1
|
Gurevich VV. Arrestins: A Small Family of Multi-Functional Proteins. Int J Mol Sci 2024; 25:6284. [PMID: 38892473 PMCID: PMC11173308 DOI: 10.3390/ijms25116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The first member of the arrestin family, visual arrestin-1, was discovered in the late 1970s. Later, the other three mammalian subtypes were identified and cloned. The first described function was regulation of G protein-coupled receptor (GPCR) signaling: arrestins bind active phosphorylated GPCRs, blocking their coupling to G proteins. It was later discovered that receptor-bound and free arrestins interact with numerous proteins, regulating GPCR trafficking and various signaling pathways, including those that determine cell fate. Arrestins have no enzymatic activity; they function by organizing multi-protein complexes and localizing their interaction partners to particular cellular compartments. Today we understand the molecular mechanism of arrestin interactions with GPCRs better than the mechanisms underlying other functions. However, even limited knowledge enabled the construction of signaling-biased arrestin mutants and extraction of biologically active monofunctional peptides from these multifunctional proteins. Manipulation of cellular signaling with arrestin-based tools has research and likely therapeutic potential: re-engineered proteins and their parts can produce effects that conventional small-molecule drugs cannot.
Collapse
|
2
|
Adzic M, Lukic I, Mitic M, Glavonic E, Dragicevic N, Ivkovic S. Contribution of the opioid system to depression and to the therapeutic effects of classical antidepressants and ketamine. Life Sci 2023:121803. [PMID: 37245840 DOI: 10.1016/j.lfs.2023.121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Major depressive disorder (MDD) afflicts approximately 5 % of the world population, and about 30-50 % of patients who receive classical antidepressant medications do not achieve complete remission (treatment resistant depressive patients). Emerging evidence suggests that targeting opioid receptors mu (MOP), kappa (KOP), delta (DOP), and the nociceptin/orphanin FQ receptor (NOP) may yield effective therapeutics for stress-related psychiatric disorders. As depression and pain exhibit significant overlap in their clinical manifestations and molecular mechanisms involved, it is not a surprise that opioids, historically used to alleviate pain, emerged as promising and effective therapeutic options in the treatment of depression. The opioid signaling is dysregulated in depression and numerous preclinical studies and clinical trials strongly suggest that opioid modulation can serve as either an adjuvant or even an alternative to classical monoaminergic antidepressants. Importantly, some classical antidepressants require the opioid receptor modulation to exert their antidepressant effects. Finally, ketamine, a well-known anesthetic whose extremely efficient antidepressant effects were recently discovered, was shown to mediate its antidepressant effects via the endogenous opioid system. Thus, although opioid system modulation is a promising therapeutical venue in the treatment of depression further research is warranted to fully understand the benefits and weaknesses of such approach.
Collapse
Affiliation(s)
- Miroslav Adzic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milos Mitic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Emilija Glavonic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nina Dragicevic
- Department of Pharmacy, Singidunum University, Belgrade, Serbia
| | - Sanja Ivkovic
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
4
|
Smylla TK, Wagner K, Huber A. The Role of Reversible Phosphorylation of Drosophila Rhodopsin. Int J Mol Sci 2022; 23:ijms232314674. [PMID: 36499010 PMCID: PMC9740569 DOI: 10.3390/ijms232314674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Vertebrate and fly rhodopsins are prototypical GPCRs that have served for a long time as model systems for understanding GPCR signaling. Although all rhodopsins seem to become phosphorylated at their C-terminal region following activation by light, the role of this phosphorylation is not uniform. Two major functions of rhodopsin phosphorylation have been described: (1) inactivation of the activated rhodopsin either directly or by facilitating binding of arrestins in order to shut down the visual signaling cascade and thus eventually enabling a high-temporal resolution of the visual system. (2) Facilitating endocytosis of activated receptors via arrestin binding that in turn recruits clathrin to the membrane for clathrin-mediated endocytosis. In vertebrate rhodopsins the shutdown of the signaling cascade may be the main function of rhodopsin phosphorylation, as phosphorylation alone already quenches transducin activation and, in addition, strongly enhances arrestin binding. In the Drosophila visual system rhodopsin phosphorylation is not needed for receptor inactivation. Its role here may rather lie in the recruitment of arrestin 1 and subsequent endocytosis of the activated receptor. In this review, we summarize investigations of fly rhodopsin phosphorylation spanning four decades and contextualize them with regard to the most recent insights from vertebrate phosphorylation barcode theory.
Collapse
|
5
|
Islam MA, Rallabandi VPS, Mohammed S, Srinivasan S, Natarajan S, Dudekula DB, Park J. Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches. Int J Mol Sci 2021; 22:11191. [PMID: 34681845 PMCID: PMC8538848 DOI: 10.3390/ijms222011191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.
Collapse
Affiliation(s)
- Md Ataul Islam
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - V. P. Subramanyam Rallabandi
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Sameer Mohammed
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Sridhar Srinivasan
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | | | - Dawood Babu Dudekula
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Junhyung Park
- 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea;
| |
Collapse
|
6
|
Shen B, Wada S, Nishioka H, Nagata T, Kawano-Yamashita E, Koyanagi M, Terakita A. Functional identification of an opsin kinase underlying inactivation of the pineal bistable opsin parapinopsin in zebrafish. ZOOLOGICAL LETTERS 2021; 7:1. [PMID: 33579376 PMCID: PMC7881645 DOI: 10.1186/s40851-021-00171-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
In the pineal organ of zebrafish larvae, the bistable opsin parapinopsin alone generates color opponency between UV and visible light. Our previous study suggested that dark inactivation of the parapinopsin photoproduct, which activates G-proteins, is important for the regulation of the amount of the photoproduct. In turn, the photoproduct is responsible for visible light sensitivity in color opponency. Here, we found that an opsin kinase or a G-protein-coupled receptor kinase (GRK) is involved in inactivation of the active photoproduct of parapinopsin in the pineal photoreceptor cells of zebrafish larvae. We investigated inactivation of the photoproduct in the parapinopsin cells of various knockdown larvae by measuring the light responses of the cells using calcium imaging. We found that GRK7a knockdown slowed recovery of the response of parapinopsin photoreceptor cells, whereas GRK1b knockdown or GRK7b knockdown did not have a remarkable effect, suggesting that GRK7a, a cone-type GRK, is mainly responsible for inactivation of the parapinopsin photoproduct in zebrafish larvae. We also observed a similar knockdown effect on the response of the parapinopsin photoreceptor cells of mutant larvae expressing the opsin SWS1, a UV-sensitive cone opsin, instead of parapinopsin, suggesting that the parapinopsin photoproduct was inactivated in a way similar to that described for cone opsins. We confirmed the immunohistochemical distribution of GRK7a in parapinopsin photoreceptor cells by comparing the immunoreactivity to GRK7 in GRK7a-knockdown and control larvae. These findings suggest that in pineal photoreceptor cells, the cone opsin kinase GRK7a contributes greatly to the inactivation of parapinopsin, which underlies pineal color opponency.
