1
|
Yıldırım Uslu E, Gülkesen A, Akgol G, Alkan G, Poyraz AK, İlhan N. Serum Endothelin-1 Level Can Reflect the Degree of Lumbar Degeneration: A Cross-Sectional Study. Cureus 2024; 16:e59966. [PMID: 38854285 PMCID: PMC11162144 DOI: 10.7759/cureus.59966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Endothelin-1 (ET-1) is an agent closely associated with inflammation and has recently been recognized as a significant factor in degenerative processes. This study aimed to investigate the correlation between serum ET-1 level and radiological and clinical manifestations of lumbar disc herniation (LDH) and intervertebral disc degeneration (IDD) pathologies. Methodology The study was conducted with 50 healthy controls and 50 LDH patients. The pain level of the patients was analyzed with the Visual Analog Scale (VAS), and their functionality was analyzed with the Oswestry Disability Index (ODI). The disc degeneration and disc herniation grades were determined using magnetic resonance imaging. Serum ET-1 levels of the participants were measured using the enzyme-linked immunosorbent assay method. Results ET-1 level was significantly higher in the patient group compared to the controls (p < 0.01). A positive correlation was determined between serum ET-1 level and Pfirrmann grade in the patient group (p < 0.01). No correlation was determined between the MacNab grade, VAS, and ODI scores and ET-1 (p = 0.397, p = 0.137, and p = 0.208, respectively). There was no significant difference between the serum ET-1 levels of the patients with or without neurological deficits (p = 0.312). Conclusions The correlation between the serum ET-1 levels and IDD grade suggested that the former could serve as a biomarker to determine the degree of degeneration in the future. However, further research is required to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Emine Yıldırım Uslu
- Physical Medicine and Rehabilitation, Elazığ Fethi Sekin City Hospital, Elazig, TUR
| | - Arif Gülkesen
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | - Gurkan Akgol
- Physical Medicine and Rehabilitation, Firat University Hospital, Elazig, TUR
| | - Gökhan Alkan
- Physical Medicine and Rehabilitation, Firat University, Elazig, TUR
| | | | | |
Collapse
|
2
|
Banecki KMRM, Dora KA. Endothelin-1 in Health and Disease. Int J Mol Sci 2023; 24:11295. [PMID: 37511055 PMCID: PMC10379484 DOI: 10.3390/ijms241411295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Discovered almost 40 years ago, the potent vasoconstrictor peptide endothelin-1 (ET-1) has a wide range of roles both physiologically and pathologically. In recent years, there has been a focus on the contribution of ET-1 to disease. This has led to the development of various ET receptor antagonists, some of which are approved for the treatment of pulmonary arterial hypertension, while clinical trials for other diseases have been numerous yet, for the most part, unsuccessful. However, given the vast physiological impact of ET-1, it is both surprising and disappointing that therapeutics targeting the ET-1 pathway remain limited. Strategies aimed at the pathways influencing the synthesis and release of ET-1 could provide new therapeutic avenues, yet research using cultured cells in vitro has had little follow up in intact ex vivo and in vivo preparations. This article summarises what is currently known about the synthesis, storage and release of ET-1 as well as the role of ET-1 in several diseases including cardiovascular diseases, COVID-19 and chronic pain. Unravelling the ET-1 pathway and identifying therapeutic targets has the potential to treat many diseases whether through disease prevention, slowing disease progression or reversing pathology.
Collapse
Affiliation(s)
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
3
|
Ajayi AM, Ola CB, Ezeagu MB, Adeleke PA, John KA, Ologe MO, Ben-Azu B, Umukoro S. Chemical characterization, anti-nociceptive and anti-inflammatory activities of Plukenetia conophora seed oil in experimental rodent models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116017. [PMID: 36529252 DOI: 10.1016/j.jep.2022.116017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seed of the African walnut, Plukenetia conophora Mull.-Arg is well-known for its nutritional and medicinal values. The seed oil is widely used in massages to relieve pain, as nerve tonic and to enhance sexual performance. OBJECTIVE The study aimed at investigating the chemical profile, antinociceptive and anti-inflammatory activities of P. conophora oil (PCO). METHODS Seed oil of P. conophora was characterized using Gas-Liquid Chromatographic method (GC-MS) and oral acute toxicity evaluated at 2000 mg/kg. Antinociceptive effects were evaluated in hot plate, acetic acid and formalin-induced paw licking tests. The anti-inflammatory effects were investigated in egg albumin and carrageenan-, formalin and complete Freund adjuvant (CFA)-induced paw oedema models. The levels of pro-inflammatory cytokines in the fluid exudates were also evaluated in carrageenan air pouch model. RESULTS PCO exhibited high content of alpha linolenic acid (ALA). No toxicity was observed at 2000 mg/kg of PCO. PCO (50-200 mg/kg) demonstrated significant anti-nociceptive activity in pain models. PCO exhibited anti-inflammatory activity against oedema formation by phlogistic agents. The increased inflammatory oedema and oxidative stress in CFA-treated rats were also attenuated by PCO. The PCO (100 and 200 mg/kg) significantly reduced the levels of TNF-α (59.3% and 85.2%) and IL-6 (27.5% and 72.5%) in carrageenan-induced air pouch model. CONCLUSION The results of this study suggest that ALA-rich seed oil of Plukenetia conophora demonstrated anti-nociceptive and anti-inflammatory activities via inhibition of pro-inflammatory cytokines and oxidative stress, lending supportive evidences for its use in painful inflammatory conditions.
Collapse
Affiliation(s)
- Abayomi M Ajayi
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Christie B Ola
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Maduka B Ezeagu
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Paul A Adeleke
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Kayode A John
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Mary O Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Kwara State, Nigeria.
| | - Benneth Ben-Azu
- Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Solomon Umukoro
- Department of Pharmacology & Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| |
Collapse
|
4
|
Qin C, Wang Y, Li S, Tang Y, Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents. J Inflamm Res 2022; 15:1209-1226. [PMID: 35228812 PMCID: PMC8882030 DOI: 10.2147/jir.s346855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introductions Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood chronic disorder characterized by bladder-related pain. Chronic psychological stress plays a key role in the exacerbation and development of IC/BPS via unclear mechanisms. This study aimed to investigate the role of endothelin 1 (ET-1) and its receptors in the development of chronic stress-induced bladder dysfunction. Methods Wistar‐Kyoto rats were exposed to chronic (10 days) water avoidance stress (WAS) or sham stress, with subgroups receiving capsaicin pretreatment to desensitize C-fiber afferents. Thereafter, cystometrograms (CMG) were obtained with visceromotor response (VMR) simultaneously during intravesical saline or ET-1 infusion. CMG recordings were analyzed for the first and the continuous voiding cycles, respectively. Endothelin receptor type A (ETAR) expression was examined in the bladder tissues and L6-S1 dorsal root ganglions (DRGs). Toluidine blue staining was to check the bladder inflammation and double-labeling immunofluorescence (IF) staining was to identify the locations of ETAR, respectively. Results During saline infusion, WAS rats elicited significant decreases in pressure threshold (PT) and in the ratio of VMR threshold/maximum intravesical pressure (IVPmax), and a significant increase in VMR duration and area under the curve (AUC). ET-1 infusion induced similar alternations in WAS rats, but further significantly diminished the pressure to trigger PT and VMR, together with a more forceful and longer VMR. The sole effect of WAS exposure or ET-1 administration on the micturition reflex could be suppressed by capsaicin pretreatment. WAS exposure significantly induced an increased number of total mast cells in the bladder, while capsaicin pretreatment possibly antagonized them. No significant difference in ETAR expression was found between all groups. IF staining indicated the co-localization of ETAR and calcitonin gene-related peptides in both bladder and DRGs. Conclusion The activation of ET-1 receptors could enhance chronic stress-induced bladder hypersensitization and hyperalgesia through capsaicin-sensitive C-fiber afferents. Targeting the endothelin pathway may have therapeutic value for IC/BPS.
