1
|
Mavrides DE, Liapi M, Ierodiakonou D, Pipis C, Malas S, Gentekaki E, Tsaousis AD. The cow GUTBIOME CY study: investigating the composition of the cattle gut microbiome in health and infectious disease transmission in cyprus. BMC Vet Res 2024; 20:566. [PMID: 39696220 DOI: 10.1186/s12917-024-04419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Recent evidence suggests that the lower gut microbiome of ruminants presents roles in their health and environment, including the development of the mucosal immune system, milk production efficiency and quality and subsequent methane emissions. However, there are proportionately fewer studies on this complex microbial community in cattle and region-focus studies are non- existent. METHODS Herein, we present the research protocol of the GUTBIOME CY project pertaining to determine the composition of the lower gut microbiome in dairy cows situated in 37 farms across five districts of the island of Cyprus. Detailed questionnaires on animal husbandry and farming practices will be gathered from each farm. Faecal, milk (individual and bulk) and water samples will also be collected from cows and their offspring. Samples will be analysed using a combination of molecular biology and bioinformatics pipelines to define microbiome profiles and antimicrobial resistance (AMR). Information collected from the questionnaires will be used to test for associations between animal husbandry or farming practices and microbiome components and AMR. DISCUSSION Collected samples will establish the first dairy cattle biobank in the country for contributing substantially towards scientific advancements in microbiome research and providing insights to all stakeholders, tailored to the unique agricultural context of Cyprus.
Collapse
Affiliation(s)
- Daphne E Mavrides
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414, Nicosia, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2408, Nicosia, Cyprus
| | | | - Despo Ierodiakonou
- Department of Primary Care and Population Health, University of Nicosia Medical School, 2408 , Nicosia, Cyprus
| | | | | | - Eleni Gentekaki
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414, Nicosia, Cyprus.
| | - Anastasios D Tsaousis
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2408, Nicosia, Cyprus.
- Laboratory of Molecular and Evolutionary Parasitology, RAPID group, School of Natural Sciences, University of Kent, Canterbury, UK, CT2 7NJ.
| |
Collapse
|
2
|
Shi M, Li Z, Hu S, Zhang P, Meng S, Huang L, Miao Z, Zhang J. Microbiome-proteome analysis of gastrointestinal microbiota and longissimus thoracis muscle proteins in cattle with high and low grades of marbling. BMC Vet Res 2024; 20:563. [PMID: 39696486 DOI: 10.1186/s12917-024-04417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Marbling is a key indicator of the meat quality of ruminants. Gastrointestinal microbiota may regulate the formation of marbling by influencing the nutritional metabolism of animals. This study analyzed the composition and functional differences of microbiota in the rumen and cecum, the differences in volatile fatty acids (VFAs) content in the longissimus thoracis muscle, and the differences in protein abundance in the longissimus thoracis muscle of ruminants with different marbling grades through microbiome-proteome analysis. The results showed that the diversity of gastrointestinal microbiota in high-marbling ruminants was significantly higher than that in low-marbling ruminants. The relative abundance of Firmicutes and Akkermansia in the gastrointestinal of high-marbling ruminants was higher than that in low-marbling ruminants, while the relative abundance of Bacteroidetes and Prevotella was lower. In addition, PICRUST2 functional prediction results of the microbiota revealed that the gastrointestinal microbiota of high-marbling ruminants was mainly involved in the biosynthesis pathways of fat and lipids. The metabolomics results showed that the content of VFAs (acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, and hexanoic acid) in the rumen of high-marbling ruminants was significantly higher than that in low-marbling ruminants. The proteome analysis results indicated that the differential proteins in the longissimus thoracis muscle of high-marbling ruminants were mainly involved in lipid transport and metabolism compared to low-marbling ruminants. In summary, the differences in the composition and function of the gastrointestinal microbiota led to higher levels of VFAs in the gastrointestinal tract of high-marbling ruminants, which provides the basis for lipid/fat synthesis. The proteome results of the longissimus thoracis muscle support the view that high-marbling ruminants have richer lipid transport and metabolic functions in their muscle.
Collapse
Affiliation(s)
- Mingyan Shi
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Shuaishuai Hu
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Pei Zhang
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Shuaitao Meng
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Luyao Huang
- Life Science College, Luoyang Normal University, Luoyang, 471934, China
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Campbell BE, Hassan MM, Moore RJ, Olchowy T, Ranjbar S, Soust M, Ramirez-Garzon O, Al Jassim R, Alawneh JI. Temporal Changes in Faecal Microbiota Composition and Diversity in Dairy Cows Supplemented with a Lactobacillus-Based Direct-Fed Microbial. Animals (Basel) 2024; 14:3437. [PMID: 39682401 DOI: 10.3390/ani14233437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The rumen microbiota of dairy cows plays a crucial role in fermenting fibrous material, essential for nutrient extraction and overall productivity, detoxification of anti-nutritional toxic compounds, synthesis of vital nutrients, and is essential for optimal animal health. This study investigated the impact of Lentilactobacillus-, Lactocaseibacillus-, and Lacticaseibacillus-based direct-fed microbial (DFM) supplementation on dairy cows' faecal microbial composition and diversity. The study was carried out on a commercial dairy farm using 50 Holstein-Friesian cows randomly assigned into control (CON) and treatment (TRT) groups. Faecal samples were collected directly from the rectum every two months from September 2021 to January 2023. The bacterial 16S rRNA gene and fungal ITS-1 regions were amplified, sequenced, and analysed. Microbial diversity was assessed through alpha- and beta-diversity metrics. Linear discriminant analysis effect size (LEfSe) was performed to identify which taxa were driving the changes seen in the microbiota over time and treatment. Bacteroidaceae were the most prevalent bacterial family, followed by Lachnospiraceae and Muribaculaceae in both CON and TRT cows. Ascomycota, Basidiomycota, and Mucoromycota were the dominant three fungal phyla in the faeces of both CON and TRT cows. Bacterial genera Fructilactobacillus was abundant in the CON and Absicoccus in the TRT groups. Fungal taxa Chaetothryriales_incertae_sedis and Pseudomentella were absent in the faeces of TRT cows. Significant temporal and specific taxonomic differences were observed between the CON and TRT groups. The study's findings underscore the dynamic nature of microbial communities and the importance of targeted dietary interventions. Further research is necessary to elucidate these microbial shifts, long-term impacts, and functional implications, aiming to optimise ruminant nutrition and enhance dairy cow performance.
Collapse
Affiliation(s)
- Bronwyn E Campbell
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3068, Australia
| | | | - Robert J Moore
- School of Science, RMIT University, Bundoora, Melbourne, VIC 3068, Australia
| | - Timothy Olchowy
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T3R 1J3, Canada
| | - Shahab Ranjbar
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Martin Soust
- Terragen Biotech Pty Ltd., Coolum Beach, QLD 4573, Australia
| | | | - Rafat Al Jassim
- Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - John I Alawneh
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
4
|
Thacharodi A, Hassan S, Ahmed ZHT, Singh P, Maqbool M, Meenatchi R, Pugazhendhi A, Sharma A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. ENVIRONMENTAL RESEARCH 2024; 261:119661. [PMID: 39043353 DOI: 10.1016/j.envres.2024.119661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024]
Abstract
Ruminants release enteric methane into the atmosphere, significantly increasing greenhouse gas emissions and degrading the environment. A common focus of traditional mitigation efforts is on dietary management and manipulation, which may have limits in sustainability and efficacy, exploring the potential of essential microorganisms as a novel way to reduce intestinal methane emissions in ruminants; a topic that has garnered increased attention in recent years. Fermentation and feed digestion are significantly aided by essential microbes found in the rumen, such as bacteria, fungi, and archaea. The practical implications of the findings reported in various studies conducted on rumen gut concerning methane emissions may pave the way to understanding the mechanisms of CH4 production in the rumen to enhance cattle feed efficiency and mitigate CH4 emissions from livestock. This review discussed using essential bacteria to reduce intestinal methane emissions in ruminants. It investigates how particular microbial strains or consortia can alter rumen fermentation pathways to lower methane output while preserving the health and productivity of animals. We also describe the role of probiotics and prebiotics in managing methane emissions using microbial feed additives. Further, recent studies involving microbial interventions have been discussed. The use of new methods involving functional metagenomics and meta-transcriptomics for exploring the rumen microbiome structure has been highlighted. This review also emphasizes the challenges faced in altering the gut microbiome and future directions in this area.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Dr. Thacharodi's Laboratories, Department of Research and Development, Puducherry, 605005, India
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India; Future Leaders Mentoring Fellow, American Society for Microbiology, Washington, 20036, USA
| | - Z H Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, 600119, India
| | - Mohsin Maqbool
- Sidney Kimmel Cancer Center, Jefferson Health, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, 603203, India
| | - Arivalagan Pugazhendhi
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, NatProLab, AgroInnovationLab, School of Engineering and Sciences, Queretaro, 76130, Mexico.
| |
Collapse
|
5
|
Khan IM, Nassar N, Chang H, Khan S, Cheng M, Wang Z, Xiang X. The microbiota: a key regulator of health, productivity, and reproductive success in mammals. Front Microbiol 2024; 15:1480811. [PMID: 39633815 PMCID: PMC11616035 DOI: 10.3389/fmicb.2024.1480811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
The microbiota, intensely intertwined with mammalian physiology, significantly impacts health, productivity, and reproductive functions. The normal microbiota interacts with the host through the following key mechanisms: acting as a protective barrier against pathogens, maintain mucosal barrier integrity, assisting in nutrient metabolism, and modulating of the immune response. Therefore, supporting growth and development of host, and providing protection against pathogens and toxic substances. The microbiota significantly influences brain development and behavior, as demonstrated by comprehensive findings from controlled laboratory experiments and human clinical studies. The prospects suggested that gut microbiome influence neurodevelopmental processes, modulate stress responses, and affect cognitive function through the gut-brain axis. Microbiota in the gastrointestinal tract of farm animals break down and ferment the ingested feed into nutrients, utilize to produce meat and milk. Among the beneficial by-products of gut microbiota, short-chain fatty acids (SCFAs) are particularly noteworthy for their substantial role in disease prevention and the promotion of various productive aspects in mammals. The microbiota plays a pivotal role in the reproductive hormonal systems of mammals, boosting reproductive performance in both sexes and fostering the maternal-infant connection, thereby becoming a crucial factor in sustaining mammalian existence. The microbiota is a critical factor influencing reproductive success and production traits in mammals. A well-balanced microbiome improves nutrient absorption and metabolic efficiency, leading to better growth rates, increased milk production, and enhanced overall health. Additionally, it regulates key reproductive hormones like estrogen and progesterone, which are essential for successful conception and pregnancy. Understanding the role of gut microbiota offers valuable insights for optimizing breeding and improving production outcomes, contributing to advancements in agriculture and veterinary medicine. This study emphasizes the critical ecological roles of mammalian microbiota, highlighting their essential contributions to health, productivity, and reproductive success. By integrating human and veterinary perspectives, it demonstrates how microbial communities enhance immune function, metabolic processes, and hormonal regulation across species, offering insights that benefit both clinical and agricultural advancements.
Collapse
Affiliation(s)
| | - Nourhan Nassar
- College of Life Science, Anhui Agricultural University, Hefei, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Egypt
| | - Hua Chang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Samiullah Khan
- The Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture, Institute of Entomology, Guizhou University, Guiyang, China
| | - Maoji Cheng
- Fisugarpeptide Biology Engineering Co. Ltd., Lu’an, China
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, China
| | - Xun Xiang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Wang L, Wang K, Hu L, Luo H, Huang S, Zhang H, Chang Y, Liu D, Guo G, Huang X, Xu Q, Wang Y. Microbiological Characteristics of the Gastrointestinal Tracts of Jersey and Holstein Cows. Animals (Basel) 2024; 14:3137. [PMID: 39518860 PMCID: PMC11545411 DOI: 10.3390/ani14213137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The gastrointestinal bacterial microbiota is essential for maintaining the health of dairy cows and ensuring their production potential, and it may also help explain the breed-related phenotypic differences. Therefore, investigating the differences in gastrointestinal bacterial microbiota between breeds is critical for deciphering the mechanisms behind these differences and exploring the potential for improving milk production by regulating the gastrointestinal bacterial microbiota. This study holistically examined the differences between rumen and hindgut bacterial microbiota in a large cohort of two breeds of dairy cows, comprising 184 Jersey cows and 165 Holstein cows. Significant distinctions were identified between the rumen and hindgut bacterial microbiota of dairy cows, with these differences being consistent across breeds. A total of 20 breed-differentiated microorganisms, comprising 14 rumen microorganisms and 6 hindgut microorganisms, were screened, which may be the primary drivers of the observed differences in lactation performance between Jersey and Holstein cows. The present study revealed the spatial heterogeneity of the gastrointestinal bacterial microbiota of Jersey and Holstein cows and identified microbial biomarkers of different breeds. These findings enhance our understanding of the differences in the gastrointestinal bacterial microbiota between Jersey and Holstein cows and may provide useful information for optimizing the composition of the intestinal bacterial microbiota of the two breeds of dairy cows.
