1
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Roriz M, Pereira SI, Castro PM, Carvalho SM, Vasconcelos MW. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023; 9:e14620. [PMID: 37180927 PMCID: PMC10172870 DOI: 10.1016/j.heliyon.2023.e14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional strategies to manage iron (Fe) deficiency still present drawbacks, and more eco-sustainable solutions are needed. Knowledge on soybean-specific diversity and functional traits of their plant growth-promoting bacteria (PGPB) potentiates their applicability as bioinoculants to foster soybean performance under calcareous soil conditions. This work aimed to assess the efficacy of PGPB, retrieved from soybean tissues/rhizosphere, in enhancing plant growth and development as well as crop yield under alkaline soil conditions. Seventy-six bacterial strains were isolated from shoots (18%), roots (53%), and rhizosphere (29%) of soybean. Twenty-nine genera were identified, with Bacillus and Microbacterium being the most predominant. Based on distinct plant growth-promoting traits, the endophyte Bacillus licheniformis P2.3 and the rhizobacteria Bacillus aerius S2.14 were selected as bioinoculants. In vivo tests showed that soybean photosynthetic parameters, chlorophyll content, total fresh weight, and Fe concentrations were not significantly affected by bioinoculation. However, inoculation with B. licheniformis P2.3 increased pod number (33%) and the expression of Fe-related genes (FRO2, IRT1, F6'H1, bHLH38, and FER4), and decreased FC-R activity (45%). Moreover, bioinoculation significantly affected Mn, Zn, and Ca accumulation in plant tissues. Soybean harbors several bacterial strains in their tissues and in the rhizosphere with capacities related to Fe nutrition and plant growth promotion. The strain B. licheniformis P2.3 showed the best potential to be incorporated in bioinoculant formulations for enhancing soybean performance under alkaline soil conditions.
Collapse
Affiliation(s)
- Mariana Roriz
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Corresponding author.
| | - Sofia I.A. Pereira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula M.L. Castro
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Susana M.P. Carvalho
- GreenUPorto – Research Centre on Sustainable Agrifood Production / Inov4Agro & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
3
|
Belimov AA, Shaposhnikov AI, Azarova TS, Syrova DS, Kitaeva AB, Ulyanich PS, Yuzikhin OS, Sekste EA, Safronova VI, Vishnyakova MA, Tsyganov VE, Tikhonovich II. Rhizobacteria Mitigate the Negative Effect of Aluminum on Pea Growth by Immobilizing the Toxicant and Modulating Root Exudation. PLANTS (BASEL, SWITZERLAND) 2022; 11:2416. [PMID: 36145816 PMCID: PMC9503566 DOI: 10.3390/plants11182416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
High soil acidity is one of the main unfavorable soil factors that inhibit the growth and mineral nutrition of plants. This is largely due to the toxicity of aluminum (Al), the mobility of which increases significantly in acidic soils. Symbiotic microorganisms have a wide range of beneficial properties for plants, protecting them against abiotic stress factors. This report describes the mechanisms of positive effects of plant growth-promoting rhizobacteria Pseudomonas fluorescens SPB2137 on four pea (Pisum sativum L.) genotypes grown in hydroponics and treated with 80 µM AlCl3. In batch culture, the bacteria produced auxins, possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, alkalized the medium and immobilized Al, forming biofilm-like structures and insoluble phosphates. Inoculation with Ps. fluorescens SPB2137 increased root and/or shoot biomass of Al-treated plants. The bacteria alkalized the nutrient solution and transferred Al from the solution to the residue, which contained phosphorus that was exuded by roots. As a result, the Al concentration in roots decreased, while the amount of precipitated Al correlated negatively with its concentration in the solution, positively with the solution pH and negatively with Al concentration in roots and shoots. Treatment with Al induced root exudation of organic acids, amino acids and sugars. The bacteria modulated root exudation via utilization and/or stimulation processes. The effects of Al and bacteria on plants varied depending on pea genotype, but all the effects had a positive direction and the variability was mostly quantitative. Thus, Ps. fluorescens SPB2137 improved the Al tolerance of pea due to immobilization and exclusion of toxicants from the root zone.
Collapse
Affiliation(s)
- Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Alexander I. Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Tatiana S. Azarova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Darya S. Syrova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Anna B. Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Pavel S. Ulyanich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Oleg S. Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Edgar A. Sekste
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Margarita A. Vishnyakova
- Federal Research Center Vavilov All-Russia Institute of Plant Genetic Resources, 42–44, ul., Bol’shaya Morskaya, 190000 Saint-Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Igor I. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
- Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia
| |
Collapse
|
4
|
Chaudhary S, Dhanker R, Singh K, Brar B, Goyal S. Characterization of Sulfur Oxidizing Bacteria isolated from Mustard (
Brassica juncea
L.) rhizosphere having capability of improving Sulfur and Nitrogen uptake. J Appl Microbiol 2022; 133:2814-2825. [DOI: 10.1111/jam.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Chaudhary
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Rinku Dhanker
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Kuldeep Singh
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| | - Basanti Brar
- Department of ABT Lala Lajpat Rai University of Veterinary and Animal Science Hisar Haryana India
| | - Sneh Goyal
- Department of Microbiology CCS Haryana Agricultural University Hisar Haryana India
| |
Collapse
|
5
|
Singh RP, Pandey DM, Jha PN, Ma Y. ACC deaminase producing rhizobacterium Enterobacter cloacae ZNP-4 enhance abiotic stress tolerance in wheat plant. PLoS One 2022; 17:e0267127. [PMID: 35522667 PMCID: PMC9075627 DOI: 10.1371/journal.pone.0267127] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 04/02/2022] [Indexed: 11/19/2022] Open
Abstract
Plant growth promoting rhizobacterium (PGPR) designated as ZNP-4, isolated from the rhizosphere of Ziziphus nummularia, was identified as Enterobacter cloacae following 16S rRNA sequence analysis. The isolated strain exhibited various plant growth promoting (PGP) traits. The 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity was evaluated under diverse physiological conditions that could be useful for minimizing the abiotic stress-induced inhibitory effects on wheat plants. The strain showed resistance to salt (NaCl) and metal (ZnSO4) stress. The effect of E. cloacae ZNP-4 on the augmentation of plant growth was studied under salinity stress of 150 mM (T1 treatment) & 200 mM (T2 treatment) NaCl. The inoculation of strain ZNP-4 significantly improved the various growth parameters of wheat plant such as shoot length (41%), root length (31%), fresh weight (28%), dry weight (29%), photosynthetic pigments chlorophyll a (62%) and chlorophyll b (34%). Additionally, the strain was found to be efficient for minimizing the imposed Zn stress in terms of improving plant growth, biomass and photosynthetic pigments in pots containing different levels of metal stress of 150 mg kg-1 (treatment T1) and 250 mg kg-1 (treatment T2). Isolate ZNP-4 also improved the proline content and decreased malondialdehyde (MDA) level under both salinity and metal stress, therefore maintaining the membrane integrity. Furthermore, bacterial inoculation increased the activities of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). The positive effects of PGPR occurred concurrently with the decrease in abiotic stress-induced reactive oxygen species (ROS) molecules such as hydrogen peroxide (H2O2) and superoxide (O2-) contents. Overall, the observed results indicate that use of bacteria with such beneficial traits could be used as bio-fertilizers for many crops growing under stress conditions.
