1
|
Zhang Y, Xiong W, Ren Y, Huang J, Wang X, Wang O, Cai S. Preparation of Rutin-Whey Protein Pickering Emulsion and Its Effect on Zebrafish Skeletal Muscle Movement Ability. Nutrients 2024; 16:3050. [PMID: 39339650 PMCID: PMC11435083 DOI: 10.3390/nu16183050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional supplementation enriched with protein and antioxidants has been demonstrated to effectively strengthen skeletal muscle function and mitigate the risk of sarcopenia. Dietary protein has also been a common carrier to establish bioactive delivery system. Therefore, in this study, a Pickering emulsion delivery system for rutin was constructed with whey protein, and its structural characteristics, bioaccessibility, and molecular interactions were investigated. In the in vivo study, zebrafish (n = 10 in each group), which have a high genetic homology to humans, were treated with dexamethasone to induce sarcopenia symptoms and were administered with rutin, whey protein and the Pickering emulsion, respectively, for muscle movement ability evaluation, and zebrafish treated with or without dexamethasone was used as the model and the control groups, respectively. Results showed that the Pickering emulsion was homogeneous in particle size with a rutin encapsulation rate of 71.16 ± 0.15% and loading efficiency of 44.48 ± 0.11%. Rutin in the Pickering emulsion exhibited a significantly higher bioaccessibility than the free form. The interaction forces between rutin and the two components of whey proteins (α-LA and β-LG) were mainly van der Waals forces and hydrogen bonds. After treatment for 96 h, the zebrafish in Picking emulsion groups showed a significantly increased high-speed movement time and frequency, an increased level of ATP, prolonged peripheral motor nerve length, and normalized muscular histological structure compared with those of the model group (p < 0.05). The results of this study developed a new strategy for rutin utilization and provide scientific evidence for sarcopenia prevention with a food-derived resource.
Collapse
Affiliation(s)
- Yiting Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Wenyun Xiong
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yijing Ren
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Huang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiaoying Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ou Wang
- NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
2
|
Zhang Y, He Y, Yuan L, Shi J, Zhao J, Tan C, Liu Y, Xu YJ. Multi-omics revealed anti-fatigue property of polyphenol from areca nut. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155838. [PMID: 38964153 DOI: 10.1016/j.phymed.2024.155838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses. PURPOSE To explore the underlying mechanism of AP in exerting anti-fatigue effects. METHODS In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome. RESULTS The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis. CONCLUSION AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yuan He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Jialiang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Liu Z, Shang Q, Zuo H, Li H, Fang D, Zhang J, Huang HD, Granato D, Chen J, Chen J. Cynomorium songaricum: UHPLC/ESI-LTQ-Orbitrap-MS analysis and mechanistic study on insulin sensitivity of a flavonoid-enriched fraction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155862. [PMID: 39032280 DOI: 10.1016/j.phymed.2024.155862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, posing a significant global health concern due to its increasing prevalence. Insulin resistance (IR) plays a major role in the development of T2DM and is often linked to factors such as obesity, physical inactivity, and a sedentary lifestyle. Recently, there has been growing interest in exploring the potential of natural products for improving insulin sensitivity and glucose metabolism. Among these, Cynomorium songaricum Rupr., an edible parasitic plant, has shown promising antidiabetic effects. However, research on its beneficial effects on IR is still nascent. Therefore, this study aims to investigate the application of a Cynomorium songaricum flavonoid-enriched fraction (CSF) in the treatment of IR in T2DM, along with elucidating the chemical and biochemical mechanisms involved. METHOD First, UHPLC/ESI-LTQ-Orbitrap-MS was utilized to perform a chemical profiling of CSF. Subsequently, glycogen synthesis, gluconeogenesis and glucose consumption assays were conducted on HepG2 cells with a high glucose high insulin-induced IR model to illustrate the favorable impacts of CSF on IR. Then, an innovative network pharmacology analysis was executed to predict the potential chemical components and hub genes contributing to CSF's protective effect against IR. To further elucidate molecular interactions, molecular docking studies were performed, focusing on the binding interactions between active constituents of CSF and crucial targets. Additionally, an RNA-sequencing assay was employed to uncover the underlying biochemical signaling pathway responsible for CSF's beneficial effects. To validate these findings, western blot and qPCR assays were employed to verify the pathways related to IR and the potential signaling cascades leading to the amelioration of IR. RESULTS The UHPLC/ESI-LTQ-Orbitrap-MS analysis successfully identified a total of thirty-six flavonoids derived from CSF. Moreover, CSF was shown to significantly improve glycogen synthesis and glucose consumption as well as inhibit gluconeogenesis in HepG2 cells of IR. An innovative network pharmacology analysis unveiled key hub genes-AKT1 and PI3K-integral to metabolic syndrome-related signaling pathways, which contributed to the favorable impact of CSF against IR. Noteworthy active ingredients including quercetin, ellagic acid and naringenin were identified as potential contributors to these effects. The results of western blot and qPCR assays provided compelling evidence that CSF improved insulin sensitivity by modulating the PI3K-Akt signaling pathway. Subsequent RNA-sequencing analysis, in tandem with western blot assays, delved deeper into the potential mechanisms underlying CSF's advantageous effects against IR, potentially associated with the enhancement of endoplasmic reticulum (ER) proteostasis. CONCLUSION CSF exhibited a remarkable ability to enhance insulin sensitivity in the IR model of HepG2 cells. This was evident through enhancements in glycogen synthesis and glucose consumption, along with its inhibitory impact on gluconeogenesis. Furthermore, CSF demonstrated an improvement in the insulin-mediated PI3K-Akt signaling pathway. The potential active constituents were identified as quercetin, ellagic acid and naringenin. The underlying biochemical mechanisms responsible for CSF's beneficial effects against IR were closely linked to its capacity to mitigate ER stress, thereby offering a comprehensive understanding of its protective action.
