1
|
Li Y, Liu Y, Ran G, Yu Y, Zhou Y, Zhu Y, Du Y, Pi L. The pentatricopeptide repeat protein DG1 promotes the transition to bilateral symmetry during Arabidopsis embryogenesis through GUN1-mediated plastid signals. THE NEW PHYTOLOGIST 2024; 244:542-557. [PMID: 39140987 DOI: 10.1111/nph.20056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
During Arabidopsis embryogenesis, the transition of the embryo's symmetry from radial to bilateral between the globular and heart stage is a crucial event, involving the formation of cotyledon primordia and concurrently the establishment of a shoot apical meristem (SAM). However, a coherent framework of how this transition is achieved remains to be elucidated. In this study, we investigated the function of DELAYED GREENING 1 (DG1) in Arabidopsis embryogenesis using a newly identified dg1-3 mutant. The absence of chloroplast-localized DG1 in the mutants led to embryos being arrested at the globular or heart stage, accompanied by an expansion of WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) expression. This finding pinpoints the essential role of DG1 in regulating the transition to bilateral symmetry. Furthermore, we showed that this regulation of DG1 may not depend on its role in plastid RNA editing. Nevertheless, we demonstrated that the DG1 function in establishing bilateral symmetry is genetically mediated by GENOMES UNCOUPLED 1 (GUN1), which represses the transition process in dg1-3 embryos. Collectively, our results reveal that DG1 functionally antagonizes GUN1 to promote the transition of the Arabidopsis embryo's symmetry from radial to bilateral and highlight the role of plastid signals in regulating pattern formation during plant embryogenesis.
Collapse
Affiliation(s)
- Yajie Li
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yiqiong Liu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Guiping Ran
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yue Yu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yifan Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxian Zhu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yujuan Du
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, 464-8601, Japan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Qu K, Liu D, Sun L, Li M, Xia T, Sun W, Xia Y. De novo assembly and comprehensive analysis of the mitochondrial genome of Taxus wallichiana reveals different repeats mediate recombination to generate multiple conformations. Genomics 2024; 116:110900. [PMID: 39067796 DOI: 10.1016/j.ygeno.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Taxus plants are the exclusive source of paclitaxel, an anticancer drug with significant medicinal and economic value. Interspecies hybridization and gene introgression during evolution have obscured distinctions among Taxus species, complicating their phylogenetic classification. While the chloroplast genome of Taxus wallichiana, a widely distributed species in China, has been sequenced, its mitochondrial genome (mitogenome) remains uncharacterized.We sequenced and assembled the T. wallichiana mitogenome using BGI short reads and Nanopore long reads, facilitating comparisons with other gymnosperm mitogenomes. The T. wallichiana mitogenome spanning 469,949 bp, predominantly forms a circular configuration with a GC content of 50.51%, supplemented by 3 minor configurations mediated by one pair of LRs and two pairs of IntRs. It includes 32 protein-coding genes, 7 tRNA genes, and 3 rRNA genes, several of which exist in multiple copies.We detailed the mitogenome's structure, codon usage, RNA editing, and sequence migration between organelles, constructing a phylogenetic tree to elucidate evolutionary relationships. Unlike typical gymnosperm mitochondria, T. wallichiana shows no evidence of mitochondrial-plastid DNA transfer (MTPT), highlighting its unique genomic architecture. Synteny analysis indicated extensive genomic rearrangements in T. wallichiana, likely driven by recombination among abundant repetitive sequences. This study offers a high-quality T. wallichiana mitogenome, enhancing our understanding of gymnosperm mitochondrial evolution and supporting further cultivation and utilization of Taxus species.
Collapse
Affiliation(s)
- Kai Qu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China; National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Limin Sun
- Forestry College of Shandong Agricultural University, Taian 271018, China
| | - Meng Li
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tiantian Xia
- Shandong Jianzhu University, Jinan 250101, China
| | - Weixia Sun
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yufei Xia
- National Engineering Laboratory of Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Li J, Chen S, Zhang Y, Zhao W, Yang J, Fan Y. A novel PLS-DYW type PPR protein OsASL is essential for chloroplast development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112134. [PMID: 38810885 DOI: 10.1016/j.plantsci.2024.112134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Oryza longistaminata (OL), an AA-genome African wild rice which can propagate clonally via rhizome, is an important germplasm for improvement of Asian cultivated rice, however recessive lethal alleles can hitchhike clonal propagation in heterozygous state. Selfing of OL is difficult due to its self-incompatibility, but simple selfing of hybrid progeny between OL and O. sativa is effective to disclose and eliminate recessive lethal alleles. Here, we identified an exhibited albino-lethal phenotype mutant, from an F2 population between OL and O. sativa, named it albino seedling-lethal (asl). The leaves of asl mutant showed abnormal chloroplast development. The albino characteristics of asl were determined to be governed by a set of recessive nuclear genes through genetic analysis. Map-based cloning experiments found that a single nucleotide variation (G to A) was detected in the exon of OsASL in OL, which causes a premature stop codon. OsASL encodes a PLS-type PPR protein with 12 pentratricopeptide repeat domains, and is translocalized to chloroplasts. Complementation and knockout transgenic experiments further confirmed that OsASL is responsible for the albino-lethal phenotype. Loss-of-function OsASL (i.e. osasl) resulted in devoid of intron splicing of chloroplast RNA atpF, ndhA, rpl2 and rps12, and also RNA editing of ndhB, but facilitates the RNA editing of rpl2 in the plastid. Transcriptome sequencing showed that OsASL was mainly involved in chlorophyll synthesis pathway. The expression of Chlorophyll-associated genes were significantly decreased in asl plants, especially PEP (plastid-encoded RNA polymerase)-mediated genes. Our results suggest that OsASL is crucial for RNA editing, RNA splicing of chloroplast RNA group II genes, and plays an essential role in chloroplast development during early leaf development in rice.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shufang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weidong Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Yourong Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Sun Y, Liu Y, Zhang Y, Lin D, Pan X, Dong Y. The Rice YL4 Gene Encoding a Ribosome Maturation Domain Protein Is Essential for Chloroplast Development. BIOLOGY 2024; 13:580. [PMID: 39194518 DOI: 10.3390/biology13080580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Chloroplast RNA splicing and ribosome maturation (CRM) domain proteins are a family of plant-specific proteins associated with RNA binding. In this study, we have conducted a detailed characterization of a novel rice CRM gene (LOC_Os04g39060) mutant, yl4, which showed yellow-green leaves at all the stages, had fewer tillers, and had a decreased plant height. Map-based cloning and CRISPR/Cas9 editing techniques all showed that YL4 encoded a CRM domain protein in rice. In addition, subcellular localization revealed that YL4 was in chloroplasts. YL4 transcripts were highly expressed in all leaves and undetectable in roots and stems, and the mutation of YL4 affected the transcription of chloroplast-development-related genes. This study indicated that YL4 is essential for chloroplast development and affects some agronomic traits.
Collapse
Affiliation(s)
- Yunguang Sun
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yanxia Liu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Youze Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dongzhi Lin
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai 200234, China
| | - Xiaobiao Pan
- Crop Institute, Taizhou Academy of Agricultural Sciences, Linhai 317000, China
| | - Yanjun Dong
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai 200234, China
| |
Collapse
|
5
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA-Seq for the discovery of long noncoding and antisense RNAs in plant organelles. PHYSIOLOGIA PLANTARUM 2024; 176:e14418. [PMID: 39004808 DOI: 10.1111/ppl.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
Plant organelle transcription has been studied for decades. As techniques advanced, so did the fields of mitochondrial and plastid transcriptomics. The current view is that organelle genomes are pervasively transcribed, irrespective of their size, content, structure, and taxonomic origin. However, little is known about the nature of organelle noncoding transcriptomes, including pervasively transcribed noncoding RNAs (ncRNAs). Next-generation sequencing data have uncovered small ncRNAs in the organelles of plants and other organisms, but long ncRNAs remain poorly understood. Here, we argue that publicly available third-generation long-read RNA sequencing data from plants can provide a fine-tuned picture of long ncRNAs within organelles. Indeed, given their bloated architectures, plant mitochondrial genomes are well suited for studying pervasive transcription of ncRNAs. Ultimately, we hope to showcase this new avenue of plant research while also underlining the limitations of the proposed approach.