Collapse
Affiliation(s)
- Chuying Qin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Sai Li
- Acupuncture and Tuina School, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Yunliang Gao, Department of Urology, The Second Xiangya Hospital, Central South University, No. 139. Renmin Road, Changsha, 410011, People’s Republic of China, Email
| |
Collapse
|
5
|
Magnúsdóttir EI, Grujic M, Bergman J, Pejler G, Lagerström MC. Mouse connective tissue mast cell proteases tryptase and carboxypeptidase A3 play protective roles in itch induced by endothelin-1. J Neuroinflammation 2020; 17:123. [PMID: 32321525 PMCID: PMC7175568 DOI: 10.1186/s12974-020-01795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background Itch is an unpleasant sensation that can be debilitating, especially if it is chronic and of non-histaminergic origin, as treatment options are limited. Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that also has the ability to induce a burning, non-histaminergic pruritus when exogenously administered, by activating the endothelin A receptor (ETAR) on primary afferents. ET-1 is released endogenously by several cell-types found in the skin, including macrophages and keratinocytes. Mast cells express ETARs and can thereby be degranulated by ET-1, and mast cell proteases chymase and carboxypeptidase A3 (CPA3) are known to either generate or degrade ET-1, respectively, suggesting a role for mast cell proteases in the regulation of ET-1-induced itch. The mouse mast cell proteases (mMCPs) mMCP4 (chymase), mMCP6 (tryptase), and CPA3 are found in connective tissue type mast cells and are the closest functional homologs to human mast cell proteases, but little is known about their role in endothelin-induced itch. Methods In this study, we evaluated the effects of mast cell protease deficiency on scratching behavior induced by ET-1. To investigate this, mMCP knock-out and transgenic mice were injected intradermally with ET-1 and their scratching behavior was recorded and analyzed. Results CPA3-deficient mice and mice lacking all three proteases demonstrated highly elevated levels of scratching behavior compared with wild-type controls. A modest increase in the number of scratching bouts was also seen in mMCP6-deficient mice, while mMCP4-deficiency did not have any effect. Conclusion Altogether, these findings identify a prominent role for the mast cell proteases, in particular CPA3, in the protection against itch induced by ET-1.
Collapse
Affiliation(s)
- Elín I Magnúsdóttir
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Mirjana Grujic
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jessica Bergman
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin C Lagerström
- Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Abstract
Bone cancer metastasis is extremely painful and decreases the quality of life of the affected patients. Available pharmacological treatments are not able to sufficiently ameliorate the pain, and as patients with cancer are living longer, new treatments for pain management are needed. Decitabine (5-aza-2'-deoxycytidine), a DNA methyltransferases inhibitor, has analgesic properties in preclinical models of postsurgical and soft-tissue oral cancer pain by inducing an upregulation of endogenous opioids. In this study, we report that daily treatment with decitabine (2 µg/g, intraperitoneally) attenuated nociceptive behavior in the 4T1-luc2 mouse model of bone cancer pain. We hypothesized that the analgesic mechanism of decitabine involved activation of the endogenous opioid system through demethylation and reexpression of the transcriptionally silenced endothelin B receptor gene, Ednrb. Indeed, Ednrb was hypermethylated and transcriptionally silenced in the mouse model of bone cancer pain. We demonstrated that expression of Ednrb in the cancer cells lead to release of β-endorphin in the cell supernatant, which reduced the number of responsive dorsal root ganglia neurons in an opioid-dependent manner. Our study supports a role of demethylating drugs, such as decitabine, as unique pharmacological agents targeting the pain in the cancer microenvironment.
Collapse
|
7
|
Magnúsdóttir EI, Grujic M, Roers A, Hartmann K, Pejler G, Lagerström MC. Mouse mast cells and mast cell proteases do not play a significant role in acute tissue injury pain induced by formalin. Mol Pain 2018; 14:1744806918808161. [PMID: 30280636 PMCID: PMC6247485 DOI: 10.1177/1744806918808161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Subcutaneous formalin injections are used as a model for tissue injury-induced pain where formalin induces pain and inflammation indirectly by crosslinking proteins and directly through activation of the transient receptor potential A1 receptor on primary afferents. Activation of primary afferents leads to both central and peripheral release of neurotransmitters. Mast cells are found in close proximity to peripheral sensory nerve endings and express receptors for neurotransmitters released by the primary afferents, contributing to the neuro/immune interface. Mast cell proteases are found in large quantities within mast cell granules and are released continuously in small amounts and upon mast cell activation. They have a wide repertoire of proposed substrates, including Substance P and calcitonin gene-related peptide, but knowledge of their in vivo function is limited. We evaluated the role of mouse mast cell proteases (mMCPs) in tissue injury pain responses induced by formalin, using transgenic mice lacking either mMCP4, mMCP6, or carboxypeptidase A3 (CPA3), or mast cells in their entirety. Further, we investigated the role of mast cells in heat hypersensitivity following a nerve growth factor injection. No statistical difference was observed between the respective mast cell protease knockout lines and wild-type controls in the formalin test. Mast cell deficiency did not have an effect on formalin-induced nociceptive responses nor nerve growth factor-induced heat hypersensitivity. Our data thus show that mMCP4, mMCP6, and CPA3 as well as mast cells as a whole, do not play a significant role in the pain responses associated with acute tissue injury and inflammation in the formalin test. Our data also indicate that mast cells are not essential to heat hypersensitivity induced by nerve growth factor.
Collapse
Affiliation(s)
- Elín I Magnúsdóttir
- 1 Department of Neuroscience, Developmental Genetics Unit, Uppsala University, Uppsala, Sweden
| | - Mirjana Grujic
- 2 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Axel Roers
- 3 Institute for Immunology, University of Technology Dresden, Dresden, Germany
| | - Karin Hartmann
- 4 Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - Gunnar Pejler
- 2 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,5 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Malin C Lagerström
- 1 Department of Neuroscience, Developmental Genetics Unit, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Feldman-Goriachnik R, Hanani M. The effects of endothelin-1 on satellite glial cells in peripheral ganglia. Neuropeptides 2017; 63:37-42. [PMID: 28342550 DOI: 10.1016/j.npep.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 11/21/2022]
Abstract
Endothelins (ET) are a family of highly active neuropeptides with manifold influences via ET receptors (ETR) in both the peripheral and central nervous systems. We have shown previously that satellite glial cells (SGCs) in mouse trigeminal ganglia (TG) are extremely sensitive to ET-1 in evoking [Ca2+]in increase, apparently via ETBR activation, but there is no functional information on ETR in SGCs of other peripheral ganglia. Here we tested the effects of ET-1 on SGCs in nodose ganglia (NG), which is sensory, and superior cervical ganglia (Sup-CG), which is part of the sympathetic nervous system, and further investigated the influence of ET-1 on SGCs in TG. Using calcium imaging we found that SGCs in intact, freshly isolated NG and Sup-CG are highly sensitive to ET-1, with threshold concentration at 0.1nM. Our results showed that [Ca2+]in elevation in response to ET-1 was partially due to Ca2+ influx from the extracellular space and partially to Ca2+ release from intracellular stores. Using receptor selective ETR agonists and antagonists, we found that the responses were mediated by mixed ETAR/ETBR in SGCs of NG and predominantly by ETBR in SGCs of Sup-CG. By employing intracellular dye injection we examined coupling among SGCs around different neurons in the presence of 5nM ET-1 and observed coupling inhibition in all the three ganglion types. In summary, our work showed that SGCs in mouse sensory and sympathetic ganglia are highly sensitive to ET-1 and that this peptide markedly reduces SGCs coupling. We conclude that ET-1, which may participate in neuron-glia communications, has similar functions in wide range of peripheral ganglia.
Collapse
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel.
| |
Collapse
|
9
|
Fattori V, Serafim KGG, Zarpelon AC, Borghi SM, Pinho-Ribeiro FA, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Verri WA. Differential regulation of oxidative stress and cytokine production by endothelin ET A and ET B receptors in superoxide anion-induced inflammation and pain in mice. J Drug Target 2016; 25:264-274. [PMID: 27701898 DOI: 10.1080/1061186x.2016.1245308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The present study investigated whether endothelin-1 acts via ETA or ETB receptors to mediate superoxide anion-induced pain and inflammation. Mice were treated with clazosentan (ETA receptor antagonist) or BQ-788 (ETB receptor antagonist) prior to stimulation with the superoxide anion donor, KO2. Intraplantar treatment with 30 nmol of clazosentan or BQ-788 reduced mechanical hyperalgesia (47% and 42%), thermal hyperalgesia (68% and 76%), oedema (50% and 30%); myeloperoxidase activity (64% and 32%), and overt-pain like behaviours, such as paw flinching (42% and 42%) and paw licking (38% and 62%), respectively. Similarly, intraperitoneal treatment with 30 nmol of clazosentan or BQ-788 reduced leukocyte recruitment to the peritoneal cavity (58% and 32%) and abdominal writhing (81% and 77%), respectively. Additionally, intraplantar treatment with clazosentan or BQ-788 decreased spinal (45% and 41%) and peripheral (47% and 47%) superoxide anion production as well as spinal (47% and 47%) and peripheral (33% and 54%) lipid peroxidation, respectively. Intraplantar treatment with clazosentan, but not BQ-788, reduced spinal (71%) and peripheral (51%) interleukin-1 beta as well as spinal (59%) and peripheral (50%) tumor necrosis factor-alpha production. Therefore, the present study unveils the differential mechanisms by which ET-1, acting on ETA or ETB receptors, regulates superoxide anion-induced inflammation and pain.