Collapse
Affiliation(s)
- Zhihao Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Qixiang Shang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Huali Zuo
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Haimeng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Daozheng Fang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China
| | - Jiayu Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| |
Collapse
|
4
|
Chen J, Yang X, He Z, Chen W, Zhao Y, Li J, Zong Y, Du R. Cynomorium songaricum Rupr. flavonoids improve cyclophosphamide-induced reproductive function damage by regulating the testosterone synthesis pathway. Front Pharmacol 2024; 15:1457780. [PMID: 39239657 PMCID: PMC11374658 DOI: 10.3389/fphar.2024.1457780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction The prevalence of male infertility has been increasing globally, necessitating the search for safe and nontoxic active compounds to alleviate reproductive dysfunction. Although the precise mechanism remains unknown, Cynomorium songaricum Rupr. (CS) extract has protective effects on the reproductive system. The effect of C. songaricum Rupr. flavonoids (CSF) on reproductive injury and testicular mesenchymal stem cell viability in male mice and TM3 cells was investigated. Methods We explored the possible association between these effects and the testosterone (T) synthesis pathway. Mice were administered cyclophosphamide to induce reproductive damage, followed by CSF administration. Body mass and organ index were recorded. Pathological changes in T and the epididymis were observed using hematoxylin-eosin staining. ELISA measured the serum levels of T, luteinizing hormone (LH), gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and estradiol (E2) in mice. Fructose and zinc ion levels in the seminal plasma were measured. TM3 cells were treated with Bisphenol A (BPA) and different concentrations of CSF, followed by proliferative evaluations using the CCK-8 assay and T and LH level assessments using ELISA. Furthermore, the expression of steroidogenic enzyme genes and proteins was investigated using western blotting and RT-PCR. Results CSF exhibited a notable reduction in reproductive damage and improved pathological changes in testicular and epididymal tissues. CSF group demonstrated substantially higher levels of seminal plasma fructose and zinc ions; markedly elevated serum levels of T, LH, GnRH, and FSH; and lower levels of E2 than those of the model group. Intracellular T content and secretion of T and LH increase with CSF while effectively mitigating BPA-induced damage to TM3 cells. CSF group exhibited substantially higher gene and protein expression of steroidogenic enzymes than those of the model group, both in vivo and in vitro. CSF ameliorates reproductive impairment by enhancing the expression of pivotal enzymes involved in synthesizing T. Discussion CSF ameliorates cyclophosphamide-induced reproductive impairment and bisphenol A-induced TM3 cell damage in mice by regulating sex hormone levels in the Hypothalamic-Pituitary-Gonadal Axis (HPG axis) and upregulating the expression of steroidogenic enzymes. Therefore, CS is a potential treatment for male reproductive impairment.
Collapse
Affiliation(s)
- Jiarong Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xiaoyue Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun, China
- Key Laboratory of Animal Production and Product Quality and Safety, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Zhang J, Chen X, Han L, Ma B, Tian M, Bai C, Zhang Y. Research Progress in Traditional Applications, Phytochemistry, Pharmacology, and Safety Evaluation of Cynomorium songaricum. Molecules 2024; 29:941. [PMID: 38474452 DOI: 10.3390/molecules29050941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Cynomorium songaricum Rupr. (CSR) belongs to the family Cynomoriaceae. It is a perennial succulent parasitic herb with a reddish-brown coloration, predominantly submerged in sand and lacking chlorophyll. Traditionally, it has been used in ethnic medicine to treat various diseases, such as gastric ulcers, indigestion, bowel movements, and improving sexual function. To comprehensively collect CSR data, extensive literature searches were conducted using medical, ecological, and scientific databases such as Google Scholar, PubMed, Science Direct, Web of Science, and China National Knowledge Infrastructure (CNKI). This article summarizes and categorizes research on the uses, phytochemical characteristics, pharmacological activities, and toxicity of ethnic medicine, with the aim of establishing a solid foundation and proposing new avenues for exploring and developing potential applications of CSR. So far, a total of 98 compounds have been isolated and identified from CSR, including flavonoids, terpenes, steroids, and other compounds. It is worth noting that flavonoids and polysaccharides have significant antioxidant and anti-inflammatory properties. In addition, these compounds also show good application prospects in anti-tumor, antioxidant, anti-aging, anti-fatigue, anti-diabetes, and other aspects. Although extensive progress has been made in the basic research of CSR, further research is still needed to enhance the understanding of its mechanism of action and explore more unknown compounds. Our review indicates that CSR has broad prospects and deserves further research.
Collapse
Affiliation(s)
- Jin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xingyi Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Lu Han
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Biao Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mengting Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ye Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
6
|
Natural bioactive flavonoids as promising agents in alleviating exercise-induced fatigue. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7
|
Chen X, Xue Y, Jia G, Zhao H, Liu G, Huang Z. Antifatigue effect of naringin on improving antioxidant capacity and mitochondrial function and preventing muscle damage. Exp Biol Med (Maywood) 2022; 247:1776-1784. [PMID: 36112949 PMCID: PMC9638954 DOI: 10.1177/15353702221117128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aim of this study was to explore effects of naringin (Nar) on antifatigue ability; the weight-loaded and non-loading swimming tests were performed. Compared with the control group, dietary supplementation of Nar significantly prolonged the weight-loaded swimming time to exhaustion of mice (P < 0.01). Nar significantly reduced the serum lactic acid (LD) level (P < 0.05) and lactate dehydrogenase (LDH) activity (P < 0.001), while increased the serum non-esterified free fatty acids (NEFA) level (P < 0.001). In addition, Nar significantly increased the liver glycogen and muscle glycogen contents (P < 0.05) and the phosphoenolpyruvate carboxykinase (PEPCK) (P < 0.01) and glucokinase (GCK) mRNA levels (P < 0.001) in liver and gastrocnemius (GAS) muscle. Furthermore, Nar significantly improved the antioxidant capacity, mitochondrial function, and muscle mitochondrial fatty acid β-oxidation (P < 0.05), and decreased inflammation and muscle damage-related gene expression (P < 0.05). These findings suggested that Nar can improve antifatigue effect by enhancing antioxidant capacity and mitochondrial function and preventing muscle damage.
