOI: 10.1002/jcp.24141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RB family members are negative regulators of the cell cycle, involved in numerous biological processes such as cellular senescence, development and differentiation. Disruption of RB family pathways are linked to loss of cell cycle control, cellular immortalization and cancer. RB family, and in particular the most studied member RB/p105, has been considered a tumor suppressor gene by more than three decades, and numerous efforts have been done to understand his molecular activity. However, the epigenetic mechanisms behind Rb-mediated tumor suppression have been uncovered only in recent years. In this review, the role of RB family members in cancer epigenetics will be discussed. We start with an introduction to epigenomes, chromatin modifications and cancer epigenetics. In order to provide a clear picture of the involvement of RB family in the epigenetic field, we describe the RB family role in the epigenetic landscape dynamics based on the heterochromatin variety involved, facultative or constitutive. We want to stress that, despite dissimilar modulations, RB family is involved in both mammalian varieties of heterochromatin establishment and maintenance and that disruption of RB family pathways drives to alterations of both heterochromatin structures, thus to the global epigenetic landscape.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|
23
|
Taylor KH, Briley A, Wang Z, Cheng J, Shi H, Caldwell CW. Aberrant Epigenetic Gene Regulation in Lymphoid Malignancies. Semin Hematol 2013; 50:38-47. [DOI: 10.1053/j.seminhematol.2013.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Martelli MP, Sportoletti P, Tiacci E, Martelli MF, Falini B. Mutational landscape of AML with normal cytogenetics: biological and clinical implications. Blood Rev 2012; 27:13-22. [PMID: 23261068 DOI: 10.1016/j.blre.2012.11.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acute myeloid leukemia (AML) is a molecularly heterogeneous disease. Based on cytogenetics and FISH, AML patients are stratified into three major risk categories: favourable, intermediate and unfavourable. However, prognostic stratification and treatment decision for the intermediate risk category, that mostly comprises AML patients with normal cytogenetics (CN-AML), has been difficult due to the clinical heterogeneity and scarce knowledge of the molecular alterations underlying this large AML subgroup. During the past decade, the identification of several mutations associated with CN-AML has resulted into important advances in the AML field. In this review, we address the biological features of the main mutations associated with CN-AML and the impact of next generation sequencing studies in expanding our knowledge of the molecular landscape of CN-AML. In addition, we outline the prognostic value of mutations for risk stratification of CN-AML patients and discuss the potential of mutations discovery process for developing new molecular targeted therapies.
Collapse
|
25
|
Guerrero-Bosagna C, Covert TR, Haque MM, Settles M, Nilsson EE, Anway MD, Skinner MK. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 2012; 34:694-707. [PMID: 23041264 PMCID: PMC3513496 DOI: 10.1016/j.reprotox.2012.09.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 01/20/2023]
Abstract
The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
27
|
Normal DNA methylation dynamics in DICER1-deficient mouse embryonic stem cells. PLoS Genet 2012; 8:e1002919. [PMID: 22969435 PMCID: PMC3435250 DOI: 10.1371/journal.pgen.1002919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Reduced DNA methylation has been reported in DICER1-deficient mouse ES cells. Reductions seen at pericentric satellite repeats have suggested that siRNAs are required for the proper assembly of heterochromatin. More recent studies have postulated that the reduced methylation is an indirect effect: the loss of Mir290 cluster miRNAs leads to upregulation of the transcriptional repressor RBL2 that targets the downregulation of DNA methyltransferase (Dnmt) genes. However, the observations have been inconsistent. We surmised that the inconsistency could be related to cell line “age,” given that DNA methylation is lost progressively with passage in DNMT-deficient ES cells. We therefore subjected Dicer1−/− ES cells to two experimental regimes to rigorously test the level of functional DNMT activity. First, we cultured them