Collapse
Affiliation(s)
- Lei Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Kai Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| | - Lirong Hu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Hanpeng Luo
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| | - Shangzhen Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| | - Hailiang Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| | - Yao Chang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| | - Dengke Liu
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China; (D.L.); (G.G.)
| | - Gang Guo
- Beijing Sunlon Livestock Development Company Limited, Beijing 100029, China; (D.L.); (G.G.)
| | - Xixia Huang
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Qing Xu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (L.W.); (K.W.); (L.H.); (H.L.); (S.H.); (H.Z.); (Y.C.)
| |
Collapse
|
7
|
Abebe BK, Wang J, Guo J, Wang H, Li A, Zan L. A review of emerging technologies, nutritional practices, and management strategies to improve intramuscular fat composition in beef cattle. Anim Biotechnol 2024; 35:2388704. [PMID: 39133095 DOI: 10.1080/10495398.2024.2388704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
The flavour, tenderness and juiciness of the beef are all impacted by the composition of the intramuscular fat (IMF), which is a key determinant of beef quality. Thus, enhancing the IMF composition of beef cattle has become a major area of research. Consequently, the aim of this paper was to provide insight and synthesis into the emerging technologies, nutritional practices and management strategies to improve IMF composition in beef cattle. This review paper examined the current knowledge of management techniques and nutritional approaches relevant to cattle farming in the beef industry. It includes a thorough investigation of animal handling, weaning age, castration, breed selection, sex determination, environmental factors, grazing methods, slaughter weight and age. Additionally, it rigorously explored dietary energy levels and optimization of fatty acid profiles, as well as the use of feed additives and hormone implant techniques with their associated regulations. The paper also delved into emerging technologies that are shaping future beef production, such as genomic selection methods, genome editing techniques, epigenomic analyses, microbiome manipulation strategies, transcriptomic profiling approaches and metabolomics analyses. In conclusion, a holistic approach combining genomic, nutritional and management strategies is imperative for achieving targeted IMF content and ensuring high-quality beef production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
8
|
Alvanou MV, Loukovitis D, Melfou K, Giantsis IA. Utility of dairy microbiome as a tool for authentication and traceability. Open Life Sci 2024; 19:20220983. [PMID: 39479351 PMCID: PMC11524395 DOI: 10.1515/biol-2022-0983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024] Open
Abstract
Milk microbiome contributes substantially to the formation of specific organoleptic and physicochemical characteristics of dairy products. The assessment of the composition and abundance of milk microbiota is a challenging task strongly influenced by many environmental factors. Specific dairy products may be designated by the Protected Designation of Origin (PDO) and Protected Geographical Indication (PGI) labeling, which however, occasionally fail to differentiate them according to specific quality characteristics, which are defined by different microbiota-driven reactions. Combining the above limitations, the scope of the present study, was to summarize the existing information toward three main issues. First, to assess the influence level of the diet type and grazing to rumen-GI tract, mammary gland, and udder microbiome formation in ruminants. Second, to discuss the factors affecting milk microbiota, as well as the effect of the endo-mammary route on milk microbial taxa. Lastly, to evaluate "milk microbiome" as a tool for product differentiation, according to origin, which will contribute to a more robust PDO and PGI labeling. Although the limitations are still a matter of fact (especially considering the sample collection, process, evaluation, and avoidance of its contamination), significant progress has been made, regarding the identification of the factors affecting dairy products' microbiota and its core composition. In conclusion, although so far not totally efficient in dairy products molecular identification, with the progress in soil, water, plant, and animal host's microbiota assembly's characterization, microbiomics could provide a powerful tool for authentication and traceability of dairy products.
Collapse
Affiliation(s)
- Maria V. Alvanou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Dimitrios Loukovitis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, 30200, Messolonghi, Greece
| | - Katerina Melfou
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
| | - Ioannis A. Giantsis
- Division of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, 53100, Florina, Greece
- Department of Animal Science, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54621, Thessaloniki, Greece
| |
Collapse
|
9
|
Ortiz-Chura A, Popova M, Morgavi DP. Ruminant microbiome data are skewed and unFAIR, undermining their usefulness for sustainable production improvement. Anim Microbiome 2024; 6:61. [PMID: 39456104 PMCID: PMC11515148 DOI: 10.1186/s42523-024-00348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The ruminant microbiome plays a key role in the health, feed utilization and environmental impact of ruminant production systems. Microbiome research provides insights to reduce the environmental footprint and improve meat and milk production from ruminants. However, the microbiome composition depends on the ruminant species, habitat and diet, highlighting the importance of having a good representation of ruminant microbiomes in their local environment to translate research findings into beneficial approaches. This information is currently lacking. In this study, we examined the metadata of farmed ruminant microbiome studies to determine global representativeness and summarized information by ruminant species, geographic location, body site, and host information. We accessed data from the International Nucleotide Sequence Database Collaboration via the National Center for Biotechnology Information database. We retrieved 47,628 sample metadata, with cattle accounting for more than two-thirds of the samples. In contrast, goats, which have a similar global population to cattle, were underrepresented with less than 4% of the total samples. Most samples originated in Western Europe, North America, Australasia and China but countries with large ruminant populations in South America, Africa, Asia, and Eastern Europe were underrepresented. Microbiomes from the gastrointestinal tract were the most frequently studied, comprising about 87% of all samples. Additionally, the number of samples from other body sites such as the respiratory tract, milk, skin, reproductive tract, and fetal tissue, has markedly increased over the past decade. More than 40% of the samples lacked basic information and many were retrieved from generic taxonomic classifications where the ruminant species was manually recovered. The lack of basic information such as age, breed or sex can limit the reusability of the data for further analysis and follow-up studies. This requires correct taxonomic assignment of the ruminant host and basic metadata information using accepted ontologies adapted to host-associated microbiomes. Repositories should require this information as a condition of acceptance. The results of this survey highlight the need to encourage studies of the ruminant microbiome from underrepresented ruminant species and countries worldwide. This shortfall in information poses a challenge for the development of microbiome-based strategies to meet sustainability requirements, particularly in areas with expanding livestock production systems.
Collapse
Affiliation(s)
- Abimael Ortiz-Chura
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores Unit, Saint-Gènes-Champanelle, France
| | - Milka Popova
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores Unit, Saint-Gènes-Champanelle, France
| | - Diego P Morgavi
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR 1213 Herbivores Unit, Saint-Gènes-Champanelle, France.
| |
Collapse
|
10
|
Wang W, Wei Z, Li Z, Ren J, Song Y, Xu J, Liu A, Li X, Li M, Fan H, Jin L, Niyazbekova Z, Wang W, Gao Y, Jiang Y, Yao J, Li F, Wu S, Wang Y. Integrating genome- and transcriptome-wide association studies to uncover the host-microbiome interactions in bovine rumen methanogenesis. IMETA 2024; 3:e234. [PMID: 39429883 PMCID: PMC11487568 DOI: 10.1002/imt2.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 10/22/2024]
Abstract
The ruminal microbiota generates biogenic methane in ruminants. However, the role of host genetics in modifying ruminal microbiota-mediated methane emissions remains mysterious, which has severely hindered the emission control of this notorious greenhouse gas. Here, we uncover the host genetic basis of rumen microorganisms by genome- and transcriptome-wide association studies with matched genome, rumen transcriptome, and microbiome data from a cohort of 574 Holstein cattle. Heritability estimation revealed that approximately 70% of microbial taxa had significant heritability, but only 43 genetic variants with significant association with 22 microbial taxa were identified through a genome-wide association study (GWAS). In contrast, the transcriptome-wide association study (TWAS) of rumen microbiota detected 28,260 significant gene-microbe associations, involving 210 taxa and 4652 unique genes. On average, host genetic factors explained approximately 28% of the microbial abundance variance, while rumen gene expression explained 43%. In addition, we highlighted that TWAS exhibits a strong advantage in detecting gene expression and phenotypic trait associations in direct effector organs. For methanogenic archaea, only one significant signal was detected by GWAS, whereas the TWAS obtained 1703 significant associated host genes. By combining multiple correlation analyses based on these host TWAS genes, rumen microbiota, and volatile fatty acids, we observed that substrate hydrogen metabolism is an essential factor linking host-microbe interactions in methanogenesis. Overall, these findings provide valuable guidelines for mitigating methane emissions through genetic regulation and microbial management strategies in ruminants.
Collapse
Affiliation(s)
- Wei Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhenyu Wei
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhuohui Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Jianrong Ren
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Yanliang Song
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
| | - Jingyi Xu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Anguo Liu
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Xinmei Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Manman Li
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Huimei Fan
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Liangliang Jin
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Zhannur Niyazbekova
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
| | - Wen Wang
- School of Ecology and EnvironmentFaculty of Life Sciences and MedicineNorthwestern Polytechnical UniversityXi'anChina
| | - Yuanpeng Gao
- Department of Clinical VeterinaryCollege of Veterinary MedicineNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Jiang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Junhu Yao
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Fuyong Li
- Department of Animal Science and TechnologyCollege of Animal SciencesZhejiang UniversityHangzhouChina
| | - Shengru Wu
- Department of Animal Nutrition and Environmental HealthCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| | - Yu Wang
- Department of Animal GeneticsBreeding and Reproduction, College of Animal Science and TechnologyNorthwest A&F UniversityYanglingChina
- Key Laboratory of Livestock BiologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
11
|
Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy AMBM, Abdel-Hafeez AM, Kantanen J, Ginja C, Makgahlela ML, Kugonza DR, Gonzalez-Prendes R, Crooijmans RPMA. Gut Microbiota Diversity of Local Egyptian Cattle Managed in Different Ecosystems. Animals (Basel) 2024; 14:2752. [PMID: 39335341 PMCID: PMC11428623 DOI: 10.3390/ani14182752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The animal gastrointestinal tract contains a complex microbiome whose composition ultimately reflects the co-evolution of microorganisms with their animal host and their host's environment. This study aimed to gain insights into the adaptation of the microbiota of local Egyptian cattle to three different ecosystems (Upper Egypt, Middle Egypt, and Lower Egypt) distributed across 11 governorates (with an average of 12 animals per governorate) using amplicon sequencing. We analyzed the microbiota from 136 fecal samples of local Egyptian cattle through a 16S rRNA gene sequencing approach to better understand the fecal microbial diversity of this breed which developed under different ecosystems. An alpha diversity analysis showed that the fecal microbiota of the Egyptian cattle was not significantly diverse across areas, seasons, sexes, or farm types. Meanwhile, microbiota data revealed significant differences in richness among age groups (p = 0.0018). The microbial community differed significantly in the distribution of its relative abundance rather than in richness across different ecosystems. The taxonomic analysis of the reads identified Firmicutes and Actinobacteriota as the dominant phyla, accounting for over 93% of the total bacterial community in Egyptian cattle. Middle Egypt exhibited a different microbial community composition compared to Upper and Lower Egypt, with a significantly higher abundance of Firmicutes and Euryarchaeota and a lower abundance of Actinobacteriota in this region than the other two ecosystems. Additionally, Middle Egypt had a significantly higher relative abundance of the Methanobacteriaceae family and the Methanobrevibacter genera than Lower and Upper Egypt. These results suggest a difference in the adaptation of the fecal microbial communities of Egyptian cattle raised in Middle Egypt. At the genus level, eleven genera were significantly different among the three ecosystems including Bacillus, DNF00809, Kandleria, Lachnospiraceae_NK3A20_group, Methanobrevibacter, Mogibacterium, Olsenella, Paeniclostridium, Romboutsia, Turicibacter, and UCG-005. These significant differences in microbiota composition may impact the animal's adaptation to varied environments.