Collapse
Affiliation(s)
- Baoguo Shen
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Seiji Wada
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Haruka Nishioka
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
| | - Emi Kawano-Yamashita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585, Japan.
- The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585, Japan.
| |
Collapse
|
7
|
Calebiro D, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien S. G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physiol Rev 2020; 101:857-906. [PMID: 33331229 DOI: 10.1152/physrev.00021.2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular and physiological processes, responding to a diverse range of extracellular stimuli including hormones, neurotransmitters, odorants, and light. Decades of biochemical and pharmacological studies have provided fundamental insights into the mechanisms of GPCR signaling. Thanks to recent advances in structural biology, we now possess an atomistic understanding of receptor activation and G protein coupling. However, how GPCRs and G proteins interact in living cells to confer signaling efficiency and specificity remains insufficiently understood. The development of advanced optical methods, including single-molecule microscopy, has provided the means to study receptors and G proteins in living cells with unprecedented spatio-temporal resolution. The results of these studies reveal an unexpected level of complexity, whereby GPCRs undergo transient interactions among themselves as well as with G proteins and structural elements of the plasma membrane to form short-lived signaling nanodomains that likely confer both rapidity and specificity to GPCR signaling. These findings may provide new strategies to pharmaceutically modulate GPCR function, which might eventually pave the way to innovative drugs for common diseases such as diabetes or heart failure.
Collapse
Affiliation(s)
- Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Tamara Miljus
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Shannon O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Han X, Nieman MT. The domino effect triggered by the tethered ligand of the protease activated receptors. Thromb Res 2020; 196:87-98. [PMID: 32853981 DOI: 10.1016/j.thromres.2020.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022]
Abstract
Protease activated receptors (PARs) are G-protein coupled receptors (GPCRs) that have a unique activation mechanism. Unlike other GPCRs that can be activated by free ligands, under physiological conditions, PARs are activated by the tethered ligand, which is a part of their N-terminus that is unmasked by proteolysis. It has been 30 years since the first member of the family, PAR1, was identified. In this review, we will discuss this unique tethered ligand mediate receptor activation of PARs in detail: how they interact with the proteases, the complex structural rearrangement of the receptors upon activation, and the termination of the signaling. We also summarize the structural studies of the PARs and how single nucleotide polymorphisms impact the receptor reactivity. Finally, we review the current strategies for inhibiting PAR function with therapeutic targets for anti-thrombosis. The focus of this review is PAR1 and PAR4 as they are the thrombin signal mediators on human platelets and therapeutics targets. We also include the structural studies of PAR2 as it informs the mechanism of action for PARs in general.
Collapse
Affiliation(s)
- Xu Han
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Effect of mutations on drug resistance of smoothened receptor toward inhibitors probed by molecular modeling. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
11
|
Hough D, Robinson JE, Bellingham M, Fleming LM, McLaughlin M, Jama K, Haraldsen IRH, Solbakk AK, Evans NP. Peripubertal GnRH and testosterone co-treatment leads to increased familiarity preferences in male sheep. Psychoneuroendocrinology 2019; 108:70-77. [PMID: 31229635 PMCID: PMC6712355 DOI: 10.1016/j.psyneuen.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) treatment is effective for the medical suppression of the hypothalamic-pituitary-gonadal axis in situations like central precocious puberty and gender dysphoria. However, its administration during the peripubertal period could influence normal brain development and function because GnRH receptors are expressed in brain regions that regulate emotions, cognition, motivation and memory. This study used an ovine model to determine whether chronic peripubertal GnRHa-treatment affected the developmental shift from preference of familiarity to novelty. Experimental groups included Controls and GnRHa-treated rams. To differentiate between effects of altered GnRH signaling and those associated with the loss of sex steroids, a group was also included that received testosterone replacement as well as GnRHa (GnRHa + T). Preference for a novel versus familiar object was assessed during 5-min social isolation at 8, 28 and 46 weeks of age. Approach behavior was measured as interactions with and time spent near the objects, whereas avoidance behavior was measured by time spent in the entrance zone and attempts to escape the arena via the entry point. Emotional reactivity was measured by the number of vocalizations, escape attempts and urinations. As Control and GnRHa-treated rams aged, their approach behaviors showed a shift from preference for familiarity (8 weeks) to novelty (46 weeks). In contrast, relative to the Controls the GnRHa + T rams exhibited more approach behaviors towards both objects, at 28 and 46 weeks of age and preferred familiarity at 46 weeks of age. Vocalisation rate was increased in GnRHa treated rams in late puberty (28 weeks) compared to both Control and GnRHa + T rams but this effect was not seen in young adulthood (46 weeks). These results suggest that the specific suppression of testosterone during a developmental window in late puberty may reduce emotional reactivity and hamper learning a flexible adjustment to environmental change. The results also suggest that disruption of either endogenous testosterone signalling or a synergistic action between GnRH and testosterone signalling, may delay maturation of cognitive processes (e.g. information processing) that affects the motivation of rams to approach and avoid objects.
Collapse
Affiliation(s)
- D Hough
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - JE Robinson
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - M Bellingham
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - LM Fleming
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - M McLaughlin
- College of Medical, Veterinary and Life Sciences, School of Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - K Jama
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - IRH Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine, Division of Surgery and Clinical Neuroscience, Oslo University Hospital – Rikshospitalet, 0027 Oslo, Norway
| | - AK Solbakk
- Department of Neurosurgery, Division of Surgery and Clinical Neuroscience, Oslo University Hospital – Rikshospitalet, 0027 Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, 8607 Mosjøen, Norway
| | - NP Evans
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G61 1QH, UK,Corresponding author.