for a prolonged period. If DNMT activity was reduced, further losses of methylation would occur. Second, we measured their DNMT activity in a rebound DNA methylation assay: DNA methylation was stripped from Cre/loxP conditionally mutant Dicer1 ES cells using a shRNA targeting Dnmt1 mRNA. Cre expression then converted these cells to Dicer1−/−, allowing for DNMT1 recovery and forcing the cells to remethylate in the absence of RNAi. In both cases, we found functional DNMT activity to be normal. Finally, we also show that the level of RBL2 protein is not at excess levels in Dicer1−/− ES cells as has been assumed. These studies reveal that reduced functional DNMT activity is not a salient feature of DICER1-deficient ES cells. We suggest that the reduced DNA methylation sometimes observed in these cells could be due to stochastic alterations in DNA methylation patterns that could offer growth or survival advantages in culture, or to the dysregulation of pathways acting in opposition to the DNMT pathway. In mammalian cells, DNA methylation is required for the maintenance of genome stability. Recent studies have shown that the genome-wide levels of DNA methylation can be reduced in DICER1-deficient mouse embryonic stem (ES) cells, suggesting that the activity of DNA methylating enzymes (DNMTs) may be regulated by small RNA molecules. The enzyme DICER1 catalyses the production of these small RNAs that serve as sequence-specific guides for modifying chromatin or transcription. However, these observations of defective DNA methylation have been inconsistent. We surmised that this inconsistency could be due to cell line “age,” because it can take many cell divisions before reduced DNMT activity may result in loss of DNA methylation. To test this idea, we rigorously assayed the functional level of DNMT activity in DICER1-deficient ES cells. First, we tested their ability to maintain DNA methylation over prolonged culture. Second, we tested their ability to rebound in DNA methylation after first stripping it from the genome. In both cases functional DNMT activity was entirely normal. We suggest that losses of DNA methylation sometimes seen in DICER1-deficient ES cells is stochastic and could involve cell line adaptation.
Collapse
|
28
|
Bruno P, Gentile G, Mancini R, De Vitis C, Esposito MC, Scozzi D, Mastrangelo M, Ricci A, Mohsen I, Ciliberto G, Simmaco M, Mariotta S. WT1 CpG islands methylation in human lung cancer: A pilot study. Biochem Biophys Res Commun 2012; 426:306-9. [DOI: 10.1016/j.bbrc.2012.08.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/15/2022]
|
29
|
Empirical bayes model comparisons for differential methylation analysis. Comp Funct Genomics 2012; 2012:376706. [PMID: 22956892 PMCID: PMC3432337 DOI: 10.1155/2012/376706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/15/2012] [Accepted: 06/29/2012] [Indexed: 11/17/2022] Open
Abstract
A number of empirical Bayes models (each with different statistical distribution assumptions) have now been developed to analyze differential DNA methylation using high-density oligonucleotide tiling arrays. However, it remains unclear which model performs best. For example, for analysis of differentially methylated regions for conservative and functional sequence characteristics (e.g., enrichment of transcription factor-binding sites (TFBSs)), the sensitivity of such analyses, using various empirical Bayes models, remains unclear. In this paper, five empirical Bayes models were constructed, based on either a gamma distribution or a log-normal distribution, for the identification of differential methylated loci and their cell division—(1, 3, and 5) and drug-treatment-(cisplatin) dependent methylation patterns. While differential methylation patterns generated by log-normal models were enriched with numerous TFBSs, we observed almost no TFBS-enriched sequences using gamma assumption models. Statistical and biological results suggest log-normal, rather than gamma, empirical Bayes model distribution to be a highly accurate and precise method for differential methylation microarray analysis. In addition, we presented one of the log-normal models for differential methylation analysis and tested its reproducibility by simulation study. We believe this research to be the first extensive comparison of statistical modeling for the analysis of differential DNA methylation, an important biological phenomenon that precisely regulates gene transcription.