Collapse
Affiliation(s)
- Hadeer M. Aboshady
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | - Nasser Ghanem
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed A. Radwan
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Ahmed Elnahas
- Animal Production Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt;
| | - Rania Agamy
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Nadia H. Fahim
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt (M.A.R.); (R.A.); (N.H.F.)
| | - Mohamed H. Elsawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Al-Moataz Bellah M. Shaarawy
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Ahmed M. Abdel-Hafeez
- Department of Cattle, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12618, Egypt; (M.H.E.); (A.-M.B.M.S.); (A.M.A.-H.)
| | - Juha Kantanen
- Natural Resources Institute Finland, 31600 Jokioinen, Finland;
| | - Catarina Ginja
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Associate Laboratory, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, University of Porto, 4485-661 Vairão, Portugal
| | - Mahlako L. Makgahlela
- Agricultural Research Council, Animal Production, Private Bag X2, Irene 0062, South Africa;
- Department of Animal, Wildlife and Grassland Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9301, South Africa
| | - Donald R. Kugonza
- School of Agricultural Sciences, College of Agricultural and Environmental Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Rayner Gonzalez-Prendes
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| | - Richard P. M. A. Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (R.G.-P.); (R.P.M.A.C.)
| |
Collapse
|
12
|
Brulin L, Ducrocq S, Estellé J, Even G, Martel S, Merlin S, Audebert C, Croiseau P, Sanchez MP. The fecal microbiota of Holstein cows is heritable and genetically correlated to dairy performances. J Dairy Sci 2024:S0022-0302(24)01113-5. [PMID: 39245169 DOI: 10.3168/jds.2024-25003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The fecal microbiota of ruminants constitutes a diversified community that has been phenotypically associated with a variety of host phenotypes, such as production and health. To gain a better understanding of the complex and interconnected factors that drive the fecal bacterial community, we have aimed to estimate the genetic parameters of the diversity and composition of the fecal microbiota, including heritabilities, genetic correlations among taxa, and genetic correlations between fecal microbiota features and host phenotypes. To achieve this, we analyzed a large population of 1,875 Holstein cows originating from 144 French commercial herds and routinely recorded for production, somatic cell score, and fertility traits. Fecal samples were collected from the animals and subjected to 16S rRNA gene sequencing, with reads classified into Amplicon Sequence Variants (ASVs). The estimated α- and β-diversity indices (i.e., Observed Richness, Shannon index, Bray-Curtis and Jaccard dissimilarity matrices) and the abundances of ASVs, genera, families and phyla, normalized by centered-log ratio (CLR), were considered as phenotypes. Genetic parameters were calculated using either univariate or bivariate animal models. Heritabilities estimates, ranging from 0.08 to 0.31 for taxa abundances and β-diversity indices, highlight the influence of the host genetics on the composition of the fecal microbiota. Furthermore, genetic correlations estimated within the microbial community and between microbiota features and host traits reveal the complex networks linking all components of the fecal microbiota together and to their host, thus strengthening the holobiont concept. By estimating the heritabilities of microbiota-associated phenotypes, our study quantifies the impact of the host genetics on the fecal microbiota composition. In addition, genetic correlations between taxonomic groups and between taxa abundances and host performance suggest potential applications for selective breeding to improve host traits or promote a healthier microbiota.
Collapse
Affiliation(s)
- L Brulin
- GD Biotech - Gènes Diffusion, Lille, 59000, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France.
| | - S Ducrocq
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - G Even
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Martel
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - S Merlin
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - C Audebert
- GD Biotech - Gènes Diffusion, Lille, 59000, France; PEGASE-Biosciences, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, France
| | - P Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - M P Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| |
Collapse
|
13
|
Teng Z, Liu S, Zhang L, Zhang L, Liu S, Fu T, Zhang N, Gao T. Tea Polyphenols Inhibit Methanogenesis and Improve Rumen Epithelial Transport in Dairy Cows. Animals (Basel) 2024; 14:2569. [PMID: 39272354 PMCID: PMC11394105 DOI: 10.3390/ani14172569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
This study systematically investigated the effects of tea polyphenols on methane (CH4) production and the rumen epithelial cell transport capability in cattle using both in vitro and animal experiments, employing multi-omics techniques. The in vitro results demonstrated that, compared to the control group, tea polyphenols significantly reduced CH4 production and the acetate/propionate ratio (p < 0.05). Tea polyphenols reduced CH4 production by inhibiting the relative abundance of unclassified_d_Archaea methanogens and the protozoa Pseudoentodinium and g__Balantioides. The animal experiments showed that tea polyphenols significantly increased the concentrations of T-AOC and GSH-PX in bovine blood (p < 0.05). In addition, microbial groups such as Rikenellaceae_RC9_gut_group, Ruminococcaceae_NK4A214_group, and Butyrivibrio_2 were significantly enriched in the ruminal fluid of the tea polyphenol group (p < 0.05). The proteomic results indicated significant upregulation of proteins such as COIII, S100A8, FABP1, SLC2A8, and SLC29A1 (p < 0.05) and downregulation of proteins including HBB, RAB4A, RBP4, LOC107131172, HBA, and ZFYVE19 (p < 0.05), with FABP1 showing a positive correlation with propionate concentration, and RAB4A had a negative correlation (p < 0.05). Overall, tea polyphenols modulate the microbial composition within the rumen, inhibiting CH4 production and enhancing the host's rumen epithelial cell transport capacity for volatile fatty acids.
Collapse
Affiliation(s)
- Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shuai Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lijie Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Liyang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ningning Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
14
|
Gao Z, Lu Y, Li M, Chong Y, Hong J, Wu J, Wu D, Xi D, Deng W. Application of Pan-Omics Technologies in Research on Important Economic Traits for Ruminants. Int J Mol Sci 2024; 25:9271. [PMID: 39273219 PMCID: PMC11394796 DOI: 10.3390/ijms25179271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The economic significance of ruminants in agriculture underscores the need for advanced research methodologies to enhance their traits. This review aims to elucidate the transformative role of pan-omics technologies in ruminant research, focusing on their application in uncovering the genetic mechanisms underlying complex traits such as growth, reproduction, production performance, and rumen function. Pan-omics analysis not only helps in identifying key genes and their regulatory networks associated with important economic traits but also reveals the impact of environmental factors on trait expression. By integrating genomics, epigenomics, transcriptomics, metabolomics, and microbiomics, pan-omics enables a comprehensive analysis of the interplay between genetics and environmental factors, offering a holistic understanding of trait expression. We explore specific examples of economic traits where these technologies have been pivotal, highlighting key genes and regulatory networks identified through pan-omics approaches. Additionally, we trace the historical evolution of each omics field, detailing their progression from foundational discoveries to high-throughput platforms. This review provides a critical synthesis of recent advancements, offering new insights and practical recommendations for the application of pan-omics in the ruminant industry. The broader implications for modern animal husbandry are discussed, emphasizing the potential for these technologies to drive sustainable improvements in ruminant production systems.
Collapse
Affiliation(s)
- Zhendong Gao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| | - Ying Lu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Mengfei Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqing Chong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jieyun Hong
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jiao Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongwang Wu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dongmei Xi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Weidong Deng
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Kunming 650201, China
| |
Collapse
|
15
|
Luo R, DanWu, Luo Z, Li Y, Zhong Y, Li K, Bai Z, Gongga, Suolangsizhu. Alterations in the diversity and composition of the fecal microbiota of domestic yaks (Bos grunniens) with pasture alteration-induced diarrhea. BMC Vet Res 2024; 20:355. [PMID: 39123170 PMCID: PMC11312408 DOI: 10.1186/s12917-024-04196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.
Collapse
Affiliation(s)
- Runbo Luo
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - DanWu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yupeng Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Yanan Zhong
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Kexin Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Zhanchun Bai
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Gongga
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China
| | - Suolangsizhu
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
16
|
Ossa-López PA, Ramírez-Chaves HE, Álvarez López ME, Castaño Villa GJ, Rivera-Páez FA. Bacterial community of ticks (Acari: Ixodidae) and mammals from Arauca, Colombian Orinoquia. Int J Parasitol Parasites Wildl 2024; 24:100943. [PMID: 38778917 PMCID: PMC11109883 DOI: 10.1016/j.ijppaw.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Ticks are obligate hematophagous ectoparasites of vertebrates and are relevant worldwide due to the number of bacterial and other pathogens they can transmit. To date, the knowledge about the microorganisms that ticks harbor and transmit to their hosts is incipient. In this study, 24 samples of mammals belonging to four taxonomic orders and ticks of the genera Amblyomma and Rhipicephalus from the Orinoco region of Colombia were analyzed to described and compare the bacterial microbiome. Genetic extraction was performed, and the V3-V4 region of the 16S rRNA gene was amplified by PCR. Libraries were created, and those samples with adequate quality indices were sequenced using Illumina MiSeq technology. Bacterial taxonomic assignment analyses were conducted through Amplicon Sequence Variants (ASVs) and Operational Taxonomic Units (OTUs). The results correspond to 16 samples that passed the quality filters, with 3218 OTUs (415 families). Although a considerable number of unknown bacteria was found, Enterobacteriaceae, Beijerinckiaceae, Moraxellaceae, and Burkholderiaceae are the most prevalent families, and the presence of the genera Coxiella, Escherichia-Shigella, Enterobacter, which can harbor pathogenic species was confirmed. In individuals of Amblyomma mixtum found actively feeding on Hydrochoerus hydrochaeris, bacteria of the genera Escherichia-Shigella and Enterobacter were documented. Similarly, Rhipicephalus microplus found actively feeding on Odocoileus virginianus cariacou shared Escherichia-Shigella. Ralstonia was shared among the blood samples of H. hydrochaeris, while Anaplasma and Eubacterium were shared in blood and liver samples of O. v. cariacou. Shared bacteria between A. mixtum and R. microplus included Bacillus, Coxiella, and Escherichia-Shigella. The results highlight the need of additional studies in other natural regions of Colombia and other American countries where tick-borne diseases have been detected. Likewise, the recorded data are the first at the level of bacterial communities in ticks of the family Ixodidae and provide valuable knowledge for the understanding host-tick and pathogen interactions.
Collapse
Affiliation(s)
- Paula A. Ossa-López
- Doctorado en Ciencias, Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Héctor E. Ramírez-Chaves
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
- Centro de Museos, Museo de Historia Natural, Universidad de Caldas, Calle 58 No. 21-50, 170004, Manizales, Caldas, Colombia
| | - María Elena Álvarez López
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Básicas, Facultad de Ciencias para la Salud, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Gabriel Jaime Castaño Villa
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Desarrollo Rural y Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| | - Fredy A. Rivera-Páez
- Grupo de Investigación en Genética, Biodiversidad y Manejo de Ecosistemas (GEBIOME), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia
| |
Collapse
|
17
|
Raza SHA, Khan M, Ni X, Zhao X, Yang H, Jiang Y, Danzeng B, Ouyang Y, Pant SD, Zhong R, Quan G. Association of litter size with the ruminal microbiome structure and metabolomic profile in goats. Sci Rep 2024; 14:15476. [PMID: 38969828 PMCID: PMC11226442 DOI: 10.1038/s41598-024-66200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024] Open
Abstract
The Yunshang black goat is a renowned mutton specialist breed mainly originating from China that has excellent breeding ability with varying litter sizes. Litter size is an important factor in the economics of goat farming. However, ruminal microbiome structure might be directly or indirectly regulated by pregnancy-associated factors, including litter sizes. Therefore, the current experiment aimed to evaluate the association of different litter sizes (low versus high) with ruminal microbiome structure by 16S rRNA gene sequencing and metabolomic profiling of Yunshang black does. A total of twenty does of the Yunshang Black breed, approximately aged between 3 and 4 years, were grouped (n = 10 goats/group) into low (D-l) and high (D-h) litter groups according to their litter size (the lower group has ≤ 2 kids/litter and the high group has ≧ 3 kids/litter, respectively). All goats were sacrificed, and collected ruminal fluid samples were subjected to 16S rRNA sequencing and LC-MS/MC Analysis for ruminal microbiome and metabolomic profiling respectively. According to PCoA analysis, the ruminal microbiota was not significantly changed by the litter sizes among the groups. The Firmicutes and Bacteroidetes were the most dominant phyla, with an abundance of 55.34% and 39.62%, respectively. However, Ruminococcaceae_UCG-009, Sediminispirochaeta, and Paraprevotella were significantly increased in the D-h group, whereas Ruminococcaceae_UCG-010 and Howardella were found to be significantly decreased in the D-l group. The metabolic profiling analysis revealed that litter size impacts metabolites as 29 and 50 metabolites in positive and negative ionic modes respectively had significant differences in their regulation. From them, 16 and 24 metabolites of the D-h group were significantly down-regulated in the positive ionic mode, while 26 metabolites were up-regulated in the negative ionic mode for the same group. The most vibrant identified metabolites, including methyl linoleate, acetylursolic acid, O-desmethyl venlafaxine glucuronide, melanostatin, and arginyl-hydroxyproline, are involved in multiple biochemical processes relevant to rumen roles. The identified differential metabolites were significantly enriched in 12 different pathways including protein digestion and absorption, glycerophospholipid metabolism, regulation of lipolysis in adipocytes, and the mTOR signaling pathway. Spearman's correlation coefficient analysis indicated that metabolites and microbial communities were tightly correlated and had significant differences between the D-l and D-h groups. Based on the results, the present study provides novel insights into the regulation mechanisms of the rumen microbiota and metabolomic profiles leading to different fertility in goats, which can give breeders some enlightenments to further improve the fertility of Yunshang Black goats.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Muhammad Khan
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
| | - Xiaojun Ni
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Xiaoqi Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Hongyuan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Baiji Danzeng
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China
| | - Sameer D Pant
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, Yunnan Province, China.
- Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Kunming City, Yunnan Province, China.
| |
Collapse
|
18
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
19
|
Li J, Xie F, Wang X, Zhang W, Cheng C, Wu X, Li M, Huo X, Gao X, Wang W. Distribution characteristics of gastric mucosal colonizing microorganisms in different glandular regions of Bactrian camels and their relationship with local mucosal immunity. PLoS One 2024; 19:e0300316. [PMID: 38814894 PMCID: PMC11139325 DOI: 10.1371/journal.pone.0300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 06/01/2024] Open
Abstract
Bactrian camels inhabiting desert and semi-desert regions of China are valuable animal models for studying adaptation to desert environments and heat stress. In this study, 16S rRNA technology was employed to investigate the distribution characteristics and differences of mucosal microorganisms in the anterior gland area, posterior gland area, third gland area, cardia gland area, gastric fundic gland area and pyloric gland area of 5-peak adult healthy Bactrian camels. We aimed to explore the possible reasons for the observed microbial distribution from the aspects of histological structure and mucosal immunity. Bacteroides and Fibrobacteria accounted for 59.54% and 3.22% in the gland area, respectively, and 52.37% and 1.49% in the wrinkled stomach gland area, respectively. The gland area showed higher abundance of Bacteroides and Fibrobacteria than the wrinkled stomach gland area. Additionally, the anterior gland area, posterior gland area, third gland area, and cardia gland area of Bactrian camels mainly secreted acidic mucus, while the gastric fundic gland area mainly secreted neutral mucus and the pyloric region mainly secreted a mixture of acidic and neutral mucus. The results of immunohistochemistry techniques demonstrated that the number of IgA+ cells in the anterior glandular area, posterior glandular area, third glandular area, and cardia gland area was significantly higher than that in the fundic and pyloric gland area (p < 0.05), and the difference in IgA+ between the fundic and pyloric gland area was not significant (p > 0.05). The study revealed a large number of bacteria that can digest and degrade cellulose on the mucosa of the gastric gland area of Bactrian camels. The distribution of IgA+ cells, the structure of the mucosal tissue in the glandular region, and the composition of the mucus secreted on its surface may have a crucial influence on microbial fixation and differential distribution.
Collapse
Affiliation(s)
- Jianfei Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Fie Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xueyan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Cuicui Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xiuping Wu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Min Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xingmin Huo
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Xin Gao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, P.R.China
| |
Collapse
|
20
|
Zhu Y, Tian J, Cidan Y, Wang H, Li K, Basang W. Influence of Varied Environment Conditions on the Gut Microbiota of Yaks. Animals (Basel) 2024; 14:1570. [PMID: 38891617 PMCID: PMC11171014 DOI: 10.3390/ani14111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Despite the crucial role of the gut microbiota in different physiological processes occurring in the animal body, reports regarding the gut microbiota of animals residing in different environmental conditions like high altitude and different climate settings are limited. The Qinghai-Tibetan Plateau is renowned for its extreme climatic conditions that provide an ideal environment for exploring the effects of high altitude and temperature on the microbiota of animals. Yaks have unique oxygen delivery systems and genes related to hypoxic response. Damxung, Nyêmo, and Linzhou counties in Tibet have variable altitudes and temperatures that offer distinct settings for studying yak adaptation to elevated terrains. The results of our study suggest that amplicon sequencing of V3-V4 and internal transcribed spacer 2 (ITS2) regions yielded 13,683 bacterial and 1912 fungal amplicon sequence variants (ASVs). Alpha and beta diversity indicated distinct microbial structures. Dominant bacterial phyla were Firmicutes, Bacteroidota, and Actinobacteriota. Genera UCG-005, Christensenellaceae_R-7_group, and Rikenellaceae_RC9_gut_group were dominant in confined yaks living in Damxung county (DXS) and yaks living in Linzhou county (LZS), whereas UCG-005 prevailed in confined yaks living in Nyêmo county (NMS). The linear discriminant analysis effect size (LEfSe) analysis highlighted genus-level differences. Meta-stat analysis revealed significant shifts in bacterial and fungal community composition in yaks at different high altitudes and temperatures. Bacterial taxonomic analysis revealed that two phyla and 32 genera differed significantly (p < 0.05). Fungal taxonomic analysis revealed that three phyla and four genera differed significantly (p < 0.05). Functional predictions indicated altered metabolic functions, especially in the digestive system of yaks living in NMS. This study reveals significant shifts in yak gut microbiota in response to varying environmental factors, such as altitude and temperature, shedding light on previously unexplored aspects of yak physiology in extreme environments.
Collapse
Affiliation(s)
- Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
- Linzhou Animal Husbandry and Veterinary Station, Lhasa 850009, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiayi Tian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yangji Cidan
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850009, China; (Y.Z.); (Y.C.); (H.W.)
| |
Collapse
|
21
|
Vasco KA, Hansen ZA, Schilmiller AL, Bowcutt B, Carbonell SL, Ruegg PL, Quinn RA, Zhang L, Manning SD. Untargeted metabolomics and metagenomics reveal signatures for intramammary ceftiofur treatment and lactation stage in the cattle hindgut. Front Mol Biosci 2024; 11:1364637. [PMID: 38836107 PMCID: PMC11148447 DOI: 10.3389/fmolb.2024.1364637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
The gut microbiota in cattle is essential for protein, energy, and vitamin production and hence, microbiota perturbations can affect cattle performance. This study evaluated the effect of intramammary (IMM) ceftiofur treatment and lactation stage on the functional gut microbiome and metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate (cases), while the other half received the teat sealant (controls). Fecal samples were collected before treatment at dry off, during the dry period (weeks 1 and 5) and the first week after calving (week 9). Shotgun metagenomic sequencing was applied to predict microbial metabolic pathways whereas untargeted metabolomics was used identify polar and nonpolar metabolites. Compared to controls, long-term changes were observed in the cows given ceftiofur, including a lower abundance of microbial pathways linked to energy production, amino acid biosynthesis, and other vital molecules. The metabolome of treated cows had elevated levels of stachyose, phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after the IMM ceftiofur application, indicating alterations in microbial fermentation, lipid metabolism, energy, and cellular signaling. Differences were also observed by sampling, with cows in late lactation having more diverse metabolic pathways and a unique metabolome containing higher levels of histamine and histamine-producing bacteria. These data illustrate how IMM ceftiofur treatment can alter the functionality of the hindgut metabolome and microbiome. Understanding how antibiotics and lactation stages, which are each characterized by unique diets and physiology, impact the function of resident microbes is critical to define normal gut function in dairy cattle.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Zoe A Hansen
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Anthony L Schilmiller
- Research Technology Support Facility, Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, MI, United States
| | - Bailey Bowcutt
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Samantha L Carbonell
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| | - Pamela L Ruegg
- Department of Large Animal and Clinical Sciences, Michigan State University, East Lansing, MI, United States
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Lixin Zhang
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Shannon D Manning
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Ma N, Guo J, Li Z, Xu L, Zhang K, Xu T, Chang G, Loor JJ, Shen X. Disturbances of Ruminal Microbiota and Liver Inflammation, Mediated by LPS and Histamine, in Dairy Cows Fed a High-Concentrate Diet. Animals (Basel) 2024; 14:1495. [PMID: 38791713 PMCID: PMC11117260 DOI: 10.3390/ani14101495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The ecosystem of ruminal microbiota profoundly affects the health and milk production of dairy cows. High-concentrate diets are widely used in dairy farms and evoke a series of metabolic disorders. Several studies have reported the effects of high-concentrate diets on the ruminal microbiome, while the effect of changes in ruminal microbial flora, induced by high-concentrate diet feeding, on the liver of dairy cows has not been studied before. In this study, 12 mid-lactating Holstein Friesian cows (weight of 455 ± 28 kg; parities of 2.5 ± 0.5; starting milk yield of 31.59 ± 3.2 kg/d; DMI of 21.7 ± 1.1 kg/d; and a DIM at the start of the experiment of 135 ± 28 d) were fitted with ruminal fistulas, as well as with portal and hepatic vein catheters. All cows were randomly divided into 2 groups; then, they fed with low-concentrate diets (LC, concentrate: forage = 40:60) and high-concentrate diets (HC, concentrate: forage = 60:40) for 18 weeks. The forage sources were corn silage and alfalfa hay. After the cows of two groups were euthanized over two consecutive days, ruminal microbiota; the concentration of LPS in the rumen content; cecum content; the levels of blood and histamine in rumen fluid, blood, and the liver; the histopathological status of the rumen and cecum; and the inflammatory response of the liver were assessed in dairy cows under conditions of subacute ruminal acidosis (SARA). These conditions were caused by high-concentrate diet feeding. All data were analyzed using the independent t-test in SPSS. The results showed that high-concentrate diet feeding increased the concentration of LPS and histamine in the rumen and plasma of veins (p < 0.05). The abundance of Bacteroidetes at the phylum level, and of both Bacteroidetes and Saccharibacteria at the genus level, was decreased, while the abundance of Firmicutes at the phylum level and Oscillibacter at the genus level was increased by high-concentrate diet feeding. The decreased pH values of ruminal contents (LC = 6.02, HC = 5.90, p < 0.05) and the increased level of LPS in the rumen (LC = 4.921 × 105, HC = 7.855 × 105 EU/mL, p < 0.05) and cecum (LC = 11.960 × 105, HC = 13.115 × 105 EU/mL, p < 0.01) induced the histopathological destruction of the rumen and cecum, combined with the increased mRNA expression of IL-1β (p < 0.05). The histamine receptor H1R and the NF-κB signaling pathway were activated in the liver samples taken from the HC group. In conclusion, the elevated concentrations of LPS and histamine in the gut may be related to changes in the ruminal microbiota. LPS and histamine induced the inflammatory response in the ruminal epithelium, cecum epithelium, and liver. However, the cause-effect mechanism needs to be proved in future research. Our study offers a novel therapeutic strategy by manipulating ruminal microbiota and metabolism to decrease LPS and histamine release and to improve the health of dairy cows.
Collapse
Affiliation(s)
- Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Junfei Guo
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Zhenfu Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Lei Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Kai Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Tianle Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (J.G.); (Z.L.); (L.X.); (K.Z.); (T.X.); (G.C.)
| |
Collapse
|
23
|
Massey C, Nosker ME, Gale J, Scott S, Walker CJ, Cluff A, Wilcox S, Morrison A, Gottfredson Morgan SJ, Beltz J, Schmidt P, Chaston JM. Humidity determines penetrance of a latitudinal gradient in genetic selection on the microbiota by Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591907. [PMID: 38746372 PMCID: PMC11092659 DOI: 10.1101/2024.05.02.591907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as the host adapts to wild environments. These interactions are readily interrogated because of the low taxonomic and numeric complexity of the flies' bacterial communities. Previous work has established that host genotype, the environment, diet, and interspecies microbial interactions can all influence host fitness and microbiota composition, but the specific processes and characters mediating these processes are incompletely understood. Here, we compared the variation in microbiota composition between wild-derived fly populations when flies could choose between the microorganisms in their diets and when flies were reared under environmental perturbation (different humidities). We also compared the colonization of the resident and transient microorganisms. We show that the ability to choose between microorganisms in the diet and the environmental condition of the flies can influence the relative abundance of the microbiota. There were also key differences in the abundances of the resident and transient microbiota. However, the microbiota only differed between populations when the flies were reared at humidities at or above 50% relative humidity. We also show that elevated humidity determined the penetrance of a gradient in host genetic selection on the microbiota that is associated with the latitude the flies were collected from. Finally, we show that the treatment-dependent variation in microbiota composition is associated with variation in host stress survival. Together, these findings emphasize that host genetic selection on the microbiota composition of a model animal host can be patterned with the source geography, and that such variation has the potential to influence their survival in the wild. Importance The fruit fly Drosophila melanogaster is a model for understanding how hosts and their microbial partners interact as hosts adapt in wild environments. Our understanding of what causes geographic variation in the fruit fly microbiota remains incomplete. Previous work has shown that the D. melanogaster microbiota has relatively low numerical and taxonomic complexity. Variation in the fly microbiota composition can be attributed to environmental characters and host genetic variation, and variation in microbiota composition can be patterned with the source location of the flies. In this work we explored three possible causes of patterned variation in microbiota composition. We show that host feeding choices, the host niche colonized by the bacteria, and a single environmental character can all contribute to variation in microbiota composition. We also show that penetrance of latitudinally-patterned host genetic selection is only observed at elevated humidities. Together, these results identify several factors that influence microbiota composition in wild fly genotypes and emphasize the interplay between environmental and host genetic factors in determining the microbiota composition of these model hosts.
Collapse
|
24
|
Gordils-Valentin L, Ouyang H, Qian L, Hong J, Zhu X. Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Commun Biol 2024; 7:499. [PMID: 38664513 PMCID: PMC11045733 DOI: 10.1038/s42003-024-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Lois Gordils-Valentin
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US
| | - Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, 77843, TX, US
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US.