Collapse
Affiliation(s)
- Rajnish Prakash Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
- * E-mail: (RPS); (YM)
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Rajasthan
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
- * E-mail: (RPS); (YM)
| |
Collapse
|
6
|
Chlebek D, Płociniczak T, Gobetti S, Kumor A, Hupert-Kocurek K, Pacwa-Płociniczak M. Analysis of the Genome of the Heavy Metal Resistant and Hydrocarbon-Degrading Rhizospheric Pseudomonas qingdaonensis ZCR6 Strain and Assessment of Its Plant-Growth-Promoting Traits. Int J Mol Sci 2021; 23:ijms23010214. [PMID: 35008639 PMCID: PMC8745256 DOI: 10.3390/ijms23010214] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/28/2022] Open
Abstract
The Pseudomonas qingdaonensis ZCR6 strain, isolated from the rhizosphere of Zea mays growing in soil co-contaminated with hydrocarbons and heavy metals, was investigated for its plant growth promotion, hydrocarbon degradation, and heavy metal resistance. In vitro bioassays confirmed all of the abovementioned properties. ZCR6 was able to produce indole acetic acid (IAA), siderophores, and ammonia, solubilized Ca3(PO4)2, and showed surface active properties and activity of cellulase and very high activity of 1-aminocyclopropane-1-carboxylic acid deaminase (297 nmol α-ketobutyrate mg−1 h−1). The strain degraded petroleum hydrocarbons (76.52% of the initial hydrocarbon content was degraded) and was resistant to Cd, Zn, and Cu (minimal inhibitory concentrations reached 5, 15, and 10 mM metal, respectively). The genome of the ZCR6 strain consisted of 5,507,067 bp, and a total of 5055 genes were annotated, of which 4943 were protein-coding sequences. Annotation revealed the presence of genes associated with nitrogen fixation, phosphate solubilization, sulfur metabolism, siderophore biosynthesis and uptake, synthesis of IAA, ethylene modulation, heavy metal resistance, exopolysaccharide biosynthesis, and organic compound degradation. Complete characteristics of the ZCR6 strain showed its potential multiway properties for enhancing the phytoremediation of co-contaminated soils. To our knowledge, this is the first analysis of the biotechnological potential of the species P. qingdaonensis.
Collapse
|
7
|
Bomle DV, Kiran A, Kumar JK, Nagaraj LS, Pradeep CK, Ansari MA, Alghamdi S, Kabrah A, Assaggaf H, Dablool AS, Murali M, Amruthesh KN, Udayashankar AC, Niranjana SR. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. Int J Mol Sci 2021; 22:ijms222111461. [PMID: 34768893 PMCID: PMC8584133 DOI: 10.3390/ijms222111461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.
Collapse
Affiliation(s)
- Dhanashree Vijayrao Bomle
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Asha Kiran
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Jeevitha Kodihalli Kumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Lavanya Senapathyhalli Nagaraj
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Chamanahalli Kyathegowda Pradeep
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Anas S. Dablool
- Department of Public Health, Health Science College Al-Leith, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Arakere Chunchegowda Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Siddapura Ramachandrappa Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| |
Collapse
|
8
|
Poddar K, Padhan B, Sarkar D, Sarkar A. Purification and optimization of pink pigment produced by newly isolated bacterial strain Enterobacter sp. PWN1. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04146-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractPigment-producing bacteria were isolated from kitchen wastewaters of the National Institute of Technology, Rourkela. A pink non-virulent bacterial strain PWN1 was selected based on the India Ink Broth and Coomassie Brilliant Blue (R-250) dye assay. According to morphological and biochemical characterization, the strain PWN1was a Gram-negative, rod-shaped, motile, non-coliform bacterium and could utilize only glucose and adonitol as sole carbon source. The pigment was found to be a growth-associated product, and the pigment production was accelerated after 40 h of bacterial culture. Further, 16S rRNA gene-based molecular identification showed its similarity with Enterobacter sp. The pigments were extracted by the solvent extraction method using chloroform and ethanol (3:1). The extracted pigments were then purified through thin-layer chromatography and column chromatography. To maximize pigment production, the culture condition was optimized for maximum biomass production using statistical software Design Expert v13. A quadratic model was structured describing the process efficiently and it suggested a moderate temperature, pH, and a high inoculum concentration which generated biomass of 3.81 ± 0.02 g/L. At optimized condition, 1 L of cell culture produced 3.77 g of biomass which produced a crude pigment of 0.234 g after solvent extraction and 0.131 g after column chromatography, implying a yield of 6.2% for crude pigment and 3.47% for purified pigment from biomass. The yield of the obtained pigment was high enough to draw interest for industrial production, although the application of the pigment is considerable for further study.
Collapse
|
9
|
Geetha Thanuja K, Annadurai B, Thankappan S, Uthandi S. Non-rhizobial endophytic (NRE) yeasts assist nodulation of Rhizobium in root nodules of blackgram (Vigna mungo L.). Arch Microbiol 2020; 202:2739-2749. [PMID: 32737540 DOI: 10.1007/s00203-020-01983-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
The signal orchestration between legumes and the rhizobia attribute to symbiotic nitrogen fixation through nodule formation. Root nodules serve as a nutrient-rich reservoir and harbor diverse microbial communities. However, the existence of non-rhizobial endophytes (NRE) and their role inside the root nodules are being explored; there is no evidence on yeast microflora inhabiting nodule niche. This study focused on unraveling the presence of yeast in the root nodules and their possible function in either nodulation or signal exchange. From the root nodules of blackgram, two yeast strains were isolated and identified as Candida glabrata VYP1 and Candida tropicalis VYW1 based on 18S rRNA gene sequencing and phylogeny. These strains possessed plant growth-promoting traits viz., IAA, ACC deaminase, siderophore, ammonia, and polyamine production. The functional capacity of endophytic yeast strains, and their interaction with Rhizobium sp. was further unveiled via profiling volatile organic compounds (VOC). Among the VOCs, α-glucopyranoside and pyrroloquinoline pitches a pivotal role in activating lectin pathways and phosphorous metabolism. Further, lectin pathways are crucial for nodulating bacterium, and our study showed that these endophytic yeasts assist nodulation by Rhizobium sp. via activating the nod factors. The plant growth-promoting traits of NRE yeast strains coupled with their metabolite production, could recruit them as potential drivers in the plant-microbe interaction.