Collapse
|
30
|
Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol Cell Endocrinol 2012; 354:3-8. [PMID: 22020198 PMCID: PMC3312615 DOI: 10.1016/j.mce.2011.10.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022]
Abstract
Environmental epigenetics has an important role in regulating phenotype formation or disease etiology. The ability of environmental factors and exposures early in life to alter somatic cell epigenomes and subsequent development is a critical factor in how environment affects biology. Environmental epigenetics provides a molecular mechanism to explain long term effects of environment on the development of altered phenotypes and "emergent" properties, which the "genetic determinism" paradigm cannot. When environmental factors permanently alter the germ line epigenome, then epigenetic transgenerational inheritance of these environmentally altered phenotypes and diseases can occur. This environmental epigenetic transgenerational inheritance of phenotype and disease is reviewed with a systems biology perspective.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|
31
|
Abstract
The prevalence, the prognostic effect, and interaction with other molecular markers of DNMT3A mutations was studied in 415 patients with acute myeloid leukemia (AML) younger than 60 years. We show mutations in DNMT3A in 96 of 415 patients with newly diagnosed AML (23.1%). Univariate Cox regression analysis showed that patients with DNMT3A(mutant) AML show significantly worse overall survival (OS; P = .022; hazard ratio [HR], 1.38; 95% confidence interval [CI], 1.04-1.81), and relapse-free survival (RFS; P = .005; HR, 1.52; 95% CI, 1.13-2.05) than DNMT3A(wild-type) AMLs. In a multivariable analysis, DNMT3A mutations express independent unfavorable prognostic value for OS (P = .003; HR, 1.82; 95% CI, 1.2-2.7) and RFS (P < .001; HR, 2.2; 95% CI, 1.4-3.3). In a composite genotypic subset of cytogenetic intermediate-risk AML without FLT3-ITD and NPM1 mutations, this association is particularly evident (OS: P = .013; HR, 2.09; 95% CI, 1.16-3.77; RFS: P = .001; HR, 2.65; 95% CI, 1.48-4.89). The effect of DNMT3A mutations in human AML remains elusive, because DNMT3A(mutant) AMLs did not express a methylation or gene expression signature that discriminates them from patients with DNMT3A(wild-type) AML. We conclude that DNMT3A mutation status is an important factor to consider for risk stratification of patients with AML.
Collapse
|
32
|
Teng M, Balch C, Liu Y, Li M, Huang THM, Wang Y, Nephew KP, Li L. The influence of cis-regulatory elements on DNA methylation fidelity. PLoS One 2012; 7:e32928. [PMID: 22412954 PMCID: PMC3295790 DOI: 10.1371/journal.pone.0032928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation (“methylome”), i.e., predominant hypomethylation and localized hypermethylation, within “CpG islands” (CGIs). Moreover, although cancer cells have reduced methylation “fidelity” and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical Bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high- methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable “random” methylation (582 loci). These results support a “stochastic model” of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10−5) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having “random” methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs.
Collapse
Affiliation(s)
- Mingxiang Teng
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Curt Balch
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
| | - Meng Li
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
| | - Tim H. M. Huang
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Yadong Wang
- Harbin Institute of Technology, School of Computer Science and Technology, Harbin, Heilongjiang, China
- * E-mail: (YW); (KPN); (LL)
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University, Bloomington, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| | - Lang Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Indiana University Melvin and Bren Simon Cancer, Indianapolis, Indiana, United States of America
- Indiana Institute of Personalized Medicine, Departments of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail: (YW); (KPN); (LL)
| |
Collapse
|
33
|
Finalism in Darwinian and Lamarckian Evolution: Lessons from Epigenetics and Developmental Biology. Evol Biol 2012. [DOI: 10.1007/s11692-012-9163-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Mann JR, Mattiske DM. RNA interference in mammalian DNA methylation1This review is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2012; 90:70-7. [DOI: 10.1139/o11-050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi and Dicer-dependent siRNAs are required for constitutive heterochromatin formation in fission yeast and for establishing DNA methylation at repetitive elements in plants. In the mammalian male germ line, DICER1-independent piRNAs are required for the full establishment of DNA methylation of dispersed repetitive transposable elements. However, in other mammalian cell types, no clear picture has yet emerged of the role of RNAi in establishing heterochromatin and DNA methylation. In mouse embryonic stem cells, which remain viable on loss of DICER1 and ablation of RNAi, while no firm evidence has been obtained for defective heterochromatin formation, there are indications of defective DNA methylation. The latter has been attributed to an indirect effect of reduced DNA methyltransferase (DNMT) activity due to a loss of miRNA-mediated gene regulation. However, it is unclear whether the reductions in DNMT activity were sufficient to affect DNA methylation. We consider it equally likely that the defects in DNA methylation that can be observed in DICER1-deficient embryonic stem cells are the result of nonspecific effects related to RNAi loss aside from reduced DNMT activity.