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US.
| |
Collapse
|
25
|
Ma X, Li Z, Cai L, Xiao M, He F, Liu Z, Chen D, Wang Y, Shen L, Gu Y. Analysis of fungal diversity in the gut feces of wild takin ( Budorcas taxicolor). Front Microbiol 2024; 15:1364486. [PMID: 38699479 PMCID: PMC11063333 DOI: 10.3389/fmicb.2024.1364486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Mei Xiao
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Fang He
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Limin Shen
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
26
|
Luo Z, Du Z, Huang Y, Zhou T, Wu D, Yao X, Shen L, Yu S, Yong K, Wang B, Cao S. Alterations in the gut microbiota and its metabolites contribute to metabolic maladaptation in dairy cows during the development of hyperketonemia. mSystems 2024; 9:e0002324. [PMID: 38501812 PMCID: PMC11019918 DOI: 10.1128/msystems.00023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic maladaptation in dairy cows after calving can lead to long-term elevation of ketones, such as β-hydroxybutyrate (BHB), representing the condition known as hyperketonemia, which greatly influences the health and production performance of cows during the lactation period. Although the gut microbiota is known to alter in dairy cows with hyperketonemia, the association of microbial metabolites with development of hyperketonemia remains unknown. In this study, we performed a multi-omics analysis to investigate the associations between fecal microbial community, fecal/plasma metabolites, and serum markers in hyperketonemic dairy cows during the transition period. Dynamic changes in the abundance of the phyla Verrucomicrobiota and Proteobacteria were detected in the gut microbiota of dairy cows, representing an adaptation to enhanced lipolysis and abnormal glucose metabolism after calving. Random forest and univariate analyses indicated that Frisingicoccus is a key bacterial genus in the gut of cows during the development of hyperketonemia, and its abundance was positively correlated with circulating branched-chain amino acid levels and the ketogenesis pathway. Taurodeoxycholic acid, belonging to the microbial metabolite, was strongly correlated with an increase in blood BHB level, and the levels of other secondary bile acid in the feces and plasma were altered in dairy cows prior to the diagnosis of hyperketonemia, which link the gut microbiota and hyperketonemia. Our results suggest that alterations in the gut microbiota and its metabolites contribute to excessive lipolysis and insulin insensitivity during the development of hyperketonemia, providing fundamental knowledge about manipulation of gut microbiome to improve metabolic adaptability in transition dairy cows.IMPORTANCEAccumulating evidence is pointing to an important association between gut microbiota-derived metabolites and metabolic disorders in humans and animals; however, this association in dairy cows from late gestation to early lactation is poorly understood. To address this gap, we integrated longitudinal gut microbial (feces) and metabolic (feces and plasma) profiles to characterize the phenotypic differences between healthy and hyperketonemic dairy cows from late gestation to early lactation. Our results demonstrate that cows underwent excessive lipid mobilization and insulin insensitivity before hyperketonemia was evident. The bile acids are functional readouts that link gut microbiota and host phenotypes in the development of hyperketonemia. Thus, this work provides new insight into the mechanisms involved in metabolic adaptation during the transition period to adjust to the high energy and metabolic demands after calving and during lactation, which can offer new strategies for livestock management involving intervention of the gut microbiome to facilitate metabolic adaptation.
Collapse
Affiliation(s)
- Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenlong Du
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yixin Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dan Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kang Yong
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China
| | - Baoning Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Boll EJ, Copani G, Cappellozza BI. Bacillus paralicheniformis 809 and Bacillus subtilis 810 support in vitro intestinal integrity under hydrogen peroxide and deoxynivalenol challenges. Transl Anim Sci 2024; 8:txae061. [PMID: 38685987 PMCID: PMC11056882 DOI: 10.1093/tas/txae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
We designed and conducted two in vitro experiments to evaluate the effects of two Bacillus spp. probiotics on gut barrier integrity using the transepithelial electrical resistance (TEER) assay under two different challenge models. In Exp. 1, intestinal epithelial cells received or not (CON) B. paralicheniformis 809 (BLI) or B. subtilis 810 (BSU) at a rate of 1 × 108 colony forming units (CFU)/transwell. Two hours after treatment application (CON, BLI, or BSU), 5 mM of the reactive oxygen species hydrogen peroxide, mimicking mucosal oxidative stress, was added alone (HYP) or with each of the Bacillus spp. (HYP + BLI or HYP + BSU). In Exp. 2, cells were assigned to the same treatments as in Exp. 1 (CON, BLI, and BSU), or mycotoxin deoxynivalenol (DON), which was added alone or in combination with BLI or BSU, resulting in another two treatments (DON + BLI and DON + BSU). Transepithelial electrical resistance was measured for 14 h postchallenge. In Exp. 1, a treatment × hour interaction was observed for TEER (P < 0.0001). Adding BLI and BSU resulted in greater TEER values vs. CON for most of the experimental period (P < 0.02), whereas HYP reduced mean TEER and area under the curve (AUC), while increasing the amount of sugar that translocated through the monolayer cells (P < 0.001). A treatment × hour interaction was also observed in Exp. 2 (P < 0.0001), as DON led to an immediate and acute drop in TEER that lasted until the end of the experimental period (P < 0.0001). Both BLI and BSU alleviated the DON-induced damaging effects on the integrity of intestinal epithelial cells, whereas both Bacillus spp. alleviated the damage caused by DON alone and the proportion of sugar that translocated through the monolayer cells was not different between CON and DON + BLI (P = 0.14) and DON + BLI and DON + BSU (P = 0.62). In summary, both Bacillus spp. strains (B. paralicheniformis 809 and B. subtilis 810) were able to counteract the damaging effects of the challenge agents, hydrogen peroxide and deoxynivalenol, on gut barrier integrity.
Collapse
|
28
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
29
|
Lee H, Kim M, Masaki T, Ikuta K, Iwamoto E, Nishihara K, Nonaka I, Ashihara A, Baek Y, Lee S, Uemoto Y, Haga S, Terada F, Roh S. Assessing the impact of three feeding stages on rumen bacterial community and physiological characteristics of Japanese Black cattle. Sci Rep 2024; 14:4923. [PMID: 38418904 PMCID: PMC10902337 DOI: 10.1038/s41598-024-55539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
In Japan, Japanese Black cattle, known for their exceptional meat quality owing to their abundant intramuscular fat, undergo a unique three-stage feeding system with varying concentrate ratios. There is limited research on physiological and rumen microbial changes in Japanese Black cattle during these stages. Therefore, this study aimed to examine Japanese Black steers in these three stages: early (T1, 12-14 months), middle (T2, 15-22 months), and late (T3, 23-30 months). The rumen bacteria of 21 cattle per phase was analyzed using 16S rRNA gene sequencing. Rumen bacterial diversity was significantly higher in T1, with a distinct distribution, than in T2 and T3. Specific phyla and genera were exclusive to each stage, reflecting the shifts in feed composition. Certain genera dominated each stage: T1 had Flexilinea, Streptococcus, Butyrivibrio, Selenomonas, and Kandleria; T2 had Bifidobacterium, Shuttleworthia, and Sharpea; and T3 had Acetitomaculum, Mycoplasma, Atopobium, and Howardella. Correlation analysis revealed significant associations between certain microbial populations and physiological parameters. These findings indicate that changes in energy content and feed composition are associated with physiological and ruminal alterations. This study may guide strategies to improve rumen health and productivity in Japanese Black cattle by modifying diets to specific fattening stages.
Collapse
Affiliation(s)
- Huseong Lee
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Minji Kim
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Tatsunori Masaki
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Kentaro Ikuta
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Eiji Iwamoto
- Hyogo Prefectural Technology Center of Agriculture, Forestry and Fisheries, Kasai, Hyogo, 679-0198, Japan
| | - Koki Nishihara
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Itoko Nonaka
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Akane Ashihara
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Youlchang Baek
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Sungdae Lee
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Wanju, 55365, South Korea
| | - Yoshinobu Uemoto
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Satoshi Haga
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Fuminori Terada
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Ikenodai, Tsukuba, 305-0901, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| |
Collapse
|
30
|
Crippen TL, Kim D, Poole TL, Swiger SL, Anderson RC. The bacterial and archaeal communities of flies, manure, lagoons, and troughs at a working dairy. Front Microbiol 2024; 14:1327841. [PMID: 38449879 PMCID: PMC10915237 DOI: 10.3389/fmicb.2023.1327841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 03/08/2024] Open
Abstract
Background Fundamental investigations into the location, load, and persistence of microbes, whether beneficial or detrimental, are scarce. Many questions about the retention and survival of microbes on various surfaces, as well as the load necessary for spread, exist. To answer these questions, we must know more about where to find various microbes and in what concentrations, the composition of the microbial communities, and the extent of dissemination between various elements. This study investigated the diversity, composition, and relative abundance of the communities associated with manure, lagoons, troughs, house flies, and stable flies present at a dairy, implementing two different free-stall management systems: flow-through and cross-vent. Shotgun metagenomics at the community level was used to compare the microbiomes within the dairy, allowing confident interpretation at the species level. Results The results showed that there were significant difference in microbial composition between not only each of the dairy elements but also management styles. The primary exceptions were the microbiomes of the house fly and the stable fly. Their compositions heavily overlapped with one another, but interestingly, not with the other components sampled. Additionally, both species of flies carried more pathogens than the other elements of the dairy, indicating that they may not share these organisms with the other components, or that the environments offered by the other components are unsatisfactory for the survival of some pathogens.. Conclusion The lack of overlapping pathogen profiles suggests a lack of transfer from flies to other dairy elements. Dairy health data, showing a low incidence of disease, suggests minimal sharing of bacteria by the flies at a level required for infection, given the health program of this dairy. While flies did carry a multitude of pathogenic bacteria, the mere presence of the bacteria associated with the flies did not necessarily translate into high risk leading to morbidity and mortality at this dairy. Thus, using flies as the sole sentinel of dairy health may not be appropriate for all bacterial pathogens or dairies.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Dongmin Kim
- Department of Entomology, Texas A & M University, College Station, TX, United States
| | - Toni L. Poole
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| | - Sonja L. Swiger
- Entomology Extension, Texas AgriLife, Texas A & M University, College Station, TX, United States
| | - Robin C. Anderson
- Southern Plains Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, College Station, TX, United States
| |
Collapse
|
31
|
Mizoguchi Y, Guan LL. - Invited Review - Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality. Anim Biosci 2024; 37:346-359. [PMID: 38186252 PMCID: PMC10838664 DOI: 10.5713/ab.23.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.
Collapse
Affiliation(s)
- Yasushi Mizoguchi
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571,
Japan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5,
Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5,
Canada
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, British Columbia, V6T 1Z4,
Canada
| |
Collapse
|
32
|
Mu R, Li S, Zhang Y, Li Y, Zhu Y, Zhao F, Si H, Li Z. Microbiota and Metabolite Profiles in the Feces of Juvenile Sika Deer ( Cervus nippon) from Birth to Weaning. Animals (Basel) 2024; 14:432. [PMID: 38338075 PMCID: PMC10854736 DOI: 10.3390/ani14030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The gut microbiota establishment in young ruminants has a profound impact on their adult production performance. However, the critical phase for the succession of the gut microbial composition and metabolic profiles of juvenile sika deer still needs to be further investigated. Here, we analyzed the fecal microbiota and metabolites of juvenile sika deer during the birth (D1), transition (D42), and rumination (D70) periods based on 16S rRNA sequencing and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). The results showed that the fecal bacteria and metabolites composition were significantly different in D1 compared to D42 and D70, and the number of OTUs and the Shannon index were significantly higher in D70 than in D1 (p < 0.05). The relative abundances of Lactobacillus, Lactococcus, and Lachnoclostridium showed a significant increase in D1 compared to D42 and D70, whereas the relative abundances of Ruminococcaceae UCG-005, Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, Christensenellaceae R-7, and Eubacterium coprostanoligenes group were significantly decreased in D1 compared to D42 and D70 (p < 0.05). The amounts of serine, phenylalanine, aspartic acid, ornithine, citrulline, creatine, isoleucine, galactose, and ribose in the feces were significantly higher in D1 compared to D42 and D70. In contrast, the concentrations of cortexolone, resveratrol, piceatannol, fumaric acid, alpha-ketoglutarate, glycerol, uracil-5-carboxylic acid, and maleic acid were significantly decreased in D1. The enrichment analysis showed that amino acid metabolism and carbohydrate metabolism were significantly changed in D1 compared to D42 and D70. The glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; arginine biosynthesis; glyoxylate and dicarboxylate metabolism; citrate cycle; and pyruvate metabolism were significantly enriched across the three periods (p < 0.05). In conclusion, our results suggested that the birth-transition period is a critical phase for the gut bacterial community and metabolic function shift in juvenile sika deer.