Collapse
Affiliation(s)
- Kalyanasundaram Geetha Thanuja
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Brundha Annadurai
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sugitha Thankappan
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| |
Collapse
|
10
|
Safronova V, Belimov A, Sazanova A, Chirak E, Kuznetsova I, Andronov E, Pinaev A, Tsyganova A, Seliverstova E, Kitaeva A, Tsyganov V, Tikhonovich I. Two Broad Host Range Rhizobial Strains Isolated From Relict Legumes Have Various Complementary Effects on Symbiotic Parameters of Co-inoculated Plants. Front Microbiol 2019; 10:514. [PMID: 30930885 PMCID: PMC6428766 DOI: 10.3389/fmicb.2019.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
Two bacterial strains Ach-343 and Opo-235 were isolated, respectively from nodules of Miocene-Pliocene relict legumes Astragalus chorinensis Bunge and Oxytropis popoviana Peschkova originated from Buryatia (Baikal Lake region, Russia). For identification of these strains the sequencing of 16S rRNA (rrs) gene was used. Strain Opo-235 belonged to the species Mesorhizobium japonicum, while the strain Ach-343 was identified as M. kowhaii (100 and 99.9% rrs similarity with the type strains MAFF 303099T and ICMP 19512T, respectively). Symbiotic genes of these strains as well as some genes that promote plant growth (acdS, gibberellin- and auxin-synthesis related genes) were searched throughout the whole genome sequences. The sets of plant growth-promoting genes found were almost identical in both strains, whereas the sets of symbiotic genes were different and complemented each other with several nod, nif, and fix genes. Effects of mono- and co-inoculation of Astragalus sericeocanus, Oxytropis caespitosa, Glycyrrhiza uralensis, Medicago sativa, and Trifolium pratense plants with the strains M. kowhaii Ach-343 and M. japonicum Opo-235 expressing fluorescent proteins mCherry (red) and EGFP (green) were studied in the gnotobiotic plant nodulation assay. It was shown that both strains had a wide range of host specificity, including species of different legume genera from two tribes (Galegeae and Trifolieae). The effects of co-microsymbionts on plants depended on the plant species and varied from decrease, no effect, to increase in the number of nodules, nitrogen-fixing activity and plant biomass. One of the reasons for this phenomenon may be the discovered complementarity in co-microsymbionts of symbiotic genes responsible for the specific modification of Nod-factors and nitrogenase activity. Localization and co-localization of the strains in nodules was confirmed by the confocal microscopy. Analysis of histological and ultrastructural organization of A. chorinensis and O. popoviana root nodules was performed. It can be concluded that the strains M. kowhaii Ach-343 and M. japonicum Opo-235 demonstrate lack of high symbiotic specificity that is characteristic for primitive legume-rhizobia systems. Further study of the root nodule bacteria having complementary sets of symbiotic genes will contribute to clarify the evolutionary paths of legume-rhizobia relationships and the mechanisms of effective integration between partners.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Evgeny Andronov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexander Pinaev
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elena Seliverstova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anna Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
11
|
Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z. Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. CHEMOSPHERE 2019; 219:250-260. [PMID: 30543960 DOI: 10.1016/j.chemosphere.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 05/20/2023]
Abstract
The aim of this study was to isolate and characterise metal-resistant endophytic bacteria from the tissues of Silene vulgaris collected within the vicinity of non-ferrous steelworks in Katowice, Upper Silesia, Southern Poland. Twenty-four strains of metal-resistant endophytic bacteria that belong to 15 genera were isolated from the stems and leaves of Silene vulgaris. Most of these strains showed multiple plant growth-promoting capabilities. The most promising strains, Proteus vulgaris H7, Pseudomonas sp. H15, and Pseudomonas helmanticensis H16, were used in a pot experiment, and their impact on the biomass of white mustard and Zn and Cd accumulation was examined. Soil inoculation with the tested strains resulted in a higher fresh biomass of shoots, which increased by 74.5% (Proteus vulgaris H7), 121.7% (Pseudomonas sp. H15), and 142.2% (P. helmanticensis H16) compared to the control plants. The highest phytoextraction enhancement was caused by P. helmanticensis H16, which increased Zn and Cd accumulation in the shoot tissues by 43.8% and 112.6%, respectively. All of the tested strains were detected in the soil at the last sampling points, but only Proteus vulgaris H7 and Pseudomonas sp. H15 were capable of temporary colonisation of the roots of white mustard. None of the inoculants were found in the stems and leaves of the plants during the experimental period. The plant growth-promoting features of the isolates combined with their resistance to heavy metals and high survival in soil after inoculation make these strains good candidates for the promotion of plant growth and increased phytoremediation efficiency.
Collapse
Affiliation(s)
- T Płociniczak
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| | - M Chodór
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - M Pacwa-Płociniczak
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Z Piotrowska-Seget
- Department of Microbiology, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| |
Collapse
|
12
|
Han S, Li X, Amombo E, Fu J, Xie Y. Cadmium Tolerance of Perennial Ryegrass Induced by Aspergillus aculeatus. Front Microbiol 2018; 9:1579. [PMID: 30072964 PMCID: PMC6058755 DOI: 10.3389/fmicb.2018.01579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) pollution is becoming increasingly prevalent, posing a global environmental hazard due to its negative effects on plants growth and human health. Phytoremediation is a green technology that involves uptake of Cd from the soil by a combination of plants and associated microbes. The objective of this study was to investigate the role of Aspergillus aculeatus in perennial ryegrass Cd tolerance. This fungus produced indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylate deaminase. Physiological traits including growth rate, turf quality and chlorophyll content were measured to evaluate the physiological responses of perennial ryegrass to Cd stress. These physiological traits were improved after inoculated with A. aculeatus. Inoculation of A. aculeatus actively reduced DTPA-Cd concentration in the soil and Cd translocation to plant shoots. Chlorophyll a fluorescence transient and the C/N ratio in shoots were elevated by A. aculeatus, which implied that the fungus could protect the photosystem II against Cd stress and increase the photosynthetic efficiency. These results suggested that A. aculeatus is beneficial in improving Cd tolerance of perennial ryegrass and reducing Cd-induced injuries, thus, it has promising potential for application of phytostabilization in Cd contaminated soil.
Collapse
Affiliation(s)
- Shijuan Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Wuhan Botanical Garden, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xiaoning Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Wuhan Botanical Garden, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Wuhan Botanical Garden, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Jinmin Fu
- The Institute for Advanced Study in Coastal Ecology, Ludong University, Yantai, China
| | - Yan Xie
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Duca DR, Rose DR, Glick BR. Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie Van Leeuwenhoek 2018; 111:1645-1660. [PMID: 29492769 DOI: 10.1007/s10482-018-1051-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
The plant growth-promoting rhizobacterium Pseudomonas sp. UW4 was transformed to increase the biosynthesis of the auxin, indole-3-acetic acid (IAA). Four native IAA biosynthesis genes from strain UW4 were individually cloned into an expression vector and introduced back into the wild-type strain. Quantitative real-time polymerase chain reaction analysis revealed that the introduced genes ami, nit, nthAB and phe were all overexpressed in these transformants. A significant increase in the production of IAA was observed for all modified strains. Canola plants inoculated with the modified strains showed enhanced root elongation under gnotobiotic conditions. The growth rate and 1-aminocyclopropane-1-carboxylate deaminase activity of transformant strains was lower compared to the wild-type. The indoleacetic acid biosynthesis pathways and the role of this phytohormone in the mechanism of plant growth stimulation by Pseudomonas sp. UW4 is discussed.