Collapse
Affiliation(s)
- Jeffrey R. Mann
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| | - Deidre M. Mattiske
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| |
Collapse
|
35
|
Tsai AG, Chen DM, Lin M, Hsieh JCF, Okitsu CY, Taghva A, Shibata D, Hsieh CL. Heterogeneity and randomness of DNA methylation patterns in human embryonic stem cells. DNA Cell Biol 2012; 31:893-907. [PMID: 22277069 DOI: 10.1089/dna.2011.1477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation has been proposed to be important in many biological processes and is the subject of intense study. Traditional bisulfite genomic sequencing allows detailed high-resolution methylation pattern analysis of each molecule with haplotype information across a few hundred bases at each locus, but lacks the capacity to gather voluminous data. Although recent technological developments are aimed at assessing DNA methylation patterns in a high-throughput manner across the genome, the haplotype information cannot be accurately assembled when the sequencing reads are short or when each hybridization target only includes one or two cytosine-phosphate-guanine (CpG) sites. Whether a distinct and nonrandom DNA methylation pattern is present at a given locus is difficult to discern without the haplotype information, and the DNA methylation patterns are much less apparent because the data are often obtained only as methylation frequencies at each CpG site with some of these methods. It would facilitate the interpretation of data obtained from high-throughput bisulfite sequencing if the loci with nonrandom DNA methylation patterns could be distinguished from those that are randomly methylated. In this study, we carried out traditional genomic bisulfite sequencing using the normal diploid human embryonic stem (hES) cell lines, and utilized Hamming distance analysis to evaluate the existence of a distinct and nonrandom DNA methylation pattern at each locus studied. Our findings suggest that Hamming distance is a simple, quick, and useful tool to identify loci with nonrandom DNA methylation patterns and may be utilized to discern links between biological changes and DNA methylation patterns in the high-throughput bisulfite sequencing data sets.
Collapse
Affiliation(s)
- Albert G Tsai
- Department of Biochemistry and Molecular Biology, Norris Cancer Center, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011; 6:838-42. [PMID: 21637037 DOI: 10.4161/epi.6.7.16537] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The majority of environmental factors can not modify DNA sequence, but can influence the epigenome. The mitotic stability of the epigenome and ability of environmental epigenetics to influence phenotypic variation and disease, suggests environmental epigenetics will have a critical role in disease etiology and biological areas such as evolutionary biology. The current review presents the molecular basis of how environment can promote stable epigenomes and modified phenotypes, and distinguishes the difference between epigenetic transgenerational inheritance through the germ line versus somatic cell mitotic stability.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
37
|
Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. ACTA ACUST UNITED AC 2011; 93:51-5. [PMID: 21425441 DOI: 10.1002/bdrc.20199] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms involved in developmental biology and cellular differentiation have traditionally been considered to be primarily genetic. Environmental factors that influence early life critical windows of development generally do not have the capacity to modify genome sequence, nor promote permanent genetic modifications. Epigenetics provides a molecular mechanism for environment to influence development, program cellular differentiation, and alter the genetic regulation of development. The current review discusses how epigenetics can cooperate with genetics to regulate development and allow for greater plasticity in response to environmental influences. This impacts area such as cellular differentiation, tissue development, environmental induced disease etiology, epigenetic transgenerational inheritance, and the general systems biology of organisms and evolution.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, 99164-4236, USA.