Collapse
Affiliation(s)
- Victor Fattori
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Karla G G Serafim
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Ana C Zarpelon
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Sergio M Borghi
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - Felipe A Pinho-Ribeiro
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| | - José C Alves-Filho
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Thiago M Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Fernando Q Cunha
- b Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , Brazil
| | - Rúbia Casagrande
- c Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde , Universidade Estadual de Londrina , Londrina , Brazil
| | - Waldiceu A Verri
- a Departamento de Ciências Patológicas, Centro de Ciências Biológicas , Universidade Estadual de Londrina , Londrina , Brazil
| |
Collapse
|
10
|
Zarpelon AC, Pinto LG, Cunha TM, Vieira SM, Carregaro V, Souza GR, Silva JS, Ferreira SH, Cunha FQ, Verri WA. Endothelin-1 induces neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2 in mice. Can J Physiol Pharmacol 2012; 90:187-99. [PMID: 22320712 DOI: 10.1139/y11-116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor α (TNFα), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ET(A)/ET(B) receptor antagonist bosentan, and selective ET(A) or ET(B) receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFα and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c(+) markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ET(A)- and ET(B)-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2-dependent mechanism.
Collapse
Affiliation(s)
- Ana C Zarpelon
- Departamento de Patologia, Centro de Ciencias Biologicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid PR445 KM380, 86051-990, Londrina, Parana, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Millecamps M, Laferrière A, Ragavendran VJ, Stone LS, Coderre TJ. Role of peripheral endothelin receptors in an animal model of complex regional pain syndrome type 1 (CRPS-I). Pain 2010; 151:174-183. [PMID: 20675053 DOI: 10.1016/j.pain.2010.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/30/2010] [Accepted: 07/06/2010] [Indexed: 11/29/2022]
Abstract
Chronic post-ischemic pain (CPIP) is an animal model of CRPS-I developed using a 3-h ischemia-reperfusion injury of the rodent hind paw. The contribution of local endothelin to nociception has been evaluated in CPIP mice by measuring sustained nociceptive behaviors (SNBs) following intraplantar injection of endothelin-1 or -2 (ET-1, ET-2). The effects of local BQ-123 (ETA-R antagonist), BQ-788 (ETB-R antagonist), IRL-1620 (ETB-R agonist) and naloxone (opioid antagonist) were assessed on ET-induced SNBs and/or mechanical and cold allodynia in CPIP mice. ETA-R and ETB-R expression was assessed using immunohistochemistry and Western blot analysis. Compared to shams, CPIP mice exhibited hypersensitivity to local ET-1 and ET-2. BQ-123 reduced ET-1- and ET-2-induced SNBs in both sham and CPIP animals, but not mechanical or cold allodynia. BQ-788 enhanced ET-1- and ET-2-induced SNBs in both sham and CPIP mice, and cold allodynia in CPIP mice. IRL-1620 displayed a non-opioid anti-nociceptive effect on ET-1- and ET-2-induced SNBs and mechanical allodynia in CPIP mice. The distribution of ETA-R and ETB-R was similar in plantar skin of sham and CPIP mice, but both receptors were over-expressed in plantar muscles of CPIP mice. This study shows that ETA-R and ETB-R have differing roles in nociception for sham and CPIP mice. CPIP mice exhibit more local endothelin-induced SNBs, develop a novel local ETB-R agonist-induced (non-opioid) analgesia, and exhibit over-expression of both receptors in plantar muscles, but not skin. The effectiveness of local ETB-R agonists as anti-allodynic treatments in CPIP mice holds promise for novel therapies in CRPS-I patients.
Collapse
Affiliation(s)
- Magali Millecamps
- Department of Anesthesia, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 Department of Neurology & Neurosurgery, McGill University, 3801 University Ave., Montreal, Quebec, Canada H3A 2B4 Department of Psychology, McGill University, 1205 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1B1 Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6 Faculty of Dentistry, McGill University, 3640 University Ave., Montreal, Quebec, Canada H3A 2B2 Alan Edwards Centre for Research on Pain, McGill University, 740 Dr. Penfield Ave., Montreal, Quebec, Canada H3A 1A4 McGill University Health Centre Research Institute, 2155 Guy St., Montreal, Quebec, Canada H3H 2R9
| | | | | | | | | |
Collapse
|
12
|
Khodorova A, Strichartz GR. Contralateral paw sensitization following injection of endothelin-1: effects of local anesthetics differentiate peripheral and central processes. Neuroscience 2010; 165:553-60. [PMID: 19874873 DOI: 10.1016/j.neuroscience.2009.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/08/2009] [Accepted: 10/23/2009] [Indexed: 10/20/2022]
Abstract
Subcutaneous injection of the peptide endothelin-1 (ET-1) into the rat's footpad is known to cause rapid, transient ipsilateral mechanical and thermal sensitization and nocifensive hind paw flinching. Here we report that local injection of ET-1 (2 nmoles) into one hind paw slowly sensitizes the contralateral paw to chemical and mechanical stimulation. There was a 1.5-2-fold increase in the hind paw flinching response, over that from the first injection, to a second injection of the same dose of ET-1 delivered 24 h later into the contralateral paw. A similar increase in the number of flinches during the second phase of the response to formalin also occurred in the contralateral paw 24 h after ET-1. The contralateral paw withdrawal threshold to von Frey hairs was lowered by approximately 55% at 24 h after ipsilateral ET-1 injection. ET-1 injected s.c. at a segmentally unrelated location, the nuchal midline, caused no sensitization of the paws, obviating a systemic route of action. Local anesthetic block of the ipsilateral sciatic nerve during the period of initial response to ipsilateral ET-1 prevented contralateral sensitization, indicating the importance of local afferent transmission, although ipsilateral desensitization was not changed. These findings suggest that peripheral ET-1 actions lead to central sensitization that alters responses to selected stimuli.
Collapse
Affiliation(s)
- A Khodorova
- Department of Anesthesiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115-6110, USA
| | | |
Collapse
|
13
|
Motta EM, Chichorro JG, D'Orléans-Juste P, Rae GA. Roles of endothelin ETA and ETB receptors in nociception and chemical, thermal and mechanical hyperalgesia induced by endothelin-1 in the rat hindpaw. Peptides 2009; 30:918-25. [PMID: 19428770 DOI: 10.1016/j.peptides.2009.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 11/16/2022]
Abstract
Evidence on the relative roles of endothelin ET(A) and ET(B) receptors in mediating the nociceptive and hyperalgesic actions of endothelin-1 is still fragmented and conflicting, due to variations between species and/or models. This study assesses the participation of ET(A) and ET(B) receptors on the nociceptive behavior and hyperalgesia to chemical (formalin), mechanical and thermal stimuli evoked by endothelin-1 injected into the rat hind-paw. Intraplantar (i.pl.) injection of endothelin-1 (1-30 pmol, 50 microl) induced dose-dependent nociceptive behaviors over the first hour. Endothelin-1 (3-30 pmol) also potentiated both phases of nociception induced by a subsequent ipsilateral i.pl. injection of formalin (0.5%, 50 microl). Endothelin-1, at 10 pmol, increased responses of the first phase (0-10 min) by 97% and of the second phase (15-60 min) by 120%, and similar degrees of potentiation were observed following 30 pmol of the peptide. Endothelin-1 (1-30 pmol) caused slowly developing long-lasting thermal and mechanical hyperalgesia with maximum effects at 10 and 30 pmol, respectively, reaching significance at 2-3h and remaining elevated for up to at least 8h after injection. Treatment with the selective ET(A) and ET(B) peptidic antagonists BQ-123 and BQ-788 (i.pl., both at 10 nmol, 3.5h after ET-1 injection) or with the non-peptidic antagonists atrasentan and A-192621 systemically (i.v., 10 and 20mg/kg, respectively) each caused significant reductions in endothelin-1-induced nociception, as well as chemical, thermal and mechanical hyperalgesia. Thus, the nociceptive and hyperalgesic effects induced by i.pl. endothelin-1 seem to be mediated by both ET(A) and ET(B) receptors.