Collapse
Affiliation(s)
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology-Paraná-UTFPR, Cornélio Procópio, PR, Brazil
| | - David Roy Smith
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
6
|
Sanita Lima M, Silva Domingues D, Rossi Paschoal A, Smith DR. Long-read RNA sequencing can probe organelle genome pervasive transcription. Brief Funct Genomics 2024:elae026. [PMID: 38880995 DOI: 10.1093/bfgp/elae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
40 years ago, organelle genomes were assumed to be streamlined and, perhaps, unexciting remnants of their prokaryotic past. However, the field of organelle genomics has exposed an unparallel diversity in genome architecture (i.e. genome size, structure, and content). The transcription of these eccentric genomes can be just as elaborate - organelle genomes are pervasively transcribed into a plethora of RNA types. However, while organelle protein-coding genes are known to produce polycistronic transcripts that undergo heavy posttranscriptional processing, the nature of organelle noncoding transcriptomes is still poorly resolved. Here, we review how wet-lab experiments and second-generation sequencing data (i.e. short reads) have been useful to determine certain types of organelle RNAs, particularly noncoding RNAs. We then explain how third-generation (long-read) RNA-Seq data represent the new frontier in organelle transcriptomics. We show that public repositories (e.g. NCBI SRA) already contain enough data for inter-phyla comparative studies and argue that organelle biologists can benefit from such data. We discuss the prospects of using publicly available sequencing data for organelle-focused studies and examine the challenges of such an approach. We highlight that the lack of a comprehensive database dedicated to organelle genomics/transcriptomics is a major impediment to the development of a field with implications in basic and applied science.
Collapse
Affiliation(s)
- Matheus Sanita Lima
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Douglas Silva Domingues
- Department of Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Avenida Padua Dias 11, Piracicaba, SP 13418-900, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, Bioinformatics and Pattern Recognition Group (BIOINFO-CP), Federal University of Technology - Paraná - UTFPR, Avenida Alberto Carazzai 1640, Cornélio Procópio, PR 86300000, Brazil
| | - David Roy Smith
- Department of Biology, Western University, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
7
|
Nishimura Y. Plastid Nucleoids: Insights into Their Shape and Dynamics. PLANT & CELL PHYSIOLOGY 2024; 65:551-559. [PMID: 37542434 DOI: 10.1093/pcp/pcad090] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/07/2023]
Abstract
Chloroplasts/plastids are unique organelles found in plant cells and some algae and are responsible for performing essential functions such as photosynthesis. The plastid genome, consisting of circular and linear DNA molecules, is packaged and organized into specialized structures called nucleoids. The composition and dynamics of these nucleoids have been the subject of intense research, as they are critical for proper plastid functions and development. In this mini-review, recent advances in understanding the organization and regulation of plastid nucleoids are overviewed, with a focus on the various proteins and factors that regulate the shape and dynamics of nucleoids, including DNA-binding proteins and membrane anchorage proteins. The dynamic nature of nucleoid organization, which is influenced by a variety of developmental cues and the cell cycle, is also examined.
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-Shirakawa, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|
8
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and may have a role in C-to-U editing of some chloroplast RNA transcripts. PLANT MOLECULAR BIOLOGY 2024; 114:28. [PMID: 38485794 PMCID: PMC10940495 DOI: 10.1007/s11103-024-01424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria- and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 orthologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. In this study we examined the function of IPI1 in chloroplast RNA processing in N. benthamiana to gain insight into the importance of the DYW domain to the function of the EMB175/PPR103/ IPI1 proteins. Structural predictions suggest that evolutionary loss of residues identified as critical for catalyzing C-to-U editing in other members of this class of proteins, were likely to lead to reduced or absent editing activity in the Nicotiana and Arabidopsis IPI1 orthologs. Virus-induced gene silencing of NbIPI1 led to defects in chloroplast ribosomal RNA processing and changes to stability of rpl16 transcripts, revealing conserved function with its maize ortholog. NbIPI1-silenced plants also had defective C-to-U RNA editing in several chloroplast transcripts, a contrast from the finding that maize PPR103 had no role in editing. The results indicate that in addition to its role in transcript stability, NbIPI1 may contribute to C-to-U editing in N. benthamiana chloroplasts.
Collapse
Affiliation(s)
- Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Tessa M Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
9
|
Chai X, Wang X, Rong L, Luo M, Yuan L, Li Q, He B, Jiang J, Ji D, Ouyang M, Lu Q, Zhang L, Rochaix JD, Chi W. The translocon protein FtsHi1 is an ATP-dependent DNA/RNA helicase that prevents R-loop accumulation in chloroplasts. THE NEW PHYTOLOGIST 2024; 241:2209-2226. [PMID: 38084045 DOI: 10.1111/nph.19470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.
Collapse
Affiliation(s)
- Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiushun Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manfei Luo
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yuan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuxin Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoye He
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun St., Kaifeng, 475001, China
| | - Jean-David Rochaix
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
- Department of Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Peng Y, Wang Z, Li M, Wang T, Su Y. Characterization and analysis of multi-organ full-length transcriptomes in Sphaeropteris brunoniana and Alsophila latebrosa highlight secondary metabolism and chloroplast RNA editing pattern of tree ferns. BMC PLANT BIOLOGY 2024; 24:73. [PMID: 38273309 PMCID: PMC10811885 DOI: 10.1186/s12870-024-04746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.
Collapse
Affiliation(s)
- Yang Peng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minghui Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ting Wang
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| |
Collapse
|
11
|
Chung KP, Loiacono FV, Neupert J, Wu M, Bock R. An RNA thermometer in the chloroplast genome of Chlamydomonas facilitates temperature-controlled gene expression. Nucleic Acids Res 2023; 51:11386-11400. [PMID: 37855670 PMCID: PMC10639063 DOI: 10.1093/nar/gkad816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Riboregulators such as riboswitches and RNA thermometers provide simple, protein-independent tools to control gene expression at the post-transcriptional level. In bacteria, RNA thermometers regulate protein synthesis in response to temperature shifts. Thermometers outside of the bacterial world are rare, and in organellar genomes, no RNA thermometers have been identified to date. Here we report the discovery of an RNA thermometer in a chloroplast gene of the unicellular green alga Chlamydomonas reinhardtii. The thermometer, residing in the 5' untranslated region of the psaA messenger RNA forms a hairpin-type secondary structure that masks the Shine-Dalgarno sequence at 25°C. At 40°C, melting of the secondary structure increases accessibility of the Shine-Dalgarno sequence to initiating ribosomes, thus enhancing protein synthesis. By targeted nucleotide substitutions and transfer of the thermometer into Escherichia coli, we show that the secondary structure is necessary and sufficient to confer the thermometer properties. We also demonstrate that the thermometer provides a valuable tool for inducible transgene expression from the Chlamydomonas plastid genome, in that a simple temperature shift of the algal culture can greatly increase recombinant protein yields.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - F Vanessa Loiacono
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mengting Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Department Organelle Biology, Biotechnology and Molecular Ecophysiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Wang X, Qi Y, Liu N, Zhang Q, Xie S, Lei Y, Li B, Shao J, Yu F, Liu X. Interaction of PALE CRESS with PAP2/pTAC2 and PAP3/pTAC10 affects the accumulation of plastid-encoded RNA polymerase complexes in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1433-1448. [PMID: 37668229 DOI: 10.1111/nph.19243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
The transcription of photosynthesis genes in chloroplasts is largely mediated by the plastid-encoded RNA polymerase (PEP), which resembles prokaryotic-type RNA polymerases, but with plant-specific accessory subunits known as plastid transcriptionally active chromosome proteins (pTACs) or PEP-associated proteins (PAPs). However, whether additional factors are involved in the biogenesis of PEP complexes remains unknown. Here, we investigated the function of an essential gene, PALE CRESS (PAC), in the accumulation of PEP complexes in chloroplasts. We established that an Arabidopsis leaf variegation mutant, variegated 6-1 (var6-1), is a hypomorphic allele of PAC. Unexpectedly, we revealed that a fraction of VAR6/PAC is associated with thylakoid membranes, where it interacts with PEP complexes. The accumulation of PEP complexes is defective in both var6-1 and the null allele var6-2. Further protein interaction assays confirmed that VAR6/PAC interacts directly with the PAP2/pTAC2 and PAP3/pTAC10 subunits of PEP complexes. Moreover, we generated viable hypomorphic alleles of the essential gene PAP2/pTAC2, and revealed a genetic interaction between PAC and PAP2/pTAC2 in photosynthesis gene expression and PEP complex accumulation. Our findings establish that VAR6/PAC affects PEP complex accumulation through interactions with PAP2/pTAC2 and PAP3/pTAC10, and provide new insights into the accumulation of PEP and chloroplast development.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Na Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiaoxin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bilang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Kharabian-Masouleh A, Furtado A, Alsubaie B, Al-Dossary O, Wu A, Al-Mssalem I, Henry R. Loss of plastid ndh genes in an autotrophic desert plant. Comput Struct Biotechnol J 2023; 21:5016-5027. [PMID: 37867970 PMCID: PMC10589726 DOI: 10.1016/j.csbj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Plant plastid genomes are highly conserved with most flowering plants having the same complement of essential plastid genes. Here, we report the loss of five of the eleven NADH dehydrogenase subunit genes (ndh) in the plastid of a desert plant jojoba (Simmondsia chinensis). The plastid genome of jojoba was 156,496 bp with one large single copy region (LSC), a very small single copy region (SSC) and two expanded inverted repeats (IRA + IRB). The NADH dehydrogenase (NDH) complex is comprised of several protein subunits, encoded by the ndh genes of the plastome and the nucleus. The ndh genes are critical to the proper functioning of the photosynthetic electron transport chain and protection of plants from oxidative stress. Most plants are known to contain all eleven ndh genes. Plants with missing or defective ndh genes are often heterotrophs either due to their complete or holo- or myco- parasitic nature. Plants with a defective NDH complex, caused by the deletion/pseudogenisation of some or all the ndh genes, survive in milder climates suggesting the likely extinction of plant lineages lacking these genes under harsh climates. Interestingly, some autotrophic plants do exist without ndh gene/s and can cope with high or low light. This implies that these plants are protected from oxidative stress by mechanisms excluding ndh genes. Jojoba has evolved mechanisms to cope with a non-functioning NDH complex and survives in extreme desert conditions with abundant sunlight and limited water.