| |
Collapse
|
12
|
Zheng J, Cao J, Mao Y, Su Y, Wang J. Identification of microRNAs with heat stress responsive and immune properties in Marsupenaeus japonicus based on next-generation sequencing and bioinformatics analysis: Essential regulators in the heat stress-host interactions. FISH & SHELLFISH IMMUNOLOGY 2018; 81:390-398. [PMID: 29778844 DOI: 10.1016/j.fsi.2018.05.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Summer mortality syndrome is one of the most serious issue for Marsupenaeus japonicus aquaculture in China. Since it causes massive economic loss and threatens sustainability of M. japonicus aquaculture industry, thus, there is an urgent desire to reveal the heat stress-host interactions mechanisms that lead to mass mortalities of M. japonicus in hot summer months. MicroRNAs (miRNAs) are small noncoding RNAs that involved in regulation of diverse biological processes, including stress and immune response, and might serve as potential regulators in the heat stress-host interactions. In the present study, miRNAs with heat stress responsive and immune properties were identified and characterized in M. japonicus by small RNA sequencing and bioinformatics analysis. In total, 79 host miRNAs were identified, among which 15 miRNAs were differentially expressed in response to heat stress. Target genes prediction and function annotation revealed that a variety of host cellular processes, such as signal transduction, transcription, anti-stress response, ribosomal biogenesis, lipid metabolism, cytoskeleton, etc, were potentially subject to miRNA-mediated regulation in response to heat stress. Furthermore, a total of 30 host miRNAs that potentially involved in interaction with white spot syndrome virus (WSSV) were obtained via predicting and analyzing the target genes from WSSV. The results showed that a batch of WSSV genes that code for structural proteins and enzymes that are essential for WSSV infection and proliferation, such as envelope proteins, capsid proteins, immediate-early proteins, collagen-like protein, protein kinase, thymidylate synthetase, TATA-box bind protein, etc, were predicted to be targeted by host miRNAs. Several of the host miRNAs with predicted antiviral capacity were down-regulated under heat stress, indicating a repression of host miRNA-mediated antiviral immune response. This study highlighted the essential roles of host miRNAs in the heat stress-host interactions and provided valuable information for further investigation on the mechanism of miRNA-mediated heat stress and immune response of shrimp.
Collapse
Affiliation(s)
- Jinbin Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiawen Cao
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|
14
|
Das M, Das S. Docosahexaenoic Acid (DHA) Induced Morphological Differentiation of Astrocytes Is Associated with Transcriptional Upregulation and Endocytosis of β 2-AR. Mol Neurobiol 2018; 56:2685-2702. [PMID: 30054857 DOI: 10.1007/s12035-018-1260-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/17/2018] [Indexed: 12/24/2022]
Abstract
Docosahexaenoic acid (DHA), an important ω-3 fatty acid, is abundantly present in the central nervous system and is important in every step of brain development. Much of this knowledge has been based on studies of the role of DHA in the function of the neurons, and reports on its effect on the glial cells are few and far between. We have previously reported that DHA facilitates astrocyte differentiation in primary culture. We have further explored the signaling mechanism associated with this event. It was observed that a sustained activation of the extracellular signal-regulated kinase (ERK) appeared to be critical for DHA-induced differentiation of the cultured astrocytes. Prior exposure to different endocytic inhibitors blocked both ERK activation and differentiation of the astrocytes during DHA treatment suggesting that the observed induction of ERK-2 was purely endosomal. Unlike the β1-adrenergic receptor (β1-AR) antagonist, atenolol, pre-treatment of the cells with the β2-adrenergic receptor (β2-AR) antagonist, ICI-118,551 inhibited the DHA-induced differentiation process, indicating a downstream involvement of β2-AR in the differentiation process. qRT-PCR and western blot analysis demonstrated a significant induction in the mRNA and protein expression of β2-AR at 18-24 h of DHA treatment, suggesting that the induction of β2-AR may be due to transcriptional upregulation. Moreover, DHA caused activation of PKA at 6 h, followed by activation of downstream cAMP response element-binding protein, a known transcription factor for β2-AR. Altogether, the observations suggest that DHA upregulates β2-AR in astrocytes, which undergo endocytosis and signals for sustained endosomal ERK activation to drive the differentiation process.
Collapse
Affiliation(s)
- Moitreyi Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumantra Das
- Neurobiology Division, Cell Biology & Physiology Department, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
15
|
Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms. PLoS One 2018; 13:e0193499. [PMID: 29566008 PMCID: PMC5863960 DOI: 10.1371/journal.pone.0193499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Collapse
|
16
|
Paul AK, Gueven N, Dietis N. Age-dependent antinociception and behavioral inhibition by morphine. Pharmacol Biochem Behav 2018; 168:8-16. [PMID: 29548597 DOI: 10.1016/j.pbb.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
In current clinical practice, morphine is dosed in older patients based on patient-weight, with different calculations for adjustment. However, at present, neither clinical experience nor the literature offers a clear evidence base for the relationship between antinociception, behavioral effects and morphine administration in older patients. In this study, we compared the nociceptive response of 8 and 24 week old rats after subcutaneous administration of morphine per body weight and analyzed their behavior using an advanced multi-conditioning system. Residual morphine in all major tissues was determined. We observed prolonged morphine-induced antinociception in older rats compared to younger rats. Moreover, morphine significantly stimulated locomotor and rearing behavior 180 min after injection, which was significantly higher in the 8 week compared to 24 week old rats. Tissue analysis from animals extracted 240 min post-injection revealed a significantly higher concentration of residual morphine in the brains of older versus younger animals when standardized on tissue weight. However, this effect was not observed when residual morphine was standardized on protein content. Collectively, our data suggest that in older rats morphine exhibits higher antinociception and increased behavioral inhibition compared to younger animals. This effect is likely due to a significantly higher accumulation of morphine in the brain of older animals.
Collapse
Affiliation(s)
- Alok Kumar Paul
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia.
| | - Nuri Gueven
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia
| | - Nikolas Dietis
- Division of Pharmacy, School of Medicine, University of Tasmania, Australia
| |
Collapse
|
17
|
Differential homologous desensitization of the human histamine H 3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells. Neurochem Int 2018; 112:114-123. [DOI: 10.1016/j.neuint.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
|
18
|
Group I Metabotropic Glutamate Receptors (mGluRs): Ins and Outs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:163-175. [DOI: 10.1007/978-981-13-3065-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Wang D, Yu H, Liu X, Liu J, Song C. The orientation and stability of the GPCR-Arrestin complex in a lipid bilayer. Sci Rep 2017; 7:16985. [PMID: 29209002 PMCID: PMC5716996 DOI: 10.1038/s41598-017-17243-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 11/09/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of membrane proteins that plays a key role in transmembrane signal transduction and draw wide attention since it was discovered. Arrestin is a small family of proteins which can bind to GPCRs, block G protein interactions and redirect signaling to G-protein-independent pathways. The detailed mechanism of how arrestin interacts with GPCR remains elusive. Here, we conducted molecular dynamics simulations with coarse-grained (CG) and all-atom (AA) models to study the complex structure formed by arrestin and rhodopsin, a prototypical GPCR, in a POPC bilayer. Our results indicate that the formation of the complex has a significant impact on arrestin which is tightly anchored onto the bilayer surface, while has a minor effect on the orientation of rhodopsin in the lipid bilayer. The formation of the complex induces an internal change of conformation and flexibility in both rhodopsin and arrestin, mainly at the binding interface. Further investigation on the interaction interface identified the hydrogen bond network, especially the long-lived hydrogen bonds, and the key residues at the contact interface, which are responsible for stabilizing the complex. These results help us to better understand how rhodopsin interacts with arrestin on membranes, and thereby shed lights on arrestin-mediated signal transduction through GPCRs.