Collapse
Affiliation(s)
- Daiana R Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - David R Rose
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
14
|
Phosphate-Solubilizing and Auxin-Producing Rhizobacteria Promote Plant Growth Under Saline Conditions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-3042-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Benidire L, Pereira SIA, Castro PML, Boularbah A. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21751-21765. [PMID: 27522210 DOI: 10.1007/s11356-016-7378-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Soil heavy metal contamination resulting from mining activities constitutes a major environmental problem worldwide. The spread of heavy metals is often facilitated by scarce vegetation cover, so there is an urgent need to improve plant survival and establishment in these metalliferous areas. This study is aimed at the isolation and analysis of the phylogenetic relationship of culturable bacteria from the rhizosphere of metallophyte plants growing in the Kettara mine, in Marrakech, in order to select plant growth-promoting rhizobacteria (PGPR), which could be used in assisted-phytoremediation. Bacterial isolates were grouped by random amplified polymorphic DNA analysis and identified by 16S rRNA gene sequencing. Strains were further characterized for the production of plant growth-promoting (PGP) substances, such as NH3, siderophores, indol-3-acetic acid (IAA), hydrogen cyanide, and extracellular enzymes, for ACC-deaminase activity, their capacity to solubilize phosphate, and for their tolerance to heavy metals and acidic pH. Rhizosphere soils were highly contaminated with Cu and Zn and presented low fertility. Phylogenetic analysis showed that the rhizobacteria were affiliated to three major groups: γ-Proteobacteria (48 %), β-Proteobacteria (17 %), and Bacilli (17 %). The most represented genera were Pseudomonas (38 %), Bacillus (10 %), Streptomyces (10 %), and Tetrathiobacter (10 %). Overall, rhizobacterial strains showed an ability to produce multiple, important PGP traits, which may be helpful when applied as plant growth promoter agents in contaminated soils. PGPR were also able to withstand high levels of metals (up to 2615.2 mg Zn l-1, 953.29 mg Cu l-1, and 1124.6 mg Cd l-1) and the order of metal toxicity was Cd > Cu > Zn. The rhizobacterial strains isolated in the present study have the potential to be used as efficient bioinoculants in phytoremediation strategies for the recovery of Kettara mine soils.
Collapse
Affiliation(s)
- L Benidire
- Faculté des Sciences et Techniques, Laboratoire Aliments, Environnement et Santé, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco
| | - S I A Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Universidade Católica Portuguesa, Apartado 2511, 4202-401, Porto, Portugal
| | - P M L Castro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Universidade Católica Portuguesa, Apartado 2511, 4202-401, Porto, Portugal
| | - A Boularbah
- Faculté des Sciences et Techniques, Laboratoire Aliments, Environnement et Santé, Université Cadi Ayyad, Boulevard Abdelkrim Khattabi, BP 549, 40000, Marrakech, Morocco.
| |
Collapse
|
16
|
Ouyang L, Pei H, Xu Z. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic. Arch Microbiol 2016; 199:425-432. [PMID: 27803972 DOI: 10.1007/s00203-016-1312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.
Collapse
Affiliation(s)
- Liming Ouyang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| | - Haiyan Pei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhaohui Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, USA
| |
Collapse
|
17
|
RpoS differentially affects the general stress response and biofilm formation in the endophytic Serratia plymuthica G3. Res Microbiol 2016; 167:168-77. [DOI: 10.1016/j.resmic.2015.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
|
18
|
Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 125:25-34. [PMID: 26650422 DOI: 10.1016/j.ecoenv.2015.11.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 05/27/2023]
Abstract
Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant.
Collapse
Affiliation(s)
- Namrata Singh
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India.
| | - Naina Marwa
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India
| | - Shashank K Mishra
- Plant Microbe Interaction Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Jyoti Mishra
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Praveen C Verma
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | - Sushma Rathaur
- Department of Biochemistry, Banaras Hindu University, Varanasi, India
| | - Nandita Singh
- Eco-auditing group, CSIR-National Botanical Research Institute, Lucknow, India.
| |
Collapse
|
19
|
Wang Q, Dodd IC, Belimov AA, Jiang F. Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na + accumulation. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:161-172. [PMID: 32480450 DOI: 10.1071/fp15200] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/05/2015] [Indexed: 06/11/2023]
Abstract
Although plant salt tolerance has been improved by soil inoculation with rhizobacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase (which metabolises ACC, the immediate precursor of the phytohormone ethylene), it is not always clear whether ion homeostasis and plant water relations are affected. When pea (Pisum sativum L. cv. Alderman) was grown with 70 and 130mM NaCl, the ACC-deaminase containing rhizobacterium Variovorax paradoxus 5C-2 increased total biomass by 25 and 54% respectively. Nutrient flow modelling showed that V. paradoxus 5C-2 increased K uptake and root to shoot K flow, but decreased Na flow and increased Na deposition in roots. Thus, shoot K+:Na+ ratio increased following V. paradoxus 5C-2 inoculation. At 70 and 130mM NaCl, rhizobacterial inoculation decreased stomatal resistance by 14 and 31% and decreased xylem balancing pressure by 7 and 21% respectively. Furthermore, rhizobacterial inoculation improved photosynthetic efficiency (Fv/Fm) by 12 and 19% and increased maximal electron transport rate (ETR) by 18 and 22% at 70 and 130mM NaCl respectively. Thus V. paradoxus 5C-2 mitigates salt stress by improving water relations, ion homeostasis and photosynthesis of pea plants, and may provide an economic means of promoting growth of plants exposed to salt stress.
Collapse
Affiliation(s)
- Qiyuan Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, Saint Petersburg, Russian Federation
| | - Fan Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
20
|
Pacwa-Płociniczak M, Płociniczak T, Iwan J, Żarska M, Chorążewski M, Dzida M, Piotrowska-Seget Z. Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 168:175-184. [PMID: 26708648 DOI: 10.1016/j.jenvman.2015.11.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 08/04/2015] [Accepted: 11/29/2015] [Indexed: 06/05/2023]
Abstract
Forty-two hydrocarbon-degrading bacterial strains were isolated from the soil heavily contaminated with petroleum hydrocarbons. Forty-one strains were identified based on their whole-cell fatty acid profiles using the MIDI-MIS method. Thirty-three of them belong to species Rhodococcus erythropolis, while the others to the genera Rahnella (4), Serratia (3) and Proteus (1). Isolates were screened for their ability to produce biosurfactants/bioemulsifiers. For all of them the activity of several mechanisms characteristic for plant growth-promoting bacteria was also determined. In order to investigate surface active and emulsifying abilities of isolates following methods: oil-spreading, blood agar, methylene blue agar and determination of emulsification index, were used. Among studied bacteria 12 strains (CD 112, CD 126, CD 131, CD 132, CD 135, CD 147, CD 154, CD 155, CD 158, CD 161, CD 166 and CD 167) have been chosen as promising candidates for the production of biosurfactants and/or bioemulsifiers. Among them 2 strains (R. erythropolis CD 126 and Rahnella aquatilis CD 132) had the highest potential to be used in the bioaugmentation of PH-contaminated soil. Moreover, 15 of tested strains (CD 105, CD 106, CD 108, CD 111, CD 116, CD 120, CD 124, CD 125, CD 130, CD 132, CD 134, CD 154, CD 156, CD 161 and CD 170) showed the activity of four mechanisms (ACC deaminase activity, IAA and siderophore production, phosphate solubilization) considered to be characteristic for plant growth-promoting bacteria. Two of them (R. erythropolis CD 106 and R. erythropolis CD 111) showed the highest activity of above-mentioned mechanisms and thus are considered as promising agents in microbe assisted phytoremediation.