Collapse
Affiliation(s)
- Ardashir Kharabian-Masouleh
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Bader Alsubaie
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Othman Al-Dossary
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Alex Wu
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| | - Ibrahim Al-Mssalem
- College of Agriculture and Food Sciences, King Faisal University (KFU), Al Hofuf, 36362 Saudi Arabia
| | - Robert Henry
- Queensland Alliance for Innovation in Food and Agriculture (QAAFI), The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Carmody Rd, St Lucia, QLD 4072, Australia
| |
Collapse
|
14
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
15
|
An H, Ke X, Li L, Liu Y, Yuan S, Wang Q, Hou X, Zhao J. ALBINO EMBRYO AND SEEDLING is required for RNA splicing and chloroplast homeostasis in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:483-501. [PMID: 37311175 DOI: 10.1093/plphys/kiad341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins form a large protein family and have diverse functions in plant development. Here, we identified an ALBINO EMBRYO AND SEEDLING (AES) gene that encodes a P-type PPR protein expressed in various tissues, especially the young leaves of Arabidopsis (Arabidopsis thaliana). Its null mutant aes exhibited a collapsed chloroplast membrane system, reduced pigment content and photosynthetic activity, decreased transcript levels of PEP (plastid-encoded polymerase)-dependent chloroplast genes, and defective RNA splicing. Further work revealed that AES could directly bind to psbB-psbT, psbH-petB, rps8-rpl36, clpP, ycf3, and ndhA in vivo and in vitro and that the splicing efficiencies of these genes and the expression levels of ycf3, ndhA, and cis-tron psbB-psbT-psbH-petB-petD decreased dramatically, leading to defective PSI, PSII, and Cyt b6f in aes. Moreover, AES could be transported into the chloroplast stroma via the TOC-TIC channel with the assistance of Tic110 and cpSRP54 and may recruit HCF244, SOT1, and CAF1 to participate in the target RNA process. These findings suggested that AES is an essential protein for the assembly of photosynthetic complexes, providing insights into the splicing of psbB operon (psbB-psbT-psbH-petB-petD), ycf3, and ndhA, as well as maintaining chloroplast homeostasis.
Collapse
Affiliation(s)
- Hongqiang An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xiaolong Ke
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Lu Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Yantong Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Sihui Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Qiuyu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
16
|
Wang C, Quadrado M, Mireau H. Interplay of endonucleolytic and exonucleolytic processing in the 3'-end formation of a mitochondrial nad2 RNA precursor in Arabidopsis. Nucleic Acids Res 2023; 51:7619-7630. [PMID: 37293952 PMCID: PMC10415111 DOI: 10.1093/nar/gkad493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Initiation and termination of plant mitochondrial transcription are poorly controlled steps. Precursor transcripts are thus often longer than necessary, and 3'-end processing as well as control of RNA stability are essential to produce mature mRNAs in plant mitochondria. Plant mitochondrial 3' ends are determined by 3'-to-5' exonucleolytic trimming until the progression of mitochondrial exonucleases along transcripts is stopped by stable RNA structures or RNA binding proteins. In this analysis, we investigated the function of the endonucleolytic mitochondrial stability factor 1 (EMS1) pentatricopeptide repeat (PPR) protein and showed that it is essential for the production and the stabilization of the mature form of the nad2 exons 1-2 precursor transcript, whose 3' end corresponds to the 5' half of the nad2 trans-intron 2. The accumulation of an extended rather than a truncated form of this transcript in ems1 mutant plants suggests that the role of EMS1 in 3' end formation is not strictly limited to blocking the passage of 3'-5' exonucleolytic activity, but that 3' end formation of the nad2 exons 1-2 transcript involves an EMS1-dependent endonucleolytic cleavage. This study demonstrates that the formation of the 3' end of mitochondrial transcripts may involve an interplay of endonucleolytic and exonucleolytic processing mediated by PPR proteins.
Collapse
Affiliation(s)
- Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Hakim Mireau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
17
|
Ni J, Song W, Ali NA, Zhang Y, Xing J, Su K, Sun X, Zhao X. The ATP Synthase γ Subunit ATPC1 Regulates RNA Editing in Chloroplasts. Int J Mol Sci 2023; 24:ijms24119203. [PMID: 37298153 DOI: 10.3390/ijms24119203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA editing is the process of modifying RNA molecules by inserting, deleting, or substituting nucleotides. In flowering plants, RNA editing occurs predominantly in RNAs encoded by the organellar genomes of mitochondria and chloroplasts, and the main type of editing involves the substitution of cytidine with uridine at specific sites. Abnormal RNA editing in plants can affect gene expression, organelle function, plant growth, and reproduction. In this study, we report that ATPC1, the gamma subunit of ATP synthase in Arabidopsis chloroplasts, has an unexpected role in the regulation of editing at multiple sites of plastid RNAs. The loss of function of ATPC1 severely arrests chloroplast development, causing a pale-green phenotype and early seedling lethality. Disruption of ATPC1 increases the editing of matK-640, rps12-i-58, atpH-3'UTR-13210, and ycf2-as-91535 sites while decreasing the editing of rpl23-89, rpoA-200, rpoC1-488, and ndhD-2 sites. We further show that ATPC1 participates in RNA editing by interacting with known multiple-site chloroplast RNA editing factors, including MORFs, ORRM1, and OZ1. The transcriptome in the atpc1 mutant is profoundly affected, with a pattern of defective expression of chloroplast development-related genes. These results reveal that the ATP synthase γ subunit ATPC1 is involved in multiple-site RNA editing in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Jia Ni
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wenjian Song
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Nadia Ahmed Ali
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yayi Zhang
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiani Xing
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kexing Su
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingxing Sun
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaobo Zhao
- Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Ghandour R, Gao Y, Laskowski J, Barahimipour R, Ruf S, Bock R, Zoschke R. Transgene insertion into the plastid genome alters expression of adjacent native chloroplast genes at the transcriptional and translational levels. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:711-725. [PMID: 36529916 PMCID: PMC10037153 DOI: 10.1111/pbi.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In plant biotechnology and basic research, chloroplasts have been used as chassis for the expression of various transgenes. However, potential unintended side effects of transgene insertion and high-level transgene expression on the expression of native chloroplast genes are often ignored and have not been studied comprehensively. Here, we examined expression of the chloroplast genome at both the transcriptional and translational levels in five transplastomic tobacco (Nicotiana tabacum) lines carrying the identical aadA resistance marker cassette in diverse genomic positions. Although none of the lines exhibits a pronounced visible phenotype, the analysis of three lines that contain the aadA insertion in different locations within the petL-petG-psaJ-rpl33-rps18 transcription unit demonstrates that transcriptional read-through from the aadA resistance marker is unavoidable, and regularly causes overexpression of downstream sense-oriented chloroplast genes at the transcriptional and translational levels. Investigation of additional lines that harbour the aadA intergenically and outside of chloroplast transcription units revealed that expression of the resistance marker can also cause antisense effects by interference with transcription/transcript accumulation and/or translation of downstream antisense-oriented genes. In addition, we provide evidence for a previously suggested role of genomically encoded tRNAs in chloroplast transcription termination and/or transcript processing. Together, our data uncover principles of neighbouring effects of chloroplast transgenes and suggest general strategies for the choice of transgene insertion sites and expression elements to minimize unintended consequences of transgene expression on the transcription and translation of native chloroplast genes.
Collapse
Affiliation(s)
- Rabea Ghandour
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Yang Gao
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | | | | | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| |
Collapse
|
19
|
Jin HL, Duan S, Zhang P, Yang Z, Zeng Y, Chen Z, Hong L, Li M, Luo L, Chang Z, Hu J, Wang HB. Dual roles for CND1 in maintenance of nuclear and chloroplast genome stability in plants. Cell Rep 2023; 42:112268. [PMID: 36933214 DOI: 10.1016/j.celrep.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.
Collapse
Affiliation(s)
- Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 263, Longxi Avenue, Guangzhou, China.