Collapse
Affiliation(s)
- Ruina Mu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Songze Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunxi Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuhang Zhu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fei Zhao
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Huazhe Si
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhipeng Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
33
|
Pan Z, Chen Y, Zhou M, McAllister TA, Mcneilly TN, Guan LL. Linking active rectal mucosa-attached microbiota to host immunity reveals its role in host-pathogenic STEC O157 interactions. THE ISME JOURNAL 2024; 18:wrae127. [PMID: 38984791 PMCID: PMC11304501 DOI: 10.1093/ismejo/wrae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024]
Abstract
The rectal-anal junction (RAJ) is the major colonization site of Shiga toxin-producing Escherichia coli (STEC) O157 in beef cattle, leading to transmission of this foodborne pathogen from farms to food chains. To date, there is limited understanding regarding whether the mucosa-attached microbiome has a profound impact on host-STEC interactions. In this study, the active RAJ mucosa-attached microbiota and its potential role in host immunity-STEC commensal interactions were investigated using RAJ mucosal biopsies collected from calves orally challenged with two STEC O157 strains with or without functional stx2a (stx2a+ or stx2a-). The results revealed that shifts of microbial diversity, topology, and assembly patterns were subjected to stx2a production post-challenge and Paeniclostridium and Gallibacterium were the keystone taxa for both microbial interactions and assembly. Additional mucosal transcriptome profiling showed stx2a-dependent host immune responses (i.e. B- and T-cell signaling and antigen processing and presentation) post-challenge. Further integrated analysis revealed that mucosa-attached beneficial microbes (i.e. Provotella, Faecalibacterium, and Dorea) interacted with host immune genes pre-challenge to maintain host homeostasis; however, opportunistic pathogenic microbes (i.e. Paeniclostridium) could interact with host immune genes after the STEC O157 colonization and interactions were stx2a-dependent. Furthermore, predicted bacterial functions involved in pathogen (O157 and Paeniclostridium) colonization and metabolism were related to host immunity. These findings suggest that during pathogen colonization, host-microbe interactions could shift from beneficial to opportunistic pathogenic bacteria driven and be dependent on the production of particular virulence factors, highlighting the potential regulatory role of mucosa-attached microbiota in affecting pathogen-commensal host interactions in calves with STEC O157 infection.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB T1J 4B1, Canada
| | - Tom N Mcneilly
- Moredun Research Institute, Penicuik EH26 0PZ, United Kingdom
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
34
|
Min BR, Wang W, Pitta DW, Indugu N, Patra AK, Wang HH, Abrahamsen F, Hilaire M, Puchala R. Characterization of the ruminal microbiota in sheep and goats fed different levels of tannin-rich Sericea lespedeza hay. J Anim Sci 2024; 102:skae198. [PMID: 39018107 PMCID: PMC11484804 DOI: 10.1093/jas/skae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/15/2024] [Indexed: 07/18/2024] Open
Abstract
Understanding ruminal microbiota and diet-host breed interactions under forage feeding conditions is essential for optimizing rumen fermentation and improving feed efficiency in small ruminants. This study aimed to investigate the effects of different ratios of condensed tannin-rich Sericea lespedeza (SL; Lespedeza cuneata) in the diets on changes and interactions of ruminal microbiota and host species (i.e., sheep and goats). Katahdin sheep (n = 12) and Alpine goats (n = 12) at approximately 10 to 12 mo of age were blocked by body weight (BW = 30.3 and 25.5 kg, respectively) and randomly assigned to one of the 3 treatments. Diets contained 75% coarsely ground forage and 25% concentrate. The forages were 1) 100% alfalfa hay (AL), 2) 100% SL, and 3) 50% AL + 50% SL (ASL). In the present study, the diversity and composition of ruminal microbiota differed between sheep and goats fed similar diets. Based on the taxonomic analysis, there was a distinct clustering pattern (P < 0.05) for sheep by diets, but such a pattern was not observed for goats (P > 0.1). The most predominant phyla were Firmicutes, Bacteroidetes, Ascomycota, and methanogen species of Methanobrevibactor sp. in the rumen of sheep and goats, regardless of diets. The Bacteroidetes and Ascomycota were enriched in sheep fed AL and ASL. In contrast, these microbial phyla were enhanced in goats fed tannin-rich SL diets, with the diet-by-host species interaction (P < 0.02) for the Bacteroidetes phylum. Sheep rumen fluid samples showed a higher degree of variability in microbial community composition compared to goat rumen fluid samples. The relative proportion of the Aspergillus fungi population was reduced to 90.7% in the SL group compared with the AL group, regardless of host species. The antimicrobial activity of tannins and greater sensitivities of selected microbiota species to these tannin compounds during SL feeding in sheep and goats perhaps caused this difference. The results from this study suggest that differences in the microbiota were associated with differences in diets and host species. Therefore, this study provides a better understanding of ruminal microbiota and diet-host species interactions under various tannin-rich diets, which could advance consolidative information on rumen microbiome community diversity changes and may improve sheep and goat production.
Collapse
Affiliation(s)
- Byeng R Min
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Wei Wang
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Dipti W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, Pennsylvania State University, University Park, PA 16802, USA
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, Pennsylvania State University, University Park, PA 16802, USA
| | - Amlan K Patra
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| | - Hong He Wang
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Frank Abrahamsen
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Mariline Hilaire
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL 36064, USA
| | - Ryszard Puchala
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- Military Institute of Hygiene and Epidemiology, 01-001 Warsaw, Poland
| |
Collapse
|
35
|
Pan Z, Ma T, Steele M, Guan LL. Varied microbial community assembly and specialization patterns driven by early life microbiome perturbation and modulation in young ruminants. ISME COMMUNICATIONS 2024; 4:ycae044. [PMID: 38650709 PMCID: PMC11033733 DOI: 10.1093/ismeco/ycae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
Perturbations and modulations during early life are vital to affect gut microbiome assembly and establishment. In this study, we assessed how microbial communities shifted during calf diarrhea and with probiotic yeast supplementation (Saccharomyces cerevisiae var. boulardii, SCB) and determined the key bacterial taxa contributing to the microbial assembly shifts using a total of 393 fecal samples collected from 84 preweaned calves during an 8-week trial. Our results revealed that the microbial assembly patterns differed between healthy and diarrheic calves at 6- and 8-week of the trial, with healthy calves being stochastic-driven and diarrheic calves being deterministic-driven. The two-state Markov model revealed that SCB supplementation had a higher possibility to shift microbial assembly from deterministic- to stochastic-driven in diarrheic calves. Furthermore, a total of 23 and 21 genera were specific ecotypes to assembly patterns in SCB-responsive (SCB-fed calves did not exhibit diarrhea) and nonresponsive (SCB-fed calves occurred diarrhea) calves, respectively. Among these ecotypes, the area under a receiver operating characteristic curve revealed that Blautia and Ruminococcaceae UCG 014, two unidentified genera from the Ruminococcaceae family, had the highest predictiveness for microbial assembly patterns in SCB-responsive calves, while Prevotellaceae, Blautia, and Escherichia-Shigella were the most predictive bacterial taxa for microbial assembly patterns in SCB-nonresponsive calves. Our study suggests that microbiome perturbations and probiotic yeast supplementation serving as deterministic factors influenced assembly patterns during early life with critical genera being predictive for assembly patterns, which sheds light on mechanisms of microbial community establishment in the gut of neonatal calves during early life.
Collapse
Affiliation(s)
- Zhe Pan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Michael Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
36
|
Diaz GR, Gaire TN, Ferm P, Case L, Caixeta LS, Goldsmith TJ, Armstrong J, Noyes NR. Effect of castration timing and weaning strategy on the taxonomic and functional profile of ruminal bacteria and archaea of beef calves. Anim Microbiome 2023; 5:61. [PMID: 38041127 PMCID: PMC10691087 DOI: 10.1186/s42523-023-00284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Beef cattle experience several management challenges across their lifecycle. Castration and weaning, two major interventions in the early life of beef cattle, can have a substantial impact on animal performance. Despite the key role of the rumen microbiome on productive traits of beef cattle, the effect of castration timing and weaning strategy on this microbial community has not been formally described. We assessed the effect of four castration time windows (at birth, turnout, pre-weaning and weaning) and two weaning strategies (fence-line and truck transportation) on the rumen microbiome in a randomized controlled study with 32 male calves across 3 collection days (i.e., time points). Ruminal fluid samples were submitted to shotgun metagenomic sequencing and changes in the taxonomic (microbiota) and functional profile (metagenome) of the rumen microbiome were described. RESULTS Using a comprehensive yet stringent taxonomic classification approach, we identified 10,238 unique taxa classified under 40 bacterial and 7 archaeal phyla across all samples. Castration timing had a limited long-term impact on the rumen microbiota and was not associated with changes in alpha and beta diversity. The interaction of collection day and weaning strategy was associated with changes in the rumen microbiota, which experienced a significant decrease in alpha diversity and shifts in beta diversity within 48 h post-weaning, especially in calves abruptly weaned by truck transportation. Calves weaned using a fence-line weaning strategy had lower relative abundance of Bacteroides, Lachnospira, Fibrobacter and Ruminococcus genera compared to calves weaned by truck transportation. Some genes involved in the hydrogenotrophic methanogenesis pathway (fwdB and fwdF) had higher relative abundance in fence-line-weaned calves post-weaning. The antimicrobial resistance gene tetW consistently represented more than 50% of the resistome across time, weaning and castration groups, without significant changes in relative abundance. CONCLUSIONS Within the context of this study, castration timing had limited long-term effects on the rumen microbiota, while weaning strategy had short-term effects on the rumen microbiota and methane-associated metagenome, but not on the rumen resistome.
Collapse
Affiliation(s)
- Gerardo R Diaz
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Peter Ferm
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Lacey Case
- North Central Research and Outreach Center, Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Luciano S Caixeta
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Timothy J Goldsmith
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Joe Armstrong
- Agricultural and Natural Resource Systems, University of Minnesota Extension, University of Minnesota, St. Paul, MN, 55108, USA
| | - Noelle R Noyes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
37
|
Khan FA, Pandupuspitasari NS, Huang C, Negara W, Ahmed B, Putri EM, Lestari P, Priyatno TP, Prima A, Restitrisnani V, Surachman M, Akhadiarto S, Darmawan IWA, Wahyuni DS, Herdis H. Unlocking gut microbiota potential of dairy cows in varied environmental conditions using shotgun metagenomic approach. BMC Microbiol 2023; 23:344. [PMID: 37974103 PMCID: PMC10652448 DOI: 10.1186/s12866-023-03101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Food security and environmental pollution are major concerns for the expanding world population, where farm animals are the largest source of dietary proteins and are responsible for producing anthropogenic gases, including methane, especially by cows. We sampled the fecal microbiomes of cows from varying environmental regions of Pakistan to determine the better-performing microbiomes for higher yields and lower methane emissions by applying the shotgun metagenomic approach. We selected managed dairy farms in the Chakwal, Salt Range, and Patoki regions of Pakistan, and also incorporated animals from local farmers. Milk yield and milk fat, and protein contents were measured and correlated with microbiome diversity and function. The average milk protein content from the Salt Range farms was 2.68%, with an average peak milk yield of 45 litters/head/day, compared to 3.68% in Patoki farms with an average peak milk yield of 18 litters/head/day. Salt-range dairy cows prefer S-adenosyl-L-methionine (SAMe) to S-adenosyl-L-homocysteine (SAH) conversion reactions and are responsible for low milk protein content. It is linked to Bacteroides fragilles which account for 10% of the total Bacteroides, compared to 3% in the Patoki region. The solid Non-Fat in the salt range was 8.29%, whereas that in patoki was 6.34%. Moreover, Lactobacillus plantarum high abundance in Salt Range provided propionate as alternate sink to [H], and overcoming a Methanobrevibacter ruminantium high methane emissions in the Salt Range. Furthermore, our results identified ruminant fecal microbiomes that can be used as fecal microbiota transplants (FMT) to high-methane emitters and low-performing herds to increase farm output and reduce the environmental damage caused by anthropogenic gases emitted by dairy cows.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54782, Pakistan
| | - Nuruliarizki Shinta Pandupuspitasari
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia.
- Department of Biological Engineering, Massachusetts Institute of Technology, Massachusetts, Cambridge, 02139, USA.
- PT Bumi Yasa Svarga, Sukabumi, 43152, Indonesia.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Bilal Ahmed
- Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, 54782, Pakistan
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Puji Lestari
- Research Organization of Agriculture and Food National Research and Innovation Agency, Bogor, Indonesia
| | - Tri Puji Priyatno
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Ari Prima
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Vita Restitrisnani
- Laboratory of Animal Nutrition and Feed Science, Animal Science Department, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Maman Surachman
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Sindu Akhadiarto
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - I Wayan Angga Darmawan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Dimar Sari Wahyuni
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Herdis Herdis
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| |
Collapse
|
38
|
Kamenova S, de Muinck EJ, Veiberg V, Utsi TA, Steyaert SMJG, Albon SD, Loe LE, Trosvik P. Gut microbiome biogeography in reindeer supersedes millennia of ecological and evolutionary separation. FEMS Microbiol Ecol 2023; 99:fiad157. [PMID: 38031339 DOI: 10.1093/femsec/fiad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Ruminants are dependent on their gut microbiomes for nutrient extraction from plant diets. However, knowledge about the composition, diversity, function, and spatial structure of gut microbiomes, especially in wild ruminants, is limited, largely because analysis has been restricted to faeces or the rumen. In two geographically separated reindeer subspecies, 16S rRNA gene amplicon sequencing revealed strong spatial structuring, and pronounced differences in microbial diversity of at least 33 phyla across the stomach, small intestine, and large intestine (including faeces). The main structural feature was the Bacteroidota to Firmicutes ratio, which declined from the stomach to the large intestine, likely reflecting functional adaptation. Metagenome shotgun sequencing also revealed highly significant structuring in the relative occurrence of carbohydrate-active enzymes (CAZymes). CAZymes were enriched in the rumen relative to the small and large intestines. Interestingly, taxonomic diversity was highest in the large intestine, suggesting an important and understudied role for this organ. Despite the two study populations being separated by an ocean and six millennia of evolutionary history, gut microbiome structuring was remarkably consistent. Our study suggests a strong selection for gut microbiome biogeography along the gastrointestinal tract in reindeer subspecies.