Collapse
Affiliation(s)
| | - Tomasz Płociniczak
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Joanna Iwan
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Monika Żarska
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Mirosław Chorążewski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Marzena Dzida
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Zofia Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
21
|
Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL- 12 isolated from a salt lake. Symbiosis 2016. [DOI: 10.1007/s13199-016-0387-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Płociniczak T, Sinkkonen A, Romantschuk M, Sułowicz S, Piotrowska-Seget Z. Rhizospheric Bacterial Strain Brevibacterium casei MH8a Colonizes Plant Tissues and Enhances Cd, Zn, Cu Phytoextraction by White Mustard. FRONTIERS IN PLANT SCIENCE 2016; 7:101. [PMID: 26909087 PMCID: PMC4754770 DOI: 10.3389/fpls.2016.00101] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/19/2016] [Indexed: 05/04/2023]
Abstract
Environmental pollution by heavy metals has become a serious problem in the world. Phytoextraction, which is one of the plant-based technologies, has attracted the most attention for the bioremediation of soils polluted with these contaminants. The aim of this study was to determine whether the multiple-tolerant bacterium, Brevibacterium casei MH8a isolated from the heavy metal-contaminated rhizosphere soil of Sinapis alba L., is able to promote plant growth and enhance Cd, Zn, and Cu uptake by white mustard under laboratory conditions. Additionally, the ability of the rifampicin-resistant spontaneous mutant of MH8a to colonize plant tissues and its mechanisms of plant growth promotion were also examined. In order to assess the ecological consequences of bioaugmentation on autochthonous bacteria, the phospholipid fatty acid (PLFA) analysis was used. The MH8a strain exhibited the ability to produce ammonia, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid and HCN but was not able to solubilize inorganic phosphate and produce siderophores. Introduction of MH8a into soil significantly increased S. alba biomass and the accumulation of Cd (208%), Zn (86%), and Cu (39%) in plant shoots in comparison with those grown in non-inoculated soil. Introduced into the soil, MH8a was able to enter the plant and was found in the roots and leaves of inoculated plants thus indicating its endophytic features. PLFA analysis revealed that the MH8a that was introduced into soil had a temporary influence on the structure of the autochthonous bacterial communities. The plant growth-promoting features of the MH8a strain and its ability to enhance the metal uptake by white mustard and its long-term survival in soil as well as its temporary impact on autochthonous microorganisms make the strain a suitable candidate for the promotion of plant growth and the efficiency of phytoextraction.
Collapse
Affiliation(s)
- Tomasz Płociniczak
- Department of Microbiology, University of Silesia in KatowiceKatowice, Poland
- *Correspondence: Tomasz Płociniczak,
| | - Aki Sinkkonen
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
- Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russia
| | - Martin Romantschuk
- Department of Environmental Sciences, University of HelsinkiLahti, Finland
- Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russia
| | - Sławomir Sułowicz
- Department of Microbiology, University of Silesia in KatowiceKatowice, Poland
| | | |
Collapse
|
23
|
Kumar Ghosh P, Kumar Sen S, Kanti Maiti T. Production and metabolism of IAA by Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 2015; 107:1519-32. [DOI: 10.1007/s10482-015-0445-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/01/2015] [Indexed: 11/26/2022]
|
25
|
Croes S, Weyens N, Colpaert J, Vangronsveld J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: an evaluation of sampling and isolation protocols. Environ Microbiol 2015; 17:2379-92. [PMID: 25367683 DOI: 10.1111/1462-2920.12701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
Plant-associated bacteria are intensively investigated concerning their characteristics for plant growth promotion, biocontrol mechanisms and enhanced phytoremediation efficiency. To obtain endophytes, different sampling and isolation protocols are used although their representativeness is not always clearly demonstrated. The objective of this study was to acquire representative pictures of the cultivable bacterial root, stem and leaf communities for all Brassica napus L. individuals growing on the same field. For each plant organ, genotypic identifications of the endophytic communities were performed using three replicates. Root replicates were composed of three total root systems, whereas stem and leaf replicates needed to consist of six independent plant parts in order to be representative. Greater variations between replicates were found when considering phenotypic characteristics. Correspondence analysis revealed reliable phenotypic results for roots and even shoots, but less reliable ones for leaves. Additionally, realistic Shannon-Wiener biodiversity indices were calculated for all three organs and showed similar Evenness factors. Furthermore, it was striking that all replicates and thus the whole plant contained Pseudomonas and Bacillus strains although aboveground and belowground plant tissues differed in most dominant bacterial genera and characteristics.
Collapse
Affiliation(s)
- Sarah Croes
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jan Colpaert
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
26
|
Kukla M, Płociniczak T, Piotrowska-Seget Z. Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. CHEMOSPHERE 2014; 117:40-6. [PMID: 24954306 DOI: 10.1016/j.chemosphere.2014.05.055] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 05/08/2023]
Abstract
The aim of this study was to assess the ability of twenty-nine endophytic bacteria isolated from the tissues of ryegrass (Lolium perenne L.) to promote plant growth and the degradation of hydrocarbon. Most of the isolates belonged to the genus Pseudomonas and showed multiple plant growth-promoting abilities. All of the bacteria that were tested exhibited the ability to produce indole-3-acetic acid and were sensitive to streptomycin. These strains were capable of phosphate solubilization (62%), cellulolytic enzyme production (62%), a capacity for motility (55%) as well as for the production of siderophore (45%), ammonium (41%) and hydrogen cyanide (38%). Only five endophytes had the emulsification ability that results from the production of biosurfactants. The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) gene (acdS) was found in ten strains. These bacteria exhibited ACCD activities in the range from 1.8 to 56.6 μmol of α-ketobutyrate mg(-1)h(-1), which suggests that these strains may be able to modulate ethylene levels and enhance plant growth. The potential for hydrocarbon degradation was assessed by PCR amplification on the following genes: alkH, alkB, C23O, P450 and pah. The thirteen strains that were tested had the P450 gene but the alkH and pah genes were found only in the Rhodococcus fascians strain (L11). Four endophytic bacteria belonging to Microbacterium sp. and Rhodococcus sp. (L7, S12, S23, S25) showed positive results for the alkB gene.
Collapse
Affiliation(s)
- M Kukla
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | - T Płociniczak
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Z Piotrowska-Seget
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| |
Collapse
|
27
|
Shim J, Kim JW, Shea PJ, Oh BT. IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. J Basic Microbiol 2014; 55:652-8. [PMID: 25283159 DOI: 10.1002/jobm.201400311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/30/2014] [Indexed: 11/08/2022]
Abstract
Bacillus sp. strain JH 2-2, isolated from the rhizosphere of plants at a multi-metal contaminated mine site, has the potential to reduce Cr(VI) to Cr(III) and promote plant growth by reducing Cr toxicity and producing IAA. The minimum inhibitory concentration of Cr(VI) to Bacillus sp. JH 2-2 was 1000 mg L(-1) and the strain reduced 99% of 10 mg Cr(VI) L(-1) to Cr(IV) within 24 h. Lower Cr(VI) stress (10 mg L(-1) ) stimulated IAA production, but much less IAA was produced at 30 or 50 mg Cr(VI) L(-1) . Inoculation with Bacillus sp. JH 2-2 increased the length of Brassica juncea L. roots by 364% and stems by 735% in the presence of 10 mg Cr(VI) L(-1) from those of uninoculated control plants. These findings suggest potential use of Bacillus sp. JH 2-2 to promote phytoremediation of soil contaminated with Cr(VI).
Collapse
Affiliation(s)
- Jaehong Shim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, South Korea; School of Natural Resources, University of Nebraska-Lincoln, Lincoln, USA
| | | | | | | |
Collapse
|
28
|
Weyens N, Gielen M, Beckers B, Boulet J, van der Lelie D, Taghavi S, Carleer R, Vangronsveld J. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:988-96. [PMID: 24400887 DOI: 10.1111/plb.12141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 11/07/2013] [Indexed: 05/13/2023]
Abstract
In order to stimulate selection for plant-associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal-contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant-associated bacteria that could then be inoculated in Cd-exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore- and ACC deaminase-producing, highly Cd-resistant Rhizobium sp. from the rhizosphere, a siderophore-, organic acid-, IAA- and ACC deaminase-producing highly Cd-resistant Pseudomonas sp. colonising the roots, a highly Cd- and Zn-resistant organic acid and IAA-producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non-exposed and Cd-exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.