| |
Collapse
|
38
|
Xie H, Wang M, de Andrade A, Bonaldo MDF, Galat V, Arndt K, Rajaram V, Goldman S, Tomita T, Soares MB. Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res 2011; 39:4099-108. [PMID: 21278160 PMCID: PMC3105398 DOI: 10.1093/nar/gkr017] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genomic DNA methylation contributes substantively to transcriptional regulations that underlie mammalian development and cellular differentiation. Much effort has been made to decipher the molecular mechanisms governing the establishment and maintenance of DNA methylation patterns. However, little is known about genome-wide variation of DNA methylation patterns. In this study, we introduced the concept of methylation entropy, a measure of the randomness of DNA methylation patterns in a cell population, and exploited it to assess the variability in DNA methylation patterns of Alu repeats and promoters. A few interesting observations were made: (i) within a cell population, methylation entropy varies among genomic loci; (ii) among cell populations, the methylation entropies of most genomic loci remain constant; (iii) compared to normal tissue controls, some tumors exhibit greater methylation entropies; (iv) Alu elements with high methylation entropy are associated with high GC content but depletion of CpG dinucleotides and (v) Alu elements in the intronic regions or far from CpG islands are associated with low methylation entropy. We further identified 12 putative allelic-specific methylated genomic loci, including four Alu elements and eight promoters. Lastly, using subcloned normal fibroblast cells, we demonstrated the highly variable methylation patterns are resulted from low fidelity of DNA methylation inheritance.
Collapse
Affiliation(s)
- Hehuang Xie
- Falk Brain Tumor Center, Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago IL 60614-3394, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li M, Chen SS. The tendency to recreate ancestral CG dinucleotides in the human genome. BMC Evol Biol 2011; 11:3. [PMID: 21208429 PMCID: PMC3025853 DOI: 10.1186/1471-2148-11-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 01/05/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The CG dinucleotides are known to be deficient in the human genome, due to a high mutation rate from 5-methylated CG to TG and its complementary pair CA. Meanwhile, many cellular functions rely on these CG dinucleotides, such as gene expression controlled by cytosine methylation status. Thus, CG dinucleotides that provide essential functional substrates should be retained in genomes. How these two conflicting processes regarding the fate of CG dinucleotides - i.e., high mutation rate destroying CG dinucleotides, vs. functional processes that require their preservation remains an unsolved question. RESULTS By analyzing the mutation and frequency spectrum of newly derived alleles in the human genome, a tendency towards generating more CGs was observed, which was mainly contributed by an excess number of mutations from CA/TG to CG. Simultaneously, we found a fixation preference for CGs derived from TG/CA rather than CGs generated by other dinucleotides. These tendencies were observed both in intergenic and genic regions. An analysis of Integrated Extended Haplotype Homozygosity provided no evidence of selection for newly derived CGs. CONCLUSIONS Ancestral CG dinucleotides that were subsequently lost by mutation tend to be recreated in the human genome, as indicated by a biased mutation and fixation pattern favoring new CGs that derived from TG/CA.
Collapse
Affiliation(s)
- Mingkun Li
- CAS-MPG Partner Institute of Computational Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 200000 Shanghai, PR China.
| | | |
Collapse
|
40
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 2010; 31:337-43. [PMID: 21055462 DOI: 10.1016/j.reprotox.2010.10.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/21/2010] [Accepted: 10/26/2010] [Indexed: 12/22/2022]
Abstract
Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States.
| | | | | |
Collapse
|
41
|
Hedrich CM, Bream JH. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol Res 2010; 47:185-206. [PMID: 20087682 DOI: 10.1007/s12026-009-8150-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IL-10 plays an essential part in controlling inflammation and instructing adaptive immune responses. Consequently, dysregulation of IL-10 is linked with susceptibility to numerous infectious and autoimmune diseases in mouse models and in humans. It has become increasingly clear that appropriate temporal/spatial expression of IL-10 may be the key to how IL-10 contributes to the delicate balance between inflammation and immunoregulation. The mechanisms that govern the cell type- and receptor-specific induction of IL-10, however, remain unclear. This is due largely to the wide distribution of cellular sources that express IL-10 under diverse stimulation conditions and in a variety of tissue compartments. Further complicating the issue is the fact that human IL-10 expression patterns appear to be under genetic influence resulting in differential expression and disease susceptibility. In this review, we discuss the cellular sources of IL-10, their link to disease phenotypes and the molecular mechanisms implicated in IL-10 regulation.