Collapse
Affiliation(s)
- Dali Wang
- School of Physics, Shandong University, Jinan, 250100, China.,Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Hua Yu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiangdong Liu
- School of Physics, Shandong University, Jinan, 250100, China
| | - Jianqiang Liu
- School of Physics, Shandong University, Jinan, 250100, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Tu J, Li JJ, Song LT, Zhai HL, Wang J, Zhang XY. Molecular modeling study on resistance of WT/D473H SMO to antagonists LDE-225 and LEQ-506. Pharmacol Res 2017; 129:491-499. [PMID: 29175550 DOI: 10.1016/j.phrs.2017.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
The smoothened (SMO) receptor, an essential signal transducer in the Hedgehog pathway, was targeted with antagonists to suppress the tumor. It is interesting that SMO D473H mutation confers resistance on inhibitor LDE-225 rather than LEQ-506. In this paper, the binding modes of them against the wild type and mutant SMO receptors were identified to gain insights into the resistant and non-resistant factors, based on a comprehensive protocol involving molecular docking, molecular dynamic simulations, free energy calculation and decomposition. A comparison of resistant LDE-225 and non-resistant LEQ-506 indicates that the volume of the binding cavity decreases seriously in the mutant complex with resistant LDE-225. In addition, the D473H mutation disrupts the hydrogen bond network with residues R400 and Q477, which results in the TM6 conformation inward. Owing to the absence of the hydrogen bond, residues R400 and Q477 make weak contributions to LDE-225. However, the D473H mutation along with TM6 conformational change has no effect on non-resistant LEQ-506. Finally, the resistance ascribes to adverse interaction between the greater polarity of mutant residue H473 and the nonpolar phenmethyl of LDE-225. The elaborate insights into structural and energetic mechanism of drug resistance provide an effective strategy to design rationally non-resistant antagonists.
Collapse
Affiliation(s)
- Jing Tu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiao Jiao Li
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Ting Song
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Juan Wang
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiao Yun Zhang
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
21
|
Kamato D, Bhaskarala VV, Mantri N, Oh TG, Ling D, Janke R, Zheng W, Little PJ, Osman N. RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS One 2017; 12:e0180842. [PMID: 28719611 PMCID: PMC5515425 DOI: 10.1371/journal.pone.0180842] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/22/2017] [Indexed: 02/02/2023] Open
Abstract
G protein coupled receptor (GPCR) signalling covers three major mechanisms. GPCR agonist engagement allows for the G proteins to bind to the receptor leading to a classical downstream signalling cascade. The second mechanism is via the utilization of the β-arrestin signalling molecule and thirdly via transactivation dependent signalling. GPCRs can transactivate protein tyrosine kinase receptors (PTKR) to activate respective downstream signalling intermediates. In the past decade GPCR transactivation dependent signalling was expanded to show transactivation of serine/threonine kinase receptors (S/TKR). Kinase receptor transactivation enormously broadens the GPCR signalling paradigm. This work utilizes next generation RNA-sequencing to study the contribution of transactivation dependent signalling to total protease activated receptor (PAR)-1 signalling. Transactivation, assessed as gene expression, accounted for 50 percent of the total genes regulated by thrombin acting through PAR-1 in human coronary artery smooth muscle cells. GPCR transactivation of PTKRs is approximately equally important as the transactivation of the S/TKR with 209 and 177 genes regulated respectively, via either signalling pathway. This work shows that genome wide studies can provide powerful insights into GPCR mediated signalling pathways.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- * E-mail:
| | - Venkata Vijayanand Bhaskarala
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nitin Mantri
- Department of Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora, VIC, Australia
| | - Tae Gyu Oh
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld, Australia
| | - Dora Ling
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Reearna Janke
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, China
| | - Narin Osman
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
- Diabetes Complications Group, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Monash University, Departments of Medicine and Immunology, Central and Eastern Clinical School, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Osteogenesis Is Improved by Low Tumor Necrosis Factor Alpha Concentration through the Modulation of Gs-Coupled Receptor Signals. Mol Cell Biol 2017; 37:MCB.00442-16. [PMID: 28137910 DOI: 10.1128/mcb.00442-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
In the early phase of bone damage, low concentrations of the cytokine tumor necrosis factor alpha (TNF-α) favor osteoblast differentiation. In contrast, chronic high doses of the same cytokine contribute to bone loss, demonstrating opposite effects depending on its concentration and on the time of exposure. In the bone microenvironment, TNF-α modulates the expression/function of different G protein-coupled receptors (GPCRs) and of their regulatory proteins, GPCR-regulated kinases (GRKs), thus dictating their final biological outcome in controlling bone anabolic processes. Here, the effects of TNF-α were investigated on the expression/responsiveness of the A2B adenosine receptor (A2BAR), a Gs-coupled receptor that promotes mesenchymal stem cell (MSC) differentiation into osteoblasts. Low TNF-α concentrations exerted a prodifferentiating effect on MSCs, pushing them toward an osteoblast phenotype. By regulating GRK2 turnover and expression, the cytokine impaired A2BAR desensitization, accelerating receptor-mediated osteoblast differentiation. These data supported the anabolic effect of TNF-α submaximal concentration and demonstrated that the cytokine regulates GPCR responses by interfering with the receptor desensitization machinery, thereby enhancing the anabolic responses evoked by A2BAR ligands. Overall, these results indicated that GPCR desensitization plays a pivotal role in osteogenesis and that its manipulation is an effective strategy to favor bone remodeling.
Collapse
|
23
|
Hough D, Bellingham M, Haraldsen I, McLaughlin M, Rennie M, Robinson J, Solbakk A, Evans N. Spatial memory is impaired by peripubertal GnRH agonist treatment and testosterone replacement in sheep. Psychoneuroendocrinology 2017; 75:173-182. [PMID: 27837697 PMCID: PMC5140006 DOI: 10.1016/j.psyneuen.2016.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) is used therapeutically to block activity within the reproductive axis through down-regulation of GnRH receptors within the pituitary gland. GnRH receptors are also expressed in non-reproductive tissues, including areas of the brain such as the hippocampus and amygdala. The impact of long-term GnRHa-treatment on hippocampus-dependent cognitive functions, such as spatial orientation, learning and memory, is not well studied, particularly when treatment encompasses a critical window of development such as puberty. The current study used an ovine model to assess spatial maze performance and memory of rams that were untreated (Controls), had both GnRH and testosterone signaling blocked (GnRHa-treated), or specifically had GnRH signaling blocked (GnRHa-treated with testosterone replacement) during the peripubertal period (8, 27 and 41 weeks of age). The results demonstrate that emotional reactivity during spatial tasks was compromised by the blockade of gonadal steroid signaling, as seen by the restorative effects of testosterone replacement, while traverse times remained unchanged during assessment of spatial orientation and learning. The blockade of GnRH signaling alone was associated with impaired retention of long-term spatial memory and this effect was not restored with the replacement of testosterone signaling. These results indicate that GnRH signaling is involved in the retention and recollection of spatial information, potentially via alterations to spatial reference memory, and that therapeutic medical treatments using chronic GnRHa may have effects on this aspect of cognitive function.