Collapse
Affiliation(s)
- Stefaniya Kamenova
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Departments of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway
- National Museum of Natural History, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria
| | - Eric J de Muinck
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
- Department of Pharmacy, University of Oslo, 0371 Oslo, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, 7034 Trondheim, Norway
| | - Tove Aagnes Utsi
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries, and Economics, UiT The Arctic University of Norway, 9510 Alta, Norway
| | - Sam M J G Steyaert
- Faculty of Biosciences and Aquaculture, Nord University, 7713 Steinkjer, Norway
| | - Steve D Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Leif Egil Loe
- Departments of Ecology and Natural Resource Management, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Pål Trosvik
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
39
|
Yaderets V, Karpova N, Glagoleva E, Shibaeva A, Dzhavakhiya V. Bacillus subtilis RBT-7/32 and Bacillus licheniformis RBT-11/17 as New Promising Strains for Use in Probiotic Feed Additives. Microorganisms 2023; 11:2729. [PMID: 38004741 PMCID: PMC10672880 DOI: 10.3390/microorganisms11112729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The normal functioning of a gastrointestinal microflora in poultry and livestock is of significant importance, since its imbalance negatively influences an organism's functions. In this study, the UV mutagenesis and selection were used to obtain two Bacillus strains possessing antagonistic activity towards Escherichia coli and Staphylococcus aureus, and their potential as a probiotic feed additive was evaluated. Compared to the parental strains, the ability of B. subtilis RBT-7/32 and B. licheniformis RBT-11/17 strains to suppress E. coli increased by 77 and 63%, respectively; the corresponding ability of these strains to suppress S. aureus increased by 80 and 79%, respectively. RBT-11/17 could not utilize microcrystalline cellulose and carboxymethyl cellulose, whereas cellulolytic activity of RBT-7/32 was doubled compared to the initial strain. The amylolytic activity of new strains was increased by 40%. Cultivation of strains on media containing soybean, pea, and corn meal did not provide any difference in the biomass production compared to the control. The heating of a water suspension of a dried biomass of the strains for 10-20 min at 80 and 100 °C or incubation in water solutions of citric, ascorbic, acetic, and formic acids (pH 3.0) for 3 and 24 h at 40 °C did not provide any negative influence on the spore survivability. Both strains were evaluated for their resistance to a number of veterinary antibiotics. Thus, RBT-7/32 and RBT-11/17 strains have good prospects for use in feed additives.
Collapse
Affiliation(s)
- Vera Yaderets
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| | | | | | | | - Vakhtang Dzhavakhiya
- Laboratory of Biotechnology of Industrial Microorganisms, Department of Biotechnology and Technology of Bioorganic Synthesis Products, Russian Biotechnological University (ROSBIOTECH), Moscow 125080, Russia; (N.K.); (E.G.); (A.S.)
| |
Collapse
|
40
|
He G, Chen C, Mei S, Chen Z, Zhang R, Zhang T, Xu D, Zhu M, Luo X, Zeng C, Zhou B, Wang K, Zhu E, Cheng Z. Partially Alternative Feeding with Fermented Distillers' Grains Modulates Gastrointestinal Flora and Metabolic Profile in Guanling Cattle. Animals (Basel) 2023; 13:3437. [PMID: 38003055 PMCID: PMC10668747 DOI: 10.3390/ani13223437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Fermented distillers' grains (FDG) are commonly used to enhance the health and metabolic processes of livestock and poultry by regulating the composition and activity of the intestinal microbiota. Nevertheless, there is a scarcity of research on the effects of the FDG diet on the gastrointestinal microbiota and its metabolites in cattle. This study examines the impact of FDG dietary supplements on the gastrointestinal flora and metabolic profile of Guanling cattle. Eighteen cattle were randomly assigned to three treatment groups with six replicates per group. The treatments included a basal diet (BD), a 15% concentrate replaced by FDG (15% FDG) in the basal diet, and a 30% concentrate replaced by FDG (30% FDG) in the basal diet. Each group was fed for a duration of 60 days. At the conclusion of the experimental period, three cattle were randomly chosen from each group for slaughter and the microbial community structure and metabolic mapping of their abomasal and cecal contents were analyzed, utilizing 16S rDNA sequencing and LC-MS technology, respectively. At the phylum level, there was a significant increase in Bacteroidetes in both the abomasum and cecum for the 30%FDG group (p < 0.05). Additionally, there was a significant reduction in potential pathogenic bacteria such as Spirochetes and Proteobacteria for both the 15%FDG and 30%FDG groups (p < 0.05). At the genus level, there was a significant increase (p < 0.05) in Ruminococcaceae_UCG-010, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 fiber degradation bacteria. Non-target metabolomics analysis indicated that the FDG diet significantly impacted primary bile acid biosynthesis, bile secretion, choline metabolism in cancer, and other metabolic pathways (p < 0.05). There is a noteworthy correlation between the diverse bacterial genera and metabolites found in the abomasal and cecal contents of Guanling cattle, as demonstrated by correlation analysis. In conclusion, our findings suggest that partially substituting FDG for conventional feed leads to beneficial effects on both the structure of the gastrointestinal microbial community and the metabolism of its contents in Guanling cattle. These findings offer a scientific point of reference for the further use of FDG as a cattle feed resource.
Collapse
Affiliation(s)
- Guangxia He
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
| | - Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Chengrong Zeng
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China; (G.H.); (C.C.); (S.M.); (Z.C.); (R.Z.); (T.Z.); (D.X.); (M.Z.); (X.L.); (C.Z.); (B.Z.); (K.W.)
- Guizhou Provincial Animal Disease Research Laboratory, Guiyang 550025, China
| |
Collapse
|
41
|
Shum P, Wäge-Recchioni J, Sellers GS, Johnson ML, Joyce DA. DNA metabarcoding reveals the dietary profiles of a benthic marine crustacean, Nephrops norvegicus. PLoS One 2023; 18:e0289221. [PMID: 37910458 PMCID: PMC10619785 DOI: 10.1371/journal.pone.0289221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/13/2023] [Indexed: 11/03/2023] Open
Abstract
Norwegian lobster, Nephrops norvegicus, are a generalist scavenger and predator capable of short foraging excursions but can also suspension feed. Existing knowledge about their diet relies on a combination of methods including morphology-based stomach content analysis and stable isotopes, which often lack the resolution to distinguish prey items to species level particularly in species that thoroughly masticate their prey. DNA metabarcoding overcomes many of the challenges associated with traditional methods and it is an attractive approach to study the dietary profiles of animals. Here, we present the diet of the commercially valuable Nephrops norvegicus using DNA metabarcoding of gut contents. Despite difficulties associated with host amplification, our cytochrome oxidase I (COI) molecular assay successfully achieves higher resolution information than traditional approaches. We detected taxa that were likely consumed during different feeding strategies. Dinoflagellata, Chlorophyta and Bacillariophyta accounted for almost 50% of the prey items consumed, and are associated with suspension feeding, while fish with high fisheries discard rates were detected which are linked to active foraging. In addition, we were able to characterise biodiversity patterns by considering Nephrops as natural samplers, as well as detecting parasitic dinoflagellates (e.g., Hematodinium sp.), which are known to influence burrow related behaviour in infected individuals in over 50% of the samples. The metabarcoding data presented here greatly enhances a better understanding of a species' ecological role and could be applied as a routine procedure in future studies for proper consideration in the management and decision-making of fisheries.
Collapse
Affiliation(s)
- Peter Shum
- Faculty of Science, Liverpool John Moores University, Liverpool, United Kingdom
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| | - Janine Wäge-Recchioni
- School of Natural Sciences, University of Hull, Hull, United Kingdom
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Graham S. Sellers
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| | - Magnus L. Johnson
- School of Environmental Sciences, University of Hull, Hull, United Kingdom
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
42
|
Guo YQ, Hu YR, Liu SR, Wang M, Xian ZY, Liu DW, Sun BL, Li YK, Liu GB, Deng M, Hu WF, Liu QS. Effects of the Oat Hay Feeding Method and Compound Probiotic Supplementation on the Growth, Antioxidant Capacity, Immunity, and Rumen Bacteria Community of Dairy Calves. Antioxidants (Basel) 2023; 12:1851. [PMID: 37891930 PMCID: PMC10604343 DOI: 10.3390/antiox12101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to investigate the effects of the oat hay feeding method and compound probiotics (CMP) on the growth, health, serum antioxidant and immune indicators, rumen fermentation, and bacteria community of dairy calves from 3 to 5 months of age. Forty-eight female Holstein calves (80 ± 7 days of age, 93.71 ± 5.33 kg BW) were selected and randomly divided into four groups. A 2 × 2 factorial design was adopted for the experiment, with the factors of the oat hay feeding method (fed as free-choice or 16.7% in the diet) and compound probiotics (CMP) inclusion (0.15% or 0%) in the pelleted starter. The results showed that, compared with giving oat hay as free-choice, feeding a diet of 16.7% oat hay increased the pelleted starter intake at 1-84 d (p < 0.05), with an average daily gain (ADG) at 61-84 d (p = 0.02); adding CMP to the pelleted starter did not significantly affect body weight, and reduced the fecal index (p < 0.05). Feeding 16.7% oat hay increased the concentration of IgA, IgG, and IgM (p < 0.01), while adding CMP increased the catalase (p < 0.01) and decreased the concentration of malondialdehyde (p < 0.01) in serum. Feeding 16.7% oat hay increased the ruminal concentration of propionic acid (p < 0.05) and isobutyric acid (p = 0.08), and decreased the ruminal pH (p = 0.08), the concentration of acetic acid (p < 0.05), and the ratio of acetic acid to propionic acid (p < 0.01). Feeding 16.7% oat hay reduced the relative abundance of ruminal Firmicutes, Unidentified-Bacteria, Actinobacteria, Prevotella, NK4A214-group, Olsenella, and Actinobacteriota (p < 0.05); adding CMP increased the relative abundance of ruminal Prevotella, Rikenellaceae-RC9-gut-group, Ruminococcus, NK4A214-group, and Ruminococcus (p < 0.05), and decreased the abundance of Desulfobacterora, Prevotella-7, and Erysipelotricaceae-UCG-002 (p < 0.05). In conclusion, feeding a diet of 16.7% oat hay increased the pelleted starter intake and average daily gain, while slightly reducing the ruminal pH values; adding CMP to the pelleted starter resulted in reduced diarrhea incidence, increased serum antioxidant capacity and immunity, as well as ruminal richness and diversity of microorganisms in dairy calves from 3 to 5 months of age.
Collapse
Affiliation(s)
- Yong-Qing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ya-Ru Hu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Su-Ran Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Meng Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Zhen-Yu Xian
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - De-Wu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Bao-Li Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Yao-Kun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Guang-Bin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| | - Wen-Feng Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China;
| | - Qing-Shen Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.-Q.G.); (Y.-R.H.); (S.-R.L.); (M.W.); (Z.-Y.X.); (D.-W.L.); (B.-L.S.); (Y.-K.L.); (G.-B.L.); (M.D.)
| |
Collapse
|
43
|
Wang DD, Tang GF, Li YY, Yu JJ, Lei XJ, Cao YC, Yao JH. Differences in serum metabolome profile explain individual variation in growth performance of young goats. J Proteomics 2023; 288:104982. [PMID: 37532014 DOI: 10.1016/j.jprot.2023.104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
High growth rates and body weight are important traits of young dairy goats that can shorten generation intervals, improve animal performance, and increase economic benefits. In the present study, ninety-nine, 6-month-old, female goats were fed with the same diet and kept under the same management condition. The ten goats with highest average daily gain (ADG, HADG, 135.27 ± 4.59 g/d) and ten goats with lowest ADG (LADG, 87.74 ± 3.13 g/d) were selected to identify the key serum metabolites associated with ADG, and to investigate the relationships of serum metabolome profiles with digestive tract microbiota. The results showed that a total of 125 serum metabolites were significantly different between HADG and LADG. Of these, 43 serum metabolites were significantly higher levels in HADG, including D-ornithine, l-glutamine, L-histidine, carnosine, LysoPC (16:1(9Z)/0:0), DCTP and hydroxylysine, while, 82 serum metabolites were significantly higher levels in LADG, including P-salicylic acid and deoxycholic acid 3-glucuronide. Pathway analysis indicated that these different metabolites were mainly involved in amino acid and lipid metabolism. Furthermore, Spearman's rank correlation analysis revealed that these differential serum metabolites were correlated with ADG and ADG-related bacteria. Notably, serum hydroxylysine and L-histidine could be used as biomarkers for distinguishing HADG and LADG goats, with an accuracy of >92.0%. SIGNIFICANCE: Our study confirms that individual microbiota and metabolic differences contribute to the variations of growth rate in young goats. Some serum metabolites may be useful in improving the growth performance of young goats, which provides directions for developing further nutritional regulation in the goat industry to achieve healthy feeding and efficiency enhancement.