Collapse
Affiliation(s)
- Emerson M Motta
- Department of Pharmacology, Federal University of Santa Catarina, Center of Biological Sciences, SC, Brazil
| | | | | | | |
Collapse
|
14
|
Role of ET(A) and ET(B) endothelin receptors on endothelin-1-induced potentiation of nociceptive and thermal hyperalgesic responses evoked by capsaicin in rats. Neurosci Lett 2009; 457:146-50. [PMID: 19429182 DOI: 10.1016/j.neulet.2009.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 11/22/2022]
Abstract
Increasing evidence indicates that endothelin-1 (ET-1) activates nociceptive neurons and sensitizes them to different noxious stimuli, but involvement of TRPV1-dependent mechanisms in mediation of such effects is not yet fully understood. Here we report that intraplantar (i.pl.) injection of ET-1 (10 pmol) into the hind paw of rats induced overt nociceptive behavior over the first hour, followed by a slowly developing thermal hyperalgesia, lasting from 3 to 8h after injection. Both effects were also induced by similar injections of capsaicin (10-1000 pmol), but these responses were shorter lasting than those caused by ET-1. Local pre-treatment with the TRPV1 antagonist capsazepine (30 nmol, i.pl.) reduced only the thermal hyperalgesia induced by ET-1, but fully suppressed both responses to capsaicin (1000 pmol). Injection of a sub-threshold dose of ET-1 (0.1 pmol, i.pl.) prior to capsaicin (1 pmol, i.pl.) markedly sensitized the hind paw to the overt nociceptive and thermal hyperalgesic effects of the later. The potentiation of capsaicin-induced nociception by ET-1 was abolished by prior i.pl. injection of BQ-123 (ET(A) receptor antagonist, 10 nmol), but unaffected by BQ-788 (ET(B) receptors antagonist, 10 nmol), whereas the enhancement of capsaicin-induced hyperalgesia by ET-1 was attenuated by both antagonists. Therefore, differently to what has been reported in mice, in rats TRPV1 receptors contribute selectively to thermal hyperalgesia, but not overt nociception, induced by ET-1. Importantly, although ET-1 augments capsaicin-induced overt nociception and thermal hyperalgesia, potentiation of the former relies solely on ET(A) receptor-mediated signaling mechanisms, whereas both receptors contribute to the latter.
Collapse
|
15
|
Khodorova A, Montmayeur JP, Strichartz G. Endothelin receptors and pain. THE JOURNAL OF PAIN 2009; 10:4-28. [PMID: 19111868 DOI: 10.1016/j.jpain.2008.09.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 12/11/2022]
Abstract
UNLABELLED The endogenous endothelin (ET) peptides participate in a remarkable variety of pain-relatedprocesses. Pain that is elevated by inflammation, by skin incision, by cancer, during a Sickle Cell Disease crisis and by treatments that mimic neuropathic and inflammatory pain and are all reduced by local administration of antagonists of endothelin receptors. Many effects of endogenously released endothelin are simulated by acute, local subcutaneous administration of endothelin, which at very high concentrations causes pain and at lower concentrations sensitizes the nocifensive reactions to mechanical, thermal and chemical stimuli. PERSPECTIVE In this paper we review the biochemistry, second messenger pathways and hetero-receptor coupling that are activated by ET receptors, the cellular physiological responses to ET receptor activation, and the contribution to pain of such mechanisms occurring in the periphery and the CNS. Our goal is to frame the subject of endothelin and pain for a broad readership, and to present the generally accepted as well as the disputed concepts, including important unanswered questions.
Collapse
Affiliation(s)
- Alla Khodorova
- Department of Anesthesiology, Perioperative and Pain Medicine, Pain Research Center, Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115-6110, USA
| | | | | |
Collapse
|
16
|
Targeting endothelin ETA and ETB receptors inhibits antigen-induced neutrophil migration and mechanical hypernociception in mice. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:271-9. [PMID: 18854982 DOI: 10.1007/s00210-008-0360-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Endothelin may contribute to the development of inflammatory events such as leukocyte recruitment and nociception. Herein, we investigated whether endothelin-mediated mechanical hypernociception (decreased nociceptive threshold, evaluated by electronic pressure-meter) and neutrophil migration (myeloperoxidase activity) are inter-dependent in antigen challenge-induced Th1-driven hind-paw inflammation. In antigen challenge-induced inflammation, endothelin (ET) ET(A) and ET(B) receptor antagonism inhibited both hypernociception and neutrophil migration. Interestingly, ET-1 peptide-induced hypernociception was not altered by inhibiting neutrophil migration or endothelin ET(B) receptor antagonism, but rather by endothelin ET(A) receptor antagonism. Furthermore, endothelin ET(A), but not ET(B), receptor antagonism inhibited antigen-induced PGE(2) production, whereas either selective or combined blockade of endothelin ET(A) and/or ET(B) receptors reduced hypernociception and neutrophil recruitment caused by antigen challenge. Concluding, this study advances knowledge into the role for endothelin in inflammatory mechanisms and further supports the potential of endothelin receptor antagonists in controlling inflammation.
Collapse
|
17
|
Hamamoto DT, Khasabov SG, Cain DM, Simone DA. Tumor-evoked sensitization of C nociceptors: a role for endothelin. J Neurophysiol 2008; 100:2300-11. [PMID: 18684911 DOI: 10.1152/jn.01337.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary and metastatic cancers that effect bone are frequently associated with pain. Sensitization of primary afferent C nociceptors innervating tissue near the tumor likely contributes to the chronic pain and hyperalgesia accompanying this condition. This study focused on the role of the endogenous peptide endothelin-1 (ET-1) as a potential peripheral algogen implicated in the process of cancer pain. Electrophysiological response properties, including ongoing activity and responses evoked by heat stimuli, of C nociceptors were recorded in vivo from the tibial nerve in anesthetized control mice and mice exhibiting mechanical hyperalgesia following implantation of fibrosarcoma cells into and around the calcaneus bone. ET-1 (100 microM) injected into the receptive fields of C nociceptors innervating the plantar surface of the hind paw evoked an increase in ongoing activity in both control and tumor-bearing mice. Moreover, the selective ETA receptor antagonist, BQ-123 (3 mM), attenuated tumor-evoked ongoing activity in tumor-bearing mice. Whereas ET-1 produced sensitization of C nociceptors to heat stimuli in control mice, C nociceptors in tumor-bearing mice were sensitized to heat, and their responses were not further increased by ET-1. Importantly, administration of BQ-123 attenuated tumor-evoked sensitization of C nociceptors to heat. We conclude that ET-1 at the tumor site contributes to tumor-evoked excitation and sensitization of C nociceptors through an ETA receptor mediated mechanism.