Collapse
|
8
|
Effect of dietary L-theanine supplementation on skeletal muscle fiber type transformation in vivo. J Nutr Biochem 2021; 99:108859. [PMID: 34517095 DOI: 10.1016/j.jnutbio.2021.108859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
The aim of this study was to investigate the effect of dietary L-theanine supplementation on skeletal muscle fiber type transition in mice. Our data indicated that dietary 0.15% L-theanine supplementation significantly increased the mRNA expression levels of muscle fiber type related genes (MyHC I, MyHC IIa, PGC-1α, Sirt1, Tnnt1, Tnnc1, Tnni1, MEF2C) and the protein expression levels of MyHC IIa, myoglobin, PGC-1α, Sirt1 and Troponin I-SS, but significantly decreased the mRNA and protein expression levels of MyHC IIb. Dietary 0.15% L-theanine supplementation significantly increased the activities of SDH and MDH and decreased the activity of LDH. Furthermore, immunofluorescence demonstrated that dietary 0.15% L-theanine supplementation significantly increased the percentage of type I fibers, and significantly decreased the percentage of type II fibers. In addition, we found that dietary 0.15% L-theanine supplementation increased the fatigue-resistant, antioxidant capacity, mitochondrial biogenesis, and function in skeletal muscle of mice. Furthermore, dietary 0.15% L-theanine supplementation significantly increased the mRNA levels of prox1, CaN and NFATc1, the protein levels of prox1, CNA and NFATc1 and the activity of CaN in GAS muscle when compared with the control group. These results indicated that dietary L-theanine supplementation promoted skeletal muscle fiber transition from type II-type I, which might be via activation of CaN and/or NFATc1 signaling pathway.
Collapse
|
9
|
de Andrade Soares R, de Oliveira BC, de Bem GF, de Menezes MP, Romão MH, Santos IB, da Costa CA, de Carvalho LCDRM, Nascimento ALR, de Carvalho JJ, Ognibene DT, de Moura RS, Resende AC. Açaí (Euterpe oleracea Mart.) seed extract improves aerobic exercise performance in rats. Food Res Int 2020; 136:109549. [PMID: 32846601 DOI: 10.1016/j.foodres.2020.109549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022]
Abstract
The purpose of this study was to examine whether the supplementation with an açai (Euterpe oleracea Mart.) seed extract (ASE) would affect the aerobic exercise performance in rats and correlate with the vascular function, muscle oxidative stress and mitochondrial biogenesis. Male Wistar rats were divided into five groups: Sedentary, Sedentary with chronic supplementation of ASE, Training, Training with chronic (200 mg/Kg/day intragastric gavage for 5 weeks) or acute (30 min before the maximal treadmill stress test (MST) supplementation with ASE. The exercise training was performed on a treadmill (30 min/day; 5 days/week) for 4 weeks. The chronic supplementation with ASE increased the exercise time (58%) and the running distance (129%) in relation to the MST, while the Training group increased 40% and 78% and the Training with acute ASE group increased 30% and 63%, respectively. The training-induced increase of ACh vasodilation was not changed by ASE, but the norepinephrine-induced vasoconstriction was reduced by chronic and acute supplementation with ASE. The increased levels of malondialdehyde in soleus muscle homogenates from the Training group was reduced only by chronic supplementation with ASE. The muscle antioxidant defense, NO2 levels, and expression of the mitochondrial biogenesis-related proteins (PGC1α, SIRT-1, p-AMPK/AMPK, Nrf-2) were not different between Training and Sedentary groups, but all these parameters were increased in the Training with Chronic ASE compared with the Sedentary groups. In conclusion, chronic supplementation with ASE improves aerobic physical performance by increasing the vascular function, reducing the oxidative stress, and up-regulating the mitochondrial biogenesis key proteins.