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yunping Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Mengshu Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lujun Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhenyi Chang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jiliang Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
20
|
McCray TN, Azim MF, Burch-Smith TM. The dicot homolog of maize PPR103 carries a C-terminal DYW domain and is required for C-to-U editing of chloroplast RNA transcripts. RESEARCH SQUARE 2023:rs.3.rs-2574001. [PMID: 36865278 PMCID: PMC9980218 DOI: 10.21203/rs.3.rs-2574001/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In plants, cytidine-to-uridine (C-to-U) editing is a crucial step in processing mitochondria and chloroplast-encoded transcripts. This editing requires nuclear-encoded proteins including members of the pentatricopeptide (PPR) family, especially PLS-type proteins carrying the DYW domain. IPI1/emb175/PPR103 is a nuclear gene encoding a PLS-type PPR protein essential for survival in Arabidopsis thaliana and maize. Arabidopsis IPI1 was identified as likely interacting with ISE2, a chloroplast-localized RNA helicase associated with C-to-U RNA editing in Arabidopsis and maize. Notably, while the Arabidopsis and Nicotiana IPI1 homologs possess complete DYW motifs at their C-termini, the maize homolog, ZmPPR103, lacks this triplet of residues which are essential for editing. We examined the function of ISE2 and IPI1 in chloroplast RNA processing in N. benthamiana. A combination of deep sequencing and Sanger sequencing revealed C-to-U editing at 41 sites in 18 transcripts, with 34 sites conserved in the closely related N. tabacum. Virus induced gene silencing of NbISE2 or NbIPI1 led to defective C-to-U revealed that they have overlapping roles at editing a site in the rpoB transcript but have distinct roles in editing other transcripts. This finding contrasts with maize ppr103 mutants that showed no defects in editing. The results indicate that NbISE2 and NbIPI1 are important for C-to-U editing in N. benthamiana chloroplasts, and they may function in a complex to edit specific sites while having antagonistic effects on editing others. That NbIPI1, carrying a DYW domain, is involved in organelle C-to-U RNA editing supports previous work showing that this domain catalyzes RNA editing.
Collapse
Affiliation(s)
- Tyra N. McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Mohammad F. Azim
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| | - Tessa M. Burch-Smith
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
- Donald Danforth Plant Science Center, St. Louis, MO 63132
| |
Collapse
|
21
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Zhang Q, Chen C, Wang Y, He M, Li Z, Shen L, Li Q, Zhu L, Ren D, Hu J, Gao Z, Zhang G, Qian Q. OsPPR11 encoding P-type PPR protein that affects group II intron splicing and chloroplast development. PLANT CELL REPORTS 2023; 42:355-369. [PMID: 36576552 DOI: 10.1007/s00299-022-02961-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/28/2022] [Indexed: 05/20/2023]
Abstract
OsPPR11 belongs to the P-type PPR protein family and can interact with OsCAF2 to regulate Group II intron splicing and affect chloroplast development in rice. Pentatricopeptide repeat (PPR) proteins participate in chloroplasts or mitochondria group II introns splicing in plants. The PPR protein family contains 491 members in rice, but most of their functions are unknown. In this study, we identified a nuclear gene encoding the P-type PPR protein OsPPR11 in chloroplasts. The qRT-PCR analysis demonstrated that OsPPR11 was expressed in all plant tissues, but leaves had the highest expression. The osppr11 mutants had yellowing leaves and a lethal phenotype that inhibited chloroplast development and photosynthesis-related gene expression and reduced photosynthesis-related protein accumulation in seedlings. Moreover, photosynthetic complex accumulation decreased significantly in osppr11 mutants. The OsPPR11 is required for ndhA, and ycf3-1 introns splicing and interact with CRM family protein OsCAF2, suggesting that these two proteins may form splicing complexes to regulate group II introns splicing. Further analysis revealed that OsCAF2 interacts with OsPPR11 through the N-terminus. These results indicate that OsPPR11 is essential for chloroplast development and function by affecting group II intron splicing in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Mengxing He
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhiwen Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, People's Republic of China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qing Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, People's Republic of China.
| |
Collapse
|
23
|
Cheng Q, He Y, Lu Q, Wang H, Liu S, Liu J, Liu M, Zhang Y, Wang Y, Sun L, Shen H. Mapping of the AgWp1 gene for the white petiole in celery (Apium graveolens L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111563. [PMID: 36509245 DOI: 10.1016/j.plantsci.2022.111563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Celery (Apium graveolens L.) is one of the most popular leafy vegetables worldwide. The main edible parts of celery are the leaf blade and especially the petiole, which typically has a white, green and red color. To date, there are very few reports about the inheritance and gene cloning of celery petiole color. In this study, bulked segregant analysis-sequencing (BSA-Seq) and fine mapping were conducted to delimit the white petiole (wp1) loci into a 668.5-kb region on Chr04. In this region, AgWp1 is a homolog of a DAG protein in Antirrhinum majus and a MORF9 protein in Arabidopsis, and both proteins are involved in chloroplast development. Sequencing alignment shows that there is a 27-bp insertion in the 3'-utr region in AgWp1 in the white petiole. Gene expression analysis indicated that the expression level of AgWp1 in the green petiole was much higher than that in the white petiole. Further cosegregation revealed that the 27-bp insertion was completely cosegregated with the petiole color in 45 observed celery varieties. Therefore, AgWp1 was considered to be the candidate gene controlling the white petiole in celery. Our results could not only improve the efficiency and accuracy of celery breeding but also help in understanding the mechanism of chlorophyll synthesis and chloroplast development in celery.
Collapse
Affiliation(s)
- Qing Cheng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yujiao He
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Qiaohua Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoran Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sujun Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jinkui Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yingxue Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yihao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huolin Shen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Zhang Q, Chen C, Wang Y, He M, Li Z, Shen L, Li Q, Zhu L, Ren D, Hu J, Gao Z, Zhang G, Qian Q. OsPPR11 encoding P-type PPR protein that affects group II intron splicing and chloroplast development. PLANT CELL REPORTS 2023; 42:421-431. [PMID: 36576552 DOI: 10.1007/s00299-022-02968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
OsPPR11 belongs to the P-type PPR protein family and can interact with OsCAF2 to regulate Group II intron splicing and affect chloroplast development in rice. Pentatricopeptide repeat (PPR) proteins participate in chloroplasts or mitochondria group II introns splicing in plants. The PPR protein family contains 491 members in rice, but most of their functions are unknown. In this study, we identified a nuclear gene encoding the P-type PPR protein OsPPR11 in chloroplasts. The qRT-PCR analysis demonstrated that OsPPR11 was expressed in all plant tissues, but leaves had the highest expression. The osppr11 mutants had yellowing leaves and a lethal phenotype that inhibited chloroplast development and photosynthesis-related gene expression and reduced photosynthesis-related protein accumulation in seedlings. Moreover, photosynthetic complex accumulation decreased significantly in osppr11 mutants. The OsPPR11 is required for ndhA, and ycf3-1 introns splicing and interact with CRM family protein OsCAF2, suggesting that these two proteins may form splicing complexes to regulate group II introns splicing. Further analysis revealed that OsCAF2 interacts with OsPPR11 through the N-terminus. These results indicate that OsPPR11 is essential for chloroplast development and function by affecting group II intron splicing in rice.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Changzhao Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Yaliang Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Mengxing He
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Zhiwen Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310006, People's Republic of China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qing Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, People's Republic of China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, People's Republic of China.
| |
Collapse
|
25
|
Ferraz R, Coimbra S, Correia S, Canhoto J. RNA methyltransferases in plants: Breakthroughs in function and evolution. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:449-460. [PMID: 36502609 DOI: 10.1016/j.plaphy.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, removing and recognising methyl groups on RNA, respectively. Several methyltransferases identified in plants are now being investigated and recent studies have shown a connection between RNA-methyltransferases (RNA-MTases) and stress and development processes. However, compared to their animal and bacteria counterparts, the understanding of RNA methyltransferases is still incipient, particularly those located in organelles. Comparative and systematic analyses allowed the tracing of the evolution of these enzymes suggesting the existence of several methyltransferases yet to be characterised. This review outlines the functions of plant nuclear and organellar RNA-MTases in plant development and stress responses and the comparative and evolutionary discoveries made on RNA-MTases across kingdoms.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sílvia Coimbra
- University of Porto, Faculty of Sciences, Portugal; LAQV Requimte, Sustainable Chemistry, University of Porto, Porto, Portugal.