Collapse
Affiliation(s)
- N Weyens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kumar A, Kumar A, Pratush A. Molecular diversity and functional variability of environmental isolates of Bacillus species. SPRINGERPLUS 2014; 3:312. [PMID: 25279279 PMCID: PMC4169128 DOI: 10.1186/2193-1801-3-312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/18/2014] [Indexed: 11/25/2022]
Abstract
In the present study, out of 264 phosphate (P) solubilizing Bacillus strains isolated from apple rhizosphere, only twelve isolates were found to be efficient (showed most of the plant growth promoting activity) which were further characterized at molecular level using 16S rDNA partial gene sequencing. Out of 12 isolates, MZPSB 207 was found to be most efficient P-solubilizing (864.71 μg/ml) isolate which also showed indole acetic acid production (51.83 μg/ml), siderophore production, ammonia production, antagonistic property (against Rhizoctonia solani and Fusarium oxysporum), hydrolytic enzymes productions (protease, chitinase and cellulase), 1-aminocyclopropane-1-carboxylate (ACC) deaminase production (7.7 μm αKB mg(-1) h(-1)). The in-vitro seed germination assay showed that Bacillus (twelve isolates) inoculated seeds showed more seed germination and seedling vigor rate as compared to uninoculated control treatment. For the genetic diversity studies of efficient 12 strains, the polyphasic approach using 16S-rDNA, Repetitive element sequence (rep) based PCR (ERIC-PCR and BOX-PCR) were used. Based on 16S rDNA partial gene sequencing the isolated Bacillus genus was divide into four groups. First group (five isolates), second group (two isolates), third group (three isolates) and fourth group (two isolates) which showed close genetic relatedness to the B. subtilis, B. pumulis, B. megaterium and B. amyloliquefaciens, respectively. The rep PCR fingerprinting showed variability between and within the species. The large variability was showed by ERIC-PCR whereas some variability was showed by BOX-PCR. The results clearly showed that 16S rRNA gene sequencing is unable to discriminate the isolates at strain level. But rep-PCR fingerprinting is excellent tool to characterize and discriminate the strains at the genomic level.
Collapse
Affiliation(s)
- Ajay Kumar
- />Department of Microbiology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh 173212 India
| | - Amit Kumar
- />School of Biotechnology, Shoolini University, Solan, Himachal Pradesh 173212 India
| | - Amit Pratush
- />Department of Biotechnology, Shoolini Institute of Life Sciences and Business Management, Solan, Himachal Pradesh 173212 India
| |
Collapse
|
30
|
Duca D, Lorv J, Patten CL, Rose D, Glick BR. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 2014; 106:85-125. [PMID: 24445491 DOI: 10.1007/s10482-013-0095-y] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/07/2013] [Indexed: 01/04/2023]
Abstract
Indole-3-acetic acid (IAA) is an important phytohormone with the capacity to control plant development in both beneficial and deleterious ways. The ability to synthesize IAA is an attribute that many bacteria including both plant growth-promoters and phytopathogens possess. There are three main pathways through which IAA is synthesized; the indole-3-pyruvic acid, indole-3-acetamide and indole-3-acetonitrile pathways. This chapter reviews the factors that effect the production of this phytohormone, the role of IAA in bacterial physiology and in plant-microbe interactions including phytostimulation and phytopathogenesis.
Collapse
Affiliation(s)
- Daiana Duca
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada,
| | | | | | | | | |
Collapse
|
31
|
Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:84-91. [PMID: 24270514 DOI: 10.1016/j.plaphy.2013.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 10/25/2013] [Indexed: 05/08/2023]
Abstract
Although endogenous phytohormones such as abscisic acid (ABA) regulate root growth, and many rhizobacteria can modulate root phytohormone status, hitherto there have been no reports of rhizobacteria mediating root ABA concentrations and growth by metabolising ABA. Using a selective ABA-supplemented medium, two bacterial strains were isolated from the rhizosphere of rice (Oryza sativa) seedlings grown in sod-podzolic soil and assigned to Rhodococcus sp. P1Y and Novosphingobium sp. P6W using partial 16S rRNA gene sequencing and phenotypic patterns by the GEN III MicroPlate test. Although strain P6W had more rapid growth in ABA-supplemented media than strain P1Y, both could utilize ABA as a sole carbon source in batch culture. When rice seeds were germinated on filter paper in association with bacteria, root ABA concentration was not affected, but shoot ABA concentration of inoculated plants decreased by 14% (strain P6W) and 22% (strain P1Y). When tomato (Solanum lycopersicum) genotypes differing in ABA biosynthesis (ABA deficient mutants flacca - flc, and notabilis - not and the wild-type cv. Ailsa Craig, WT) were grown in gnotobiotic cultures on nutrient solution agar, rhizobacterial inoculation decreased root and/or leaf ABA concentrations, depending on plant and bacteria genotypes. Strain P6W inhibited primary root elongation of all genotypes, but increased leaf biomass of WT plants. In WT plants treated with silver ions that inhibit ethylene perception, both ABA-metabolising strains significantly decreased root ABA concentration, and strain P6W decreased leaf ABA concentration. Since these changes in ABA status also occurred in plants that were not treated with silver, it suggests that ethylene was probably not involved in regulating bacteria-mediated changes in ABA concentration. Correlations between plant growth and ABA concentrations in planta suggest that ABA-metabolising rhizobacteria may stimulate growth via an ABA-dependent mechanism.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh. 3, Pushkin 196608, St. Petersburg, Russian Federation.
| | - Ian C Dodd
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom.
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh. 3, Pushkin 196608, St. Petersburg, Russian Federation.
| | - Valentina A Dumova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh. 3, Pushkin 196608, St. Petersburg, Russian Federation.
| | - Alexander I Shaposhnikov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh. 3, Pushkin 196608, St. Petersburg, Russian Federation.
| | - Alexander G Ladatko
- All-Russia Research Institute of Rice, Belozerny 3, Krasnodar, Russian Federation.
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom.