Collapse
Affiliation(s)
- D. Hough
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - I.R.H. Haraldsen
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway
| | - M. McLaughlin
- Division of Veterinary Bioscience and Education, School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Rennie
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - J.E. Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - A.K. Solbakk
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - N.P. Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK,Corresponding author.
| |
Collapse
|
24
|
Hunyady L, Gáborik Z, Vauquelin G, Catt KJ. Review: Structural requirements for signalling and regulation of AT1-receptors. J Renin Angiotensin Aldosterone Syst 2016; 2:S16-S23. [DOI: 10.1177/14703203010020010301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- László Hunyady
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary,
| | - Zsuzsanna Gáborik
- Department of Physiology, Semmelweis University Medical
School, Budapest, Hungary
| | - Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology,
Institute of Molecular Biology and Biotechnology, Free University of Brussels
(VUB), Sint-Genesius Rode, Belgium
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, USA
| |
Collapse
|
25
|
SCF/c-kit transactivates CXCR4-serine 339 phosphorylation through G protein-coupled receptor kinase 6 and regulates cardiac stem cell migration. Sci Rep 2016; 6:26812. [PMID: 27245949 PMCID: PMC4887787 DOI: 10.1038/srep26812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/09/2016] [Indexed: 12/25/2022] Open
Abstract
C-kit positive cardiac stem cells (CSCs) have been shown to contribute to myocardial regeneration after infarction. Previously, we have shown that the c-kit ligand stem cell factor (SCF) can induce CSC migration into the infarcted area during myocardial infarction (MI). However, the precise mechanism involved is not fully understood. In this study, we found that CSCs also express C-X-C chemokine receptor type 4 (CXCR4), which is a typical member of the seven transmembrane-spanning G protein-coupled receptor (GPCR). In vitro, activation of c-kit signalling by SCF promotes migration of CSCs with increased phosphorylation of CXCR4-serine 339, p38 mitogen-activated protein kinase (p38 MAPK) and extracellular regulated protein kinases 1/2 (ERK1/2). Knockdown of CXCR4 expression by siRNA reduces SCF/c-kit-induced migration and downstream signalling. As previously reported, CXCR4-serine 339 phosphorylation is mainly regulated by GPCR kinase 6 (GRK6); thus, silencing of GRK6 expression by siRNA impairs CXCR4-serine 339 phosphorylation and migration of CSCs caused by SCF. In vivo, knockdown of GRK6 impairs the ability of CSCs to migrate into peri-infarcted areas. These results demonstrate that SCF-induced CSC migration is regulated by the transactivation of CXCR4-serine 339 phosphorylation, which is mediated by GRK6.
Collapse
|
26
|
Thyroid Hormone-Induced Differentiation of Astrocytes is Associated with Transcriptional Upregulation of β-arrestin-1 and β-adrenergic Receptor-Mediated Endosomal Signaling. Mol Neurobiol 2015; 53:5178-90. [DOI: 10.1007/s12035-015-9422-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
|
27
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
28
|
Fediuk J, Sikarwar A, Lizotte P, Hinton M, Nolette N, Dakshinamurti S. Hypoxia increases pulmonary arterial thromboxane receptor internalization independent of receptor sensitization. Pulm Pharmacol Ther 2015; 30:1-10. [DOI: 10.1016/j.pupt.2014.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/05/2014] [Accepted: 10/03/2014] [Indexed: 01/07/2023]
|
29
|
Zhu Z, Stricker R, yu Li R, Zündorf G, Reiser G. The intracellular carboxyl tail of the PAR-2 receptor controls intracellular signaling and cell death. Cell Tissue Res 2014; 359:817-27. [DOI: 10.1007/s00441-014-2056-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022]
|
30
|
Zhang Y, Braithwaite A, Yuan Y, Streicher JM, Bilsky EJ. Behavioral and cellular pharmacology characterization of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-(isoquinoline-3'-carboxamido)morphinan (NAQ) as a mu opioid receptor selective ligand. Eur J Pharmacol 2014; 736:124-30. [PMID: 24815322 PMCID: PMC4073486 DOI: 10.1016/j.ejphar.2014.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/28/2014] [Indexed: 12/26/2022]
Abstract
Mu opioid receptor (MOR) selective antagonists and partial agonists have been used for the treatment of opioid abuse and addiction. Our recent efforts on the identification of MOR antagonists have provided several novel leads displaying interesting pharmacological profiles. Among them, 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl)acetamido]morphinan (NAQ) showed sub-nanomolar binding affinity to the MOR with significant selectivity over the delta opioid receptor (DOR) and the kappa opioid receptor (KOR). Its central nervous system penetration capacity together with marginal agonism in the MOR-GTPγS binding assay made it a very interesting molecule for developing novel opioid abuse and addiction therapeutic agents. Therefore, further pharmacological characterization was conducted to fully understand its biological profile. At the molecular and cellular level, NAQ not only induced no translocation of β-arrestin2 to the MOR, but also efficaciously antagonized the effect of DAMGO in MOR-βarr2eGFP-U2OS cells in the β-arrestin2 recruitment assay. At the in vivo level, NAQ displayed a potent inhibition of the analgesic effect of morphine in the tail-flick assay (ID50=1.19 mg/kg). NAQ (10 mg/kg) also significantly decreased the hyper-locomotion induced by acute morphine without inducing any vertical jumps. Meanwhile NAQ precipitated lesser withdrawal symptoms in morphine dependent mice than naloxone. In conclusion, NAQ may represent a new chemical entity for opioid abuse and addiction treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States.