Collapse
Affiliation(s)
- Ricardo de Andrade Soares
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Beatriz Cardoso de Oliveira
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Pontes de Menezes
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Matheus Henrique Romão
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | | | - Ana Lúcia Rosa Nascimento
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Jorge José de Carvalho
- Department of Histology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Huang HZ, Feng B, Lin JZ, Zhao SY, Ma HY, Liu HY, Fan SH, Wu ZF, Xu RC, Han L, Zhang DK. Exploration on the Approaches of Diverse Sedimentations in Polyphenol Solutions: An Integrated Chain of Evidence Based on the Physical Phase, Chemical Profile, and Sediment Elements. Front Pharmacol 2019; 10:1060. [PMID: 31619999 PMCID: PMC6759812 DOI: 10.3389/fphar.2019.01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 01/18/2023] Open
Abstract
Triphala is a famous herbal formula originated in Asia and is popular in America. Due to the high abundance of polyphenols, its oral liquid is unstable and easy to cause precipitate, which results in the loss of activities. However, complex composition and unclear precipitation mechanism hinders the improvement of stability. In this study, the accumulation of precipitation in the storage and its effect on activity were investigated. Then, an integrated chain of evidence was proposed based on the physical phase, chemical profile, and sediment elements. The results showed that antioxidant activity decreased from IC50 115 to 146 μl before and after 90 days of storage, and the anti-fatigue activity decreased from 30.54 to 28.47 min. Turbiscan Lab Expert observed that particle size increased from 106 to 122 nm, and the turbiscan stability index increased from 0 to 14, which indicated that its stability is continuously decreasing. High performance liquid chromatography (HPLC) fingerprint coupled with multivariate statistical analysis identified that these chemical markers changed significantly, such as gallic acid, catechins, and ellagic acid. Loss of catechins tends to be involved in the formation of phlobaphene precipitation. The fact that the new-born ellagic acid in precipitation (0.47 mg/ml) is significantly higher than that reduced in solution (0.25 mg/ml) indicates that it is not only derived from colloid aging. Microscopic observation combined with energy spectrum analysis further confirmed the existence of the multi-precipitates. The crystalline precipitate is ellagic acid, and the other is phlobaphene. In conclusion, based on the evidence chain analysis, this study revealed a systematic change of the whole polyphenol solution system. It provides a novel perspective to understand the sedimentation formation of polyphenol solution, which is an important theoretical contribution to the preparation of polyphenol solutions.
Collapse
Affiliation(s)
- Hao-Zhou Huang
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Bi Feng
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Jun-Zhi Lin
- Central Laboratory, Teaching Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Yu Zhao
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Hong-Yan Ma
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Hai-Yan Liu
- Sanajon Pharmaceutical Group, Chengdu, China.,Sichuan Key Laboratory of Dairy Nutrition and Function, Chengdu, China
| | - San-Hu Fan
- Sanajon Pharmaceutical Group, Chengdu, China.,Sichuan Key Laboratory of Dairy Nutrition and Function, Chengdu, China
| | | | - Run-Chun Xu
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Li Han
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| | - Ding-Kun Zhang
- Pharmacy College, Chengdu University of TCM, Chengdu, China.,Key Laboratory Breeding Base of Systematic Research and Utilization on Chinese Material Medical Resources Co-founded by Sichuan Province and Ministry of Science and Technology, Chengdu, China
| |
Collapse
|
11
|
Sutikno LA, Lee GH, Harwanto D, Choi JS, Hong YK. The ethanol extract from the rhodophyta Gloiopeltis furcata and its active ingredient docosahexaenoic acid improve exercise performance in mice. J Food Biochem 2019; 43:e12980. [PMID: 31489659 DOI: 10.1111/jfbc.12980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/23/2019] [Indexed: 11/28/2022]
Abstract
The effectiveness of natural bioresources at enhancing exercise performance is of interest to those in sports and health care. The use of 29 common seaweed species as supplements to enhance exercise performance and the recovery from physical fatigue was evaluated. The ethanol extract of the red seaweed Gloiopeltis furcata (GFE) had the greatest effect on forelimb grip strength and swimming endurance in mice. The optimal daily dose of GFE was 0.1 mg per 10 μl per g of body weight. GFE significantly increased muscle mass but had little effect on body weight and fatty deposits. The extract also significantly raised the blood superoxide dismutase and high-density lipoprotein cholesterol levels, while reducing the lactate and urea levels (p < 0.05). Docosahexaenoic acid (DHA) from GFE made the greatest contribution to improving physical exercise performance. These results support the use of GFE and DHA in health food products for enhancing physical performance. PRACTICAL APPLICATIONS: The study shows the exercise enhancement and anti-fatigue activities of GFE using the forelimb grip strength test, forced swimming endurance test, muscle mass measurement, and blood biochemical parameters. These results support the use of GFE and its active constituent DHA in functional foods or nutraceuticals for enhancing physical performance.
Collapse
Affiliation(s)
| | - Gong-Hyeon Lee
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Dicky Harwanto
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea.,Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Jae-Suk Choi
- Division of Bioindustry, Silla University, Busan, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
12
|
Cynomorium songaricum Extract Alleviates Memory Impairment through Increasing CREB/BDNF via Suppression of p38MAPK/ERK Pathway in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9689325. [PMID: 31239867 PMCID: PMC6556289 DOI: 10.1155/2019/9689325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/14/2019] [Accepted: 05/05/2019] [Indexed: 12/05/2022]
Abstract
Cynomorium songaricum Rupr is a very important traditional Chinese medicine for tonifying the kidney, which has a significant effect on improving estrogen level on the long term. In many studies, it can improve the learning and memory function of ovariectomized (OVX) model animals. 10 of the 50 rats received only bilateral back surgery and were harvested with the same amount of fat as the ovaries without removing the ovaries as sham group; remains underwent bilateral ovariectomy and equally randomized into five groups: sham group, with OVX as model group, estradiol valerate (EV, 0.2 mg/kg) as positive control, with 3.3 and 33 mg/kg body weight/day of ethyl acetate extract of Cynomorium songaricum extract (CSE) as low and high dosage groups, respectively. The orally administered CSE to ovariectomized rats exerted an ameliorative effect on learning and memory in the Morris water maze tests. All rats were sacrificed after 8 weeks of treatment, and tissue was analyzed using histopathology and electron microscopy. To comprehensively examine the mechanism, brain derived neurotrophic factor (BDNF), p-p38 mitogen-activated protein kinase (p-p38MAPK), extracellular regulated protein kinases (ERK), p-extracellular regulated protein kinases (p-ERK), and p-cAMP-response element binding protein (p-CREB) were detected by Western blotting. Using histopathology and electron microscopy, it was clearly observed that the pyramidal neurons of the hippocampal CA1 area were reduced in the OVX groups, indicating that CSE could attenuate the loss of pyramidal neurons in hippocampal CA1 and revert the synaptic morphological variations produced by ovariectomy. Mechanistically, the expressions of p-p38MAPK and p-ERK levels were significantly downregulated by CSE intervention, whereas the BDNF and p-CREB were significantly upregulated by CSE as compared to the control. Concisely, Cynomorium songaricum Rupr exhibited potential therapeutic effect on Neuroprotection of ovariectomized rats, and its effect was possibly exerted by p-CREB/BDNF mediated down regulation of ERK/p38MAPK.