Collapse
Affiliation(s)
- Dang Dang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Fu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Yuan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Jian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Jian Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Chun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Hu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
44
|
Cheng X, Du X, Liang Y, Degen AA, Wu X, Ji K, Gao Q, Xin G, Cong H, Yang G. Effect of grape pomace supplement on growth performance, gastrointestinal microbiota, and methane production in Tan lambs. Front Microbiol 2023; 14:1264840. [PMID: 37840727 PMCID: PMC10569316 DOI: 10.3389/fmicb.2023.1264840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Grape pomace (GP), a by-product in wine production, is nutritious and can be used as a feed ingredient for ruminants; however, its role in shaping sheep gastrointestinal tract (GIT) microbiota is unclear. We conducted a controlled trial using a randomized block design with 10 Tan lambs fed a control diet (CD) and 10 Tan lambs fed a pelleted diet containing 8% GP (dry matter basis) for 46 days. Rumen, jejunum, cecum, and colon bacterial and archaeal composition were identified by 16S rRNA gene sequencing. Dry matter intake (DMI) was greater (p < 0.05) in the GP than CD group; however, there was no difference in average daily gain (ADG, p < 0.05) and feed conversion ratio (FCR, p < 0.05) between the two groups. The GP group had a greater abundance of Prevotella 1 and Prevotella 7 in the rumen; of Sharpe, Ruminococcaceae 2, and [Ruminococcus] gauvreauii group in the jejunum; of Ruminococcaceae UCG-014 and Romboutsia in the cecum, and Prevotella UCG-001 in the colon; but lesser Rikenellaceae RC9 gut group in the rumen and cecum, and Ruminococcaceae UCG-005 and Ruminococcaceae UCG-010 in the colon than the CD group. The pathways of carbohydrate metabolism, such as L-rhamnose degradation in the rumen, starch and glycogen degradation in the jejunum, galactose degradation in the cecum, and mixed acid fermentation and mannan degradation in the colon were up-graded; whereas, the pathways of tricarboxylic acid (TCA) cycle VIII, and pyruvate fermentation to acetone in the rumen and colon were down-graded with GP. The archaeal incomplete reductive TCA cycle was enriched in the rumen, jejunum, and colon; whereas, the methanogenesis from H2 and CO2, the cofactors of methanogenesis, including coenzyme M, coenzyme B, and factor 420 biosynthesis were decreased in the colon. The study concluded that a diet including GP at 8% DM did not affect ADG or FCR in Tan lambs. However, there were some potential benefits, such as enhancing propionate production by microbiota and pathways in the GIT, promoting B-vitamin production in the rumen, facilitating starch degradation and amino acid biosynthesis in the jejunum, and reducing methanogenesis in the colon.
Collapse
Affiliation(s)
- Xindong Cheng
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xia Du
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Liang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Xiukun Wu
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxian Gao
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Guosheng Xin
- Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, China
| | - Haitao Cong
- Shandong Huakun Rural Revitalization Institute Co., Ltd., Jinan, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Yellow River Estuary Tan Sheep Institute of Industrial Technology, Dongying, China
| |
Collapse
|
45
|
Baruselli PS, de Abreu LÂ, de Paula VR, Carvalho B, Gricio EA, Mori FK, Rebeis LM, Albertini S, de Souza AH, D’Occhio M. Applying assisted reproductive technology and reproductive management to reduce CO 2-equivalent emission in dairy and beef cattle: a review. Anim Reprod 2023; 20:e20230060. [PMID: 37720728 PMCID: PMC10503887 DOI: 10.1590/1984-3143-ar2023-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Methane emission from beef and dairy cattle combined contributes around 4.5-5.0% of total anthropogenic global methane. In addition to enteric methane (CH4) produced by the rumen, cattle production also contributes carbon dioxide (CO2) (feed), nitrous oxide (N2O) (feed production, manure) and other CH4 (manure) to the total greenhouse gas (GHG) budget of beef and dairy production systems. The relative contribution in standard dairy systems is typically enteric CH4 58%, feed 29% and manure 10%. Herds with low production efficiency can have an enteric CH4 contribution up to 90%. Digestibility of feed can impact CH4 emission intensity. Low fertility herds also have a greater enteric CH4 contribution. Animals with good feed conversion efficiency have a lower emission intensity of CH4/kg of meat or milk. Feed efficient heifers tend to be lean and have delayed puberty. Fertility is a major driver of profit in both beef and dairy cattle, and it is highly important to apply multi-trait selection when shifting herds towards improved efficiency and reduced CH4. Single nucleotide polymorphisms (SNPs) have been identified for feed efficiency in cattle and are used in genomic selection. SNPs can be utilized in artificial insemination and embryo transfer to increase the proportion of cattle that have the attributes of efficiency, fertility and reduced enteric CH4. Prepubertal heifers genomically selected for favourable traits can have oocytes recovered to produce IVF embryos. Reproductive technology is predicted to be increasingly adopted to reduce generation interval and accelerate the rate of genetic gain for efficiency, fertility and low CH4 in cattle. The relatively high contribution of cattle to anthropogenic global methane has focussed attention on strategies to reduce enteric CH4 without compromising efficiency and fertility. Assisted reproductive technology has an important role in achieving the goal of multiplying and distributing cattle that have good efficiency, fertility and low CH4.
Collapse
Affiliation(s)
- Pietro Sampaio Baruselli
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Laís Ângelo de Abreu
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Vanessa Romário de Paula
- Instituto Paulista de Ensino e Pesquisa, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, Juiz de Fora, MG, Brasil
| | - Bruno Carvalho
- Instituto Paulista de Ensino e Pesquisa, Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, Juiz de Fora, MG, Brasil
| | - Emanuelle Almeida Gricio
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Fernando Kenji Mori
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Lígia Mattos Rebeis
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Sofía Albertini
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Michael D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Wang J, Chen Y, Li M, Xia S, Zhao K, Fan H, Ni J, Sun W, Jia X, Lai S. The effects of differential feeding on ileum development, digestive ability and health status of newborn calves. Front Vet Sci 2023; 10:1255122. [PMID: 37745216 PMCID: PMC10514501 DOI: 10.3389/fvets.2023.1255122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Pre-weaning is the most important period for the growth and development of calves. Intestinal morphology, microbial community and immunity are initially constructed at this stage, and even have a lifelong impact on calves. Early feeding patterns have a significant impact on gastrointestinal development and microbial communities. This study mainly analyzed the effects of three feeding methods on the gastrointestinal development of calves, and provided a theoretical basis for further improving the feeding mode of calves. it is very important to develop a suitable feeding mode. In this study, we selected nine newborn healthy Holstein bull calves were randomly selected and divided into three groups (n = 3), which were fed with starter + hay + milk (SH group), starter + milk (SF group), total mixed ration + milk (TMR group). After 80 days of feeding Feeding to 80 days of age after, the ileum contents and blood samples were collected, and the differences were compared and analyzed by metagenomic analysis and serum metabolomics analysis. Results show that compared with the other two groups, the intestinal epithelium of the SH group was more complete and the goblet cells developed better. The feeding method of SH group was more conducive to the development of calves, with higher daily gain and no pathological inflammatory reaction. The intestinal microbial community was more conducive to digestion and absorption, and the immunity was stronger. These findings are helpful for us to explore better calf feeding patterns. In the next step, we will set up more biological replicates to study the deep-seated reasons for the differences in the development of pre-weaning calves. At the same time, the new discoveries of neuro microbiology broaden our horizons and are the focus of our future attention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
47
|
Kaur H, Kaur G, Gupta T, Mittal D, Ali SA. Integrating Omics Technologies for a Comprehensive Understanding of the Microbiome and Its Impact on Cattle Production. BIOLOGY 2023; 12:1200. [PMID: 37759599 PMCID: PMC10525894 DOI: 10.3390/biology12091200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Ruminant production holds a pivotal position within the global animal production and agricultural sectors. As population growth escalates, posing environmental challenges, a heightened emphasis is directed toward refining ruminant production systems. Recent investigations underscore the connection between the composition and functionality of the rumen microbiome and economically advantageous traits in cattle. Consequently, the development of innovative strategies to enhance cattle feed efficiency, while curbing environmental and financial burdens, becomes imperative. The advent of omics technologies has yielded fresh insights into metabolic health fluctuations in dairy cattle, consequently enhancing nutritional management practices. The pivotal role of the rumen microbiome in augmenting feeding efficiency by transforming low-quality feedstuffs into energy substrates for the host is underscored. This microbial community assumes focal importance within gut microbiome studies, contributing indispensably to plant fiber digestion, as well as influencing production and health variability in ruminants. Instances of compromised animal welfare can substantially modulate the microbiological composition of the rumen, thereby influencing production rates. A comprehensive global approach that targets both cattle and their rumen microbiota is paramount for enhancing feed efficiency and optimizing rumen fermentation processes. This review article underscores the factors that contribute to the establishment or restoration of the rumen microbiome post perturbations and the intricacies of host-microbiome interactions. We accentuate the elements responsible for responsible host-microbiome interactions and practical applications in the domains of animal health and production. Moreover, meticulous scrutiny of the microbiome and its consequential effects on cattle production systems greatly contributes to forging more sustainable and resilient food production systems, thereby mitigating the adverse environmental impact.
Collapse
Affiliation(s)
- Harpreet Kaur
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2052, Australia
- Mark Wainwright Analytical Centre, Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW 2052, Australia
- Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark
| | - Taruna Gupta
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Deepti Mittal
- Division of Biochemistry, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal 132001, India
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Wu Z, Nguyen D, Shrestha S, Raskin L, Khanal SK, Lee PH. Evaluation of Nanaerobic Digestion as a Mechanism to Explain Surplus Methane Production in Animal Rumina and Engineered Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12302-12314. [PMID: 37565790 PMCID: PMC10448717 DOI: 10.1021/acs.est.2c07813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Nanaerobes are a newly described class of microorganisms that use a unique cytochrome bd oxidase to achieve nanaerobic respiration at <2 μM dissolved oxygen (∼1% of atmospheric oxygen) but are not viable above this value due to the lack of other terminal oxidases. Although sharing an overlapping ecological niche with methanogenic archaea, the role of nanaerobes in methanogenic systems has not been studied so far. To explore their occurrence and significance, we re-analyzed published meta-omic datasets from animal rumina and waste-to-energy digesters, including conventional anaerobic digesters and anaerobic digesters with ultra-low oxygenation. Results show that animal rumina share broad similarities in the microbial community and system performance with oxygenated digesters, rather than with conventional anaerobic digesters, implying that trace levels of oxygen drive the efficient digestion in ruminants. The rumen system serves as an ideal model for the newly named nanaerobic digestion, as it relies on the synergistic co-occurrence of nanaerobes and methanogens for methane yield enhancement. The most abundant ruminal bacterial family Prevotellaceae contains many nanaerobes, which perform not only anaerobic fermentation but also nanaerobic respiration using cytochrome bd oxidase. These nanaerobes generally accompany hydrogenotrophic methanogens to constitute a thermodynamically and physiologically consistent framework for efficient methane generation. Our findings provide new insights into ruminal methane emissions and strategies to enhance methane generation from biomass.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
- Shanghai
Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Duc Nguyen
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
- The
Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Shilva Shrestha
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
| | - Samir Kumar Khanal
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
| | - Po-Heng Lee
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
49
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
50
|
Torres Manno MA, Gizzi FO, Martín M, Espariz M, Magni C, Blancato VS. Metagenomic approach to infer rumen microbiome derived traits of cattle. World J Microbiol Biotechnol 2023; 39:250. [PMID: 37439894 DOI: 10.1007/s11274-023-03694-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
Ruminants enable the conversion of indigestible plant material into animal consumables, including dairy products, meat, and valuable fibers. Microbiome research is gaining popularity in livestock species because it aids in the knowledge of illnesses and efficiency processes in animals. In this study, we use WGS metagenomic data to thoroughly characterize the ruminal ecosystem of cows to infer positive and negative livestock traits determined by the microbiome. The rumen of cows from Argentina were described by combining different gene biomarkers, pathways composition and taxonomic information. Taxonomic characterization indicated that the two major phyla were Bacteroidetes and Firmicutes; in third place, Proteobacteria was highly represented followed by Actinobacteria; Prevotella, and Bacteroides were the most abundant genera. Functional profiling of carbohydrate-active enzymes indicated that members of the Glycoside Hydrolase (GH) class accounted for 52.2 to 55.6% of the total CAZymes detected, among them the most abundant were the oligosaccharide degrading enzymes. The diversity of GH families found suggested efficient hydrolysis of complex biomass. Genes of multidrug, macrolides, polymyxins, beta-lactams, rifamycins, tetracyclines, and bacitracin resistance were found below 0.12% of relative abundance. Furthermore, the clustering analysis of genera and genes that correlated to methane emissions or feed efficiency, suggested that the cows analysed could be regarded as low methane emitters and clustered with high feed efficiency reference animals. Finally, the combination of bioinformatic analyses used in this study can be applied to assess cattle traits difficult to measure and guide enhanced nutrition and breeding methods.
Collapse
Affiliation(s)
- Mariano A Torres Manno
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Fernán O Gizzi
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - UNR, Rosario, Argentina
| | - Martín Espariz
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Christian Magni
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina
| | - Víctor S Blancato
- Laboratorio de Fisiología y Genética de Bacterias Lácticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Laboratorio de Biotecnología e Inocuidad de los Alimentos, Facultad de Ciencias Bioquímicas y Farmacéuticas (FBioyF) - Municipalidad de Granadero Baigorria, Universidad Nacional de Rosario (UNR), Rosario, Argentina.
- Biotecnología de los Alimentos, LCTA, FBioyF-UNR, Suipacha 590, Rosario, Argentina.
| |
Collapse
|