Collapse
Affiliation(s)
- Darryl T Hamamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota, 515 Delaware St. SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
18
|
Conte FDP, Barja-Fidalgo C, Verri WA, Cunha FQ, Rae GA, Penido C, Henriques MDGMO. Endothelins modulate inflammatory reaction in zymosan-induced arthritis: participation of LTB4, TNF-alpha, and CXCL-1. J Leukoc Biol 2008; 84:652-60. [PMID: 18515326 DOI: 10.1189/jlb.1207827] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endothelins (ETs) are involved in inflammatory events, including pain, fever, edema, and cell migration. ET-1 levels are increased in plasma and synovial membrane of rheumatoid arthritis (RA) patients, but the evidence that ETs participate in RA physiopathology is limited. The present study investigated the involvement of ETs in neutrophil accumulation and edema formation in the murine model of zymosan-induced arthritis. Intra-articular (i.a.) administration of selective ET(A) or ET(B) receptor antagonists (BQ-123 and BQ-788, respectively; 15 pmol/cavity) prior to i.a. zymosan injection (500 microg/cavity) markedly reduced knee-joint edema formation and neutrophil influx to the synovial cavity 6 h and 24 h after stimulation. Histological analysis showed that ET(A) or ET(B) receptor blockade suppressed zymosan-induced neutrophil accumulation in articular tissue at 6 h. Likewise, dual blockade of ET(A)/ET(B) with bosentan (10 mg/kg, i.v.) also reduced edema formation and neutrophil counts 6 h after zymosan stimulation. Pretreatment with BQ-123 or BQ-788 (i.a.; 15 pmol/cavity) also decreased zymosan-induced TNF-alpha production within 6 h, keratinocyte-derived chemokine/CXCL1 production within 24 h, and leukotriene B(4) at both time-points. Consistent with the demonstration that ET receptor antagonists inhibit zymosan-induced inflammation, i.a. injection of ET-1 (1-30 pmol/cavity) or sarafotoxin S6c (0.1-30 pmol/cavity) also triggered edema formation and neutrophil accumulation within 6 h. Moreover, knee-joint synovial tissue expressed ET(A) and ET(B) receptors. These findings suggest that endogenous ETs contribute to knee-joint inflammation, acting through ET(A) and ET(B) receptors and modulating edema formation, neutrophil recruitment, and production of inflammatory mediators.
Collapse
Affiliation(s)
- Fernando de Paiva Conte
- Departamento de Farmacologia Aplicada, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Role of IL-18 in overt pain-like behaviour in mice. Eur J Pharmacol 2008; 588:207-12. [PMID: 18511039 DOI: 10.1016/j.ejphar.2008.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 03/10/2008] [Accepted: 04/01/2008] [Indexed: 01/14/2023]
Abstract
There are evidences that targeting IL-18 might be beneficial to inhibit inflammatory symptoms, including hypernociception (decrease in nociceptive threshold). The mechanism of IL-18 mechanical hypernociception depends on endothelin in rats and mice. However, the role of IL-18 in overt pain-like behaviour remains undetermined. Therefore, we addressed the role of IL-18 in writhing response induced by intraperitoneal (i.p.) injection of phenyl-p-benzoquinone (PBQ) and acetic acid in mice. Firstly, it was detected that PBQ and acetic acid i.p. injection induced a dose-dependent number of writhes in Balb/c mice. Subsequently, it was observed that the PBQ - but not the acetic acid-induced writhes were diminished in IL-18 deficient ((-/-)) mice. Therefore, considering that IFN-gamma, endothelin and prostanoids mediate IL-18-induced mechanical hypernociception, we also investigated the role of these mediators in the same model of writhing response in which IL-18 participates. It was noticed that PBQ-induced writhes were diminished in IFN-gamma(-/-) mice and by the treatment with bosentan (mixed endothelin ETA/ETB receptor antagonist), BQ 123 (cyclo[DTrp-DAsp-Pro-DVal-Leu], selective endothelin ETA receptor antagonist), BQ 788 (N-cys-2,6 dimethylpiperidinocarbonyl-l-methylleucyl-d-1-methoxycarboyl-d-norleucine, selective endothelin ETB receptor antagonist) or indomethacin (cycloxigenase inhibitor). Thus, IL-18, IFN-gamma, endothelin acting on endothelin ETA and ETB receptors, and prostanoids mediate PBQ-induced writhing response in mice. To conclude, these results further advance the understanding of the physiopathology of overt pain-like behaviour, and suggest for the first time a role for IL-18 in writhing response in mice.
Collapse
|
20
|
Hans G, Deseure K, Adriaensen H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides 2008; 42:119-32. [PMID: 18194815 DOI: 10.1016/j.npep.2007.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Revised: 11/28/2007] [Accepted: 12/05/2007] [Indexed: 01/23/2023]
Abstract
Pain in patients with metastatic cancer contributes to increased suffering in those already burdened by their advancing illness. The causes of this pain are unknown, but are likely to involve the action of tumour-associated mediators and their receptors. In recent years, several chemical mediators have increasingly come to the forefront in the pathophysiology of cancer pain. One such mediator, endothelin-1 (ET-1), is a peptide of 21 amino acids that was initially shown to be a potent vasoconstrictor. Extensive research has revealed that members of the ET family are indeed produced by several epithelial cancerous tumours, in which they act as autocrine and/or paracrine growth factors. Several preclinical and clinical studies of various malignancies have suggested that the ET axis may represent an interesting contributor to tumour progression. In addition, evidence is accumulating to suggest that ET-1 may contribute to pain states both in humans and in other animals. ET-1 both stimulates nociceptors and sensitises them to painful stimuli. Selective stimulation of ET receptors has been implicated as a cause of inflammatory, neuropathic and tumoural pain. ET-1-induced pain-related behaviour seems to be mediated either solely by one receptor type or via both endothelin-A receptors (ETAR) and endothelin-B receptors (ETBR). Whereas stimulation of ETAR on nociceptors always elicits a pain response, stimulation of ETBR may cause analgesia or elicit a pain response, depending on the conditions. The administration of ETAR antagonists in the receptive fields of these nociceptors has been shown to ameliorate pain-related behaviours in animals, as well as in some patients with advanced metastatic prostate cancer. The identification of tumour-associated mediators that might directly or indirectly cause pain in patients with metastatic disease, such as ET-1, should lead to improved, targeted analgesia for patients with advanced cancer. In this review, we will describe the current status of the role of ET-1 in different types of painful syndromes, with special emphasis on its role in the pathophysiology of cancer pain. Finally, potential new treatment options that are based on the role of the ET axis in the pathophysiology of cancer are elaborated.
Collapse
Affiliation(s)
- Guy Hans
- Multidisciplinary Pain Centre, Department of Anaesthesiology, Antwerp University Hospital (UZA), Edegem, Belgium.
| | | | | |
Collapse
|
21
|
Puri V, Puri S, Svojanovsky SR, Mathur S, Macgregor RR, Klein RM, Welch KMA, Berman NEJ. Effects of oestrogen on trigeminal ganglia in culture: implications for hormonal effects on migraine. Cephalalgia 2006; 26:33-42. [PMID: 16396664 DOI: 10.1111/j.1468-2982.2005.00987.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Although migraine is more common in women than men and often linked to the menstrual cycle, few studies have investigated the biological basis of hormonal influences on the trigeminovascular system. In the present study we investigated the effect of physiological levels (10(-9) m) oestrogen on female rat trigeminal ganglia in vitro. Immunocytochemical analysis demonstrated the presence of oestrogen receptor-alpha in a predominantly cytoplasmic location and in neurites. Microarray analysis demonstrated that oestrogen treatment regulates several genes with potential relevance to menstrual migraine. The genes that were upregulated included synapsin-2, endothelin receptor type B, activity and neurotransmitter-induced early gene 7 (ania-7), phosphoserine aminotransferase, MHC-1b, and ERK-1. Down-regulated genes included IL-R1, bradykinin B2 receptor, N-tropomodulin, CCL20, GABA transporter protein, fetal intestinal lactase-phlorizin hydrolase, carcinoembryonic antigen-related protein, zinc finger protein 36, epsin 1 and cysteine string protein. Protein activity assays demonstrated that exposure of the cultured neurons to oestrogen leads to activation of ERK, which has been linked to inflammatory pain. Immunocytochemistry demonstrated that activated ERK was present in neurons containing peripherin, a marker of nociceptive neurons. Several of the genes in the present study may provide potential targets for understanding the association of oestrogen with migraine and other hormone-related orofacial pain.