Collapse
|
13
|
Ding J, Gu C, Huang L, Tan R. Discrimination and Geographical Origin Prediction of Cynomorium songaricum Rupr. from Different Growing Areas in China by an Electronic Tongue. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:5894082. [PMID: 30595938 PMCID: PMC6282117 DOI: 10.1155/2018/5894082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/31/2018] [Indexed: 05/29/2023]
Abstract
Cynomorium songaricum Rupr. is a well-known and widespread plant in China. It has very high medicinal values in many aspects. The study aimed at discriminating and predicting C. songaricum from major growing areas in China. An electronic tongue was used to analyze C. songaricum based on flavor. Discrimination was achieved by principal component analysis and linear discriminant analysis. Moreover, a prediction model was established, and C. songaricum was classified by geographical origins with 100% degree of accuracy. Therefore, the identification method presented will be helpful for further study of C. songaricum.
Collapse
Affiliation(s)
- Jiaji Ding
- College of Medcine, Southwest Jiaotong University, Chengdu 610031, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caimei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Rui Tan
- College of Medcine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
14
|
HSIAO CY, HSU YJ, TUNG YT, LEE MC, HUANG CC, HSIEH CC. Effects of Antrodia camphorata and Panax ginseng supplementation on anti-fatigue properties in mice. J Vet Med Sci 2018; 80:284-291. [PMID: 29276207 PMCID: PMC5836765 DOI: 10.1292/jvms.17-0572] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Antrodia camphorata and Panax ginseng are well-known medicinal plants in Taiwan folk and traditional Chinese medicine, which have been reported for multifunctional bioactivities. However, there is limited evidence that a fixed combination formula of these two plant extracts is effective for the exercise improvement or anti-fatigue. We aimed to evaluate the potential beneficial effects of the mix formulation of these two herbal medicines (AG formulation) on fatigue and ergogenic functions following physiological challenge. Male Institute of Cancer Research (ICR) mice from four groups (n=10 per group) were orally administered AG formulation for 4 weeks at 0.984, 2.952 and 5.904 g/kg/day, which were designated the Vehicle, AG-1X, AG-3X and AG-6X groups, respectively. The anti-fatigue activity and exercise performance were evaluated using exhaustive swimming time, forelimb grip strength, and levels of serum lactate, ammonia, glucose, blood urea nitrogen (BUN) and creatine kinase (CK) after a swimming exercise. The exhaustive swimming time of the 1X, 3X or 6X AG group was significantly longer than that of the Vehicle group, and the forelimb grip strength of the 1X, 3X or 6X AG group was also significantly higher than that of the Vehicle group. AG supplementation also produced decreases in serum lactate, ammonia, BUN and CK activity after the swimming test, as well as increases in glucose. Therefore, the AG complex could be a potential formulation with an anti-fatigue pharmacological effect.
Collapse
Affiliation(s)
- Chien-Yu HSIAO
- Department of Nutrition and Health Sciences, Chang Gung
University of Science and Technology, Taoyuan 33301, Taiwan
- Research Center for Food and Cosmetic Safety, and Research
Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of
Science and Technology, Taoyuan 33301, Taiwan
- Aesthetic Medical Center, Department of Dermatology, Chang
Gung Memorial Hospital, Taoyuan 33301, Taiwan
| | - Yi-Ju HSU
- Graduate Institute of Sports Science, National Taiwan Sport
University, Taoyuan 33301, Taiwan
| | - Yu-Tang TUNG
- Graduate Institute of Metabolism and Obesity Sciences,
Taipei Medical University, Taipei City 11031, Taiwan
| | - Mon-Chien LEE
- Graduate Institute of Sports Science, National Taiwan Sport
University, Taoyuan 33301, Taiwan
| | - Chi-Chang HUANG
- Graduate Institute of Sports Science, National Taiwan Sport
University, Taoyuan 33301, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences,
Taipei Medical University, Taipei City 11031, Taiwan
| | - City C. HSIEH
- Department of Physical Education, National Tsing Hua
University, Hsinchu City 30014, Taiwan
| |
Collapse
|
15
|
Zhang Y, Zhang T, Ma X, Zou J. Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea. Oncotarget 2017; 8:11797-11808. [PMID: 28052006 PMCID: PMC5355305 DOI: 10.18632/oncotarget.14370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Corneal neovascularization may result in loss of corneal transparency and blindness. However, developing successful and inexpensive medical treatments for corneal neovascularization remains an unresolved issue. Recently, several studies have implicated miRNA functions in the regulation of cornea homeostasis. This study aimed to identify the miRNA expression profile in the neovascularized cornea after an alkali burn and to investigate the related underlying mechanisms. Here, alkali-burned corneas and matched normal tissues were pooled to perform miRNA sequencing. MiR-21 in alkali-burned cornea showed the greatest increment of abundance at 4 and 7 d after injury compared to the healthy cornea. The miR-21 expression was positively correlated with both the mRNA and protein level of key angiogenic factors including vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α (HIF-1α). At 2 and 8 d after alkali burn, the mice received subconjunctival injections of antagomir-21 (1 or 5 nmol per injection). The injection of antagomir-21 (5 nmol) inactivated miR-21 and attenuated neovascularization progression by inhibiting the expression of VEGF-A and HIF-1α. Western blot analysis of the corneas demonstrated that antagomir-21 restored Sprouty 2/4 expression and silenced p-ERK activation. Therefore, these data reveal that antagomir-21 ameliorates the progression of corneal neovascularization likely via Sprouty 2/4-mediated inactivation of p-ERK. Delivery of antagomir-21 might be a potential therapeutic approach to prevent or treat visual loss caused by corneal neovascularization.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting Zhang
- Shanghai Sixth People's Hospital Affiliated to JiaoTong University, Shanghai, China
| | - Xiaoyun Ma
- Department of Ophthalmology, Guanghua Integrative Medicine Hospital, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Shanghai Sixth People's Hospital Affiliated to JiaoTong University, Shanghai, China
| |
Collapse
|
16
|
|
17
|
Lee GH, Harwanto D, Choi JS, Kim MR, Jin DH, Jin HJ, Hong YK. Protein-Rich Extract from the Bagrid Catfish Pelteobagrus fulvidraco Improves Exercise Performance and Anti-Fatigue. CURRENT NUTRITION & FOOD SCIENCE 2017. [DOI: 10.2174/1573401312666160831144838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The freshwater bagrid catfish, Pelteobagrus fulvidraco, is used in hot
chowder or tonic soup, and it has become a favorite inland aquaculturable species in Asian countries.