| | - Amanda Braithwaite
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| | - Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 East Leigh Street, P.O. Box 980540, Richmond, VA 23298, United States
| | - John M Streicher
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, 11 Hills Beach Road, Biddeford, ME 04005, United States
| |
Collapse
|
31
|
A naturally occurring GIP receptor variant undergoes enhanced agonist-induced desensitization, which impairs GIP control of adipose insulin sensitivity. Mol Cell Biol 2014; 34:3618-29. [PMID: 25047836 DOI: 10.1128/mcb.00256-14] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP), an incretin hormone secreted from gastrointestinal K cells in response to food intake, has an important role in the control of whole-body metabolism. GIP signals through activation of the GIP receptor (GIPR), a G-protein-coupled receptor (GPCR). Dysregulation of this pathway has been implicated in the development of metabolic disease. Here we demonstrate that GIPR is constitutively trafficked between the plasma membrane and intracellular compartments of both GIP-stimulated and unstimulated adipocytes. GIP induces a downregulation of plasma membrane GIPR by slowing GIPR recycling without affecting internalization kinetics. This transient reduction in the expression of GIPR in the plasma membrane correlates with desensitization to the effects of GIP. A naturally occurring variant of GIPR (E354Q) associated with an increased incidence of insulin resistance, type 2 diabetes, and cardiovascular disease in humans responds to GIP stimulation with an exaggerated downregulation from the plasma membrane and a delayed recovery of GIP sensitivity following cessation of GIP stimulation. This perturbation in the desensitization-resensitization cycle of the GIPR variant, revealed in studies of cultured adipocytes, may contribute to the link of the E354Q variant to metabolic disease.
Collapse
|
32
|
Bu H, Liu X, Tian X, Yang H, Gao F. Enhancement of morphine analgesia and prevention of morphine tolerance by downregulation of β-arrestin 2 with antigene RNAs in mice. Int J Neurosci 2014; 125:56-65. [DOI: 10.3109/00207454.2014.896913] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
Ferguson SSG, Feldman RD. β-adrenoceptors as molecular targets in the treatment of hypertension. Can J Cardiol 2014; 30:S3-8. [PMID: 24685403 DOI: 10.1016/j.cjca.2014.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 01/14/2023] Open
Abstract
Regulation of sympathoadrenal activity has been a long-time target in the management of hypertension. Regulation of β-adrenoceptor (βAR) function has been the most therapeutically important of these targets. The development of effective antihypertensive treatments based on βAR antagonism paralleled the elucidation of the molecular basis of β-adrenergic effects by the family of βARs, which are members of the G-protein-coupled receptor (GPCR) superfamily. βARs serve as the extracellular face of the transmembrane signalling pathway that results in the consequent activation of heterotrimeric G-proteins and the activation of several other newly appreciated signalling molecules that include β-arrestins and GPCR kinases (GRKs). The aggregate effect of the activation of these signalling pathways mediates the response to βAR activation. Paradoxically, the hypertensive state is characterized by impaired βAR responsiveness. This defect is common to many other receptor systems linked to the stimulator G protein (Gs) and adenylyl cyclase activation. This impairment is principally mediated by receptor-G-protein uncoupling, which has been linked to increased expression and activity of GRK2.
Collapse
Affiliation(s)
- Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Ross D Feldman
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Vascular Biology Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Department of Medicine, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
34
|
G protein-coupled receptor accessory proteins and signaling: pharmacogenomic insights. Methods Mol Biol 2014; 1175:121-52. [PMID: 25150869 DOI: 10.1007/978-1-4939-0956-8_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The identification and characterization of the genes encoding G protein-coupled receptors (GPCRs) and the proteins necessary for the processes of ligand binding, GPCR activation, inactivation, and receptor trafficking to the membrane are discussed in the context of human genetic disease. In addition to functional GPCR variants, the identification of genetic disruptions affecting proteins necessary to GPCR functions have provided insights into the function of these pathways. Gsα and Gβ subunit polymorphisms have been found to result in complex phenotypes. Disruptions in accessory proteins that normally modify or organize heterotrimeric G-protein coupling may also result in disease states. These include the contribution of variants of the regulator of G protein signaling (RGS) protein to hypertension; the role variants of the activator of G protein signaling (AGS) proteins to phenotypes (such as the type III AGS8 variant to hypoxia); the contribution of G protein-coupled receptor kinase (GRK) proteins, such as GRK4, in disorders such as hypertension. The role of accessory proteins in GPCR structure and function is discussed in the context of genetic disorders associated with disruption of the genes that encode them. An understanding of the pharmacogenomics of GPCR and accessory protein signaling provides the basis for examining both GPCR pharmacogenetics and the genetics of monogenic disorders that result from disruption of given receptor systems.
Collapse
|
35
|
Tovo-Rodrigues L, Rohde LA, Menezes AMB, Polanczyk GV, Kieling C, Genro JP, Anselmi L, Hutz MH. DRD4 rare variants in Attention-Deficit/Hyperactivity Disorder (ADHD): further evidence from a birth cohort study. PLoS One 2013; 8:e85164. [PMID: 24391992 PMCID: PMC3877354 DOI: 10.1371/journal.pone.0085164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/24/2013] [Indexed: 01/02/2023] Open
Abstract
The dopamine receptor D4 (DRD4) is one of the most studied candidate genes for Attention-Deficit/Hyperactivity Disorder (ADHD). An excess of rare variants and non-synonymous mutations in the VNTR region of 7R allele in ADHD subjects was observed in previous studies with clinical samples. We hypothesize that genetic heterogeneity in the VNTR is an important factor in the pathophysiology of ADHD. The subjects included in the present study are members of the 1993 Pelotas Birth Cohort Study (N=5,249). We conducted an association study with the 4,101 subjects who had DNA samples collected. The hyperactivity-inattention scores were assessed through the parent version of the Strengths and Difficulties Questionnaire at 11 and 15 years of age. The contribution of allele’s length and rare variants to high hyperactivity/inattention scores predisposition was evaluated by multivariate logistic regression. No effect of allele length was observed on high scores of hyperactivity-inattention. By contrast, when resequencing/haplotyping was conducted in a subsample, all 7R rare variants as well as non-synonymous 7R rare variants were associated with high hyperactivity/inattention scores (OR=2.561; P=0.024 and OR=3.216; P=0.008 respectively). A trend for association was observed with 4R rare variants. New coding mutations covered 10 novel motifs and many of them are previously unreported deletions leading to different stop codons. Our findings suggest a contribution of DRD4 7R rare variants to high hyperactivity-inattention scores in a population-based sample from a large birth cohort. These findings provide further evidence for an effect of DRD4 7R rare variants and allelic heterogeneity in ADHD genetic susceptibility.