Collapse
Affiliation(s)
- Christian M Hedrich
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Room E5624, Baltimore, MD 21205-1901, USA
| | | |
Collapse
|
42
|
Hedrich CM, Ramakrishnan A, Dabitao D, Wang F, Ranatunga D, Bream JH. Dynamic DNA methylation patterns across the mouse and human IL10 genes during CD4+ T cell activation; influence of IL-27. Mol Immunol 2010; 48:73-81. [PMID: 20952070 DOI: 10.1016/j.molimm.2010.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 01/13/2023]
Abstract
IL-10 plays a critical role in controlling inflammation and the anti-inflammatory functions of IL-10 are regulated based on its coordinated expression from various cellular sources, most notably T cells. Although nearly all CD4+ subpopulations can express IL-10, surprisingly little is known about the molecular mechanisms which control IL-10 induction, particularly in humans. To examine the regulation of human IL-10 expression, we created the hIL10BAC transgenic mouse. As previously reported, we observed conservation of myeloid-derived IL-10 expression but found that human IL-10 was only weakly expressed in splenic CD4+ T cells from hIL10BAC mice. Since DNA methylation is an important determinant of gene expression profiles, we assessed the patterns of DNA methylation in the human and mouse IL10 genes in naïve and activated CD4+ T cells. Across mouse and human IL10 there were no obvious patterns of CpG methylation in naïve CD4+ T cells following polyclonal activation. Overall however, the human IL10 gene had significantly higher levels of DNA methylation. Interestingly, coculture with the IL-10-inducing cytokine IL-27 lead to a site-specific reduction in methylation of the mouse but not human IL10 gene. Demethylation was specifically localized to an intronic site adjacent to a known regulatory region. Our findings indicate that while the mouse and human IL10 genes undergo variable changes in DNA methylation during CD4+ T cell activation, IL-27 appears to influence DNA methylation in a particular intronic region thus associating with IL-10 expression.
Collapse
Affiliation(s)
- Christian M Hedrich
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology, N. Wolfe Street, E5410, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
43
|
Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 2010; 5. [PMID: 20927350 PMCID: PMC2948035 DOI: 10.1371/journal.pone.0013100] [Citation(s) in RCA: 289] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/31/2010] [Indexed: 12/16/2022] Open
Abstract
Previous observations have demonstrated that embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination promotes transgenerational adult onset disease such as male infertility, kidney disease, prostate disease, immune abnormalities and tumor development. The current study investigates genome-wide promoter DNA methylation alterations in the sperm of F3 generation rats whose F0 generation mother was exposed to vinclozolin. A methylated DNA immunoprecipitation with methyl-cytosine antibody followed by a promoter tilling microarray (MeDIP-Chip) procedure was used to identify 52 different regions with statistically significant altered methylation in the sperm promoter epigenome. Mass spectrometry bisulfite analysis was used to map the CpG DNA methylation and 16 differential DNA methylation regions were confirmed, while the remainder could not be analyzed due to bisulfite technical limitations. Analysis of these validated regions identified a consensus DNA sequence (motif) that associated with 75% of the promoters. Interestingly, only 16.8% of a random set of 125 promoters contained this motif. One candidate promoter (Fam111a) was found to be due to a copy number variation (CNV) and not a methylation change, suggesting initial alterations in the germline epigenome may promote genetic abnormalities such as induced CNV in later generations. This study identifies differential DNA methylation sites in promoter regions three generations after the initial exposure and identifies common genome features present in these regions. In addition to primary epimutations, a potential indirect genetic abnormality was identified, and both are postulated to be involved in the epigenetic transgenerational inheritance observed. This study confirms that an environmental agent has the ability to induce epigenetic transgenerational changes in the sperm epigenome.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Matthew Settles
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Ben Lucker
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
44
|