Collapse
Affiliation(s)
- V Puri
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Yuyama H, Koakutsu A, Fujiyasu N, Tanahashi M, Fujimori A, Sato S, Shibasaki K, Tanaka S, Sudoh K, Sasamata M, Miyata K. Effects of selective endothelin ET(A) receptor antagonists on endothelin-1-induced potentiation of cancer pain. Eur J Pharmacol 2005; 492:177-82. [PMID: 15178362 DOI: 10.1016/j.ejphar.2004.04.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/31/2004] [Accepted: 04/09/2004] [Indexed: 12/31/2022]
Abstract
In some diseases in which endothelin-1 production increases, e.g. prostate cancer, endothelin-1 is considered to be involved in the generation of pain. In the present study, we investigated the effects of a selective endothelin ET(A) receptor antagonist, (E)-N-[6-methoxy-5-(2-methoxyphenoxy)[2,2'-bipyrimidin]-4-yl]-2-phenylethenesulfonamide monopotassium salt (YM598), on the nociception potentiated by endothelin-1 in a cancer inoculation-induced pain model in mice, induced by inoculation of the androgen-independent human prostate cancer cell line PPC-1 into the hind paws of severe combined immunodeficiency (SCID) mice. No pain responses were observed in the sham-operated mice, whereas monophasic pain responses were observed in the PPC-1-inoculated mice. Endothelin-1 (1 to 10 pmol/paw) but not sarafotoxin S6c potentiated the pain response in prostate cancer-inoculated mice. Both YM598 and atrasentan (0.3 to 3 mg/kg, p.o.) significantly inhibited the endothelin-1 (10 pmol/paw)-induced potentiation of nociception in a dose-dependent manner. These results suggest that selective endothelin ET(A) receptor antagonists might relieve pain in patients with various diseases in which endothelin-1 production is increased, e.g. prostate cancer.
Collapse
Affiliation(s)
- Hironori Yuyama
- Applied Pharmacology Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co., Ltd., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
da Cunha JM, Rae GA, Ferreira SH, Cunha FDQ. Endothelins induce ETB receptor-mediated mechanical hypernociception in rat hindpaw: roles of cAMP and protein kinase C. Eur J Pharmacol 2005; 501:87-94. [PMID: 15464066 DOI: 10.1016/j.ejphar.2004.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 07/28/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
The present study assesses the capacity of endothelins to induce mechanical hypernociception, and characterises the receptors involved and the contribution of cAMP and protein kinases A (PKA) and C (PKC) to this effect. Intraplantar administration of endothelin-1, endothelin-2 or endothelin-3 (3-30 pmol) induced dose- and time-dependent mechanical hypernociception, which was inhibited by BQ-788 (N-cys-2,6-dimethylpiperidinocarbonyl-l-gamma-methylleucyl-d-1-methoxycarboyl-d-norleucine; endothelin ET(B) receptor antagonist), but not BQ-123 (cyclo[d-Trp-d-Asp-Pro-d-Val-Leu]; endothelin ET(A) receptor antagonist; each at 30 pmol). The selective endothelin ET(B) receptor agonist BQ-3020 (N-Ac-Ala(11,15)-endothelin-1 (6-21)) fully mimicked the hypernociceptive effects of the natural endothelins. Treatments with indomethacin, atenolol or dexamethasone did not inhibit endothelin-1-evoked mechanical hypernociception. However, endothelin-1-induced mechanical hypernociception was potentiated by the cAMP phosphodiesterase inhibitor rolipram (4-[3-(cyclopentyloxy)-4-methoxyphenyl]-2-pyrrolidinone) and inhibited by the PKC inhibitors staurosporine and calphostin C, but was unaffected by the PKA inhibitor H89 (N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide). Thus, endothelins, acting through endothelin ET(B) receptors, induce mechanical hypernociception in the rat hindpaw via cAMP formation and activation of the PKC-dependent phosphorylation cascade.
Collapse
Affiliation(s)
- Joice M da Cunha
- Department of Pharmacology, Faculty of Medicine, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
24
|
Daher JB, Souza GEP, D'Orléans-Juste P, Rae GA. Endothelin ETB receptors inhibit articular nociception and priming induced by carrageenan in the rat knee-joint. Eur J Pharmacol 2005; 496:77-85. [PMID: 15288578 DOI: 10.1016/j.ejphar.2004.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 06/09/2004] [Indexed: 11/28/2022]
Abstract
The participation of the endothelin system on nociception and priming induced by carrageenan in the knee-joint was investigated. Intra-articular (i.a.) carrageenan (300 microg) caused long-lasting nociceptive effects (i.e., increases in paw elevation time [PET]), which were potentiated by endothelin-1 (dual endothelin ETA/ETB receptor agonist) and inhibited by sarafotoxin S6c (endothelin ETB receptor agonist; both at 30 pmol, i.a., 24 h beforehand). Priming the naive joint with carrageenan augmented nociceptive responses to a second carrageenan challenge, 72 h later. Carrageenan-induced priming, but not nociception, was potentiated by local BQ-788 (10 nmol, i.a., 15 min before priming; endothelin ETB receptor antagonist; N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D-1-methoxycarbonyl-tryptophanil-D-norleucine), but BQ-123 (endothelin ETA receptor antagonist; cyclo [D-Asp-Pro-D-Val-Leu]) was ineffective. Sarafotoxin S6c markedly suppressed carrageenan-induced priming to nociception triggered by carrageenan, endothelin-1 or sarafotoxin S6c, and BQ-788 prevented this action. Thus, selective endothelin ETB receptor agonists inhibit carrageenan-induced nociception and priming in the naive joint. This priming effect of carrageenan to nociception evoked by subsequent inflammatory insults is limited by an endothelin ETB receptor-operated mechanism.
Collapse
Affiliation(s)
- Josélia B Daher
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Florianópolis SC 88049-900, Brazil
| | | | | | | |
Collapse
|
25
|
Eisenberg E, Erlich T, Zinder O, Lichinsky S, Diamond E, Pud D, Davar G. Plasma endothelin-1 levels in patients with complex regional pain syndrome. Eur J Pain 2005; 8:533-8. [PMID: 15531221 DOI: 10.1016/j.ejpain.2003.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 12/23/2003] [Indexed: 11/30/2022]
Abstract
The clinical characteristics of complex regional pain syndrome (CRPS)--spontaneous and stimulus-evoked pain, autonomic abnormalities, motor dysfunction, and trophic changes in the affected limb--are well known. However, its pathogenesis is unclear, and the diagnosis is often delayed, in part due to lack of objective laboratory tests. Endothelin-1 (ET-1) is a potent vasoconstrictor that has recently been shown to produce pain, allodynia, edema, and muscle weakness, as well as to exert a direct excitatory effect on nociceptive afferents. Furthermore, new evidence indicates that ET-1 is involved in various cancer- and non-cancer-related painful conditions. The aim of the present explorative study was to determine the ET-1 plasma levels in patients with CRPS in an attempt to identify a 'laboratory marker' for CRPS and to search for evidence suggesting that ET-1 may be involved in the pathogenesis of CRPS. ET-1 plasma levels were determined in 20 severely affected CRPS patients, in eight patients with non-CRPS chronic painful conditions, and in 10 healthy volunteers. The results showed that there were no significant differences in ET-1 plasma levels between the three groups. We conclude that the plasma level of ET-1 cannot be regarded as a 'marker' for CRPS. Yet, the possibility that ET-1 is involved in the pathophysiology of CRPS has not been excluded and deserves further investigation.
Collapse
Affiliation(s)
- Elon Eisenberg
- Pain Relief Unit, Rambam Medical Center, Technion-Israel Institute of Technology, POB 9602, Haifa 31096, Israel.
| | | | | | | | | | | | | |
Collapse
|
26
|
Houck CS, Khodorova A, Reale AM, Strichartz GR, Davar G. Sensory fibers resistant to the actions of tetrodotoxin mediate nocifensive responses to local administration of endothelin-1 in rats. Pain 2004; 110:719-726. [PMID: 15288413 DOI: 10.1016/j.pain.2004.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 04/27/2004] [Accepted: 05/12/2004] [Indexed: 11/21/2022]
Abstract
Endothelin-1 (ET-1) applied to the sciatic nerve or injected into the plantar hindpaw of rats induces pain behavior (ipsilateral hindpaw flinching) and selective excitation of nociceptors by activation of endothelin-A (ET(A)) receptors. To determine the pharmacological profile of the sensory fibers that mediate this pain behavior, we administered lidocaine (LID, a non-selective conduction blocker) or tetrodotoxin (TTX) prior to ET-1. LID (1 or 2%, 0.1 ml) was injected percutaneously into the sciatic notch, or TTX (10 microM, 4 microl) was injected into the sciatic nerve prior to the more distal application of ET-1 (400 microM, 40 microl) onto the sciatic nerve or subcutaneously into the plantar hindpaw (400 microM, 10 microl). LID inhibited ET-1-induced flinching in a dose-dependent manner; the mean total number of flinches was reduced by 39% for 1% LID and by 87% for 2% LID. In contrast, TTX failed to inhibit flinching behavior induced by sciatic nerve application of ET-1 despite a similar magnitude of motor and sensory blockade as that observed with 2% LID. Partial blockade of flinching behavior by intraneural TTX (mean total flinches were reduced by 51%) was observed after subcutaneous injection of ET-1. Unexpectedly, ET-1 prolonged the actions of 1% LID and, even when applied alone, produced clear signs of motor and sensory conduction block. These results are evidence that ET-1-induced pain is transmitted to the central nervous system via sensory fibers using tetrodotoxin-resistant sodium channels, and that ET-1 has analgesic actions that exist despite the activation of local pain pathways.