| |
Collapse
|
32
|
Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:1039-47. [PMID: 22939092 DOI: 10.1016/j.jhazmat.2012.08.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/30/2012] [Accepted: 08/09/2012] [Indexed: 05/24/2023]
Abstract
An arsenic hypertolerant bacterium was isolated from arsenic contaminated site of West Bengal, India. The bacteria was identified as Staphylococcus arlettae strain NBRIEAG-6, based on 16S rDNA analysis. S. arlettae was able to remove arsenic from liquid media and possesses arsC gene, gene responsible for arsenate reductase activity. The biochemical profiling of the isolated strain showed that it had the capacity of producing indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. Furthermore, an experiment was conducted to test the effect of S. arlettae inoculation on concurrent plant growth promotion and arsenic uptake in Indian mustard plant [Brassica juncea (L.) Czern. Var. R-46] when grown in arsenic spiked (5, 10 and 15 mg kg(-1)) soil. The microbial inoculation significantly (p<0.05) increased biomass, protein, chlorophyll and carotenoids contents in test plant. Moreover, as compared to the non-inoculated control, the As concentration in shoot and root of inoculated plants were increased from 3.73 to 34.16% and 87.35 to 99.93%, respectively. The experimental results show that the plant growth promoting bacteria NBRIEAG-6 has the ability to help B. juncea to accumulate As maximally in plant root, and therefore it can be accounted as a new bacteria for As phytostabilization.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Plant Ecology and Environment Science Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, UP, India
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rajasankar R, Manju Gayathry G, Sathiavelu A, Ramalingam C, Saravanan VS. Pesticide tolerant and phosphorus solubilizing Pseudomonas sp. strain SGRAJ09 isolated from pesticides treated Achillea clavennae rhizosphere soil. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:707-717. [PMID: 23512438 DOI: 10.1007/s10646-013-1062-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 06/01/2023]
Abstract
In this study, an attempt was made to identify an effective phosphate solubilizing bacteria from pesticide polluted field soil. Based on the formation of solubilization halo on Pikovskaya's agar, six isolates were selected and screened for pesticide tolerance and phosphate (P) solubilization ability through liquid assay. The results showed that only one strain (SGRAJ09) obtained from Achillea clavennae was found to tolerate maximum level of the pesticides tested and it was phylogenetically identified as Pseudomonas sp. It possessed a wide range of pesticide tolerance, ranging from 117 μg mL(-1) for alphamethrin to 2,600 μg mL(-1) for endosulfan. The available P concentrations increased with the maximum and double the maximum dose of monocrotophos and imidacloprid, respectively. On subjected to FT-IR and HPLC analysis, the presence of organic acids functional group in the culture broth and the production of gluconic acid as dominant acid aiding the P solubilization were identified. On comparison with control broth, monocrotophos and imidacloprid added culture broth showed quantitatively high organic acids production. In addition to gluconic acid production, citric and acetic acids were also observed in the pesticide amended broth. Furthermore, the Pseudomonas sp. strain SGRAJ09 possessed all the plant growth promoting traits tested. In presence of monocrotophos and imidacloprid, its plant growth promoting activities were lower than that of the pesticides unamended treatment.
Collapse
Affiliation(s)
- R Rajasankar
- School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
34
|
Płociniczak T, Kukla M, Wątroba R, Piotrowska-Seget Z. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. CHEMOSPHERE 2013; 91:1332-7. [PMID: 23561856 DOI: 10.1016/j.chemosphere.2013.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 05/08/2023]
Abstract
The aim of this study was to assess the ability of selected metal resistant strains of the Pseudomonas genus to increase Zn, Cd and Cu uptake by the metalophyte Sinapis alba L. under laboratory conditions. Moreover, the mechanisms of the plant growth promotion in the tested strains and their impact on the shoots and roots of white mustard biomass were examined. Soil inoculation with the tested strains resulted in higher concentrations of Zn, Cd and Cu in the shoots and roots of the plants in comparison with those grown in non-inoculated soil. The highest phytoextraction enhancement was caused by Pseudomonas fluorescens MH15 which increased Zn, Cd and Cu accumulation in shoot tissue by 60%, 96% and 31%, respectively, in comparison with control plants. Moreover, all the tested strains also exhibited a significant increase of Cd translocation from roots to shoots of the white mustard. Three Pseudomonas putida (MH3, MH6, MH7) and two P. fluorescens biotype G and C (MH9 and MH15, respectively) strains had the ability to produce siderophore, 1-amino-cyclopropane-1-carboxylic acid deaminase, indole 3-acetic acid as well as hydrocyanic acid. Additionally, P. putida strains were also capable of solubilizing inorganic phosphate. The ability of the tested strains to increase the metal uptake in white mustard and their plant growth-promoting properties make them good candidates for supporting heavy metal phytoextraction as well as for plant growth promoting.
Collapse
Affiliation(s)
- T Płociniczak
- Department of Microbiology, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | |
Collapse
|
35
|
Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L. World J Microbiol Biotechnol 2013; 29:1931-40. [DOI: 10.1007/s11274-013-1359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/21/2013] [Indexed: 11/25/2022]
|
36
|
Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 2013; 8:e58640. [PMID: 23516524 PMCID: PMC3596284 DOI: 10.1371/journal.pone.0058640] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.
Collapse
Affiliation(s)
- Jin Duan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|
37
|
Relationships between pasture legumes, rhizobacteria and nodule bacteria in heavy metal polluted mine waste of SW Sardinia. Symbiosis 2012. [DOI: 10.1007/s13199-012-0207-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
39
|
|
40
|
Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 2011; 28:1327-50. [DOI: 10.1007/s11274-011-0979-9] [Citation(s) in RCA: 753] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
41
|
Characterization of a versatile rhizospheric organism from cucumber identified asOchrobactrum haematophilum. J Basic Microbiol 2011; 52:232-44. [DOI: 10.1002/jobm.201000491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/26/2011] [Indexed: 11/07/2022]
|
42
|
Guo J, Tang S, Ju X, Ding Y, Liao S, Song N. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0762-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. CHEMOSPHERE 2011; 83:57-62. [PMID: 21315404 DOI: 10.1016/j.chemosphere.2011.01.041] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 05/08/2023]
Abstract
One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.
Collapse
Affiliation(s)
- Yan-Feng Zhang
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. JOURNAL OF HAZARDOUS MATERIALS 2011; 186:1720-1725. [PMID: 21227577 DOI: 10.1016/j.jhazmat.2010.12.069] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 05/30/2023]
Abstract
Forty-nine lead (Pb)-resistant endophytic bacteria were isolated from metal-tolerant Commelina communis plants grown on lead and zinc mine tailing, of which, seven 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were initially obtained and characterized with respect to heavy metal resistance and production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores. Two isolates (Q2BJ2 and Q2BG1) showing higher ACC deaminase activity were evaluated for promoting plant growth and Pb uptake of rape grown in quartz sand containing 0 and 100 mg kg(-1) of Pb in pot experiments. The seven Pb-resistant and ACC deaminase-producing endophytic bacterial isolates were found to exhibit different multiple heavy metal resistance characteristics and to show different levels of ACC deaminase activity (ranging from 12.8 μM α-KB mg(-1) h(-1) to 121 μM α-KB mg(-1) h(-1)). Among the seven isolates, six isolates produced indole acetic acid, whilst five isolates produced siderophores. In experiments involving rape plants grown in quartz sand containing 100 mg kg(-1) of Pb, inoculation with the isolates resulted in the increased dry weights of above-ground tissues (ranging from 39% to 71%) and roots (ranging from 35% to 123%) compared to the uninoculated control. Increases in above-ground tissue Pb contents of rape cultivated in 100 mg kg(-1) of Pb-contaminated substrates varied from 58% to 62% in inoculated-rape plants compared to the uninoculated control.
Collapse
Affiliation(s)
- Yan-feng Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Kumar KV, Srivastava S, Singh N, Behl HM. Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. JOURNAL OF HAZARDOUS MATERIALS 2009; 170:51-57. [PMID: 19487076 DOI: 10.1016/j.jhazmat.2009.04.132] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/30/2009] [Accepted: 04/30/2009] [Indexed: 05/27/2023]
Abstract
In this study, we have shown that the plant growth promoting bacterial strain NBRI K24 and strain NBRI K3 from fly ash (FA) contaminated soil reduce the toxicity of Ni and Cr in Brassica juncea (Indian mustard) and promote plant growth under pot culture experiments. Isolated strains NBRI K24 and NBRI K3 were characterized based on the 16S rDNA sequencing and identified as Enterobacter aerogenes and Rahnella aquatilis respectively. Both the strains were siderophore producing and found capable of stimulating plant biomass and enhance phytoextraction of metals (Ni and Cr) from FA by metal accumulating plant i.e. B. juncea. Concurrent production of siderophores, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA) and phosphate solubilization revealed their plant growth promotion potential.