Wienholz BL, Kareta MS, Moarefi AH, Gordon CA, Ginno PA, Chédin F. DNMT3L modulates significant and distinct flanking sequence preference for DNA methylation by DNMT3A and DNMT3B in vivo. PLoS Genet 2010; 6:e1001106. [PMID: 20838592 PMCID: PMC2936528 DOI: 10.1371/journal.pgen.1001106] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 08/02/2010] [Indexed: 12/11/2022] Open
Abstract
The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for high or low efficiency sites is mediated by the base composition at the -2 and +2 positions flanking the CpG site for DNMT3A, and at the -1 and +1 positions for DNMT3B. This intrinsic preference reproducibly leads to the formation of specific de novo methylation patterns characterized by up to 34-fold variations in the efficiency of DNA methylation at individual sites. Furthermore, analysis of the distribution of signature methylation hotspot and coldspot motifs suggests that DNMT flanking sequence preference has contributed to shaping the composition of CpG islands in the human genome. Our results also show that the DNMT3L stimulatory factor modulates the formation of de novo methylation patterns in two ways. First, DNMT3L selectively focuses the DNA methylation machinery on properly chromatinized DNA templates. Second, DNMT3L attenuates the impact of the intrinsic DNMT flanking sequence preference by providing a much greater boost to the methylation of poorly methylated sites, thus promoting the formation of broader and more uniform methylation patterns. This study offers insights into the manner by which DNA methylation patterns are deposited and reveals a new level of interplay between members of the de novo DNMT family.
Collapse
Affiliation(s)
- Bethany L. Wienholz
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Michael S. Kareta
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Amir H. Moarefi
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Catherine A. Gordon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Paul A. Ginno
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
45
|
Abstract
Despite advances in the prevention and management of cardiovascular disease (CVD), this group of multifactorial disorders remains a leading cause of mortality worldwide. CVD is associated with multiple genetic and modifiable risk factors; however, known environmental and genetic influences can only explain a small part of the variability in CVD risk, which is a major obstacle for its prevention and treatment. A more thorough understanding of the factors that contribute to CVD is, therefore, needed to develop more efficacious and cost-effective therapy. Application of the 'omics' technologies will hopefully make these advances a reality. Epigenomics has emerged as one of the most promising areas that will address some of the gaps in our current knowledge of the interaction between nature and nurture in the development of CVD. Epigenetic mechanisms include DNA methylation, histone modification, and microRNA alterations, which collectively enable the cell to respond quickly to environmental changes. A number of CVD risk factors, such as nutrition, smoking, pollution, stress, and the circadian rhythm, have been associated with modification of epigenetic marks. Further examination of these mechanisms may lead to earlier prevention and novel therapy for CVD.
Collapse
Affiliation(s)
- José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | |
Collapse
|
46
|
Holz-Schietinger C, Reich NO. The inherent processivity of the human de novo methyltransferase 3A (DNMT3A) is enhanced by DNMT3L. J Biol Chem 2010; 285:29091-100. [PMID: 20630873 DOI: 10.1074/jbc.m110.142513] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human DNMT3A is responsible for de novo DNA cytosine methylation patterning during development. Here we show that DNMT3A methylates 5-8 CpG sites on human promoters before 50% of the initially bound enzyme dissociates from the DNA. Processive methylation is enhanced 3-fold in the presence of DNMT3L, an inactive homolog of DNMT3A, therefore providing a mechanism for the previously described DNMT3L activation of DNMT3A. DNMT3A processivity on human promoters is also regulated by DNA topology, where a 2-fold decrease in processivity was observed on supercoiled DNA in comparison with linear DNA. These results are the first observation that DNMT3A utilizes this mechanism of increasing catalytic efficiency. Processive de novo DNA methylation provides a mechanism that ensures that multiple CpG sites undergo methylation for transcriptional regulation and silencing of newly integrated viral DNA.