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal.
| |
Collapse
|
26
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
27
|
Qiu Z, Chen D, Teng L, Guan P, Yu G, Zhang P, Song J, Zeng Q, Zhu L. OsWHY1 Interacts with OsTRX z and is Essential for Early Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2022; 15:50. [PMID: 36208371 PMCID: PMC9547768 DOI: 10.1186/s12284-022-00596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
WHIRLY (WHY) family proteins, a small family of single-stranded DNA (ssDNA) binding proteins, are widely found in plants and have multiple functions to regulate plant growth and development. However, WHY in rice has received less attention. In this study, we continued our previous study on OsTRX z that is important for chloroplast development. OsTRX z was discovered to interact with OsWHY1, which was confirmed using yeast two-hybrid, pull-down, and BiFC assays. Subsequently, the oswhy1 mutants were obtained by CRISPR/Cas9, which exhibited an albino phenotype and died after the three-leaf stage. Consistent with this albino phenotype, low amounts of Chl a, Chl b, and Car were detected in the oswhy1-1 mutant. Moreover, the oswhy1-1 mutant had chloroplasts with disrupted architecture and no stacked grana and thylakoid membranes. Subcellular localization showed that the OsWHY1-GFP fusion protein was targeted to the chloroplast. What's more, OsWHY1 was found to be preferentially expressed in young leaves and was involved in chloroplast RNA editing and splicing. Mutation of OsWHY1 significantly affected the expression of chloroplast and ribosome development-related and chlorophyll synthesis-related genes. In conclusion, OsWHY1 contributes to early chloroplast development and normal seedling survival in rice. These results will further elucidate the molecular mechanism of chloroplast development and expand our understanding of WHY1 functions.
Collapse
Affiliation(s)
- Zhennan Qiu
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China.
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Linhong Teng
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Peiyan Guan
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Guoping Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China
| | - Peiliang Zhang
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Jian Song
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Qiangcheng Zeng
- Shandong Key Laboratory of Functional Biological Resources Development and Utilization in Universities, College of Life Science, Dezhou University, Dezhou, 253023, China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
28
|
GRP23 plays a core role in E-type editosomes via interacting with MORFs and atypical PPR-DYWs in Arabidopsis mitochondria. Proc Natl Acad Sci U S A 2022; 119:e2210978119. [PMID: 36122211 PMCID: PMC9522420 DOI: 10.1073/pnas.2210978119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying the PPR-E+-NUWA-DYW2 editosome improves our understanding of the C-to-U RNA editing in plant organelles. However, the mechanism of RNA editing remains to be elucidated. Here, we report that GLUTAMINE-RICH PROTEIN23 (GRP23), a previously identified nuclear transcription regulator, plays an essential role in mitochondrial RNA editing through interacting with MORF (multiple organellar RNA-editing factor) proteins and atypical DYW-type pentatricopeptide repeat (PPR) proteins. GRP23 is targeted to mitochondria, plastids, and nuclei. Analysis of the grp23 mutants rescued by embryo-specific complementation shows decreased editing efficiency at 352 sites in mitochondria and 6 sites in plastids, with a predominant specificity for sites edited by the PPR-E and PPR-DYW proteins. GRP23 interacts with atypical PPR-DYW proteins (MEF8, MEF8S, DYW2, and DYW4) and MORF proteins (MORF1 and MORF8), whereas the four PPR-DYWs interact with the two MORFs. These interactions may increase the stability of the GRP23-MORF-atypical PPR-DYW complex. Furthermore, analysis of mef8N△64aamef8s double mutants shows that MEF8/MEF8S are required for the editing of the PPR-E protein-targeted sites in mitochondria. GRP23 could enhance the interaction between PPR-E and MEF8/MEF8S and form a homodimer or heterodimer with NUWA. Genetic complementation analysis shows that the C-terminal domains of GRP23 and NUWA possess a similar function, probably in the interaction with the MORFs. NUWA also interacts with atypical PPR-DYWs in yeast. Both GRP23 and NUWA interact with the atypical PPR-DYWs, suggesting that the PPR-E proteins recruit MEF8/MEF8S, whereas the PPR-E+ proteins specifically recruit DYW2 as the trans deaminase, and then GRP23, NUWA, and MORFs facilitate and/or stabilize the E or E+-type editosome formation.
Collapse
|
29
|
Chen S, Zeng X, Li Y, Qiu S, Peng X, Xie X, Liu Y, Liao C, Tang X, Wu J. The nuclear-encoded plastid ribosomal protein L18s are essential for plant development. FRONTIERS IN PLANT SCIENCE 2022; 13:949897. [PMID: 36212366 PMCID: PMC9538462 DOI: 10.3389/fpls.2022.949897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Plastid ribosomal proteins (PRPs) are necessary components for plastid ribosome biogenesis, playing essential roles in plastid development. The ribosomal protein L18 involved in the assemble of 5S rRNA and 23S rRNA, is vital for E. coli viability, but the functions of its homologs in plant plastid remain elusive. Here, we characterized the functions of the plant plastid ribosomal protein L18s (PRPL18s) in Arabidopsis and rice. AtPRPL18 was ubiquitously expressed in most of the plant tissues, but with higher expression levels in seedling shoots, leaves, and flowers. AtPRPL18 was localized in chloroplast. Genetic and cytological analyses revealed that a loss of function of AtPRPL18 resulted in embryo development arrest at globular stage. However, overexpression of AtPRPL18 did not show any visible phenotypical changes in Arabidopsis. The rice OsPRPL18 was localized in chloroplast. In contrast to AtPRPL18, knockout of OsPRPL18 did not affect embryo development, but led to an albino lethal phenotype at the seedling stage. Cytological analyses showed that chloroplast development was impaired in the osprpl18-1 mutant. Moreover, a loss-function of OsPRPL18 led to defects in plastid ribosome biogenesis and a serious reduction in the efficiency of plastid intron splicing. In all, these results suggested that PRPL18s play critical roles in plastid ribosome biogenesis, plastid intron splicing, and chloroplast development, and are essential for plant survival.
Collapse
Affiliation(s)
- Shujing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinhuang Zeng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinjue Xie
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yujie Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chancan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
30
|
Huang KY, Kan SL, Shen TT, Gong P, Feng YY, Du H, Zhao YP, Wan T, Wang XQ, Ran JH. A Comprehensive Evolutionary Study of Chloroplast RNA Editing in Gymnosperms: A Novel Type of G-to-A RNA Editing Is Common in Gymnosperms. Int J Mol Sci 2022; 23:ijms231810844. [PMID: 36142757 PMCID: PMC9505161 DOI: 10.3390/ijms231810844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Although more than 9100 plant plastomes have been sequenced, RNA editing sites of the whole plastome have been experimentally verified in only approximately 21 species, which seriously hampers the comprehensive evolutionary study of chloroplast RNA editing. We investigated the evolutionary pattern of chloroplast RNA editing sites in 19 species from all 13 families of gymnosperms based on a combination of genomic and transcriptomic data. We found that the chloroplast C-to-U RNA editing sites of gymnosperms shared many common characteristics with those of other land plants, but also exhibited many unique characteristics. In contrast to that noted in angiosperms, the density of RNA editing sites in ndh genes was not the highest in the sampled gymnosperms, and both loss and gain events at editing sites occurred frequently during the evolution of gymnosperms. In addition, GC content and plastomic size were positively correlated with the number of chloroplast RNA editing sites in gymnosperms, suggesting that the increase in GC content could provide more materials for RNA editing and facilitate the evolution of RNA editing in land plants or vice versa. Interestingly, novel G-to-A RNA editing events were commonly found in all sampled gymnosperm species, and G-to-A RNA editing exhibits many different characteristics from C-to-U RNA editing in gymnosperms. This study revealed a comprehensive evolutionary scenario for chloroplast RNA editing sites in gymnosperms, and reported that a novel type of G-to-A RNA editing is prevalent in gymnosperms.
Collapse
Affiliation(s)
- Kai-Yuan Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- School of Earth Sciences, East China University of Technology, Nanchang 330013, China
| | - Pin Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuan-Yuan Feng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Du
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yun-Peng Zhao
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tao Wan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
31
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
32
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
33
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
34
|
Wang C, Blondel L, Quadrado M, Dargel-Graffin C, Mireau H. Pentatricopeptide repeat protein MITOCHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. PLANT PHYSIOLOGY 2022; 190:669-681. [PMID: 35751603 PMCID: PMC9434245 DOI: 10.1093/plphys/kiac309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 05/29/2023]
Abstract
Gene expression in plant mitochondria is predominantly governed at the post-transcriptional level and relies mostly on nuclear-encoded proteins. However, the protein factors involved and the underlying molecular mechanisms are still not well understood. Here, we report on the function of the MITOCHONDRIAL STABILITY FACTOR 3 (MTSF3) protein, previously named EMBRYO DEFECTIVE 2794 (EMB2794), and show that it is essential for accumulation of the mitochondrial NADH dehydrogenase subunit 2 (nad2) transcript in Arabidopsis (Arabidopsis thaliana) but not for splicing of nad2 intron 2 as previously proposed. The MTSF3 gene encodes a pentatricopeptide repeat protein that localizes in the mitochondrion. An MTSF3 null mutation induces embryonic lethality, but viable mtsf3 mutant plants can be generated through partial complementation with the developmentally regulated ABSCISIC ACID INSENSITIVE3 promoter. Genetic analyses revealed growth retardation in rescued mtsf3 plants owing to the specific destabilization of mature nad2 mRNA and a nad2 precursor transcript bearing exons 3 to 5. Biochemical data demonstrate that MTSF3 protein specifically binds to the 3' terminus of nad2. Destabilization of nad2 mRNA induces a substantial decrease in complex I assembly and activity and overexpression of the alternative respiratory pathway. Our results support a role for MTSF3 protein in protecting two nad2 transcripts from degradation by mitochondrial exoribonucleases by binding to their 3' extremities.