Collapse
Affiliation(s)
- Constance S Houck
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital, Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
27
|
Zhao C, Wacnik PW, Tall JM, Johns DC, Wilcox GL, Meyer RA, Raja SN. Analgesic effects of a soy-containing diet in three murine bone cancer pain models. THE JOURNAL OF PAIN 2004; 5:104-10. [PMID: 15042518 DOI: 10.1016/j.jpain.2003.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 11/16/2022]
Abstract
UNLABELLED Bone is a common metastatic site for prostate and breast cancer, and bone cancer is usually associated with severe pain. Traditional treatments for cancer pain can sometimes be ineffective or associated with side effects. Thus an increasing number of patients seek alternative therapies. In this study we investigated the analgesic effects of a soy diet on 3 experimental models of bone cancer pain. Mice were fed a diet in which the protein source was either soy or casein. After 1 week on the diet, sarcoma cells (NCTC 2472) were injected into the medullary cavity of the humeri, femur, or calcaneus. Experimenters blinded to diet of the animal assessed the pain behavior in these animals, forelimb grip force in the humerus model and paw withdrawal frequency to mechanical stimuli in the calcaneus and femur models. The effect of morphine on cancer-induced pain behavior was investigated in calcaneus and femur models. In addition, in the femur model, the effects of soy on tumor size and bone destruction were studied. The soy diet reduced secondary mechanical hyperalgesia in the femur model but had no effect on primary mechanical hyperalgesia in the calcaneus model or on movement-related hyperalgesia in the humerus model. No dietary impact was discerned in measurements of tumor size, bone destruction, and body weight in the femur model, suggesting that the soy diet had no effect on cancer growth. Morphine dose-dependently reduced hyperalgesia with no diet-based difference. These results suggest that a soy diet might provide analgesia in certain forms of hyperalgesia associated with bone cancer. PERSPECTIVE The study raises the possibility of dietary supplements influencing aspects of cancer pain. Further research will help determine if use of nutritional supplements, such as soy proteins, can reduce opioid analgesic use in chronic pain states and help minimize the side effects associated with long term use of opioids.
Collapse
Affiliation(s)
- Chengshui Zhao
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Piovezan AP, D'Orléans-Juste P, Frighetto M, Souza GEP, Henriques MGMO, Rae GA. Endothelins contribute towards nociception induced by antigen in ovalbumin-sensitised mice. Br J Pharmacol 2004; 141:755-63. [PMID: 14744803 PMCID: PMC1574245 DOI: 10.1038/sj.bjp.0705663] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. The contribution of endogenous endothelins to nociceptive responses elicited by ovalbumin (OVA) in the hind-paw of mice sensitised to this antigen (50 microg OVA+5 mg Al(OH)(3), s.c., 14 days beforehand) was investigated. 2. Sensitised mice exhibited greater nocifensive responsiveness to intraplantar (i.pl.) OVA (total licking time over first 30 min: 85.2+/-14.6 s at 0.3 microg; 152.6+/-35.6 s at 1 microg) than nonsensitised animals (29.3+/-7.4 s at 1 microg). Nocifensive responses of sensitised mice to 0.3 microg OVA were inhibited by morphine (3 mg kg(-1), s.c.) or local depletion of mast cells (four daily i.pl. injections of compound 48/80). 3. Pretreatment with i.v. bosentan (mixed ET(A)/ET(B) receptor antagonist; 52 micromol kg(-1)) or A-122722.5 (selective ET(A) receptor antagonist; 6 micromol kg(-1)) reduced OVA-induced licking from 124.8+/-20.6 s to 45.7+/-13.0 s and 64.2+/-12.1 s, respectively, whereas A-192621.1 (selective ET(B) receptor antagonist; 25 micromol kg(-1)) enhanced them to 259.2+/-39.6 s. 4. Local i.pl. pretreatment with BQ-123 or BQ-788 (selective ET(A) or ET(B) receptor antagonists, respectively, each at 3 nmol) reduced OVA-induced licking (from 106.2+/-15.2 to 57.0+/-9.4 s and from 118.6+/-10.5 to 76.8+/-14.7 s, respectively). Sarafotoxin S6c (selective ETB receptor agonist, 30 pmol, i.pl., 30 min after OVA) induced nocifensive responses in OVA-sensitised, but not in nonsensitised, animals. 5. Compound 48/80 (0.3 microg, i.pl.) induced nocifensive responses per se and potentiated those induced by i.pl. capsaicin (0.1 microg). Treatment with BQ-123 (3 nmol, i.pl.) reduced only the hyperalgesic effect of compound 48/80, whereas BQ-788 (3 nmol) was ineffective. 6. Thus, immune-mediated Type I hypersensitivity reactions elicit mast cell- and endothelin-dependent nociception in the mouse hind-paw, which are mediated locally by both ET(A) and ET(B) receptors. The nocifensive response to antigen is amenable to blockade by systemic treatment with dual ET(A)/ET(B) or selective ET(A) receptor antagonists, but is sharply potentiated by systemic selective ET(B) receptor antagonist treatment. The apparently distinct roles played by ET(B) receptors in this phenomenon at local and other sites remain to be characterised.
Collapse
Affiliation(s)
- Anna P Piovezan
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, R Ferreira Lima 82, Florianópolis 88015-420, SC, Brazil
| | - Pedro D'Orléans-Juste
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada J1H 5N4
| | - Monica Frighetto
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, R Ferreira Lima 82, Florianópolis 88015-420, SC, Brazil
| | - Glória E P Souza
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Maria G M O Henriques
- Laboratory of Applied Pharmacology, Far-Manguinhos, FIOCRUZ, Rio de Janeiro, 21041-250, Brazil
| | - Giles A Rae
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, R Ferreira Lima 82, Florianópolis 88015-420, SC, Brazil
- Author for correspondence:
| |
Collapse
|
29
|
Zhou QL, Strichartz G, Davar G. Endothelin-1 activates ET(A) receptors to increase intracellular calcium in model sensory neurons. Neuroreport 2001; 12:3853-7. [PMID: 11726808 DOI: 10.1097/00001756-200112040-00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelin-1 (ET-1) induces endothelin-A (ETA) receptor-mediated pain and selective excitation of nociceptors. Here we studied ET-1-induced changes in intracellular calcium (Ca2+in) in Fura-2 loaded mouse neuroblastoma-rat dorsal root ganglion hybrid cells (ND7/104). ET-1 (1-400 nM) induced concentration-dependent, transient increases in Ca2+in, probably of intracellular source. Responses to repeated application declined with increasing ET-1 concentration, implying receptor desensitization. Treatment of cells with the selective ETA receptor antagonist, BQ-123, produced a dose-dependent inhibition of the response that was 20% of ET-1 alone (IC50 = 20 nM, KI = 7 nM). No inhibition of the calcium response was observed with the selective ETB antagonist, BQ-788 (10-1000 nM). These results demonstrate that ET-1 induces dose- and ETA receptor-dependent release of Ca2+in in nociceptor-like neurons, and permit further examination of the pathways that underlie ET-1-induced pain signaling.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cell Line, Transformed/drug effects
- Cell Line, Transformed/metabolism
- Dose-Response Relationship, Drug
- Endothelin Receptor Antagonists
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Fluorescent Dyes
- Fluorometry
- Fura-2
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Intracellular Fluid/drug effects
- Intracellular Fluid/metabolism
- Mice
- Models, Biological
- Neuroblastoma
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Oligopeptides/pharmacology
- Pain/chemically induced
- Pain/metabolism
- Pain/physiopathology
- Peptides, Cyclic/pharmacology
- Piperidines/pharmacology