Collapse
Affiliation(s)
- Celeste Holz-Schietinger
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
47
|
Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen R, Rehli M. Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol 2010; 11:R63. [PMID: 20565882 PMCID: PMC2911111 DOI: 10.1186/gb-2010-11-6-r63] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 01/11/2023] Open
Abstract
Background In mammals, the dynamics of DNA methylation, in particular the regulated, active removal of cytosine methylation, has remained a mystery, partly due to the lack of appropriate model systems to study DNA demethylation. Previous work has largely focused on proliferating cell types that are mitotically arrested using pharmacological inhibitors to distinguish between active and passive mechanisms of DNA demethylation. Results We explored this epigenetic phenomenon in a natural setting of post-mitotic cells: the differentiation of human peripheral blood monocytes into macrophages or dendritic cells, which proceeds without cell division. Using a global, comparative CpG methylation profiling approach, we identified many novel examples of active DNA demethylation and characterized accompanying transcriptional and epigenetic events at these sites during monocytic differentiation. We show that active DNA demethylation is not restricted to proximal promoters and that the time-course of demethylation varies for individual CpGs. Irrespective of their location, the removal of methylated cytosines always coincided with the appearance of activating histone marks. Conclusions Demethylation events are highly reproducible in monocyte-derived dendritic cells from different individuals. Our data suggest that active DNA demethylation is a precisely targeted event that parallels or follows the modification of histones, but is not necessarily coupled to alterations in transcriptional activity.
Collapse
Affiliation(s)
- Maja Klug
- Department of Hematology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Fu AQ, Genereux DP, Stöger R, Laird CD, Stephens M. Statistical inference of transmission fidelity of DNA methylation patterns over somatic cell divisions in mammals. Ann Appl Stat 2010. [DOI: 10.1214/09-aoas297] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010; 21:214-22. [PMID: 20074974 PMCID: PMC2848884 DOI: 10.1016/j.tem.2009.12.007] [Citation(s) in RCA: 464] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/26/2022]
Abstract
The ability of environmental factors to promote a phenotype or disease state not only in the individual exposed but also in subsequent progeny for successive generations is termed transgenerational inheritance. The majority of environmental factors such as nutrition or toxicants such as endocrine disruptors do not promote genetic mutations or alterations in DNA sequence. However, these factors do have the capacity to alter the epigenome. Epimutations in the germline that become permanently programmed can allow transmission of epigenetic transgenerational phenotypes. This review provides an overview of the epigenetics and biology of how environmental factors can promote transgenerational phenotypes and disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
50
|
Fu AQ, Genereux DP, Stöger R, Laird CD, Stephens M. STATISTICAL INFERENCE OF TRANSMISSION FIDELITY OF DNA METHYLATION PATTERNS OVER SOMATIC CELL DIVISIONS IN MAMMALS. Ann Appl Stat 2010; 4:871-892. [PMID: 21625348 PMCID: PMC3103139 DOI: 10.1214/09-aoas297suppa] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We develop Bayesian inference methods for a recently-emerging type of epigenetic data to study the transmission fidelity of DNA methylation patterns over cell divisions. The data consist of parent-daughter double-stranded DNA methylation patterns with each pattern coming from a single cell and represented as an unordered pair of binary strings. The data are technically difficult and time-consuming to collect, putting a premium on an efficient inference method. Our aim is to estimate rates for the maintenance and de novo methylation events that gave rise to the observed patterns, while accounting for measurement error. We model data at multiple sites jointly, thus using whole-strand information, and considerably reduce confounding between parameters. We also adopt a hierarchical structure that allows for variation in rates across sites without an explosion in the effective number of parameters. Our context-specific priors capture the expected stationarity, or near-stationarity, of the stochastic process that generated the data analyzed here. This expected stationarity is shown to greatly increase the precision of the estimation. Applying our model to a data set collected at the human FMR1 locus, we find that measurement errors, generally ignored in similar studies, occur at a non-trivial rate (inappropriate bisulfite conversion error: 1.6% with 80% CI: 0.9-2.3%). Accounting for these errors has a substantial impact on estimates of key biological parameters. The estimated average failure of maintenance rate and daughter de novo rate decline from 0.04 to 0.024 and from 0.14 to 0.07, respectively, when errors are accounted for. Our results also provide evidence that de novo events may occur on both parent and daughter strands: the median parent and daughter de novo rates are 0.08 (80% CI: 0.04-0.13) and 0.07 (80% CI: 0.04-0.11), respectively.
Collapse
|