To investigate the claims regarding its beneficial effects, we examined physical exercise performance
in mice fed protein-rich P. fulvidraco extract.
Methods:
Mice were fed P. fulvidraco extract (25 mg/mL) orally once per day for 1 week at a dose
of 10 µ.L/g body weight, and then forelimb grip strength, swimming endurance, body weight, and
blood biochemical indicators were examined.
Results:
Bagrid catfish extract significantly enhanced grip strength to 1.25 ± 0.04 N (P < 0.01),
which was 23% higher than that on day 0. The extract also increased swimming endurance to 86 ± 10
sec (P <0.05), which was 46% higher than that on day 0. After the gripping exercises, the blood glucose
level was significantly increased to an average of 222% compared with the control level. Lactate
dehydrogenase and glutathione peroxidase levels were also significantly increased by 350% and
205%, respectively. The urea level in blood serum was 60% compared with control. In addition,
triglyceride and cholesterol levels decreased to 69% and 73%, respectively, in extract-fed mice.
Conclusion:
Bagrid catfish extract improved exercise performance and fatigue recovery by providing
more blood glucose and decreasing lactate and oxidative stress caused by exhaustive exercise..
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan 48513,, Korea
| |
Collapse
|
18
|
Shen CY, Jiang JG, Yang L, Wang DW, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol 2016; 174:1395-1425. [PMID: 27659301 DOI: 10.1111/bph.13631] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/10/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Li Yang
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | - Da-Wei Wang
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Zhu
- The second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Lee GH, Harwanto D, Park SM, Choi JS, Kim MR, Hong YK. Hot Water Extract of Leather Carp (Cyprinus carpio nudus) Improves Exercise Performance in Mice. Prev Nutr Food Sci 2015; 20:246-52. [PMID: 26770911 PMCID: PMC4700913 DOI: 10.3746/pnf.2015.20.4.246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/04/2015] [Indexed: 11/06/2022] Open
Abstract
The hot water extract of leather carp (Cyprinus carpio nudus) has been used as a nourishing tonic soup and as an aid for recovery from physical fatigue. In this study, we investigated the effect of leather carp extract on exercise performance in mice. Swimming endurance and forelimb grip strength were assessed following oral administration of the extract (once per day for 7 days) at a dose of 0.5 mg/10 μL/g body weight. After 7 days, mice given the leather carp extract had significantly greater swimming endurance [105±18 s (P<0.05); 52% longer than day 0] and forelimb grip strength [1.18±0.05 Newton (P<0.01); 17% greater than day 0]. The extract increased muscle mass, but had little effect on body weight. Following the swimming exercise, blood glucose, glutathione peroxidase, and superoxide dismutase levels in extract-fed mice were significantly higher (145%, 131%, and 106%, respectively) than in the saline control group. Blood levels of high-density lipoprotein cholesterol were also significantly increased (128%) in mice given the extract compared to the controls. These results suggest that leather carp extract can improve physical exercise performance and prevent oxidative stress caused by exhaustive workouts.
Collapse
Affiliation(s)
- Gong-Hyeon Lee
- Department of Biotechnology, Pukyong National University, Busan 48513,
Korea
| | - Dicky Harwanto
- Department of Biotechnology, Pukyong National University, Busan 48513,
Korea
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275,
Indonesia
| | - Sun-Mee Park
- Department of Biotechnology, Pukyong National University, Busan 48513,
Korea
| | - Jae-Suk Choi
- Department of Bio-Food Materials, Silla University, Busan 46958,
Korea
| | - Mi-Ryung Kim
- Department of Bio-Food Materials, Silla University, Busan 46958,
Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Busan 48513,
Korea
| |
Collapse
|
20
|
Lin Y, Liu HL, Fang J, Yu CH, Xiong YK, Yuan K. Anti-fatigue and vasoprotective effects of quercetin-3-O-gentiobiose on oxidative stress and vascular endothelial dysfunction induced by endurance swimming in rats. Food Chem Toxicol 2014; 68:290-6. [DOI: 10.1016/j.fct.2014.03.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 01/04/2023]
|
21
|
Chen J, Wong HS, Ko KM. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells. Molecules 2014; 19:1576-91. [PMID: 24473214 PMCID: PMC6271489 DOI: 10.3390/molecules19021576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/19/2014] [Accepted: 01/21/2014] [Indexed: 11/21/2022] Open
Abstract
Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.