Collapse
Affiliation(s)
- Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Lisa Blondel
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Céline Dargel-Graffin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | | |
Collapse
|
35
|
Ma K, Deng L, Wu H, Fan J. Towards green biomanufacturing of high-value recombinant proteins using promising cell factory: Chlamydomonas reinhardtii chloroplast. BIORESOUR BIOPROCESS 2022; 9:83. [PMID: 38647750 PMCID: PMC10992328 DOI: 10.1186/s40643-022-00568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgae are cosmopolitan organisms in nature with short life cycles, playing a tremendous role in reducing the pressure of industrial carbon emissions. Besides, microalgae have the unique advantages of being photoautotrophic and harboring both prokaryotic and eukaryotic expression systems, becoming a popular host for recombinant proteins. Currently, numerous advanced molecular tools related to microalgal transgenesis have been explored and established, especially for the model species Chlamydomonas reinhardtii (C. reinhardtii hereafter). The development of genetic tools and the emergence of new strategies further increase the feasibility of developing C. reinhardtii chloroplasts as green factories, and the strong genetic operability of C. reinhardtii endows it with enormous potential as a synthetic biology platform. At present, C. reinhardtii chloroplasts could successfully produce plenty of recombinant proteins, including antigens, antibodies, antimicrobial peptides, protein hormones and enzymes. However, additional techniques and toolkits for chloroplasts need to be developed to achieve efficient and markerless editing of plastid genomes. Mining novel genetic elements and selectable markers will be more intensively studied in the future, and more factors affecting protein expression are urged to be explored. This review focuses on the latest technological progress of selectable markers for Chlamydomonas chloroplast genetic engineering and the factors that affect the efficiency of chloroplast protein expression. Furthermore, urgent challenges and prospects for future development are pointed out.
Collapse
Affiliation(s)
- Ke Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China.
| |
Collapse
|
36
|
Palomar VM, Jaksich S, Fujii S, Kuciński J, Wierzbicki AT. High-resolution map of plastid-encoded RNA polymerase binding patterns demonstrates a major role of transcription in chloroplast gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1139-1151. [PMID: 35765883 PMCID: PMC9540123 DOI: 10.1111/tpj.15882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 05/16/2023]
Abstract
Plastids contain their own genomes, which are transcribed by two types of RNA polymerases. One of those enzymes is a bacterial-type, multi-subunit polymerase encoded by the plastid genome. The plastid-encoded RNA polymerase (PEP) is required for efficient expression of genes encoding proteins involved in photosynthesis. Despite the importance of PEP, its DNA binding locations have not been studied on the genome-wide scale at high resolution. We established a highly specific approach to detect the genome-wide pattern of PEP binding to chloroplast DNA using plastid chromatin immunoprecipitation-sequencing (ptChIP-seq). We found that in mature Arabidopsis thaliana chloroplasts, PEP has a complex DNA binding pattern with preferential association at genes encoding rRNA, tRNA, and a subset of photosynthetic proteins. Sigma factors SIG2 and SIG6 strongly impact PEP binding to a subset of tRNA genes and have more moderate effects on PEP binding throughout the rest of the genome. PEP binding is commonly enriched on gene promoters, around transcription start sites. Finally, the levels of PEP binding to DNA are correlated with levels of RNA accumulation, which demonstrates the impact of PEP on chloroplast gene expression. Presented data are available through a publicly available Plastid Genome Visualization Tool (Plavisto) at https://plavisto.mcdb.lsa.umich.edu/.
Collapse
Affiliation(s)
- V. Miguel Palomar
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Sarah Jaksich
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Sho Fujii
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109USA
- Department of Botany, Graduate School of ScienceKyoto UniversityKyoto606‐8502Japan
- Department of Biology, Faculty of Agriculture and Life ScienceHirosaki UniversityHirosaki036‐8561Japan
| | - Jan Kuciński
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109USA
| | - Andrzej T. Wierzbicki
- Department of Molecular, Cellular, and Developmental BiologyUniversity of MichiganAnn ArborMichigan48109USA
| |
Collapse
|
37
|
Yang Y, Yu X, Wei P, Liu C, Chen Z, Li X, Liu X. Comparative chloroplast genome and transcriptome analysis on the ancient genus Isoetes from China. FRONTIERS IN PLANT SCIENCE 2022; 13:924559. [PMID: 35968088 PMCID: PMC9372280 DOI: 10.3389/fpls.2022.924559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Isoetes is a famous living fossil that plays a significant role in the evolutionary studies of the plant kingdom. To explore the adaptive evolution of the ancient genus Isoetes from China, we focused on Isoetes yunguiensis (Q.F. Wang and W.C. Taylor), I. shangrilaensis (X. Li, Y.Q. Huang, X.K. Dai & X. Liu), I. taiwanensis (DeVol), I. sinensis (T.C. Palmer), I. hypsophila_GHC (Handel-Mazzetti), and I. hypsophila_HZS in this study. We sequenced, assembled, and annotated six individuals' chloroplast genomes and transcriptomes, and performed a series of analyses to investigate their chloroplast genome structures, RNA editing events, and adaptive evolution. The six chloroplast genomes of Isoetes exhibited a typical quadripartite structure with conserved genome sequence and structure. Comparative analyses of Isoetes species demonstrated that the gene organization, genome size, and GC contents of the chloroplast genome are highly conserved across the genus. Besides, our positive selection analyses suggested that one positively selected gene was statistically supported in Isoetes chloroplast genomes using the likelihood ratio test (LRT) based on branch-site models. Moreover, we detected positive selection signals using transcriptome data, suggesting that nuclear-encoded genes involved in the adaption of Isoetes species to the extreme environment of the Qinghai-Tibetan Plateau (QTP). In addition, we identified 291-579 RNA editing sites in the chloroplast genomes of six Isoetes based on transcriptome data, well above the average of angiosperms. RNA editing in protein-coding transcripts results from amino acid changes to increase their hydrophobicity and conservation in Isoetes, which may help proteins form functional three-dimensional structure. Overall, the results of this study provide comprehensive transcriptome and chloroplast genome resources and contribute to a better understanding of adaptive evolutionary and molecular biology in Isoetes.
Collapse
Affiliation(s)
- Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, China
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Genome-Wide Identification and Characterization of RNA/DNA Differences Associated with Fusarium graminearum Infection in Wheat. Int J Mol Sci 2022; 23:ijms23147982. [PMID: 35887327 PMCID: PMC9316857 DOI: 10.3390/ijms23147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
RNA/DNA difference (RDD) is a post-transcriptional modification playing a crucial role in regulating diverse biological processes in eukaryotes. Although it has been extensively studied in plant chloroplast and mitochondria genomes, RDDs in plant nuclear genomes are not well studied at present. Here, we investigated the RDDs associated with fusarium head blight (FHB) through a novel method by comparing the RNA-seq data between Fusarium-infected and control samples of four wheat genotypes. A total of 187 high-confidence unique RDDs in 36 genes were identified, representing the first landscape of the FHB-responsive RDD in wheat. The majority (26) of these 36 RDD genes were correlated either positively or negatively with FHB levels. Effects of these RDDs on RNA and protein sequences have been identified, their editing frequency and the expression level of the corresponding genes provided, and the prediction of the effect on the minimum folding free energy of mRNA, miRNA binding, and colocation of RDDs with conserved domains presented. RDDs were predicted to induce modifications in the mRNA and protein structures of the corresponding genes. In two genes, TraesCS1B02G294300 and TraesCS3A02G263900, editing was predicted to enhance their affinity with tae-miR9661-5p and tae-miR9664-3p, respectively. To our knowledge, this study is the first report of the association between RDD and FHB in wheat; this will contribute to a better understanding of the molecular basis underlying FHB resistance, and potentially lead to novel strategies to improve wheat FHB resistance through epigenetic methods.
Collapse
|
39
|
Ma L, Yang Y, Wang Y, Cheng K, Zhou X, Li J, Zhang J, Li R, Zhang L, Wang K, Zeng N, Gong Y, Zhu D, Deng Z, Qu G, Zhu B, Fu D, Luo Y, Zhu H. SlRBP1 promotes translational efficiency via SleIF4A2 to maintain chloroplast function in tomato. THE PLANT CELL 2022; 34:2747-2764. [PMID: 35385118 PMCID: PMC9252502 DOI: 10.1093/plcell/koac104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/05/2022] [Indexed: 06/01/2023]
Abstract
Many glycine-rich RNA-binding proteins (GR-RBPs) have critical functions in RNA processing and metabolism. Here, we describe a role for the tomato (Solanum lycopersicum) GR-RBP SlRBP1 in regulating mRNA translation. We found that SlRBP1 knockdown mutants (slrbp1) displayed reduced accumulation of total chlorophyll and impaired chloroplast ultrastructure. These phenotypes were accompanied by deregulation of the levels of numerous key transcripts associated with chloroplast functions in slrbp1. Furthermore, native RNA immunoprecipitation-sequencing (nRIP-seq) recovered 61 SlRBP1-associated RNAs, most of which are involved in photosynthesis. SlRBP1 binding to selected target RNAs was validated by nRIP-qPCR. Intriguingly, the accumulation of proteins encoded by SlRBP1-bound transcripts, but not the mRNAs themselves, was reduced in slrbp1 mutants. Polysome profiling followed by RT-qPCR assays indicated that the polysome occupancy of target RNAs was lower in slrbp1 plants than in wild-type. Furthermore, SlRBP1 interacted with the eukaryotic translation initiation factor SleIF4A2. Silencing of SlRBP1 significantly reduced SleIF4A2 binding to SlRBP1-target RNAs. Taking these observations together, we propose that SlRBP1 binds to and channels RNAs onto the SleIF4A2 translation initiation complex and promotes the translation of its target RNAs to regulate chloroplast functions.