Collapse
Affiliation(s)
- Luciana Tovo-Rodrigues
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis A. Rohde
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Ana M. B. Menezes
- Graduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Guilherme V. Polanczyk
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
- Department of Psychiatry, Medical School and Research Support Center on Neurodevelopment and Mental Health, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Christian Kieling
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P. Genro
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luciana Anselmi
- Child and Adolescent Psychiatric Division, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- National Institute of Developmental Psychiatry for Children and Adolescents (INCT-CNPq), Brazil
| | - Mara H. Hutz
- Genetics Department, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
36
|
Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R. Proteinase-activated receptors (PARs) - focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 2013; 11:86. [PMID: 24215724 PMCID: PMC3842752 DOI: 10.1186/1478-811x-11-86] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/25/2013] [Indexed: 02/07/2023] Open
Abstract
Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.
Collapse
Affiliation(s)
| | | | | | | | - Roland Kaufmann
- Department of General, Visceral and Vascular Surgery, Experimental Transplantation Surgery, Jena University Hospital, Drackendorfer Str, 1, D-07747, Jena, Germany.
| |
Collapse
|
37
|
Osorio-Espinoza A, Escamilla-Sánchez J, Aquino-Jarquin G, Arias-Montaño JA. Homologous desensitization of human histamine H₃ receptors expressed in CHO-K1 cells. Neuropharmacology 2013; 77:387-97. [PMID: 24161268 DOI: 10.1016/j.neuropharm.2013.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022]
Abstract
Histamine H₃ receptors (H₃Rs) modulate the function of the nervous system at the pre- and post-synaptic levels. In this work we aimed to determine whether, as other G protein-coupled receptors (GPCRs), H₃Rs desensitize in response to agonist exposure. By using CHO-K1 cells stably transfected with the human H₃R (hH3R) we show that functional responses (inhibition of forskolin-induced cAMP accumulation in intact cells and stimulation of [(35)S]-GTPγS binding to cell membranes) were markedly reduced after agonist exposure. For cAMP accumulation assays the effect was significant at 60 min with a maximum at 90 min. Agonist exposure resulted in decreased binding sites for the radioligand [(3)H]-N-methyl-histamine ([(3)H]-NMHA) to intact cells and modified the sub-cellular distribution of H₃Rs, as detected by sucrose density gradients and [(3)H]-NMHA binding to cell membranes, suggesting receptor internalization. The reduction in the inhibition of forskolin-stimulated cAMP formation observed after agonist pre-incubation was prevented by incubation in hypertonic medium or in ice-cold medium. Agonist-induced loss in binding sites was also prevented by hypertonic medium or incubation at 4 °C, but not by filipin III, indicating clathrin-dependent endocytosis. Immunodetection showed that CHO-K1 cells express GPCR kinases (GRKs) 2/3, and both the GRK general inhibitor ZnCl₂ and a small interfering RNA against GRK-2 reduced receptor desensitization. Taken together these results indicate that hH₃Rs experience homologous desensitization upon prolonged exposure to agonists, and that this process involves the action of GRK-2 and internalization via clathrin-coated vesicles.
Collapse
Affiliation(s)
- Angélica Osorio-Espinoza
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico
| | - Guillermo Aquino-Jarquin
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Dr. Márquez 162, Col. Doctores, 06720 México, D.F., Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Zacatenco, 07360 México, D.F., Mexico.
| |
Collapse
|
38
|
Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A)) receptor. PLoS One 2013; 8:e65266. [PMID: 23755207 PMCID: PMC3673938 DOI: 10.1371/journal.pone.0065266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/24/2013] [Indexed: 11/25/2022] Open
Abstract
In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.
Collapse
|
39
|
Alonso V, Friedman PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 2013; 27:558-72. [PMID: 23471539 DOI: 10.1210/me.2012-1404] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking.
Collapse
Affiliation(s)
- Verónica Alonso
- Institute of Applied Molecular Medicine, San Pablo-CEU University School of Medicine, Madrid, 28668, Spain
| | | |
Collapse
|
40
|
Don-Salu-Hewage AS, Chan SY, McAndrews KM, Chetram MA, Dawson MR, Bethea DA, Hinton CV. Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLoS One 2013; 8:e57194. [PMID: 23468933 PMCID: PMC3585330 DOI: 10.1371/journal.pone.0057194] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/18/2013] [Indexed: 01/01/2023] Open
Abstract
The G-protein coupled receptor (GPCR), Cysteine (C)-X-C Receptor 4 (CXCR4), plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane. An emerging concept for G-protein coupled receptors is that they may localize to and associate with the nucleus where they retain function and mediate nuclear signaling. Herein, we demonstrate that CXCR4 associated with the nucleus of malignant prostate cancer tissues. Likewise, expression of CXCR4 was detected in nuclear fractions among several prostate cancer cell lines, compared to normal prostate epithelial cells. Our studies identified a nuclear pool of CXCR4 and we defined a nuclear transport pathway for CXCR4. We reveal a putative nuclear localization sequence (NLS), ‘RPRK’, within CXCR4 that contributed to nuclear localization. Additionally, nuclear CXCR4 interacted with Transportinβ1 and Transportinβ1-binding to CXCR4 promoted its nuclear translocation. Importantly, Gαi immunoprecipitation and calcium mobilization studies indicated that nuclear CXCR4 was functional and participated in G-protein signaling, revealing that the nuclear pool of CXCR4 retained function. Given the suggestion that functional, nuclear CXCR4 may be a mechanism underlying prostate cancer recurrence, increased metastatic ability and poorer prognosis after tumors have been treated with therapy that targets plasma membrane CXCR4, these studies addresses a novel mechanism of nuclear signaling for CXCR4, a novel mechanism of clinical targeting, and demonstrate an active nuclear pool that provides important new information to illuminate what has been primarily clinical reports of nuclear CXCR4.
Collapse
Affiliation(s)
- Ayesha S. Don-Salu-Hewage
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, PRC
| | - Kathleen M. McAndrews
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mahandranauth A. Chetram
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Michelle R. Dawson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Danaya A. Bethea
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Cimona V. Hinton
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Li Y, Ye D. Molecular biology for formyl peptide receptors in human diseases. J Mol Med (Berl) 2013; 91:781-9. [PMID: 23404331 DOI: 10.1007/s00109-013-1005-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 02/07/2023]
Abstract
Leukocytes accumulate at sites of inflammation and immunological reaction in response to locally existing chemotactic mediators. The first chemotactic factors structurally defined were N-formyl peptides. Subsequently, numerous ligands were identified to activate formyl peptide receptors (FPRs) that belong to the seven-transmembrane G protein-coupled receptor superfamily. FPRs interact with this menagerie of structurally diverse pro- and anti-inflammatory ligands to possess important regulatory effects in multiple diseases, including inflammation, amyloidosis, Alzheimer's disease, prion disease, acquired immunodeficiency syndrome, obesity, diabetes, and cancer. How these receptors recognize diverse ligands and how they contribute to disease pathogenesis and host defense are basic questions currently under investigation that would open up new avenues for the future management of inflammation-related diseases.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| | | |
Collapse
|
42
|
Walther C, Ferguson SSG. Arrestins: role in the desensitization, sequestration, and vesicular trafficking of G protein-coupled receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:93-113. [PMID: 23764051 DOI: 10.1016/b978-0-12-394440-5.00004-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the years, β-arrestins have emerged as multifunctional molecular scaffolding proteins regulating almost every imaginable G protein-coupled receptor (GPCR) function. Originally discovered as GPCR-desensitizing molecules, they have been shown to also serve as important regulators of GPCR signaling, sequestration, and vesicular trafficking. This broad functional role implicates β-arrestins as key regulatory proteins for cellular function. Hence, this chapter summarizes the current understanding of the β-arrestin family's unique ability to control the kinetics as well as the extent of GPCR activity at the level of desensitization, sequestration, and subsequent intracellular trafficking.