Collapse
Affiliation(s)
- Jihang Chen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, Hong Kong, China
| | - Hoi Shan Wong
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, Hong Kong, China
| | - Kam Ming Ko
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, Hong Kong, China.
| |
Collapse
|
22
|
Meng HC, Wang S, Li Y, Kuang YY, Ma CM. Chemical constituents and pharmacologic actions of Cynomorium plants. Chin J Nat Med 2014; 11:321-9. [PMID: 23845540 DOI: 10.1016/s1875-5364(13)60049-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Indexed: 02/05/2023]
Abstract
The stem of Cynomorium songaricum is a traditional Chinese medicine reputed to have tonic effects. C. coccineum growing in northern Africa and the Mediterranean region is regarded in Arabian medical practice as the "treasure of drugs". The major constituents of Cynomorium plants have been revealed to be phenolic compounds, steroids, triterpenes, etc. Pharmacologic studies showed that the Cynomorium plants had antioxidant, immunity-improving, anti-diabetic, neuroprotective, and other bioactivities. Some chemical constituents in Cynomorium plants are unstable, implying that the chemical components of the herbal medicines produced under different conditions may be variable. This review covers the literature published until December, 2011 and describes the pharmacologic effects and secondary metabolites of Cynomorium species.
Collapse
Affiliation(s)
- Hao-Cong Meng
- College of Life Sciences, Inner Mongolia University, Huhhot, Inner Mongolia 010021, China
| | | | | | | | | |
Collapse
|
23
|
Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep 2014; 30:1412-37. [PMID: 24056714 DOI: 10.1039/c3np70031c] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ageing is a complex molecular process driven by diverse molecular pathways and biochemical events that are promoted by both environmental and genetic factors. Specifically, ageing is defined as a time-dependent decline of functional capacity and stress resistance, associated with increased chance of morbidity and mortality. These effects relate to age-related gradual accumulation of stressors that result in increasingly damaged biomolecules which eventually compromise cellular homeostasis. Nevertheless, the findings that genetic or diet interventions can increase lifespan in evolutionarily diverse organisms indicate that mortality can be postponed. Natural compounds represent an extraordinary inventory of high diversity structural scaffolds that can offer promising candidate chemical entities in the major healthcare challenge of increasing health span and/or delaying ageing. Herein, those natural compounds (either pure forms or extracts) that have been found to delay cellular senescence or in vivo ageing will be critically reviewed and summarized according to affected cellular signalling pathways. Moreover, the chemical structures of the identified natural compounds along with the profile of extracts related to their bioactive components will be presented and discussed. Finally, novel potential molecular targets for screening natural compounds for anti-ageing activity, as well as the idea that anti-ageing interventions represent a systemic approach that is also effective against age-related diseases will be discussed.
Collapse
Affiliation(s)
- Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | | | | | | |
Collapse
|
24
|
Yoo DY, Choi JH, Kim W, Jung HY, Nam SM, Kim JW, Yoon YS, Yoo KY, Won MH, Hwang IK. Cynomorium songaricum extract enhances novel object recognition, cell proliferation and neuroblast differentiation in the mice via improving hippocampal environment. Altern Ther Health Med 2014; 14:5. [PMID: 24393242 PMCID: PMC3893434 DOI: 10.1186/1472-6882-14-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cynomorium songaricum Rupr. (CS) has been used as a medicine to treat many diseases as well as to alleviate age-related issues, such as memory impairment, dementia, and stress. In this study, we assessed the effects of Cynomorium songaricum extract (CSE) on the novel object recognition, cell proliferation and neuroblast differentiation in the dentate gyrus of mice by using 5-bromodeoxyuridine (BrdU) and polysialylated neural cell adhesion molecule (PSA-NCAM). We also measured serum corticosterone levels to assess its correlation with neurogenesis and stress. METHODS Male C57BL/6 J mice were divided into 3 groups: vehicle-treated, 40 mg/kg CSE-treated, and 100 mg/kg CSE-treated. The vehicle and CSE were given to mice once a day for 3 weeks. BrdU was injected twice a day for 3 days to label newly generated cells. RESULTS Administration of CSE significantly increased the preferential exploration of new objects in these mice. In addition, administration of CSE decreased serum levels of corticosterone. BrdU-positive cells as well as brain-derived neurotrophic factor (BDNF) mRNA expression in the dentate gyrus were higher in the CSE-treated groups than in the vehicle-treated group. PSA-NCAM-positive neuroblasts and their well-developed tertiary dendrites were also significantly increased by the treatment of CSE. These effects were prominent at the higher dosage than at the lower dosage. CONCLUSION These results suggest that administration of CSE increases cell proliferation and neuroblast differentiation in the dentate gyrus of mice by reducing serum corticosterone levels and increasing BDNF levels in this area.