Collapse
Affiliation(s)
- Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Yuqiu Wang
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Ke Cheng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiwen Zhou
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingyu Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | - Lingling Zhang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ni Zeng
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanyan Gong
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Danmeng Zhu
- School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | |
Collapse
|
40
|
Xiong HB, Pan HM, Long QY, Wang ZY, Qu WT, Mei T, Zhang N, Xu XF, Yang ZN, Yu QB. AtNusG, a chloroplast nucleoid protein of bacterial origin linking chloroplast transcriptional and translational machineries, is required for proper chloroplast gene expression in Arabidopsis thaliana. Nucleic Acids Res 2022; 50:6715-6734. [PMID: 35736138 PMCID: PMC9262611 DOI: 10.1093/nar/gkac501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
In Escherichia coli, transcription-translation coupling is mediated by NusG. Although chloroplasts are descendants of endosymbiotic prokaryotes, the mechanism underlying this coupling in chloroplasts remains unclear. Here, we report transcription-translation coupling through AtNusG in chloroplasts. AtNusG is localized in chloroplast nucleoids and is closely associated with the chloroplast PEP complex by interacting with its essential component PAP9. It also comigrates with chloroplast ribosomes and interacts with their two components PRPS5 (uS5c) and PRPS10 (uS10c). These data suggest that the transcription and translation machineries are coupled in chloroplasts. In the atnusg mutant, the accumulation of chloroplast-encoded photosynthetic gene transcripts, such as psbA, psbB, psbC and psbD, was not obviously changed, but that of their proteins was clearly decreased. Chloroplast polysomic analysis indicated that the decrease in these proteins was due to the reduced efficiency of their translation in this mutant, leading to reduced photosynthetic efficiency and enhanced sensitivity to cold stress. These data indicate that AtNusG-mediated coupling between transcription and translation in chloroplasts ensures the rapid establishment of photosynthetic capacity for plant growth and the response to environmental changes. Therefore, our study reveals a conserved mechanism of transcription-translation coupling between chloroplasts and E. coli, which perhaps represents a regulatory mechanism of chloroplast gene expression. This study provides insights into the underlying mechanisms of chloroplast gene expression in higher plants.
Collapse
Affiliation(s)
| | | | | | - Zi-Yuan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wan-Tong Qu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Tong Mei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nan Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Feng Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Correspondence may also be addressed to Zhong-Nan Yang. Tel: +86 21 64324650;
| | - Qing-Bo Yu
- To whom correspondence should be addressed. Tel: +86 21 64324812;
| |
Collapse
|
41
|
Shoaib Y, Usman B, Kang H, Jung KH. Epitranscriptomics: An Additional Regulatory Layer in Plants' Development and Stress Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1033. [PMID: 35448761 PMCID: PMC9027318 DOI: 10.3390/plants11081033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Epitranscriptomics has added a new layer of regulatory machinery to eukaryotes, and the advancement of sequencing technology has revealed more than 170 post-transcriptional modifications in various types of RNAs, including messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA (rRNA), and long non-coding RNA (lncRNA). Among these, N6-methyladenosine (m6A) and N5-methylcytidine (m5C) are the most prevalent internal mRNA modifications. These regulate various aspects of RNA metabolism, mainly mRNA degradation and translation. Recent advances have shown that regulation of RNA fate mediated by these epitranscriptomic marks has pervasive effects on a plant's development and responses to various biotic and abiotic stresses. Recently, it was demonstrated that the removal of human-FTO-mediated m6A from transcripts in transgenic rice and potatoes caused a dramatic increase in their yield, and that the m6A reader protein mediates stress responses in wheat and apple, indicating that regulation of m6A levels could be an efficient strategy for crop improvement. However, changing the overall m6A levels might have unpredictable effects; therefore, the identification of precise m6A levels at a single-base resolution is essential. In this review, we emphasize the roles of epitranscriptomic modifications in modulating molecular, physiological, and stress responses in plants, and provide an outlook on epitranscriptome engineering as a promising tool to ensure food security by editing specific m6A and m5C sites through robust genome-editing technology.
Collapse
Affiliation(s)
- Yasira Shoaib
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| | - Babar Usman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea;
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin-si 17104, Korea; (Y.S.); (B.U.)
| |
Collapse
|
42
|
Chen Q, Shen P, Bock R, Li S, Zhang J. Comprehensive analysis of plastid gene expression during fruit development and ripening of kiwifruit. PLANT CELL REPORTS 2022; 41:1103-1114. [PMID: 35226116 DOI: 10.1007/s00299-022-02840-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Global survey of plastid gene expression during fruit ripening in kiwifruit provides cis-elements for the future engineering of the plastid genome of kiwifruit. A limitation in the application of plastid biotechnology for molecular farming is the low-level expression of transgenes in non-green plastids compared with photosynthetically active chloroplasts. Unlike other fruits, not all chloroplasts are transformed into chromoplasts during ripening of red-fleshed kiwifruit (Actinidia chinensis cv. Hongyang) fruits, which may make kiwifruit an ideal horticultural plant for recombinant protein production by plastid engineering. To identify cis-elements potentially triggering high-level transgene expression in edible tissues of the 'Hongyang' kiwifruit, here we report a comprehensive analysis of kiwifruit plastid gene transcription in green leaves and fruits at three different developmental stages. While transcripts of a few photosynthesis-related genes and most genetic system genes were substantially upregulated in green fruits compared with leaves, nearly all plastid genes were significantly downregulated at the RNA level during fruit development. Expression of a few genes remained unchanged, including psbA, the gene encoding the D1 polypeptide of photosystem II. However, PsbA protein accumulation decreased continuously during chloroplast-to-chromoplast differentiation. Analysis of post-transcriptional steps in mRNA maturation, including intron splicing and RNA editing, revealed that splicing and editing may contribute to regulation of plastid gene expression. Altogether, 40 RNA editing sites were verified, and 5 of them were newly discovered. Taken together, this study has generated a valuable resource for the analysis of plastid gene expression and provides cis-elements for future efforts to engineer the plastid genome of kiwifruit.
Collapse
Affiliation(s)
- Qiqi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ralph Bock
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
43
|
Cutolo EA, Mandalà G, Dall’Osto L, Bassi R. Harnessing the Algal Chloroplast for Heterologous Protein Production. Microorganisms 2022; 10:743. [PMID: 35456794 PMCID: PMC9025058 DOI: 10.3390/microorganisms10040743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Photosynthetic microbes are gaining increasing attention as heterologous hosts for the light-driven, low-cost production of high-value recombinant proteins. Recent advances in the manipulation of unicellular algal genomes offer the opportunity to establish engineered strains as safe and viable alternatives to conventional heterotrophic expression systems, including for their use in the feed, food, and biopharmaceutical industries. Due to the relatively small size of their genomes, algal chloroplasts are excellent targets for synthetic biology approaches, and are convenient subcellular sites for the compartmentalized accumulation and storage of products. Different classes of recombinant proteins, including enzymes and peptides with therapeutical applications, have been successfully expressed in the plastid of the model organism Chlamydomonas reinhardtii, and of a few other species, highlighting the emerging potential of transplastomic algal biotechnology. In this review, we provide a unified view on the state-of-the-art tools that are available to introduce protein-encoding transgenes in microalgal plastids, and discuss the main (bio)technological bottlenecks that still need to be addressed to develop robust and sustainable green cell biofactories.
Collapse
Affiliation(s)
| | | | | | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (E.A.C.); (G.M.); (L.D.)
| |
Collapse
|
44
|
Coordination of Chloroplast Activity with Plant Growth: Clues Point to TOR. PLANTS 2022; 11:plants11060803. [PMID: 35336685 PMCID: PMC8953291 DOI: 10.3390/plants11060803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Photosynthesis is the defining function of most autotrophic organisms. In the plantae kingdom, chloroplasts host this function and ensure growth. However, these organelles are very sensitive to stressful conditions and the photosynthetic process can cause photooxidative damage if not perfectly regulated. In addition, their function is energivorous in terms of both chemical energy and nutrients. To coordinate chloroplast activity with the cell’s need, continuous signaling is required: from chloroplasts to cytoplasm and from nucleus to chloroplasts. In this opinion article, several mechanisms that ensure this communication are reported and the many clues that point to an important role of the Target of Rapamycin (TOR) kinase in the coordination between the eukaryotic and prokaryotic sides of plants are highlighted.