Collapse
Affiliation(s)
- Cornelia Walther
- J. Allyn Taylor Centre for Cell Biology, Robarts Research Institute, Western University Canada, London, Ontario, Canada
| | | |
Collapse
|
43
|
Ro 32-0432 attenuates mecamylamine-precipitated nicotine withdrawal syndrome in mice. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:197-204. [PMID: 23274455 DOI: 10.1007/s00210-012-0825-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptor kinase 5 is noted to mediate a number of signal transduction cascades involved in the causation of nicotine withdrawal syndrome. Therefore, the present study investigated the effect of Ro 32-0432, a G protein-coupled receptor kinase 5 inhibitor, on propagation of nicotine dependence and resultant withdrawal signs in subchronic nicotine mouse model. Our experimental protocol consisted of administration of nicotine, (2.5 mg/kg, subcutaneously), four times daily for 7 days. In order to precipitate nicotine withdrawal, mice were given one injection of mecamylamine (3 mg/kg, intraperitoneally) 1 h after the last nicotine injection on the test day (day 8). Behavioral observations were made for a period of 30 min immediately after mecamylamine treatment. Withdrawal syndrome was quantitated in terms of a composite withdrawal severity score, jumping frequency, nicotine-induced hyperalgesia by tail flick method, and withdrawal syndrome-related anxiety was assessed by elevated plus maze test results. Ro 32-0432 dose dependently attenuated mecamylamine-induced nicotine withdrawal syndrome in mice. It is concluded that Ro 32-0432 attenuates the propagation of nicotine dependence and reduce withdrawal signs possibly by G protein-coupled receptor kinase 5 activation-linked mechanisms.
Collapse
|
44
|
Varamini P, Hussein WM, Mansfeld FM, Toth I. Synthesis, biological activity and structure–activity relationship of endomorphin-1/substance P derivatives. Bioorg Med Chem 2012; 20:6335-43. [DOI: 10.1016/j.bmc.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/24/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
45
|
Zhao J, Xin X, Xie GX, Palmer PP, Huang YG. Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mol Pain 2012; 8:38. [PMID: 22612909 PMCID: PMC3517334 DOI: 10.1186/1744-8069-8-38] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 05/09/2012] [Indexed: 01/17/2023] Open
Abstract
The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides, multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein signaling (RGS proteins) change with development and age. Other signaling systems that are critical to opioid tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance development.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | | | | | | | | |
Collapse
|
46
|
Kumari S, Chowdhury J, Mishra AK, Chandna S, Saluja D, Chopra M. Synthesis and evaluation of a fluorescent non-peptidic cholecystokinin-B/gastrin receptor specific antagonist for cancer cell imaging. Chembiochem 2011; 13:282-92. [PMID: 22162268 DOI: 10.1002/cbic.201100593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Indexed: 11/09/2022]
Abstract
Fluorescent labeling has enabled a better understanding of the relationships between receptor location, function, and life cycle. Each of these perspectives contributes new insights into drug action, particularly for G protein-coupled receptors (GPCRs). The aim of this study was to develop a fluorescein derivative, FLUO-QUIN-a novel antagonist of the cholecystokinin-B/gastrin receptor. A radioligand-binding experiment revealed an IC(50) of 4.79 nm, and the antagonist inhibited gastric acid secretion in an isolated lumen-perfused mouse stomach assay (up to 51 % at 100 nm). The fluorescence properties altered upon binding to the receptor, and the fluorophore was quenched to a greater extent when free than in the bound form. FLUO-QUIN specifically bound to human pancreatic carcinoma cells, MiaPaca-2, which are known to express the receptor, as evidenced by rapid clustering followed by time-dependent receptor internalization. This proves the stability of FLUO-QUIN and its ability to penetrate vesicular membranes and reach various cell targets. Hence it might be used as an agent for the detection of CCK-B-receptor-positive tumors by fluorescence imaging.
Collapse
Affiliation(s)
- Saroj Kumari
- Dr. BR Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
47
|
Conway BR, Demarest KT. The Use of Biosensors to Study GPCR Function: Applications for High-Content Screening. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Terakita A, Kawano-Yamashita E, Koyanagi M. Evolution and diversity of opsins. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Abstract
Activation of adrenergic receptors (AR) represents the primary mechanism to increase cardiac performance under stress. Activated βAR couple to Gs protein, leading to adenylyl cyclase-dependent increases in secondary-messenger cyclic adenosine monophosphate (cAMP) to activate protein kinase A. The increased protein kinase A activities promote phosphorylation of diversified substrates, ranging from the receptor and its associated partners to proteins involved in increases in contractility and heart rate. Recent progress with live-cell imaging has drastically advanced our understanding of the βAR-induced cAMP and protein kinase A activities that are precisely regulated in a spatiotemporal fashion in highly differentiated myocytes. Several features stand out: membrane location of βAR and its associated complexes dictates the cellular compartmentalization of signaling; βAR agonist dose-dependent equilibrium between cAMP production and cAMP degradation shapes persistent increases in cAMP signals for sustained cardiac contraction response; and arrestin acts as an agonist dose-dependent master switch to promote cAMP diffusion and propagation into intracellular compartments by sequestrating phosphodiesterase isoforms associated with the βAR signaling cascades. These features and the underlying molecular mechanisms of dynamic regulation of βAR complexes with adenylyl cyclase and phosphodiesterase enzymes and the implication in heart failure are discussed.
Collapse
Affiliation(s)
- Yang K Xiang
- Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
50
|
Lundell I, Rabe Bernhardt N, Johnsson AK, Larhammar D. Internalization studies of chimeric neuropeptide Y receptors Y1 and Y2 suggest complex interactions between cytoplasmic domains. ACTA ACUST UNITED AC 2011; 168:50-8. [DOI: 10.1016/j.regpep.2011.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/18/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|