Collapse
Affiliation(s)
- Kalpna V Kumar
- Biomass Biology & Environmental Division, National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP, India.
| | | | | | | |
Collapse
|
46
|
He LY, Chen ZJ, Ren GD, Zhang YF, Qian M, Sheng XF. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1343-1348. [PMID: 19368973 DOI: 10.1016/j.ecoenv.2009.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 01/02/2009] [Accepted: 03/15/2009] [Indexed: 05/27/2023]
Abstract
Two cadmium (Cd)-resistant strains Pseudomonas sp. RJ10 and Bacillus sp. RJ16 were investigated for their effects on the soil Cd and lead (Pb) solubilization and promotion of plant growth and Cd and Pb uptakes of a Cd-hyperaccumulator tomato. In the heavy metal-contaminated inoculated soil, the CaCl(2)-extractable Cd and Pb were increased by 58-104% and 67-93%, respectively, compared to the uninoculation control. The bacteria produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Root elongation assay conducted on tomato under gnotobiotic conditions demonstrated increase in root elongation of inoculated tomato seedlings compared to the control plants. An increase in Cd and Pb contents of above-ground tissues varied from 92% to 113% and from 73% to 79% in inoculated plants growing in heavy metal-contaminated soil compared to the uninoculation control, respectively. These results show that the bacteria could be exploited for bacteria enhanced-phytoextraction of Cd- and Pb-polluted soils.
Collapse
Affiliation(s)
- Lin-Yan He
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. THE NEW PHYTOLOGIST 2009; 181:413-423. [PMID: 19121036 DOI: 10.1111/j.1469-8137.2008.02657.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Decreased soil water availability can stimulate production of the plant hormone ethylene and inhibit plant growth. Strategies aimed at decreasing stress ethylene evolution might attenuate its negative effects. An environmentally benign (nonchemical) method of modifying crop ethylene relations - soil inoculation with a natural root-associated bacterium Variovorax paradoxus 5C-2 (containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase that degrades the ethylene precursor ACC), was assessed with pea (Pisum sativum) plants grown in drying soil. Inoculation with V. paradoxus 5C-2, but not with a transposome mutant with massively decreased ACC deaminase activity, improved growth, yield and water-use efficiency of droughted peas. Systemic effects of V. paradoxus 5C-2 included an amplified soil drying-induced increase of xylem abscisic acid (ABA) concentration, but an attenuated soil drying-induced increase of xylem ACC concentration. A local bacterial effect was increased nodulation by symbiotic nitrogen-fixing bacteria, which prevented a drought-induced decrease in nodulation and seed nitrogen content. Successfully deploying a single bacterial gene in the rhizosphere increased yield and nutritive value of plants grown in drying soil, via both local and systemic hormone signalling. Such bacteria may provide an easily realized, economic means of sustaining crop yields and using irrigation water more efficiently in dryland agriculture.
Collapse
Affiliation(s)
- Andrey A Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Ian C Dodd
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Nikos Hontzeas
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Julian C Theobald
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| | - William J Davies
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, St. Petersburg, Russian Federation;The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK;Department of Biology, University of Waterloo, Waterloo, Canada, ON N2L 3G1
| |
Collapse
|
48
|
Sheng XF, Xia JJ, Jiang CY, He LY, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:1164-70. [PMID: 18490091 DOI: 10.1016/j.envpol.2008.04.007] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/03/2008] [Accepted: 04/06/2008] [Indexed: 05/20/2023]
Abstract
Two lead (Pb)-resistant endophytic bacteria were isolated from rape roots grown in heavy metal-contaminated soils and characterized. A pot experiment was conducted for investigating the capability of the two isolates to promote the growth and Pb uptake of rape from Pb-amended soil. The two isolates were identified as Pseudomonas fluorescens G10 and Microbacterium sp. G16 based on the 16S rDNA gene sequence analysis. Strains G10 and G16 exhibited different multiple heavy metal and antibiotic resistance characteristics and increased water-soluble Pb in solution and in Pb-added soil. Root elongation assays demonstrated increases in root elongation of inoculated rape seedlings compared to the control plants. Strain G16 produced indole acetic acid, siderophores and 1-aminocyclopropane-1-carboxylate deaminase. Increases in biomass production and total Pb uptake in the bacteria-inoculated plants were obtained compared to the control. The two strains could colonize the root interior and rhizosphere soil of rape after root inoculation.
Collapse
Affiliation(s)
- Xia-Fang Sheng
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | |
Collapse
|
49
|
Jiang CY, Sheng XF, Qian M, Wang QY. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. CHEMOSPHERE 2008; 72:157-64. [PMID: 18348897 DOI: 10.1016/j.chemosphere.2008.02.006] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 05/08/2023]
Abstract
A heavy metal-resistant bacterial strain was isolated from heavy metal-contaminated soils and identified as Burkholderia sp. J62 based on the 16S rDNA gene sequence analysis. The heavy metal- and antibiotic resistance, heavy metal solubilization of the isolate were investigated. The isolate was also evaluated for promoting plant growth and Pb and Cd uptakes of the plants from heavy metal-contaminated soils in pot experiments. The isolate was found to exhibit different multiple heavy metal and antibiotic resistance characteristics. Atomic absorption spectrometer analysis showed increased bacterial solubilization of lead and cadmium in solution culture and in soils. The isolate produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. The isolate also solubilized inorganic phosphate. Inoculation with the isolate was found to significantly (p<0.05) increase the biomass of maize and tomato plants. Increase in tissue Pb and Cd contents varied from 38% to 192% and from 5% to 191% in inoculated plants growing in heavy metal-contaminated soils compared to the uninoculated control, respectively. These results show that heavy metal-solubilizing and plant growth promoting bacteria are important for plant growth and heavy metal uptake which may provide a new microbial enhanced-phytoremediation of metal-polluted soils.
Collapse
Affiliation(s)
- Chun-yu Jiang
- MOA Key Laboratory of Microbiological Engineering of Agricultural Environment, College of Life Science, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
50
|
Isolation and characterization of transposon-insertional mutants from Paenibacillus polymyxa E681 altering the biosynthesis of indole-3-acetic acid. Curr Microbiol 2008; 56:524-30. [PMID: 18283514 DOI: 10.1007/s00284-008-9118-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 12/28/2007] [Indexed: 10/22/2022]
Abstract
We screened a mini-Tn10 insertional mutant library of the spore-forming bacterium Paenibacillus polymyxa E681 with variable indole-3-acetic acid (IAA) productivity. Four mutants, of which two showed a decrease in IAA production and the other two showed an increase in IAA production, were finally selected. Further analyses demonstrated different levels of IAA intermediates from culture supernatant of wild-type strain and mutants. In addition, mutants showed different promotions on the early growth of 10-day-old maize in terms of the increase in shoot and root weights. DNA fragments flanking the transposon insertion in four mutants were cloned and sequenced. The target sites of insertion were gene gpr1, disrupted at two sites, 49 bp downstream of the spo0F gene, and relA/spoT homologue, which codes for GPR1/FUN34/YaaH family protein, stage 0 sporulation protein F, and RelA/SpoT domain protein, respectively. This evidence suggests that there may be a number of genes involved in the regulation of IAA biosynthesis of P. polymyxa.
Collapse
|