Collapse
|
45
|
Suzuki R, Sugita C, Aoki S, Sugita M. Physcomitrium patens pentatricopeptide repeat protein PpPPR_32 is involved in the accumulation of psaC mRNA encoding the iron sulfur protein of photosystem I. Genes Cells 2022; 27:293-304. [PMID: 35194890 DOI: 10.1111/gtc.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/01/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in RNA metabolism and also play a role in posttranscriptional regulation during plant organellar gene expression. Although a hundred of PPR proteins exist in the moss Physcomitrium patens, their functions are not fully understood. Here, we report the function of P-class PPR protein PpPPR_32 in P. patens. A transient expression assay using green fluorescent protein demonstrated that the N-terminal region of PpPPR_32 functions as a chloroplast-targeting transit peptide, indicating that PpPPR_32 is localized in chloroplasts. PpPPR_32 knockout (KO) mutants grew autotrophically but with reduced protonema growth and the poor formation of photosystem I (PSI) complexes. Quantitative real-time reverse transcription-polymerase chain reaction and RNA gel blot hybridization analyses revealed a significant reduction in the transcript level of the psaC gene encoding the iron sulfur protein of PSI but no alteration to the transcript levels of other PSI genes. This suggests that PpPPR_32 is specifically involved in the expression level of the psaC gene. Our results indicate that PpPPR_32 is essential for the accumulation of psaC transcript and PSI complexes.
Collapse
Affiliation(s)
- Ryo Suzuki
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University Chikusa-ku, Nagoya, Japan.,Graduate School of Informatics, Nagoya University Chikusa-ku, Nagoya, Japan
| |
Collapse
|
46
|
Fages-Lartaud M, Hohmann-Marriott MF. Overview of tRNA Modifications in Chloroplasts. Microorganisms 2022; 10:226. [PMID: 35208681 PMCID: PMC8877259 DOI: 10.3390/microorganisms10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon-anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplasts. Here, we synthesize all available information concerning tRNA modifications in the chloroplast and assign translation efficiency for each modified anticodon-codon pair. In addition, we perform a bioinformatics analysis that links enzymes to tRNA modifications and aminoacylation in the chloroplast of Chlamydomonas reinhardtii. This work provides the first comprehensive analysis of codon and anticodon interactions of chloroplasts and its implication for translation efficiency.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
- United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
47
|
Wang Y, Wen F, Hong X, Li Z, Mi Y, Zhao B. Comparative chloroplast genome analyses of Paraboea (Gesneriaceae): Insights into adaptive evolution and phylogenetic analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1019831. [PMID: 36275537 PMCID: PMC9581172 DOI: 10.3389/fpls.2022.1019831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/16/2022] [Indexed: 05/22/2023]
Abstract
Paraboea (Gesneriaceae) distributed in the karst areas of South and Southwest China and Southeast Asia, is an ideal genus to study the phylogeny and adaptive evolution of karst plants. In this study, the complete chloroplast genomes of twelve Paraboea species were sequenced and analyzed. Twelve chloroplast genomes ranged in size from 153166 to 154245 bp. Each chloroplast genome had a typical quartile structure, and relatively conserved type and number of gene components, including 131 genes which are composed of 87 protein coding genes, 36 transfer RNAs and 8 ribosomal RNAs. A total of 600 simple sequence repeats and 389 non-overlapped sequence repeats were obtained from the twelve Paraboea chloroplast genomes. We found ten divergent regions (trnH-GUG-psbA, trnM-CAU, trnC-GCA, atpF-atpH, ycf1, trnK-UUU-rps16, rps15, petL, trnS-GCU-trnR-UCU and psaJ-rpl33) among the 12 Paraboea species to be potential molecular markers. In the phylogenetic tree of 31 Gesneriaceae plants including twelve Paraboea species, all Paraboea species clustered in a clade and confirmed the monophyly of Paraboea. Nine genes with positive selection sites were detected, most of which were related to photosynthesis and protein synthesis, and might played crucial roles in the adaptability of Paraboea to diverse karst environments. These findings are valuable for further study of the phylogeny and karst adaptability of Gesneriaceae plants.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Pharmacognosy, Guilin Medical University, Guilin, China
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Fang Wen
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Xin Hong
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhenglong Li
- Anhui Provincial Engineering Laboratory of Wetland Ecosystem Protection and Restoration, School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yaolei Mi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Bo Zhao, ; Yaolei Mi,
| | - Bo Zhao
- Department of Pharmacognosy, Guilin Medical University, Guilin, China
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
- *Correspondence: Bo Zhao, ; Yaolei Mi,
| |
Collapse
|
48
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
49
|
Gipson AB, Hanson MR, Bentolila S. The RanBP2 zinc finger domains of chloroplast RNA editing factor OZ1 are required for protein-protein interactions and conversion of C to U. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:215-226. [PMID: 34743362 DOI: 10.1111/tpj.15569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In the chloroplast, organelle zinc finger 1 (OZ1) is a RanBP2-type zinc finger (Znf) protein required for many RNA editing events, a process by which specific cytosines are enzymatically converted to uracils as a correction mechanism for missense mutations in the organelle genomes. RNA editing is carried out by a large multi-protein complex called the 'editosome' that contains members of the pentatricopeptide repeat (PPR) protein family, the RNA editing factor interacting protein (also known as MORF) family and the organelle RNA-recognition motif (ORRM) family, in addition to OZ1. OZ1 is an 82-kDa protein with distinct domains, including a pair of Znf domains and a unique C-terminal region. To elucidate the functions of these domains, we have generated truncations of OZ1 for use in protein-protein interaction assays that identified the C-terminal region of OZ1, as well as the Znf domains as the primary interactors with PPR proteins, which are factors required for site-specificity and enzymatic editing. Expression of these OZ1 truncations in vivo showed that the Znf domains were required to restore chloroplast RNA editing in oz1 knockout plants. Mutation of key structural residues in the Znf domains showed that they are necessary for editing and required for interaction with ORRM1, a general editing factor with an RNA-binding domain. These functional characterizations of the Znfs and novel C-terminal domain contribute to our understanding of the model for the chloroplast plant editosome.
Collapse
Affiliation(s)
- Andrew B Gipson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY, 14853, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY, 14853, USA
| | - Stéphane Bentolila
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
50
|
Raman G, Nam GH, Park S. Extensive reorganization of the chloroplast genome of Corydalis platycarpa: A comparative analysis of their organization and evolution with other Corydalis plastomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1043740. [PMID: 37090468 PMCID: PMC10115153 DOI: 10.3389/fpls.2022.1043740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/07/2022] [Indexed: 05/03/2023]
Abstract
Introduction The chloroplast (cp) is an autonomous plant organelle with an individual genome that encodes essential cellular functions. The genome architecture and gene content of the cp is highly conserved in angiosperms. The plastome of Corydalis belongs to the Papaveraceae family, and the genome is comprised of unusual rearrangements and gene content. Thus far, no extensive comparative studies have been carried out to understand the evolution of Corydalis chloroplast genomes. Methods Therefore, the Corydalis platycarpa cp genome was sequenced, and wide-scale comparative studies were conducted using publicly available twenty Corydalis plastomes. Results Comparative analyses showed that an extensive genome rearrangement and IR expansion occurred, and these events evolved independently in the Corydalis species. By contrast, the plastomes of its closely related subfamily Papaveroideae and other Ranunculales taxa are highly conserved. On the other hand, the synapomorphy characteristics of both accD and the ndh gene loss events happened in the common ancestor of the Corydalis and sub-clade of the Corydalis lineage, respectively. The Corydalis-sub clade species (ndh lost) are distributed predominantly in the Qinghai-Tibetan plateau (QTP) region. The phylogenetic analysis and divergence time estimation were also employed for the Corydalis species. Discussion The divergence time of the ndh gene in the Corydalis sub-clade species (44.31 - 15.71 mya) coincides very well with the uplift of the Qinghai-Tibet Plateau in Oligocene and Miocene periods, and maybe during this period, it has probably triggered the radiation of the Corydalis species. Conclusion To the best of the authors' knowledge, this is the first large-scale comparative study of Corydalis plastomes and their evolution. The present study may provide insights into the plastome architecture and the molecular evolution of Corydalis species.
Collapse
Affiliation(s)
- Gurusamy Raman
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
| | - Gi-Heum Nam
- Plants Resource Division, Biological Resources Research Department, National Institute of Biological Resources, Seo-gu, Incheon, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongsan-buk, Republic of Korea
- *Correspondence: SeonJoo Park, ; Gi-Heum Nam,
| |
Collapse
|