Collapse
|
25
|
Cui Z, Guo Z, Miao J, Wang Z, Li Q, Chai X, Li M. The genus Cynomorium in China: an ethnopharmacological and phytochemical review. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:1-15. [PMID: 23369691 DOI: 10.1016/j.jep.2013.01.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 01/18/2013] [Accepted: 01/18/2013] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the genus Cynomorium (Cynomoriaceae), including C. songaricum Rupr. and C. coccineum L., have a long history of use in traditional medicine to treat various ailments such as impotence, premature ejaculation, kidney-yang deficiency, spermatorrhea, colic, and stomach ulcers. In addition, these species are used in health foods, tea, and cosmetics. AIM OF THE REVIEW The aim of this review is to provide comprehensive information on the botany, traditional uses, phytochemistry, pharmacological research, and toxicology of C. songaricum and C. coccineum and to explore the therapeutic potential and future research opportunities of these species. MATERIALS AND METHODS All available information on C. songaricum and C. coccineum was collected via electronic search (using PubMed, ACS, CNKI, Google Scholar, Baidu Scholar, and Web of Science). RESULTS The ethnomedical uses of C. songaricum and C. coccineum in Saudi Arabia, China, Afghanistan, Mongolia, and Iran for several types of ailments were recorded. A phytochemical investigation revealed the presence of flavonoids, terpenoids, phloroglucinol adducts, saccharides, phenylpropanoids, steroids, organic acids, and other compounds. The crude extracts and pure compounds from C. songaricum and C. coccineum exhibited a wide spectrum of in vitro and in vivo pharmacological activity, including anti-fatigue, anti-hypoxia, anti-oxidation, anti-diabetic, immune system modulating, and antiviral activity. CONCLUSIONS Cynomorium species have emerged as a source of traditional medicine. Many studies have provided evidence for the therapeutic efficacy of these species in treating various conditions and possible mechanisms. However, further research is required for the development of new drugs and therapies for the treatment of various diseases, especially cancer and diabetes. Therefore, this review on the ethnopharmacology, phytochemistry, and toxicity of Cynomorium species will provide helpful data for further studies and commercial exploitation of the species.
Collapse
Affiliation(s)
- Zhanhu Cui
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | | | | | | | | | | | | |
Collapse
|
26
|
The Yang-Tonifying Herbal Medicine Cynomorium songaricum Extends Lifespan and Delays Aging in Drosophila. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:735481. [PMID: 22844336 PMCID: PMC3403692 DOI: 10.1155/2012/735481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/17/2012] [Indexed: 01/12/2023]
Abstract
Aging is highly correlated with the progressive loss of physiological function, including cognitive behavior and reproductive capacity, as well as an increased susceptibility to diseases; therefore, slowing age-related degeneration could greatly contribute to human health. Cynomorium songaricum Rupr. (CS) is traditionally used to improve sexual function and treat kidney dysfunction in traditional Chinese medicine, although little is known about whether CS has effects on longevity. Here, we show that CS supplementation in the diet extends both the mean and maximum lifespan of adult female flies. The increase in lifespan with CS was correlated with higher resistance to oxidative stress and starvation and lower lipid hydroperoxides (LPO) levels. Additionally, the lifespan extension was accompanied by beneficial effects, such as improved mating readiness, increased fecundity, and suppression of age-related learning impairment in aged flies. These findings demonstrate the important antiaging effects of CS and indicate the potential applicability of dietary intervention with CS to enhance health and prevent multiple age-related diseases.
Collapse
|
27
|
Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:364741. [PMID: 22829854 PMCID: PMC3398672 DOI: 10.1155/2012/364741] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/30/2012] [Indexed: 12/13/2022]
Abstract
Antrodia camphorata (AC) is an endemic mushroom that grows in Taiwan. We investigated the fatigue-alleviating effects of AC on endurance capacity in swim-exercised and weight-loading mice. Male Institute of Cancer Research (ICR) strain mice from 3 groups (n = 10 per group in each test) were orally administered AC fruiting body extract for 7 days at 0, 50, and 200 mg/kg/day, designated vehicle, AC-50, and AC-200, respectively. Trend analysis revealed that AC treatments increased grip strength. AC dose-dependently increased swim time, blood glucose, and muscular and hepatic glycogen levels and dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity. The increase in swimming endurance with AC administration was caused by an increase in liver and muscle glycogen deposition. A. camphorata may have potential for use in ergogenic and antifatigue activities.
Collapse
|
28
|
Kim NH, Moon PD, Pak SC, Kim HM, Jeong HJ. Anti-Fatigue Effect of Zizania caudiflora (Turczaninow) Nakai. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:111-20. [DOI: 10.1142/s0192415x12500097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of the present study was to investigate the anti-fatigue effect of Zizania caudiflora (Turczaninow) Nakai (ZC) and hydrolyzed ZC by malted barley (HZC) through a forced swimming test (FST) in mice. After the first measurement of immobility times, the mice were divided into control, fluoxetine, ZC, and HZC groups to match the swimming times in each group. The immobility times in the FST of the control as well as the fluoxetine, ZC, and HZC-administered groups after administration for three days were 135.3 ± 3.3,66.8 ± 3.9,120.2 ± 2.7, and 123.2 ± 2.9 sec, respectively. The immobility times in the FST of the ZC and HZC-administered groups for 14 days were significantly decreased in comparison with the control group (p < 0.01). In addition, the immobility times of ZC and HZC-administered groups for 14 days in the tail-suspension test were also significantly decreased in comparison with the control group (p < 0.05). The plasma levels of albumin, glucose, and total protein were significantly increased and creatine phosphokinase was significantly decreased in the ZC and HZC-administered groups compared to the control group. However, the levels of lactate dehydrogenase and blood urea nitrogen in the ZC and HZC-administered groups did not represent a significant difference compared to the control group. In summary, these results suggest that ZC or HZC might be a candidate for an anti-fatigue agent.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Department of Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Phil-Dong Moon
- Department of Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sok Cheon Pak
- School of Biomedical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Hyung-Min Kim
- Department of Pharmacology, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Chungnam 336-795, Republic of Korea
| |
Collapse
|
29
|
Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 2011; 51:942-50. [PMID: 21167935 DOI: 10.1016/j.freeradbiomed.2010.12.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 01/02/2023]
Abstract
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA₂-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|