- Rats
- Receptor, Endothelin A
- Receptors, Endothelin/agonists
- Receptors, Endothelin/metabolism
Collapse
Affiliation(s)
- Q L Zhou
- Molecular Neurobiology of Pain, and 1Sensory Neurophysiology Laboratories of the Pain Research Center, Department of Anesthesiology, Perioperative and Pain Management, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
30
|
Piovezan AP, D'Orléans-Juste P, Souza GEP, Rae GA. Endothelin-1-induced ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw: modulation by simultaneous ET(B) receptor activation. Br J Pharmacol 2000; 129:961-8. [PMID: 10696096 PMCID: PMC1571931 DOI: 10.1038/sj.bjp.0703154] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelin-1 causes ET(A) receptor-mediated enhancement of capsaicin-induced nociception in mice. We have assessed if this hyperalgesic effect of endothelin-1 is also accompanied by other pro-inflammatory effects, namely nociception and oedema, and characterized the endothelin ET receptors involved. Intraplantar (i. pl.) hind-paw injection of endothelin-1 (0.3 - 30 pmol) induced graded nociceptive responses (accumulated licking time: vehicle, 20. 5+/-3.3 s; endothelin-1 at 30 pmol, 78.1+/-9.8 s), largely confined to the first 15 min. Endothelin-1 (1 - 10 pmol) potentiated ipsilateral capsaicin-induced (0.1 microgram, i.pl.; at 30 min) nociception (vehicle, 40.2+/-2.6 s; endothelin-1 at 10 pmol, 98.4+/-5.8 s, but 30 pmol was inactive), and caused oedema (increase in paw weight 5 min after capsaicin: vehicle, 46.3+/-2.3 mg; endothelin-1 at 30 pmol, 100.3+/-6.1 mg). Selective ET(B) receptor agonists sarafotoxin S6c (up to 30 pmol) and IRL 1620 (up to 100 pmol) were inactive, whereas endothelin-3 (up to 30 pmol) induced only modest oedema. ET(A) receptor antagonists BQ-123 (1 nmol, i.pl. ) or A-127722-5 (6 micromol kg(-1), i.v.) prevented all effects of endothelin-1 (10 pmol), but the ET(B) receptor antagonist BQ-788 (1 or 10 nmol, i.pl.) was ineffective. BQ-788 (10 nmol, i.pl.) unveiled hyperalgesic effects of 30 pmol endothelin-1 and endothelin-3. Sarafotoxin S6c (30 pmol, i.pl.) did not modify endothelin-1-induced (10 pmol) nociception or oedema, but abolished hyperalgesia. Thus, endothelin-1 triggers ET(A) receptor-mediated nociception, hyperalgesia and oedema in the mouse hind-paw. Simultaneous activation of ET(B) receptors by endothelin-1 or selective agonists can limit the hyperalgesic, but not the nociceptive or oedematogenic, effects of the peptide.
Collapse
Affiliation(s)
- Anna P Piovezan
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, Florianópolis, 88015-420, Brazil
| | - Pedro D'Orléans-Juste
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada J1H 5N4
| | - Glória E P Souza
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Giles A Rae
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Rua Ferreira Lima 82, Florianópolis, 88015-420, Brazil
- Author for correspondence:
| |
Collapse
|
31
|
Jarvis MF, Wessale JL, Zhu CZ, Lynch JJ, Dayton BD, Calzadilla SV, Padley RJ, Opgenorth TJ, Kowaluk EA. ABT-627, an endothelin ET(A) receptor-selective antagonist, attenuates tactile allodynia in a diabetic rat model of neuropathic pain. Eur J Pharmacol 2000; 388:29-35. [PMID: 10657544 DOI: 10.1016/s0014-2999(99)00865-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (</=8.0 g). Systemic (i.p.) administration of ABT-627 (1 and 10 mg/kg) was found to produce a dose-dependent increase in tactile allodynia thresholds. A significant antinociceptive effect (40-50% increase in tactile allodynia thresholds, P<0.05) was observed at the dose of 10 mg/kg, i.p., within 0.5-2-h post-dosing. The antinociceptive effects of ABT-627 (10 mg kg(-1) day(-1), p.o.) were maintained following chronic administration of the antagonist in drinking water for 7 days. In comparison, morphine administered acutely at a dose of 8 mg/kg, i.p., produced a significant 90% increase in streptozotocin-induced tactile allodynia thresholds. The endothelin ET(B) receptor-selective antagonist, 2R-(4-propoxyphenyl)-4S-(1, 3-benzodioxol-5-yl)-1-(N-(2, 6-diethylphenyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxy lic acid (A-192621; 20 mg/kg, i.p.), did not significantly alter tactile allodynia thresholds in streptozotocin-treated rats. Although combined i.p. administration of ABT-627 and A-192621 produced a significant, acute increase in tactile allodynia thresholds, this effect was significantly less than that produced by ABT-627 alone. These results indicate that the selective blockade of endothelin ET(A) receptors results in an attenuation of tactile allodynia in the streptozotocin-treated rat.
Collapse
Affiliation(s)
- M F Jarvis
- Neurological and Urological Diseases Research and Metabolic Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6123, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fareed MU, Hans GH, Atanda A, Strichartz GR, Davar G. Pharmacological characterization of acute pain behavior produced by application of endothelin-1 to rat sciatic nerve. THE JOURNAL OF PAIN 2000. [DOI: 10.1016/s1526-5900(00)90087-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Piovezan AP, D'Orléans-Juste P, Tonussi CR, Rae GA. Effects of endothelin-1 on capsaicin-induced nociception in mice. Eur J Pharmacol 1998; 351:15-22. [PMID: 9698200 DOI: 10.1016/s0014-2999(98)00281-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The influence of endothelin-1 on nociception induced by capsaicin was assessed in the mouse hindpaw. Local endothelin-1 injection (1 to 20 pmol/paw) 30 min prior to ipsilateral injection of capsaicin (0.1 microg/paw) increased, in a graded fashion, the time spent licking the injected paw. Maximal hyperalgesia was obtained with 10 pmol/paw of endothelin-1 (capsaicin-induced hindpaw licking time increased from 43 +/- 3 s to 114 +/- 7 s, n = 6), but no hyperalgesia was evident following 30 pmol/paw of endothelin-1. The selective endothelin ET(B) receptor agonists sarafotoxin S6c (< or = 30 pmol/paw) and IRL 1620 (i.e., Suc[Glu9,Ala11,15]endothelin-1-(10-21); < or = 100 pmol/paw) failed to induce hyperalgesia. Local treatment with BQ-123 (i.e., cyclo[DTrp-DAsp-Pro-DVal-Leu] 1 nmol/paw selective endothelin ET(A) receptor antagonist), 10 min before endothelin-1 (10 pmol/paw), fully blocked the hyperalgesic response, whereas similar treatment with the selective endothelin ET(B) receptor antagonist BQ-788 (i.e., N-cis-2,6-dimethylpiperidinocarbonyl-L-gamma-methylleucyl-D- 1-methoxy-carboyl-D-norleucine) was ineffective. Intravenous injection of bosentan (17 and 52 micromol/kg a non-peptidic mixed endothelin ET(A)/ET(B) receptor antagonist) or BMS 182874 (i.e., 5-[dimethylamino]-N-[3,4-dimethyl-5-isoxazolyl]-1-naphthalenesulph onamide; 10 and 30 micromol/kg; a non-peptidic selective endothelin ET(A) receptor antagonist), 1 h before endothelin-1, inhibited its hyperalgesic effect in a graded fashion and abolished the response at the higher doses. None of the antagonists modified nociception induced by capsaicin alone or the hyperalgesia induced by local injection of 5-hydroxytryptamine (5-HT; 2 nmol/paw, 30 min before capsaicin). Hyperalgesia induced by 5-HT was abolished by simultaneous injection of endothelin-1 or the endothelin ET(B) receptor agonist IRL 1620 (each at 30 pmol/paw). Therefore, local endothelin-1 exerts a dual influence in this model: at low doses it causes endothelin ET(A) receptor-mediated hyperalgesia (i.e., it potentiates capsaicin-induced nociception), whereas at higher doses it induces an anti-hyperalgesic effect against 5-HT which seems to be mediated via distinct endothelin ET (possibly ET(B)) receptors.
Collapse
Affiliation(s)
- A P Piovezan
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | | | | |
Collapse
|